2013高考数学(理)一轮复习课件:4-6
2013届高考理科数学总复习(第1轮)全国版课件:10.2排列、组合应用题(第1课时)
![2013届高考理科数学总复习(第1轮)全国版课件:10.2排列、组合应用题(第1课时)](https://img.taocdn.com/s3/m/0539913431126edb6f1a1032.png)
• 4. 从n个不同元素中取出m(m≤n)个元素 ⑤ _________,叫做从n个不同元素中取 并成一组 出m个元素的一个组合. • 5.从n个不同元素中取出m(m≤n)个元素的 ⑥ ______________,叫做从n个不同元 所有组合的个数 素中取出m个元素的组合数,记作⑦ m Cn ____ . m n n 1 n 2 n m 1 A=⑧ ____________________. n • 6. m n n 1 n 2 n m 1 C =⑨ ____________________. • 7. n m m 1 m 2 2 1
14
题型2
• • • • • • • • •
(2)方程要有实根,需Δ=b2-4ac≥0. 当c=0时,a、b可在1、3、5、7 2 中任取2个,有 A 4 个; 当c≠0时,b只能取5、7. 2 b取5时,a、c只能取1、3,有 A 2 个; b取7时,a、c可取1、3或1、5, 2 有2 A 2 个. 故有实数根的一元二次方程共有 2 2 2 A4 A2 2 A2 18 个.
A5 A4
5 4
6
• 2.若2n个学生排成一排的排法数为x,这 2n个学生排成前后两排,每排各n个学生 的排法数为y,则x、y的关系为( ) C • A. x>y B. x<y • C. x=y D. x=2y • 解:第一种排法数为 ,第二种排法数 2n A2 n 为 n n = 2 n ,从而x=y.
25
• 2.元素相邻用“捆绑法”,即将必须相邻的元 素“捆”在一起当作一个元素进行排列. • 3.元素相离用“插空法”,即把可相邻元素每 两个元素留出一个空位,将不能相邻即相离的 元素插入空位中进行排列. • 4.定序元素用“除法”,即n个元素的全排列 中若有m个元素必须按一定顺序排列,这m个 元素相邻或不相邻都可以,
2013高考数学(理)一轮复习教案:第六篇_数列第2讲_等差数列及其前n项和
![2013高考数学(理)一轮复习教案:第六篇_数列第2讲_等差数列及其前n项和](https://img.taocdn.com/s3/m/fdd4357e31b765ce050814c8.png)
第2讲 等差数列及其前n 项和泊头一中韩俊华 【2013年高考会这样考】1.考查运用基本量法求解等差数列的基本量问题(知三求二问题,知三求一问题).2.考查等差数列的性质、前n 项和公式及综合应用. 【复习指导】1.掌握等差数列的定义与性质、通项公式、前n 项和公式等.2.掌握等差数列的判断方法,等差数列求和的方法.基础梳理1.等差数列的定义(1)文字定义:如果一个数列从第 项起,每一项与它的前一项的差都等于 ,那么这个数列就叫做等差数列,这个叫做 等差数列的 ,通常用字母d 表示(2)符号定义: ①. ② 2.等差数列的通项公式:n a = ,变式:d = ()1n ≠或n a = ,变式:d = ()n m ≠(其中*,m n N ∈)或n a = 。
(函数的一次式) 3.等差中项如果A =a +b2A 叫做a 与b 的等差中项.4 等差数列的判定方法 ①定义法:②等差中项法: ③通项公式法: 4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且m +n =p +q ,则 (m ,n ,p ,q ∈N *).特别的若:m +n =2p ,则(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为 的等差数列(4)在有穷等差数列中与首末两项等距离的任意两项的和相等:即: (5)等差数列的单调性:若d >0,则数列{a n }为 若d=0,则数列{a n }为 若d <0,则数列{a n }为(6)等差数列中公差d= = (7)等差数列中a n =m ,a m =n 则a m+n =(8)若数列{a n } {b n }均为等差数列,则若{c a n +kb n }仍为 ,另外数列 (9)若项数为2n ,则 ①S S -=奇偶; ②S S =偶奇; ③2n S =(用1,n n a a +表示,1,n n a a +为中间两项) (10)若项数为21n +,则 ①S S -=奇偶; ②S S =奇偶; ③21n S +=(用1n a +表示,1n a +为中间项)(11)若等差数列{n a },{n b }的前n 项和分别为n n S T ,,则2121n n nn a S b T --=(12).23243m m m m m m m S S S S S S S --- ,,,,为等差数列。
2013版高考数学人教A版一轮复习课件第1单元-集合与常用逻辑用语(理科)
![2013版高考数学人教A版一轮复习课件第1单元-集合与常用逻辑用语(理科)](https://img.taocdn.com/s3/m/84307be281c758f5f61f67e8.png)
第1讲 │ 问题思考
► 问题3 集合的运算 (1)A∩B=A∪B的充要条件是A=B.( (2)A∩B=∅的充要条件是A=B=∅.(
) )
第1讲 │ 问题思考
[答案] (1)对;(2)错.
[解析] (1)根据韦恩图分析可知. (2)A∩B=∅时,只要集合 A,B 没有公共元素即可,不一 定是 A=B=∅.
B∩A A ∅ (3)交集:A∩B=______,A∩A=____,A∩∅=____, ⊆ A∩B____A,A∩B=A⇔A⊆ B. ∅ U (4)补集:A∩(∁UA)=____,A∪(∁UA)=____.
(∁UA)∪(∁ (5)∁U(A∪B)=________,∁U(A∩B)=________. UB ) (∁UA)∩(∁UB)
集合 常用逻 辑用语 集合 常用逻 辑用语
集合的含义、运算、 基本关系 命题、充要条件、逻 辑联结词、量词
了解 理解 了解 理解 了解 理解 理解
2011江苏1 2011陕西12 2010北京20 2010安徽20
解 答 题
第一单元 │ 使用建议 使用建议
第1讲 │ 知识梳理
(4)几个常用集合的表示法 数集 自然数 正整数 集 集 整数集 有理数 集 实数集
N*或N Q R 表示法 ______ ______+ ______ ______ ______ N Z 列举法 描述法 (5)集合有三种表示法:________,________, Venn图法 ________.
第1讲 │ 问题思考
► 问题4 元素、集合的关系 (1)a {a}.( ) (2)∅∈{∅}.( ) (3){(1,2)}⊆ {1,2}.( )
第1讲 │ 问题思考
[答案] (1)错;(2)对;(3)错.
2013届高考数学一轮复习课件(理)人教A版-第23讲 正(余)弦定理
![2013届高考数学一轮复习课件(理)人教A版-第23讲 正(余)弦定理](https://img.taocdn.com/s3/m/caeeef3f0b4c2e3f572763ff.png)
1 2 2 = ×4R sinAsinB× 2 2 3π = 2R sinAsin( -A) 4
2
1 2 π = R [ 2sin(2A- )+1]. 2 4 3π π π 5π 因为 0<A< ,所以- <2A- < , 4 4 4 4 π π 3π 所以当 2A- = ,即 A= 时,S△ABC 取最大值. 4 2 8 2+1 2 (SR,它的内接△ABC 中,有 2R(sin2A-sin2C)=( 2a-b)sinB,求角 C 和△ABC 面积 S△ABC 的最大值.
a b c 【解析】由正弦定理得 sinA= ,sinB= ,sinC= , 2R 2R 2R a2 c2 b 则 2R( 2- 2)=( 2a-b)× , 4R 4R 2R 即 a2-c2=( 2a-b)b, a2+b2-c2 2 π 3π 所以 cosC= = ,于是 C= ,A+B= . 2 4 4 2ab 1 所以 S△ABC= ab· sinC 2
π π π asin -C 2RsinAsin -C sinAsin -C 6 6 6 (3) = = b-c 2RsinB-2RsinC sinB-sinC 31 3 cosC- sinC 2 2 2 = π sin -C-sinC 3 3 3 cosC- sinC 4 4 1 = = . 2 3 3 cosC- sinC 2 2
1 1 3 【解析】由 S= bcsinA,即 3= ×1×c× ,所以 c=4. 2 2 2 所以 a= b2+c2-2bccos120° 1 = 16+1+2×4×1× 2 = 21. a 21 所以 2R= = =2 7. sinA 3 2 a+b+c 2RsinA+sinB+sinC 所以 = = 2R = sinA+sinB+sinC sinA+sinB+sinC 2 7.
