七年级下册数学资料整理
初一下数学重点
![初一下数学重点](https://img.taocdn.com/s3/m/d663d7a4afaad1f34693daef5ef7ba0d4a736dab.png)
初一下数学重点
初一数学的重点内容通常包括:
1. 整数运算:包括整数的加减乘除运算,绝对值等概念。
2. 代数表达式:包括代数式的认识、简单的代数式的化简与计算。
3. 方程:包括一元一次方程的解法和应用。
4. 平面图形:包括平行四边形、三角形、四边形等图形的性质与计算。
5. 比例与百分数:包括比例的意义、比例线段定理、百分数与实际问题的应用。
6. 数据的收集和处理:包括调查统计、频数分布表、直方图、折线图等。
7. 几何初步:包括角的认识、角的度量、同位角、对顶角等基本概念。
这些内容是初一数学的重点,学生需要通过理论学习和大量的练习来掌握这些知识。
1/ 1。
七年级下学期数学知识点归纳大全
![七年级下学期数学知识点归纳大全](https://img.taocdn.com/s3/m/40a38f52ae1ffc4ffe4733687e21af45b307fe84.png)
七年级下学期数学知识点归纳大全一、整数及其运算1. 整数概念2. 自然数、零、负整数的概念3. 整数的比较及判断4. 整数的加减法、乘法、除法及其性质5. 整数的混合运算二、分数及其运算1. 分数的概念及其表示方法2. 分数的转化(真分数、假分数、带分数)3. 分数的约分和通分4. 分数的加减法及其性质5. 分数的乘法、除法及其性质6. 分数的混合运算三、小数及其运算1. 小数的概念及其表示方法2. 小数与分数的转化3. 小数的大小比较及判断4. 小数的加减法及其性质5. 小数的乘法、除法及其性质6. 小数的混合运算四、代数式及其展开1. 代数式的概念及其基本形式2. 同类项与异类项3. 代数式的加减法4. 乘法公式及其应用5. 因式分解6. 展开式及其应用五、方程及其解法1. 方程的概念及其解法2. 一元一次方程的解法3. 含有分数、小数的一元一次方程的解法4. 一元一次方程的应用5. 一元二次方程的解法及应用六、图形及其性质1. 线段、角度、平行线的概念及应用2. 三角形、四边形、平行四边形的概念及性质3. 正方形、长方形、三角形、梯形的周长和面积的计算4. 圆及其相关概念5. 圆的面积及弧长的计算七、统计及概率1. 统计调查及其应用2. 图表的制作和应用3. 平均数、中位数、众数及其计算4. 独立事件及其概率计算5. 互不独立事件及其概率计算八、函数及其应用1. 函数的概念及表示方法2. 函数的图象3. 一次函数和二次函数的图象及其性质4. 函数在实际问题中的应用综上所述,以上就是七年级下学期数学知识点的归纳大全,希望同学们能够认真学习掌握,提高自己的数学水平。
七年级数学下册全部知识点归纳(含概念公式实用)
![七年级数学下册全部知识点归纳(含概念公式实用)](https://img.taocdn.com/s3/m/620745481a37f111f0855b59.png)
第一章:整式的运算单项式式多项式同底数幂的乘法 幂的乘方 积的乘方同底数幂的除法 零指数幂 负指数幂 整式的加减单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式 一、单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中全部字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包含它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1〞。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包含项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不肯定是单项式。
4、整式不肯定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后精确合并同类项。
3、几个整式相加减的一般步骤:〔1〕列出代数式:用括号把每个整式括起来,再用加减号连接。
〔2〕按去括号法则去括号。
〔3〕合并同类项。
4、代数式求值的一般步骤:〔1〕代数式化简。
〔2〕代入计算〔3〕对于某些特别的代数式,可采纳“整体代入〞进行计算。
七年级数学下重点概念整理(实数)
![七年级数学下重点概念整理(实数)](https://img.taocdn.com/s3/m/e91986ce0c22590102029d23.png)
一、无理数
1.定义:无限不循环小数叫做无理数。 2.判断方法 (1)根据定义判断 (2)整数和分数统称为有理数,整数可以看作是分母为 1 的分数,有理数都可以写成分 数的形工,而无理数则不能写成分数的形式。
3.无理数都是无限小数,但无限小数不定是无理数。 4.判断一个数是不是无理数时,不要把分数化成小数再判断。 二、实数
1.定义:有理数和无理数统称为实数。 2.分类: (1)根据定义分: 实数 有理数 整数 正整数:1,2,3------
0 负整数:-1,-2,-3-----分数 正整数
有限小数或无限不循环小数
负整数
无理数 正无理数 无限不循环小数
负无理数
(2)根据正负之分: 实数 正实数 正有理数
正无理数
0 负实数 负有理数
每一个点都表示一个实数。
2.实数的大小比较 (1)数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大 (2)正实数大于 0,负实数小于 0,正实数大于一切负实数,两个负实数比较,绝对值 大的反而小。
四、实数的有关概念及运算
6.1 实数
1.相反数 如果 a 表示任何一个实数,那么-a 就是 a 的相反数,a 与-a 互为相反数; 0 的相反数是 0. 2.绝对值 一个正实数的绝对值是它本身; 一个负实数的绝对值是它的相反数; 0 的绝对值是 0.