2013届高考一轮数学复习理科课件(人教版)第5课时 对数与对数函数
![2013届高考一轮数学复习理科课件(人教版)第5课时 对数与对数函数](https://img.taocdn.com/s3/m/01a684353968011ca300919a.png)
第5课时
高考调研
高三数学(新课标版· 理)
(3)由指数函数的性质: ∵0<0.9<1,而5.1>0, ∴0<0.95.1<1,即0<m<1. 又∵5.1>1,而0.9>0,∴5.10.9>1,即n>1. 由对数函数的性质: ∵0<0.9<1,而5.1>1,∴log0.95.1<0, 即p<0.综上,p<m<n.
图所示,则a,b满足的关系是( A.0<a-1<b<1 B.0<b<a-1<1 C.0<b-1<a<1 D.0<a 1<b 1<1
- -
第二章
第5课时
高考调研
高三数学(新课标版· 理)
【解析】 首先由于函数φ(x)=2x+b-1单调递增, 可得a>1;又-1<f(0)<0,即-1<logab<0,所以a-
【解析】 设f1(x)=(x-1)2,f2(x)=logax,要使当x ∈(1,2)时,不等式(x-1)2<logax恒成立,只需f1(x)=(x- 1)2在(1,2)上的图像在f2(x)=logax的下方即可.(如图所示)
第二章
第5课时
高考调研
高三数学(新课标版· 理)
当0<a<1时,显然不成立. 当a>1时,如图,要使在(1,2)上, f1(x)=(x-1)2的图像在f2(x)=logax的下方,只需 f1(2)≤f2(2), 即(2-1)2≤loga2,loga2≥1,∴1<a≤2.
第二章
第5课时
高考调研
高三数学(新课标版· 理)
2013版高考数学人教A版一轮复习课件第6单元-不等式(理科)
![2013版高考数学人教A版一轮复习课件第6单元-不等式(理科)](https://img.taocdn.com/s3/m/3e8efc17fc4ffe473368abe8.png)
第六单元 │ 使用建议
(2)从高考的客观情况看,二元一次不等式(组)所表示 的平面区域和简单的线性规划问题,是高考必考的两个知 识点,我们把探究点不是设置为简单的线性规划问题,而 是设置为目标函数的最值(这样可以涵盖线性规划和非线性 规划),含有参数的平面区域以及生活中的优化问题,这样 在该讲就覆盖了高考考查的基本问题. (3)在各个讲次穿插了不等式的应用,但不涉及过度综 合的题目,其目的是使学生认识到不等式应用的广泛性, 不等式更多的、更综合的应用我们留在其余各讲中.
第六单元 │ 网络解读
x-a (3)简单的分式不等式 >0可以转化为一元二次不等式 x-b x-a (x-a)(x-b)>0,在解这类不等式时,如果是 >c(c≠0),那 x-b 么应把一端化为零再进行转化.
第六单元 │ 网络解读
3.二元一次不等式(组)和简单的线性规划问题 (1)一个二元一次不等式表示一个半平面,几个二元一次不 等式组成的不等式组就表示这些半平面的交集,也就是一个平 面上的区域,要会根据特殊点的位置确定不等式表示的半平 面,正确求出不等式组表示的平面区域. (2)简单的线性规划问题有两类,一类是不含实际背景的线 性规划问题,一类是必须首先建立模型的含有实际背景的线性 规划问题,难点是后者,在解这类试题时要注意准确提炼线性 规划模型,不要忽视了必要的限制条件.
新课标·人教A版
第六单元
不等式
第六单元 │ 知识网络 知识网络
第六单元 │ 网络解读
网络解读
本单元包括不等关系与不等式、一元二次不等式、二元一 次不等式(组)表示的平面区域和简单的线性规划问题、基本不 等式. 1.不等关系和不等式,主要内容是不等式的概念、不等 式的性质、两个数式比较大小
2013届高考一轮数学复习理科课件(人教版)第6课时 空间向量及运算
![2013届高考一轮数学复习理科课件(人教版)第6课时 空间向量及运算](https://img.taocdn.com/s3/m/3b75ce72f46527d3240ce0a4.png)
y2-y1,z2-z1). _________________
6.向量 a 与 b 的夹角 设 a=(a1,a2,a3),b=(b1,b2,b3),则
Cos<a,b>=
a1b1+a2b2+a3b3 2 2 a2+a2+a2· b1+b2+b2 1 3 2 3
.
第八章
第6课时
高考调研
高三数学(新课标版· 理)
高三数学(新课标版· 理)
→ 1→ 1 → → 解析 FG= AC= (BC-BA), 2 2 → → 1 → → → ∴FG· = (BC-BA)· BA BA 2 1 → → →2 1 1 1 = (BC· -BA )= ×( -1)=- . BA 2 2 2 4
第八章
第6课时
高考调研
高三数学(新课标版· 理)
第八章
第6课时
高考调研
高三数学(新课标版· 理)
5.空间向量的直角坐标运算 设 a=(a1,a2,a3),b=(b1,b2,b3)则 ①a+b= ; (a1-b1,a2-b2,a3-b3) ②a-b= ;
2 a1b1+a2b2+a3b3 , a2+a2+a2 ; 3 ③a· b= 特殊地 a· a= 1 a1 ④a∥b⇔ a1=λb1,a2=λb2,a3=λb3(λ∈R,b≠0)或b1
|a|cos<a,e>,e 为单位向量
;
b=0 ; ②a⊥b⇔ a·
a ③|a|2= a· .
第八章
第6课时
高考调研
高三数学(新课标版· 理)
向量的数量积满足如下运算律:
b) ①(λ· b= λ(a· ; a)·
②a· b= b· a ③a· (b+c)=
(交换律);
2013高考数学(理)一轮复习课件:4-7
![2013高考数学(理)一轮复习课件:4-7](https://img.taocdn.com/s3/m/924ca4f8910ef12d2af9e7d0.png)
解 在△ACD 中,已知 CD=a,∠ACD=60° ,∠ADC=60° , 所以 AC=a.① asin 105° 3+1 在△BCD 中,由正弦定理可得 BC= sin 45° = 2 a.② 在△ABC 中,已经求得 AC 和 BC,又因为∠ACB=30° ,所以 利 用 余 弦 定 理 可 以 求 得 A , B 两 点 之 间 的 距 离 为 AB = 2 AC +BC -2AC· cos 30° 2 a. BC· =
在△A1B2B1 中,由余弦定理得
2 2 B1B2=A1B1+A1B2-2A1B1· 1B2· 45° A cos 2
2 =20 +(10 2) -2×20×10 2× =200, 2
2 2
∴B1B2=10 2. 10 2 因此,乙船的速度为 20 ×60=30 2(海里/时).(12 分) 利用解三角形知识解决实际问题要注意根据条件画 出示意图,结合示意图构造三角形,然后转化为解三角形的问 题进行求解.
基础梳理 1.用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问 题、物理问题等.
2.实际问题中的常用角 (1)仰角和俯角 在视线和水平线所成的角中,视线在水平线上方 的角叫仰角, 在水平线 下方 的角叫俯角(如图(1)).
(2)方位角 指从正北方向顺时针转到目标方向线的水平角,如 B 点的方位 角为 α(如图(2)). (3)方向角:相对于某正方向的水平角,如南偏东 30° ,北偏西 45° ,西偏东 60° 等. (4)坡度:坡面与水平面所成的二面角的度数.
双基自测 1.(人教 A 版教材习题改编)如图,设 A,B 两点在河的两岸, 一测量者在 A 所在的同侧河岸边选定一点 C,测出 AC 的距离 为 50 m,∠ACB=45° ,∠CAB=105° 后,就可以计算出 A,B 两点的距离为( ).
2013版高考数学人教A版一轮复习课件第4单元-平面向量(理科)
![2013版高考数学人教A版一轮复习课件第4单元-平面向量(理科)](https://img.taocdn.com/s3/m/91ed253a31126edb6f1a10e8.png)
第四单元 │ 网络解读
(2)平面向量的线性运算是指平面向量的加法运算、减法运 算、数乘运算,这些运算都是从几何上进行定义的,要从几何 表示上弄清楚这些运算的含义,注意两个向量共线的充要条件 的应用. (3)平面向量的数量积是平面向量的另一种重要运算,是平 面向量的核心内容,主要是数量积的定义、性质和运算法则、 运用数量积表示两个向量的夹角、两向量垂直的充要条件,要 注意数量积的运算结果是一个数量,注意一个向量在另外一个 向量上的投影也是一个数量,注意向量的数量积和数的乘法运 算的区别.
(2)下列命题中: ①时间、速度、加速度都是向量; ②向量的模是一个正实数; ③所有的单位向量都相等; ④共线向量一定在同一直线上. 其中真命题的个数为( A.0 B.1 C.2 D.3 )
第24讲 │ 要点探究
(3)给出下列命题: ①若|a|=|b|,则 a=b; ②向量不可以比较大小; ③若 a=b,b=c,则 a=c; ④a=b 的充要条件是|a|=|b|且 a∥b; ⑤若 a∥b,b∥c,则 a∥c. 其中正确的命题有( A.1 个 C.3 个 B.2 个 D.4 个 )
第四单元 │ 使用建议
3.课时安排 本单元共3讲和一个45分钟滚动基础训练卷,第26讲建议 2课时完成,其余每讲建议1课时完成,45分钟滚动基础训练 卷,建议各1课时完成,共需6课时.
第24讲 │ 平面向量的概念及其线性运算
第24讲
平面向量的概念 及其线性运算
第24讲 │ 考纲要求 考纲要求
1.了解向量的实际背景,理解平面向量的概念,理 解两个向量相等的含义. 2.理解向量的几何意义. 3. 掌握向量加法、 减法的运算, 并理解其几何意义. 4.掌握向量数乘的运算及其意义,理解两个向量共 线的含义. 5.了解向量线性运算的性质及其几何意义.
高考总复习一轮数学精品课件 第6章 数列 第4节 第1课时 分组转化法、并项转化法和错位相减法
![高考总复习一轮数学精品课件 第6章 数列 第4节 第1课时 分组转化法、并项转化法和错位相减法](https://img.taocdn.com/s3/m/8b364a514b7302768e9951e79b89680202d86b4f.png)
例 3(12 分)(2023·全国甲,理 17)记 Sn 为数列{an}的前 n 项和,已知 a2=1,2Sn=nan.
(1)求{an}的通项公式;
突破口:已知 Sn 与 an 的关系,可利用 an=Sn-Sn-1(n≥2)解答.
(2)求数列
+1
2
的前 n 项和 Tn.
+1
1 n
关键点:化简数列得通项公式 2 =n·(2) ,可看作一个等差数列与一个等比数
GAO KAO ZONG FU XI YOU HUA SHE JI
第1课时
分组转化法、并项转化法和错位相减法
研考点
精准突破
考点一
分组转化法求和
例1(2024·辽宁锦州模拟)已知数列{an}和{bn}满足an+bn=2n-1,数列{an},{bn}
的前n项和分别记作An,Bn,且An-Bn=n.
(1)求An和Bn;
(1)求{an}的公比;
(2)若a1=1,求数列{nan}的前n项和.
解 (1)设{an}的公比为q,由题设得2a1=a2+a3,a1≠0,即2a1=a1q+a1q2,
所以q2+q-2=0,解得q=1(舍去)或q=-2.故{an}的公比为-2.
(2)记Sn为{nan}的前n项和.
由(1)及题设可得,an=(-2)n-1.
n 项和,求 T2n.
解 (1)设等差数列{an}的公差为 d,
1 + 2 = 10,
1 = 2,
因为 a3=10,a5-2a2=6,所以
解得
= 4,
(1 + 4)-2(1 + ) = 6,
所以 an=2+4(n-1)=4n-2.
2013届高考数学第一轮基础复习课件1 理
![2013届高考数学第一轮基础复习课件1 理](https://img.taocdn.com/s3/m/e72488721711cc7931b71638.png)
7 若将本例(2)中点 A 变为 A′( ,2),则|PA′|+|PM|的 2 最小值是多少?并求此时点 P 的坐标.
7 【解】 点 A′( ,2)在抛物线内部, 2 则|PA′|+|PM|≥|A′M|, 当且仅当 P、A′、M 三点共线即直线 PA′垂直于 y 轴时 取等号, 7 ∴|PA′|+|PM|的最小值为 . 2 此时点 P 的纵坐标 y=2. 代入 y2=2x,得 x=2, 因此,点 P 的坐标为(2,2).
【解】 (1)将(1,-2)代入 y2=2px,得(-2)2=2p· 1, 所以 p=2. 故抛物线 C 的方程为 y2=4x,其准线方程为 x=-1.
(2)假设存在符合题意的直线 l,其方程为 y=-2x+t.
y=-2x+t, 由 2 得 y2+2y-2t=0. y =4x,
因为直线 l 与抛物线 C 有公共点, 1 所以 Δ=4+8t≥0,解得 t≥- . 2 5 . 5 |1×2-2×1-t| |t| 又点 A(1,-2)到直线 l 的距离 d= = , 5 5 另一方面,由直线 OA 与 l 的距离 d= |t| 5 = ,则 t=± 1. 5 5 1 1 因为-1∉[- ,+∞),1∈[- ,+∞), 2 2 ∴ 所以符合题意的直线 l 存在,其方程为 2x+y-1=0.
从近两年的高考看,抛物线的定义、标准方程及几何性 质是高考的热点,且常以选择题、填空题的形式出现,属中档 题目,有时也与向量、不等式等综合命题,以解答题的形式出 现,考查分析问题和解决问题的能力以及创新探究能力.
创新探究之九 以抛物线为背景的创新题 (2011· 湖南高考)已知平面内一动点 P 到点 F(1,0)的距离 与点 P 到 y 轴的距离的差等于 1. (1)求动点 P 的轨迹 C 的方程; (2)过点 F 作两条斜率存在且互相垂直的直线 l1,l2,设 l1 与轨迹 C 相交于点 A,B,l2 与轨迹 C 相交于点 D,E, → EB → 求AD· 的最小值.