系 任何一个有理数,在数轴上都有一个唯一确定的点与之对应,但是,数轴上的点并不是
都表示有理数,无理数也可以用数轴上的点表示。由此可见,数轴上表示有理数的点并
不是连续的,只有将有理数、无理数合在一起,才能填满整个数轴,所以实数与数轴上
的点是一一对应的,即每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的
七年级下册数学知识点整理
![七年级下册数学知识点整理](https://img.taocdn.com/s3/m/7da48493ee06eff9aff80703.png)
七年级数学《知识点》总结2019.12.27相交线与平行线一、知识网络结构相交线相交线垂线同位角、内错角、同旁内角平行线:在同一平面内,不相交的两条直线叫平行线定义:____________________________判定1平行线及其判定平行线的判定判定2相交线与平行线判定3判定4 :同位角相等,两直线平行:内错角相等,两直线平行:同旁内角互补,两直线平行:平行于同一条直线的两直线平行性质1:两直线平行,同位角相等性质2:两直线平行,内错角相等平行线的性质性质3:两直线平行,同旁内角互补性质4:平行于同一条直线的两直线平行命题、定理平移ba垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
21 34图2性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
性质3:如图2所示,当a ⊥b时,= = = =90°。
点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。
同位角、内错角、同旁内角基本特征:平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相c平行。
213 4 6a75 8b 图4平行线的性质:10、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。
平移后,新图形与原图形的形状和大小完全相同。
平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
平移性质:平移前后两个图形中①对应点的连线平行且相等;②对应线段相等;③对应角相等。
实数实数的分类1、按定义分类: 2.按性质符号分类:注:0既不是正数也不是负数.【知识点二】实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于0.a、b互为相反数a+b=0.2.绝对值|a| ≥0.3.倒数(1)0没有倒数(2)乘积是1的两个数互为倒数.a、b互为倒数.4.平方根(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.5.立方根如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.【知识点三】实数与数轴数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.【知识点四】实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.3.无理数的比较大小:【知识点五】实数的运算1.加法2.减法:减去一个数等于加上这个数的相反数.3.乘法4.除法除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.5.乘方与开方(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.(3)零指数与负指数【知识点六】有效数字和科学记数法1.有效数字:一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.2.科学记数法:把一个数用(1≤<10,n为整数)的形式记数的方法叫科学记数法.第七章平面直角坐标系一、知识网络结构有序数对平面直角坐标系平面直角坐标系用坐标表示地理位置坐标方法的简单应用用坐标表示平移二、知识要点1、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)。
七年级下册数学知识点归纳
![七年级下册数学知识点归纳](https://img.taocdn.com/s3/m/854ec2bd760bf78a6529647d27284b73f24236e1.png)
一、整式的加减1. 同底数幂的乘法:底数不变,指数相加。
2. 同底数幂的除法:底数不变,指数相减。
3. 幂的乘方:底数不变,指数相乘。
4. 积的乘方:等于各因式分别乘方后的积。
5. 单项式与单项式的和:系数相加,字母部分不变。
6. 单项式与单项式的差:系数相减,字母部分不变。
7. 单项式与单项式的积:系数相乘,字母部分合并。
8. 单项式与多项式的积:用单项式去乘多项式的每一项,再把所得的积相加。
9. 多项式与多项式的和:同类项的系数相加,字母部分不变。
10. 多项式与多项式的差:同类项的系数相减,字母部分不变。
11. 多项式与多项式的积:用一个多项式去乘另一个多项式的每一项,再把所得的积相加。