2013届高考一轮数学复习理科课件(人教版)第2课时 排列、组合
![2013届高考一轮数学复习理科课件(人教版)第2课时 排列、组合](https://img.taocdn.com/s3/m/aafebf390912a216147929a4.png)
第十一章
第2课时
高考调研
高三数学(新课标版· 理)
解法一 直接法,可以从 4 台甲型电视机中取 2 台, 再从 5 台乙型电视机中取 1 台, 或者从 4 台甲型电视机中 取 1 台, 再从 5 台乙型电视机中取 2 台, 所以共有 C2· 1+ 4 C5 C1· 2=70 种选法. 4 C5 解法二 间接法,从 9 台电视机中取 3 台有 C3种取 9 法,从甲型电视机中取 3 台有 C3种取法,从乙型电视机 4 中取 3 台有 C3种取法,这两种取法不符合条件,所以符 5 合条件的取法为 C3-C3-C3=70 种. 9 4 5
第2课时
高考调研
高三数学(新课标版· 理)
1.两个概念 (1)排列 从 n 个不同元素中取出 m 个元素(m≤n),按照 一定顺
序排成一列
,叫做从 n 个不同元素中取出 m 个元素的
一个排列.
第十一章
第2课时
高考调研
高三数学(新课标版· 理)
(2)组合 从 n 个元素中取出 m 个元素 并成一组 个不同元素中取出 m 个元素的一个组合. ,叫做从 n
解析 据题意知 4 个不同的商业广告可排在中间的 4 个位置上共有 A4种方法,再将 2 个公益广告排在首末 2 4 个不同的位置共有 2 种方法, 根据分步计数原理可得不同 的播放方式共有 2A4=48 种. 4
第十一章
第2课时
高考调研
高三数学(新课标版· 理)
3.安排 7 位工作人员在 5 月 1 日到 5 月 7 日值班, 每人值班一天,其中甲、乙二人都不安排在 5 月 1 日和 2 日.不同的安排方法共有________种.(用数字作答)
第十一章 第2课时
【走向高考】(2013春季发行)高三数学第一轮总复习 6-4数列的综合问题与数列的应用 新人教A版
![【走向高考】(2013春季发行)高三数学第一轮总复习 6-4数列的综合问题与数列的应用 新人教A版](https://img.taocdn.com/s3/m/2495003387c24028915fc31f.png)
6-4数列的综合问题与数列的应用基础巩固强化1.(2012·杭州第一次质检)设等差数列{a n }的前n 项和为S n ,则a 6+a 7>0是S 9≥S 3的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] ∵S 9≥S 3⇔a 4+a 5+a 6+a 7+a 8+a 9≥0⇔3(a 6+a 7)≥0⇔a 6+a 7≥0,∴a 6+a 7>0⇒a 6+a 7≥0,但a 6+a 7≥0⇒/ a 6+a 7>0,故选A.2.(2011·淄博模拟)已知{a n }是递增数列,且对任意n ∈N *都有a n =n 2+λn 恒成立,则实数λ的取值范围是( )A .(-72,+∞)B .(0,+∞)C .[-2,+∞)D .(-3,+∞)[答案] C[解析] a n =n 2+λn =(n +λ2)2-λ24,∵对任意n ∈N *,a n +1>a n , ∴-λ2≤1,∴λ≥-2,故选C.3.(文)设函数f (x )=x m+ax 的导函数f ′(x )=2x +1,则数列{1f n }(n ∈N *)的前n项和是( )A.n n +1B.n +2n +1 C.nn -1D.n +1n[答案] A[解析] f ′(x )=mx m -1+a =2x +1,∴a =1,m =2, ∴f (x )=x (x +1),1f n =1n n +1=1n -1n +1, ∴S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=n n +1. (理)(2011·北京西城期末)已知各项均不为零的数列{a n },定义向量c n =(a n ,a n +1),b n=(n ,n +1),n ∈N *.则下列命题中为真命题的是( )A .若对于任意n ∈N *总有c n ∥b n 成立,则数列{a n }是等差数列B .若对于任意n ∈N *总有c n ∥b n 成立,则数列{a n }是等比数列 C .若对于任意n ∈N *总有c n ⊥b n 成立,则数列{a n }是等差数列 D .若对于任意n ∈N *总有c n ⊥b n 成立,则数列{a n }是等比数列 [答案] A[解析] 若对任意n ∈N *,有c n ∥b n ,则a n n =a n +1n +1=a n +2n +2,所以a n +1-a n =a n +2-a n +1,即2a n +1=a n +a n +2,所以数列{a n }为等差数列.4.(文)(2011·山西运城教学检测)已知数列{a n }的前n 项和为S n ,过点P (n ,S n )和Q (n +1,S n +1)(n ∈N *)的直线的斜率为3n -2,则a 2+a 4+a 5+a 9的值等于( )A .52B .40C .26D .20[答案] B[解析] 由题意得S n +1-S nn +1-n=3n -2,∴S n +1-S n =3n -2,即a n +1=3n -2,∴a n =3n-5,因此数列{a n }是等差数列,a 5=10,而a 2+a 4+a 5+a 9=2(a 3+a 7)=4a 5=40,故选B.(理)两个正数a 、b 的等差中项是72,一个等比中项是23,且a <b ,则双曲线x 2a 2-y2b 2=1的离心率e 等于( )A.34 B.152C.54D.53[答案] D[解析] ∵a +b =7,a ·b =12,b >a >0,∴a =3,b =4.∴e =c a =a 2+b 2a =53.5.(2011·江西新余四中期末)在△ABC 中,sin A cos A =2cos C +cos A2sin C -sin A 是角A 、B 、C 成等差数列的( )A .充分非必要条件B .充要条件C .必要非充分条件D .既不充分也不必要条件[答案] A [解析]sin A cos A =2cos C +cos A 2sin C -sin A⇒2sin A sin C -sin 2A =2cos A cos C +cos 2A ⇒2cos(A +C )+1=0⇒cosB =12⇒B =π3⇒A +C =2B ⇒A 、B 、C 成等差数列.但当A 、B 、C 成等差数列时,sin Acos A=2cos C +cos A 2sin C -sin A 不一定成立,如A =π2、B =π3、C =π6.故是充分非必要条件.故选A.6.(2012·东北三省四市第三次联考)设数列{a n }满足a 1=2,a n +1=1-2a n +1,记数列{a n }的前n 项之积为T n ,则T 2010的值为( )A .1B .2 C.13 D.23[答案] D[解析] ∵a 1=2,a 2=1-22+1=13,a 3=1-213+1=-12,a 4=1-2-12+1=-3,a 5=1-2-3+1=2. ∴a n +4=a n ,∴{a n }是以4为周期的数列,T 4=2×13×(-12)×(-3)=1.∴T 2010=T 2008×a 2009×a 2010=23,故选D.7.某程序框图如图所示,该程序运行后输出的k 的值是( )A .8B .9C .10D .11 [答案] D[解析] 由程序框图可知,S =1+2+22+…+2k =2k +1-1,由S <2014得,2k +1<2015,∴k ≤9.∵1+2+22+…+29=1023,∴S 的值加上29后,变为S =1023<2014,此时k 的值增加1变为k =10,再执行一次循环体后,S=1023+210=2047,k=10+1=11,此时不满足S<2014,输出k的值11后结束.[点评] 这是最容易出错的地方,解这类题时,既要考虑等比数列求和,在k取何值时,恰满足S≥2014,又要顾及S与k的赋值语句的先后顺序.8.