二、方程与不等式1. 一元一次方程:含有一个未知数,且未知数的最高次数为1的方程。
2. 一元一次不等式:含有一个未知数,且未知数的最高次数为1的不等式。
3. 一元一次方程的解法:移项、合并同类项、化系数为1。
4. 一元一次不等式的解法:移项、合并同类项、化系数为1。
5. 二元一次方程组:含有两个未知数,且未知数的最高次数为1的方程组。
6. 二元一次不等式组:含有两个未知数,且未知数的最高次数为1的不等式组。
7. 二元一次方程组的解法:消元法、代入法。
8. 二元一次不等式组的解法:消元法、代入法。
9. 分式方程:含有分母的方程。
10. 分式方程的解法:去分母、化系数为1、检验。
11. 分式不等式:含有分母的不等式。
12. 分式不等式的解法:去分母、化系数为1、检验。
三、几何图形1. 点、线、面的概念。
2. 直线的性质:无端点、无限延伸、不可度量长度。
3. 射线的性质:有一个端点、无限延伸、不可度量长度。
4. 线段的性质:有两个端点、有限长度、可度量长度。
5. 角的概念:两条射线从同一点出发所形成的图形。
6. 角的分类:锐角、直角、钝角、平角、周角。
7. 角的性质:度数大小关系、补角和余角、角的和差。
8. 三角形的概念:由三条边和三个内角组成的封闭图形。
初一下册数学知识点总结
![初一下册数学知识点总结](https://img.taocdn.com/s3/m/9c0e6dfae009581b6bd9eb5c.png)
初一下册数学知识点总结第一章 二元一次方程1、二元一次方程的概念2、二元一次方程组的概念3、解二元一次方程组⎪⎩⎪⎨⎧程组)引入解复杂二元一次方换元法(书本上没有,加减消元法代入法.3.2.1 4、二元一次方程的实际应用⎩⎨⎧;分配类何图形的体积面积变化题型:时间路程类;几、解、验、答解题步骤:审、设、列.2.1 5、三元一次方程和三元一次方程组概念6、姐三元一次方程组:方法和解二元一次方程组的一样第二章 整式乘法1、同底数幂的乘法:n m n m n m n m x x x x x x -+=÷=⨯;2、幂的乘方:()mn nm x x =3、单项式乘单项式:11++=⨯m n n m y x y x xy ;11842++=⨯n m n m y x y x xy4、单项式乘多项式:1221)(+++=+n m n m y x y x xy y x xy5、多项式乘多项式:()()ny y mx y ny x mx x ny mx y x ∙+∙+∙+∙=++6、乘法公式:平方差公式()()()()()()2222323232)()(y x y x y x nb ma nb ma nb ma -=-+-=-+,例如 完全平方公式()()()()()b a b a b a nb ma nb ma nb ma 32232322)()(222222-∙∙+-+=-∙∙++=+例如第三章 因式分解1、因式分解的概念:把一个多项式变成若干个多项式的乘积的形式。
例如()()32652++=++x x x x ,()()b a b a b a -+=-22,()22321294-=-+a a a 2、提公因式法:()()1,248442222322++=++++=++x x xy xy y x y x c b a c b a 3、十字相乘法:能把某些二次三项式分解因式。
要务必注意各项系数的符号。
方法是:交叉相乘,水平书写。
新人教版七年级下册数学知识点整理
![新人教版七年级下册数学知识点整理](https://img.taocdn.com/s3/m/acecb8b282d049649b6648d7c1c708a1294a0a65.png)
新人教版七年级下册数学知识点整理的两个角叫做同位角,它们的度数相等。
②在两条直线(被截线)的异侧,都在第三条直线(截线)的同一侧,这样的两个角叫做内错角,它们的度数相等。
③在两条直线(被截线)的同一侧,都在第三条直线(截线)的同一侧,这样的两个角叫做同旁内角,它们的度数互补。
7、平移是指在平面内,将一个图形沿着某个方向按照某个距离移动,移动后的图形与原图形形状、大小、方向都相同。
平移的性质:平移不改变图形的形状、大小和方向,只改变图形的位置。
本文介绍了平面几何中的角度和平行线的相关概念和性质。
其中,角度分为同位角、内错角和同旁内角,平行线的判定包括同位角相等、内错角相等、同旁内角互补和平行于同一条直线的两条直线互相平行。
此外,文章还介绍了命题和定理的概念,以及平移变换的性质。
最后,文章对实数进行了分类,包括按定义分类和按性质符号分类。
科学记数法是一种将数表示为(1≤<10,n为整数)形式的记数方法。
平面直角坐标系由有序数对和两条互相垂直且有公共原点的数轴组成。
其中,有序数对是有顺序的两个数a与b组成的数对,记做(a,b)。
横轴是水平的数轴,也称为x轴或横轴;纵轴是竖直的数轴,也称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。
坐标轴上的点不在任何一个象限内,而两条坐标轴将平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。
坐标轴上的点有特殊的坐标特点,如x轴正半轴上的点的坐标为(a,0),y轴负半轴上的点的坐标为(0,-b)。
点P(a,b)到x 轴的距离是|b|,到y轴的距离是|a|。
对称点的坐标特点包括:关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;关于原点对称的两个点,横坐标、纵坐标分别互为相反数。
初一数学下册知识点归纳大全
![初一数学下册知识点归纳大全](https://img.taocdn.com/s3/m/ea708b88541810a6f524ccbff121dd36a32dc4b0.png)
初一数学下册知识点归纳大全一、相交线与平行线。
1. 相交线。
- 邻补角:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角。
邻补角的和为180°。
- 对顶角:一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角互为对顶角。
对顶角相等。
- 垂直:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
- 在同一平面内,过一点有且只有一条直线与已知直线垂直。
- 连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
2. 平行线。
- 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
- 如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
- 平行线的判定:- 同位角相等,两直线平行。
- 内错角相等,两直线平行。
- 同旁内角互补,两直线平行。
- 平行线的性质:- 两直线平行,同位角相等。
- 两直线平行,内错角相等。
- 两直线平行,同旁内角互补。
二、实数。
1. 平方根。
- 如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根。
即如果x^2=a,那么x = ±√(a)(a≥slant0)。
正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。
2. 算术平方根。
- 正数a的正的平方根√(a)叫做a的算术平方根,0的算术平方根是0。
3. 立方根。
- 如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根。
即如果x^3=a,那么x=sqrt[3]{a}。
正数的立方根是正数,负数的立方根是负数,0的立方根是0。
4. 实数的分类。
- 实数有理数整数正整数 0 负整数分数正分数负分数无理数(无限不循环小数)三、平面直角坐标系。
1. 有序数对。
- 有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。
2. 平面直角坐标系。
- 在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
七年级数学下册第一章《实数》知识点整理
![七年级数学下册第一章《实数》知识点整理](https://img.taocdn.com/s3/m/7fd4922df12d2af90242e648.png)
七年级数学下册第一章《实数》知识点整理★重点★实数的有关概念及性质,实数的运算☆内容提要☆一、重要概念.数的分类及概念数系表:说明:“分类”的原则:1)相称(不重、不漏)初中数学复习提纲2)有标准2.非负数:正实数与零的统称。
(表为:x≥0)初中数学复习提纲常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数:①定义及表示法②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;c.0<a <1时1/a>1;a>1时,1/a<1;D.积为1。
4.相反数:①定义及表示法②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;c.和为0,商为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;c.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数)初中数学复习提纲7.绝对值:①定义(两种):代数定义:几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算.运算法则(加、减、乘、除、乘方、开方)2.运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷初中数学复习提纲×5);c.由“小”到“中”到“大”。
三、应用举例(略)附:典型例题.初中数学复习提纲已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│=b-a.2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b 的符号。
七年级数学下册第一章《代数式》知识点整理
![七年级数学下册第一章《代数式》知识点整理](https://img.taocdn.com/s3/m/e562fb5e7fd5360cba1adbf6.png)