(文)已知数列{a n}的通项公式为a n=2n(n∈N*),把数列{a n}的各项排列成如图所示的三角形数阵:22223242526272829210……记M(s,t)表示该数阵中第s行的第t个数,则M(11,2)对应的数是________(用2n的形式表示,n∈N).[答案] 257[解析] 由数阵的排列规律知,第m行的最后一个数是数列{a n}的第1+2+3+…+m=m m+12项,且该行有m项,由此可知第11行的第2个数是数列{a n}的第10×112+2=57项,对应的数是257.(理)若数列{a n}满足1a n+1-1a n=d(n∈N*,d为常数),则称数列{a n}为调和数列.已知数列{1x n}为调和数列,且x1+x2+…+x20=200,则x5+x16=________.[答案] 20[解析] 由题意,若{a n}为调和数列,则{1a n}为等差数列,∵{1x n}为调和数列,∴数列{x n}为等差数列,由等差数列的性质可知,x5+x16=x1+x20=x2+x19=…=x10+x11=20010=20.故填20.9.(文)(2011·江苏镇江市质检)已知1,x1,x2,7成等差数列,1,y1,y2,8成等比数列,点M(x1,y1),N(x2,y2),则线段MN的中垂线方程是________.[答案] x+y-7=0[解析] 由条件得x1=3,x2=5,y1=2,y2=4,∴MN的中点(4,3),k MN=1,∴MN的中垂线方程为y-3=-(x-4),即x+y-7=0.(理)已知双曲线a n-1y2-a n x2=a n-1a n(n≥2,n∈N*)的焦点在y轴上,一条渐近线方程是y =2x,其中数列{a n}是以4为首项的正项数列,则数列{a n}的通项公式是________.[答案] a n =2n +1[解析] 双曲线方程为y 2a n -x 2a n -1=1,∵焦点在y 轴上,又渐近线方程为y =2x ,∴a na n -1=2,又a 1=4,∴a n =4×2n -1=2n +1.10.(文)(2011·北京海淀)数列{a n }的前n 项和为S n ,若a 1=2,且S n =S n -1+2n (n ≥2,n ∈N *).(1)求S n ;(2)是否存在等比数列{b n }满足b 1=a 1,b 2=a 3,b 3=a 9?若存在,则求出数列{b n }的通项公式;若不存在,则说明理由.[解析] (1)因为S n =S n -1+2n ,所以有S n -S n -1=2n 对n ≥2,n ∈N *成立. 即a n =2n 对n ≥2成立.又a 1=S 1=2×1, 所以a n =2n 对n ∈N *成立. 所以a n +1-a n =2对n ∈N *成立. 所以{a n }是等差数列. 所以S n =n 2+n ,n ∈N *.(2)存在.由(1)知a n =2n 对n ∈N *成立, 则a 3=6,a 9=18.又a 1=2,所以由b 1=a 1,b 2=a 3,b 3=a 9,得b 2b 1=b 3b 2=3.即存在以b 1=2为首项,公比为3的等比数列{b n },其通项公式为b n =2·3n -1.(理)(2012·天津十二区县联考一)已知数列{a n }的前n 项和S n 满足:S n =a (S n -a n +1)(a 为常数,且a ≠0,a ≠1).(1)求{a n }的通项公式;(2)设b n =a 2n +S n ·a n ,若数列{b n }为等比数列,求a 的值. (3)在满足条件(2)的情形下,设c n =1b n +1-1b n +1-1,数列{c n }的前n 项和为T n ,求证:T n >2n -12.[解析] (1)S 1=a (S 1-a 1+1),∴a 1=a , 当n ≥2时,S n =a (S n -a n +1),S n -1=a (S n -1-a n -1+1),两式相减得a n =a ·a n -1,a na n -1=a ,即{a n }是等比数列,∴a n =a ·an -1=a n.(2)由(1)知a n =a n,S n =a a n -1a -1,∴b n =(a n )2+a a n -1a -1a n=2a -1a 2n -aa na -1,若{b n }为等比数列,则有b 22=b 1b 3,而b 1=2a 2,b 2=a 3(2a +1),b 3=a 4(2a 2+a +1), 故[a 3(2a +1)]2=2a 2·a 4(2a 2+a +1), 解得a =12,再将a =12代入,得b n =(12)n成立,所以a =12.(3)证明:由(2)知b n =(12)n,所以c n =112n+1-112n +1-1=2n 2n +1+2n +12n +1-1=2-12n +1+12n +1-1, 所以c n >2-12n +12n +1,T n =c 1+c 2+…+c n>(2-12+122)+(2-122+123)+…+(2-12n +12n +1)=2n -12+12n +1>2n -12.能力拓展提升11.在圆x 2+y 2=10x 内,过点(5,3)有n 条长度成等差数列的弦,最短弦长为数列{a n }的首项a 1,最长弦长为a n ,若公差d ∈(13,23],那么n 的取值集合为( )A .{4,5,6}B .{6,7,8,9}C .{3,4,5}D .{3,4,5,6}[答案] A[解析] ∵圆x 2+y 2=10x ,∴(x -5)2+y 2=5,圆心为(5,0),半径为5.故最长弦长a n=10,最短弦长a 1=8,∴10=8+(n -1)d ,∴d =2n -1,∵d ∈(13,23],∴13<2n -1≤23,∴4≤n <7,又∵n ∈N *,∴n 的取值为4,5,6,故选A.12.(文)(2011·安徽百校论坛联考)已知a >0,b >0,A 为a ,b 的等差中项,正数G 为a ,b 的等比中项,则ab 与AG 的大小关系是( )A .ab =AGB .ab ≥AGC .ab ≤AGD .不能确定[答案] C[解析] 由条件知,a +b =2A ,ab =G 2,∴A =a +b2≥ab =G >0,∴AG ≥G 2,即AG ≥ab ,故选C.[点评] 在知识交汇点处命题是常见命题方式,不等式与数列交汇的题目要特别注意等差(等比)数列的公式及性质的运用.(理)已知等比数列{a n }的各项均为正数,公比q ≠1,设P =12(log 0.5a 5+log 0.5a 7),Q =log 0.5a 3+a 92,P 与Q 的大小关系是( )A .P ≥QB .P <QC .P ≤QD .P >Q[答案] D[解析] P =log 0.5a 5a 7=log 0.5a 3a 9,Q =log 0.5a 3+a 92,∵q ≠1,∴a 3≠a 9,∴a 3+a 92>a 3a 9又∵y =log 0.5x 在(0,+∞)上递减, ∴log 0.5a 3+a 92<log 0.5a 3a 9,即Q <P .故选D.13.(2011·湖北荆门调研)秋末冬初,流感盛行,荆门市某医院近30天每天入院治疗流感的人数依次构成数列{a n },已知a 1=1,a 2=2,且a n +2-a n =1+(-1)n (n ∈N *),则该医院30天入院治疗流感的人数共有________人.[答案] 255[解析] ∵a n +2-a n =1+(-1)n(n ∈N *),∴n 为奇数时,a n +2=a n ,n 为偶数时,a n +2-a n =2,即数列{a n }的奇数项为常数列,偶数项构成以2为首项,2为公差的等差数列.故这30天入院治疗流感人数共有15+(15×2+15×142×2)=255人.14.(2011·江苏,13)设1=a 1≤a 2≤…≤a 7,其中a 1,a 3,a 5,a 7成公比为q 的等比数列,a 2,a 4,a 6成公差为1的等差数列,则q 的最小值是________.[答案]33[解析] ∵a 1,a 3,a 5,a 7成公比为q 的等比数列,且a 1=1, ∴a 3=q ,a 5=q 2,a 7=q 3,∵a 2,a 4,a 6成公差为1的等差数列, ∴a 4=a 2+1,a 6=a 2+2, ∵a 2≥1,q =a 3≥a 2≥1,∴q 2=a 5≥a 4=a 2+1≥2,q 3=a 7≥a 6=a 2+2≥3, ∵q ≥1,∴q ≥2且q ≥33,∴q ≥33, ∴q 的最小值为33.15.