七年级数学下册第一章《代数式》知识点整理七年级数学下册第一章《代数式》知识点整理第二章代数式★重点★代数式的有关概念及性质,代数式的运算☆内容提要☆一、初中数学复习提纲重要概念分类:代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式没有加减运算的整式叫做单项式。
(数字与字母的积—包括单独的一个数或字母)几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。
②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。
划分代数式类别时,是从外形来看。
如,初中数学复习提纲 =x, 初中数学复习提纲=│x│等。
4.系数与指数区别与联系:①从位置上看;②从表示的意义上看5.同类项及其合并条件:①字母相同;②相同字母的指数相同合并依据:乘法分配律6.根式表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别:初中数学复习提纲、初中数学复习提纲是根式,但不是无理式(是无理数)。
7.算术平方根⑴正数a的正的平方根(初中数学复习提纲[a≥0—与“平方根”的区别]);⑵算术平方根与绝对值① 联系:都是非负数,初中数学复习提纲=│a│②区别:│a│中,a为一切实数; 初中数学复习提纲中,a为非负数。
8.同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
把分母中的根号划去叫做分母有理化。
初中数学复习提纲9.指数⑴ ( 初中数学复习提纲—幂,乘方运算)① a>0时,初中数学复习提纲>0;②a<0时,初中数学复习提纲>0(n是偶数),初中数学复习提纲<0(n是奇数)⑵零指数:初中数学复习提纲 =1(a≠0)负整指数:初中数学复习提纲 =1/ 初中数学复习提纲(a≠0,p是正整数)二、运算定律、性质、法则1.分式的加、减、乘、除、乘方、开方法则2.分式的性质⑴基本性质:初中数学复习提纲 = 初中数学复习提纲(m≠0)⑵符号法则:初中数学复习提纲⑶繁分式:①定义;②化简方法(两种)3.整式运算法则(去括号、添括号法则)4.幂的运算性质:① 初中数学复习提纲· 初中数学复习提纲 = 初中数学复习提纲;② 初中数学复习提纲÷ 初中数学复习提纲 = 初中数学复习提纲;③ 初中数学复习提纲 = 初中数学复习提纲;④ 初中数学复习提纲 = 初中数学复习提纲初中数学复习提纲;⑤ 初中数学复习提纲技巧:初中数学复习提纲5.乘法法则:⑴单×单;⑵单×多;⑶多×多。
(完整版)人教版七年级下册数学知识点总结大全
![(完整版)人教版七年级下册数学知识点总结大全](https://img.taocdn.com/s3/m/42d75e6b4a73f242336c1eb91a37f111f1850dbc.png)
(完整版)人教版七年级下册数学知识点总结大全直角三角形- 定义:有一个角为直角(90度)的三角形。
- 勾股定理:直角三角形斜边的平方等于两腿的平方和。
- 特殊直角三角形:45-45-90度三角形和30-60-90度三角形。
圆- 定义:平面上到一个固定点的距离等于定长的点的集合。
- 元素:圆心、半径、直径、弦、弧、扇形、切线等。
- 四大关系:- 半径和弦垂直- 弦长的一半与半径的乘积等于斜边的一半与半径的乘积- 外接角等于弧对应的圆心角- 弧度与角度之间的换算关系比例与相似- 定义:表示两个或多个有对应关系的数之间的比值关系。
- 比例定理:若a/b = c/d,则a、b、c、d成比例。
- 三线一比例:三角形内部的三条连线和三角形外部的三条平行线与三角形的腰成比例。
- 相似三角形:对应角相等,对应边成比例的三角形。
科学计数法- 定义:一种简便表示极大或极小数的方法。
- 标准形式:数字部分在1到9之间,指数为整数。
- 运算法则:运算时先计算系数的乘除,再计算指数的加减。
二次根式- 定义:含有根号并且被根号包围的代数式。
- 平方根:一个数的平方等于该数。
- 二次根式的运算:相加减后化简、乘除法则。
分式- 定义:由整数与整数或整数代数式的比例组成的式子。
- 分式的性质:分母不能等于0,分子分母互质,分子分母都是整数等。
- 分式的运算:加减乘除、化简、倒数。
线性方程- 定义:等式中含有未知数的方程。
- 解方程:找到使等式成立的未知数的值。
- 一次方程:未知数的次数为1。
- 解一元一次方程:转化为等价方程,通过逆向运算得到未知数的值。
平行线与直线的交角- 定义:两条平行线与直线的交角为对应角或同位角。
- 绳分线定理:直线与两平行线相交时,对应角相等,内错角之和等于180度。
随机事件与概率- 定义:随机试验的可能结果称为随机事件。
- 基本事件与必然事件:基本事件是随机试验的单个结果,必然事件是一定发生的事件。
- 概率的计算:概率等于有利事件数除以可能事件总数。
七年级下册数学资料整理
![七年级下册数学资料整理](https://img.taocdn.com/s3/m/7d9cbff0a8956bec0875e31d.png)
七年级下册第六章:一元一次方程1.等式的基本性质:(1)等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式。