(2011·蚌埠质检)已知数列{a n }满足,a 1=1,a 2=2,a n +2=a n +a n +12,n ∈N *.(1)令b n =a n +1-a n ,证明:{b n }是等比数列; (2)求{a n }的通项公式.[解析] (1)b 1=a 2-a 1=1,当n ≥2时,b n =a n +1-a n =a n -1+a n 2-a n =-12(a n -a n -1)=-12b n -1,所以{b n }是以1为首项,-12为公比的等比数列.(2)由(1)知b n =a n +1-a n =⎝ ⎛⎭⎪⎫-12n -1,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+⎝ ⎛⎭⎪⎫-12+…+⎝ ⎛⎭⎪⎫-12n -2=1+1-⎝ ⎛⎭⎪⎫-12n -11-⎝ ⎛⎭⎪⎫-12=1+23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n -1=53-23⎝ ⎛⎭⎪⎫-12n -1,当n =1时,53-23⎝ ⎛⎭⎪⎫-121-1=1=a 1.所以a n =53-23⎝ ⎛⎭⎪⎫-12n -1(n ∈N *).16.(文)(2011·山东文,20)等比数列{a n }中,a 1、a 2、a 3分别是下表第一、二、三行中的某一个数,且a 1、a 2、a 3中的任何两个数不在下表的同一列.(1)n (2)若数列{b n }满足:b n =a n +(-1)nln a n ,求数列{b n }的前2n 项和S 2n . [解析] (1)依次验证知a 1=2,a 2=6,a 3=18时符合题意,∴a n =2·3n -1.(2)∵b n =a n +(-1)n ln a n =2·3n -1+(-1)n ln(2·3n -1)=2·3n -1+(-1)n(ln2-ln3)+(-1)nn ln3∴S 2n =b 1+b 2+…+b 2n =2(1+3+…+32n -1)+[-1+1-1+…+(-1)2n](ln2-ln3)+[-1+2-3+…+(-1)2n·2n ]ln3=2×1-32n1-3+n ln3=32n+n ln3-1.(理)(2011·湖南六校联考)为加强环保建设,提高社会效益和经济效益,某市计划用若干年时间更换一万辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车.替换车为电力型和混合动力型车.今年初投入了电力型公交车128辆,混合动力型公交车400辆;计划以后电力型车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入a 辆.(1)求经过n 年,该市被更换的公交车总数S (n ); (2)若该市计划7年内完成全部更换,求a 的最小值.[解析] (1)设a n ,b n 分别为第n 年投入的电力型公交车,混合动力型公交车的数量,依题意,{a n }是首项为128,公比为1+50%=32的等比数列,{b n }是首项为400,公差为a 的等差数列. {a n }的前n 项和S n =128×[1-32n]1-32=256[(32)n-1].{b n }的前n 项和T n =400n +n n -12a ,所以经过n 年,该市更换的公交车总数为: S (n )=S n +T n =256[(32)n -1]+400n +n n -12a .(2)若计划7年内完成全部更换,所以S (7)≥10000,所以256[(32)7-1]+400×7+7×62a ≥10000,即21a ≥3082,所以a ≥1461621.又a ∈N *,所以a 的最小值为147.1.若x 的方程x 2-x +a =0和x 2-x +b =0(a ≠b )的四个根可组成首项为14的等差数列,则b 的值可以为( )A.38B.1124 C.1324 D.35144[答案] D[解析] 由题意四个根为14、14+16、14+13、34,则b =14×34=316,或b =512×712=35144,选D.2.(2012·河南新乡、平顶山、许昌调研)设正项等比数列{a n }的前n 项之积为T n ,且T 10=32,则1a 5+1a 6的最小值为( )A .2 2 B. 2 C .2 3 D. 3[答案] B[解析] 由条件知,T 10=a 1a 2…a 10=(a 5a 6)5=32,∵a n >0,∴a 5a 6=2,∴1a 5+1a 6=12·a 5a 6·(1a 5+1a 6)=12(a 5+a 6)≥12×2a 5a 6=2,等号在a 5=a 6=2时成立. 3.(2011·银川一中三模)已知函数f (x )=x 2+bx 的图象在点A (1,f (1))处的切线l 与直线3x -y +2=0平行,若数列{1f n }的前n 项和为S n ,则S 2012的值为( )A.20092010 B.20102011 C.20112012D.20122013[答案] D[解析] 本题考查导数的几何意义及数列求和知识;由于f ′(x )=2x +b ,据题意则有f ′(1)=2+b =3,故b =1,即f (x )=x 2+x ,从而1f n =1n n +1=1n -1n +1, 其前n 项和S n =(1-12)+(12-13)+…+(1n -1n +1)=1-1n +1=n n +1,故S 2012=20122013.4.(2012·吉林省实验中学模拟)已知正数组成的等差数列{a n }的前20项的和是100,那么a 6·a 15的最大值是( )A .25B .50C .100D .不存在[答案] A[解析] 由条件知,a 6+a 15=a 1+a 20=110S 20=110×100=10,a 6>0,a 15>0,∴a 6·a 15≤(a 6+a 152)2=25,等号在a 6=a 15=5时成立,即当a n =5(n ∈N *)时,a 6·a 15取最大值25.5.(2011·黄冈月考)在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n(n ≥2,n ∈N *),则a 3a 5的值是( )A.1516 B.158 C.34 D.38[答案] C[解析] ∵a 1=1,a n a n -1=a n -1+(-1)n, ∴a 2a 1=a 1+1,∴a 2=2,; ∵a 3a 2=a 2-1,∴a 3=12;∵a 4a 3=a 3+1,∴a 4=3; ∵a 5a 4=a 4-1,∴a 5=23,∴a 3a 5=34.6.(2012·北京海淀期中)已知数列A :a 1,a 2,…,a n (0≤a 1<a 2<…<a n ,n ≥3)具有性质P :对任意i ,j (1≤i ≤j ≤n ),a j +a i 与a j -a i 两数中至少有一个是该数列中的一项:现给出以下四个命题:①数列0,1,3具有性质P ; ②数列0,2,4,6具有性质P ; ③若数列A 具有性质P ,则a 1=0;④若数列a 1,a 2,a 3(0≤a 1<a 2<a 3)具有性质P ,则a 1+a 3=2a 2.其中真命题有( ) A .4个 B .3个 C .2个 D .1个[答案] B[解析] 数列0,1,3中a 3-a 2=2,a 3+a 2=4都不是该数列中的一项,即其不具有性质P ,得命题①不正确;数列0,2,4,6经验证满足条件,即其具有性质P ,得命题②正确;若数列A 具有性质P ,因n ≥3,故其最大项a n >0,则有a n +a n =2a n >a n 不是数列中的项,故a n -a n =0必为数列中的一项,即a 1=0,得命题③正确;若数列a 1,a 2,a 3(0≤a 1<a 2<a 3)具有性质P ,则a 1=0,0<a 2<a 3,a 2+a 3>a 3不是数列中的项,必有a 3-a 2=a 2,即a 3=2a 2,因a 1=0,故a 1+a 3=2a 2,得命题④正确,综上可得真命题共有3个,故应选B.7.