如果a=b,那么a+c=b+c,a-c=b-c(2)等式两边都乘以或除以同一个数(除数不能为0),所得结果仍是等式。
如果a=b,那么ac=bc,a/c=b/c (c不等于0)2.由等式的基本性质得到方程的变形规则:(1)方程两边都加上或减去同一个数或同一个整式,方程的解不变。
(2)方程两边都乘以或除以同一个不等于0的数,方程的解不变。
移向:将方程的某些项改变符号后,从方程的一边移到另一边,像这样的变形叫做移向。
3.一元一次方程的定义:都只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数都是1,像这样的方程叫做一元一次方程。
4.一元一次方程解决问题的过程:(1)弄清题意和其中的数量关系,用字母表示适当的未知数(设元);(2)找出问题所给出的等量关系,它反映了未知量与已知量之间的关系;(3)对这个等量关系中涉及的量,列出所需的代数式,根据等量关系,列出方程。
在设未知数和做出解答时,应注意量的单位。
问题——方程——解答第七章:一次方程组1.二元一次方程:两个方程都含有两个未知数,并且含有未知数项的次数都是 1.2.二元一次方程组:把这两个方程合在一起,就组成了一个二元一次方程组。
3.二元一次方程组的解:一般地,使二元一次方程组中两个方程的左右两边的值都相等的两个未知数的值。
4.三元一次方程组的解法:先消去一个或两个未知数,转化为一元或两元方程组,再进行求解。
第八章:一元一次不等式1.不等式的定义:用不等号“<”表示不等式关系的式子,叫做不等式。
或“>”2.不等式的解:不等式中含有未知数x,能使不等式成立的未知数的值,叫做不等式的解。
3.不等式的解集定义:一个不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集。
4.不等式的性质(1)如果a>b,那么a-c>b-c不等式的两边都加上或都减去同一个数或同一个整式,不等号的方向不变。
七年级数学下各章知识点汇总
![七年级数学下各章知识点汇总](https://img.taocdn.com/s3/m/250df0574b7302768e9951e79b89680202d86b05.png)
七年级数学下各章知识点汇总第五章平等线与相交线1、同角或等角的余角相等,同角或等角的补角相等。
2、对顶角相等3、判断两直线平行的条件:(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补,两直线平行。
(4)如果两条直线都和第三条直线平行,则这两条直线也互相平行。
(5)如果两条直线都和第三条直线垂直,则这两条直线也互相平行。
4、平行线的性质:(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)内错角相等,同旁内角互补。
5、命题:⑴命题的概念:判断一件事情的语句,叫做命题。
⑵命题的组成每个命题都是题设、结论两部分组成。
题设是已知事项;结论是由已知事项推出的事项。
命题常写成“如果……,则……”的形式。
具有这种形式的命题中,用“如果”开始的部分是题设,用“则”开始的部分是结论。
6、平移平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移,平移不改变物体的形状和大小。
(1) 把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
(2) 新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。
连接各组对应点的线段平行且相等。
第六章 实数一、知识结构乘方−−−−→←互为逆运算开方⎪⎩⎪⎨⎧−−→−−−→−立方根平方根开立方开平方 实数无理数有理数→⎭⎬⎫ 二、知识回顾算术平方根的定义: 平方根的定义: 平方根的性质: 立方根的定义: 立方根的性质: 练习:1、—8是 的平方根; 64的平方根是 ; =64 ;—64的立方根是 ; =9 ; 9的平方根是 。
2、大于17-而小于11的所有整数为 几个基本公式:(注意字母a 的取值范围)2)(a = ;2a =无理数的定义: 实数的定义: 实数与 上的点是一一对应的第七章 平面直角坐标系 1、含有两个数的词来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b )2、数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。
新人教版七年级下册数学知识点整理
![新人教版七年级下册数学知识点整理](https://img.taocdn.com/s3/m/5cfba1a12e3f5727a4e962be.png)
最新版人教版七年級數學下冊知識點第五章 相交線與平行線一、知識網路結構二、知識要點1、在同一平面內,兩條直線的位置關係有 兩 種: 相交 和 平行 , 垂直 是相交的一種特殊情況。
2、在同一平面內,不相交的兩條直線叫 平行線 。
如果兩條直線只有 一個 公共點,稱這兩條直線相交;如果兩條直線 沒有 公共點,稱這兩條直線平行。
3、兩條直線相交所構成的四個角中,有 公共頂點 且有 一條公共邊 的兩個角是鄰補角。