(2011·杭州二检)已知{a n }是公差不为0的等差数列,{b n }是等比数列,其中a 1=2,b 1=1,a 2=b 2,2a 4=b 3,且存在常数α、β,使得a n =log αb n +β对每一个正整数n 都成立,则αβ=________.[答案] 4[解析] 设{a n }的公差为d ,{b n }的公比为q ,则⎩⎪⎨⎪⎧2+d =q 22+3d =q2,解得⎩⎪⎨⎪⎧q =2d =0(舍去)或⎩⎪⎨⎪⎧q =4d =2,所以a n =2n ,b n =4n -1.若a n =log αb n +β对每一个正整数n 都成立,则满足2n =log α4n -1+β,即2n =(n -1)log α4+β,因此只有当α=2,β=2时上式恒成立,所以αβ=4.8.(2011·天津市二十区县联考)已知S n 是数列{a n }的前n 项和,向量a =(a n -1,-2),b =(4,S n )满足a ⊥b ,则S 5S 3=________.[答案]317[解析] ∵a =(a n -1,-2),b =(4,S n )满足a ⊥b , ∴a ·b =0,∴4a n -4-2S n =0,即S n =2a n -2, ∴S n -1=2a n -1-2(n ≥2). 两式相减得a n =2a n -1,∴a na n -1=2. 由S n =2a n -2(n ∈N *),得a 1=2.∴{a n }是以2为首项,2为公比的等比数列,∴a n =2n.∴S 5S 3=21-251-221-231-2=317. 9.(2011·苏州检测)正整数按下列方法分组:{1},{2,3,4},{5,6,7,8,9},{10,11,12,13,14,15,16},…,记第n 组中各数之和为A n ;由自然数的立方构成下列数组:{03,13},{13,23},{23,33},{33,43},…,记第n 组中后一个数与前一个数的差为B n ,则A n +B n =________.[答案] 2n 3[解析] 由题意知,前n 组共有1+3+5+…+(2n -1)=n 2个数,所以第n -1组的最后一个数为(n -1)2,第n 组的第一个数为(n -1)2+1,第n 组共有2n -1个数,所以根据等差数列的前n 项和公式可得A n =[n -12+1]+[n -12+2n -1]2(2n -1)=[(n -1)2+n ](2n -1),而B n =n 3-(n -1)3,所以A n +B n =2n 3.10.已知点⎝ ⎛⎭⎪⎫1,13是函数f (x )=a x(a >0,且a ≠1)的图象上一点,等比数列{a n }的前n项和为f (n )-c ,数列{b n }(b n >0)的首项为c ,且前n 项和S n 满足S n -S n -1=S n +S n -1(n ≥2).(1)求数列{a n }和{b n }的通项公式;(2)若数列⎩⎨⎧⎭⎬⎫1b n b n +1前n 项和为T n ,问使T n >10002009的最小正整数n 是多少?[解析] (1)∵点⎝ ⎛⎭⎪⎫1,13是函数f (x )=a x(a >0,且a ≠1)的图象上一点,∴f (1)=a =13.已知等比数列{a n }的前n 项和为f (n )-c ,则当n ≥2时,a n =[f (n )-c ]-[f (n -1)-c ]=a n (1-a -1)=-23n .∵{a n }是等比数列,∴{a n }的公比q =13.∴a 2=-29=a 1q =[f (1)-c ]×13,解得c =1,a 1=-23.故a n =-23n (n ≥1).由题设知{b n }(b n >0)的首项b 1=c =1,其前n 项和S n 满足S n -S n -1=S n +S n -1(n ≥2),由S n -S n -1=S n +S n -1⇒S n -S n -1=1,且S 1=b 1=1. ∴{S n }是首项为1,公差为1的等差数列, 即S n =n ⇒S n =n 2.∵b n =S n -S n -1=2n -1(n ≥2), 又b 1=1=2×1-1,故数列{b n }的通项公式为:b n =2n -1(n ≥1). (2)∵b n =2n -1(n ≥1), ∴1b n b n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1.∴T n =∑k =1n1b k b k +1=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫11-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =n2n +1. 要T n >10002009⇔n 2n +1>10002009⇔n >10009=11119,故满足条件的最小正整数n 是112.11.(2011·焦作模拟)已知函数f (x )=a x的图象过点(1,12),且点(n -1,a n n 2)(n ∈N +)在函数f (x )=a x的图象上.(1)求数列{a n }的通项公式;(2)令b n =a n +1-12a n ,若数列{b n }的前n 项和为S n ,求证:S n <5.[解析] (1)∵函数f (x )=a x的图象过点(1,12),∴a =12,f (x )=(12)x.又点(n -1,a n n 2)(n ∈N +)在函数f (x )=a x的图象上,从而a n n 2=12n -1,即a n =n 22n -1.(2)由b n =n +122n-n 22n =2n +12n 得, S n =32+522+…+2n +12n , 则12S n =322+523+…+2n -12n +2n +12n +1,两式相减得:12S n =32+2(122+123+…+12n )-2n +12n +1,∴S n =5-2n +52n ,∴S n <5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2π 即 cos A=-2,∵0<A<π,∴A= 3 . 2π (2)由余弦定理得,a =b +c -2bccos A,A= , 3
2 2 2
则 a2=(b+c)2-bc,又 a=2 3,b+c=4, 1 有 12=4 -bc,则 bc=4,故 S△ABC= bcsin A= 3. 2
2
考向三 正、余弦定理的综合应用 【例 3】►在△ABC 中,内角 A,B,C 对边的边长分别是 a,b, π c,已知 c=2,C=3. (1)若△ABC 的面积等于 3,求 a,b; (2)若 sin C+sin(B-A)=2sin 2A,求△ABC 的面积. [审题视点] 第(1)问根据三角形的面积公式和余弦定理列出关 于 a,b 的方程,通过方程组求解;第(2)问根据 sin C+sin(B- A)=2sin 2A 进行三角恒等变换,将角的关系转换为边的关系, 求出边 a,b 的值即可解决问题.
).
由正弦定理知:
sin A cos B . sin A= sin B ,∴sin B=cos B,∴B=45° 答案 B
3.(2011· 郑州联考)在△ABC 中,a= 3,b=1,c=2,则 A 等 于( ). B.45° C.60° D.75°
A.30° 解析
b2+c2-a2 1+4-3 1 由余弦定理得:cos A= = = , 2bc 2×1×2 2
a b a 10 由正弦定理sin A=sin B,可得sin 30° 3 , = 5 所以 a=3.
1 3 (2)因为△ABC 的面积 S=2ac· B,sin B=5, sin 3 所以 ac=3,ac=10. 10 由余弦定理得 b2=a2+c2-2accos B, 8 得 4=a +c -5ac=a2+c2-16,即 a2+c2=20.
(1)已知两角一边可求第三角,解这样的三角形只需 直接用正弦定理代入求解即可. (2)已知两边和一边对角,解三角形时,利用正弦定理求另一 边的对角时要注意讨论该角,这是解题的难点,应引起注意.
π 【训练 1】 (2011· 北京)在△ABC 中,若 b=5, ∠B=4,tan A=2,则 sin A=________;a=________. 解析 因为△ABC 中,tan A=2,所以 A 是锐角, sin A 且cos A=2,sin2A+cos2A=1, 2 5 联立解得 sin A= 5 , a b 再由正弦定理得sin A=sin B, 代入数据解得 a=2 10. 2 5 答案 2 10 5
π π 4 3 2 3 当 cos A=0,即 A= 时,B= ,a= ,b= ; 2 6 3 3 当 cos A≠0 时,得 sin B=2sin A,由正弦定理,得 b=2a. a=2 3, a2+b2-ab=4, 3 联立方程组 解得 b=2a, 4 3 b= 3 . 1 2 3 所以△ABC 的面积 S= a bsin C= . 2 3
a2+c2-b2 解 (1)由余弦定理知:cos B= , 2ac a2+b2-c2 cos C= . 2ab cos B b 将上式代入 =- 得: cos C 2a+c a2+c2-b2 2ab b 2ac ·2+b2-c2=-2a+c, a 整理得:a2+c2-b2=-ac. a2+c2-b2 -ac 1 ∴cos B= = =- . 2ac 2ac 2 2 ∵B 为三角形的内角,∴B= π. 3
2 (2)将 b= 13,a+c=4,B= π 代入 b2=a2+c2-2accos B,得 3 b2=(a+c)2-2ac-2accos B,
1 ∴13=16-2ac1-2,∴ac=3.
1 3 3 ∴S△ABC= acsin B= 2 4 (1)根据所给等式的结构特点利用余弦定理将角化边 进行变形是迅速解答本题的关键. (2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程 思想在解题过程中的运用.
2 2
所以(a+c)2-2ac=20,(a+c)2=40. 所以 a+c=2 10.
阅卷报告 4——忽视三角形中的边角条件致错 【问题诊断】 考查解三角形的题在高考中一般难度不大, 但稍 不注意,会出现“会而不对,对而不全”的情况,其主要原因 就是忽视三角形中的边角条件. 【防范措施】 解三角函数的求值问题时, 估算是一个重要步骤, 估算时应考虑三角形中的边角条件.
∵0<A<π,∴A=60° . 答案 C
1 4.在△ABC 中,a=3 2,b=2 3,cos C=3,则△ABC 的面 积为( A.3 3 ). B.2 3 C.4 3 D. 3
1 2 2 解析 ∵cos C=3,0<C<π,∴sin C= 3 , 1 ∴S△ABC=2absin C 1 2 2 =2×3 2×2 3× 3 =4 3. 答案 C
2.余弦定理:a2= b2+c2-2bccos A
2 2 c2=a +b -2abcos C
,b2= a2+c2-2accos B ,
b2+c2-a2 .余弦定理可以变形为:cos A= 2bc ,
a2+c2-b2 a2+b2-c2 cos B= 2ac ,cos C= 2ab .
1 1 1 abc 1 3.S△ABC=2absin C=2bcsin A=2acsin B= 4R =2(a+b+c)· 是三 r(R 角形外接圆半径,r 是三角形内切圆的半径),并可由此计算 R,r.
【示例】►(2011· 安徽)在△ABC 中,a,b,c 分别为内角 A,B, C 所对的边长,a= 3,b= 2,1+2cos(B+C)=0,求边 BC 上的高. 错因 忽视三角形中“大边对大角”的定理,产生了增根.
实录 由 1+2cos(B+C)=0, 1 知 cos A=2, π ∴A=3, a b 根据正弦定理sin A=sin B得: bsin A 2 sin B= a = 2 , π 3π ∴B=4或 4 . 以下解答过程略.
解
(1)由余弦定理及已知条件,得 a2 +b2 -ab=4.又因为△
1 ABC 的面积等于 3,所以 absin C= 3,得 ab=4,联立方程 2
a2+b2-ab=4, 组 ab=4, a=2, 解得 b=2.
(2)由题意,得 sin(B+A)+sin(B-A)=4sin Acos A, 即 sin Bcos A=2sin Acos A.
正解 ∵在△ABC 中,cos(B+C)=-cos A, π ∴1+2cos(B+C)=1-2cos A=0,∴A= . 3 a b 在△ABC 中,根据正弦定理 = , sin A sin B bsin A 2 ∴sin B= = . a 2 π ∵a>b,∴B= , 4 5 ∴C=π-(A+B)= π. 12
第6讲 正弦定理和余弦定理
【2013年高考会这样考】 1.考查正、余弦定理的推导过程. 2.考查利用正、余弦定理判断三角形的形状. 3.考查利用正、余弦定理解任意三角形的方法. 【复习指导】 1.掌握正弦定理和余弦定理的推导方法. 2.通过正、余定理变形技巧实现三角形中的边角转换,解题 过程中做到正余弦定理的优化选择.
基础梳理 a b c 1.正弦定理:sin A=sin B=sin C=2R,其中 R 是三角形外接 圆的半径.由正弦定理可以变形为: (1)a∶b∶c=sin A∶sin B∶sin C; (2)a= 2Rsin A ,b= 2Rsin B ,c= 2Rsin C ; a b c (3)sin A=2R,sin B=2R,sin C=2R等形式,以解决不同的三 角形问题.
考向二 利用余弦定理解三角形 【例 2】►在△ABC 中,a、b、c 分别是角 A、B、C 的对边,且 cos B b =- . cos C 2a+c (1)求角 B 的大小; (2)若 b= 13,a+c=4,求△ABC 的面积. cos B b [审题视点] 由cos C=- ,利用余弦定理转化为边的关系 2a+c 求解.
两种途径 根据所给条件确定三角形的形状,主要有两种途径: (1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角 转换.
双基自测 1.(人教A版教材习题改编)在△ABC中,A=60° ,B=75° ,a =10,则c等于( A.5 2 10 6 C. 3 ). B.10 2 D.5 6
a 解析 由A+B+C=180° ,知C=45° ,由正弦定理得: sin A = c 10 c 10 6 sin C,即 3= 2.∴c= 3 . 2 2 答案 C
sin A cos B 2.在△ABC 中,若 a = b ,则 B 的值为( A.30° 解析 B.45° C.60° D.90°
【训练 2】 (2011· 桂林模拟)已知 A,B,C 为△ABC 的三个内 A 角,其所对的边分别为 a,b,c,且 2cos +cos A=0. 2
2
(1)求角 A 的值; (2)若 a=2 3,b+c=4,求△ABC 的面积.
A 解 (1)由 2cos +cos A=0,得 1+cos A+cos A=0, 2
a b 3 2 解 由正弦定理得sin A=sin B,sin A=sin 45° , 3 ∴sin A= . 2 ∵a>b,∴A=60° A=120° 或 . 6+ 2 bsin C 当 A=60° 时,C=180° -45° -60° =75° ,c= sin B = 2 ; 6- 2 bsin C 当 A=120° C=180° 时, -45° -120° =15° c= sin B = 2 . ,
∴sin C=sin(B+A)=sin Bcos A+cos Bsin A 6+ 2 2 1 2 3 = × + × = . 2 2 2 2 4 6+ 2 3+1 ∴BC 边上的高为 bsin C= 2× = . 4 2
【试一试】 (2011· 辽宁)△ABC 的三个内角 A,B,C 所对的边 分别为 a,b,c,asin Asin B+bcos2 A= 2a. b (1)求a; (2)若 c2=b2+ 3a2,求 B. [尝试解答] (1)由正弦定理得,