鄰補角的性質: 鄰補角互補 。
如圖1所示, 與 互為鄰補角, 與 互為鄰補角。
+ = 180°; + = 180° ; + = 180°; + = 180°。
4、兩條直線相交所構成的四個角中,一個角的兩邊分別是另一個角的兩邊的 反向延長線 ,這樣的兩個角互為 對頂角 。
對頂角的性質:對頂角相等。
如圖1⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧平移命题、定理的两直线平行:平行于同一条直线性质角互补:两直线平行,同旁内性质相等:两直线平行,内错角性质相等:两直线平行,同位角性质平行线的性质的两直线平行 :平行于同一条直线判定直线平行 :同旁内角互补,两判定线平行 :内错角相等,两直判定线平行 :同位角相等,两直判定定义平行线的判定平行线,不相交的两条直线叫平行线:在同一平面内平行线及其判定内角同位角、内错角、同旁垂线相交线相交线相交线与平行线 4321 4321____________________________:图11 3 42所示, 與 互為對頂角。
= ;= 。
5、兩條直線相交所成的角中,如果有一個是 直角或90°時,稱這兩條直線互相垂直,其中一條叫做另一條的垂線。
如圖2所示,當 = 90°時,垂線的性質:性質1:過一點有且只有一條直線與已知直線垂直。
七年级数学下册知识点归纳整理
![七年级数学下册知识点归纳整理](https://img.taocdn.com/s3/m/3c85821dbdd126fff705cc1755270722192e5918.png)
七年级数学下册知识点归纳整理七年级数学下册知识点归纳整理篇1相交线与平行线1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。
3、两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧)内错角Z(在两条直线内部,位于第三条直线两侧)同旁内角U(在两条直线内部,位于第三条直线同侧)4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。
其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
5、垂直三要素:垂直关系,垂直记号,垂足6、垂直公理:过一点有且只有一条直线与已知直线垂直。
7、垂线段最短。
8、点到直线的距离:直线外一点到这条直线的垂线段的长度。
9.平行公理:经过直线外的一点后,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
如果b//a,c//a,那么b//c10、平行线的判定:①同位角相等,两直线平行。
②内错角相等,两直线平行。
③同旁内角互补,两直线平行。
11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
七年级数学下册知识点归纳整理篇2(一)正负数1.正数:大于0的数。
2.负数:小于0的数。
3.0既不积极也不消极。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数1.有理数:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整之比的形式。
(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。
如:π)2.整数:正整数、0、负整数,统称整数。
3.分数:正分数、负分数。
(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。
人教版七年级数学下册知识点(全面精华详细)(最新整理)
![人教版七年级数学下册知识点(全面精华详细)(最新整理)](https://img.taocdn.com/s3/m/d3fe0e2381c758f5f61f67f1.png)
2.垂线: 垂直是相交的一种特殊情形,两条直线垂直,其中一
条直线叫做另一条直线的垂线。
3.垂足:两条垂线的交点叫垂足。
4.垂线特点:过一点有且只有一条直线与已知直线垂直。
5.点到直线的距离: 直线外一点到这条直线的垂线段的长度,叫点到直线的距离。连
接直线外一点与直线上各点的所有线段中,垂线段最短。
6、垂直的表示方法:垂直用符号“⊥”来表示,若“直线 AB 垂直于直线 CD, 垂足
五、实数的运算
1、加法交换律
ab ba
2、加法结合律
(a b) c a (b c)
3、乘法交换律
ab ba
4、乘法结合律
(ab)c a(bc)
5、乘法对加法的分配律 a(b c) ab ac
6、实数混合运算时,对于运算顺序有什么规定?
实数,乘方
方根的相反数。
3
6.2 立方根
(1)立方根的定义:如果一个数 x 的立方等于 a ,这个数叫做 a 的立方根(也叫做
三次方根),即如果 x3 a ,那么 x 叫做 a 的立方根。求一个数的立方
根的运算,叫做开立方。
(2)一个数 a 的立方根,记作 3 a ,读作:“三次根号 a ”,
其中 a 叫被开方数,3 叫根指数,不能省略,若省略表示平方。
为 O”,则记为 AB⊥ CD。
7、垂线的性质:
性质 1:过一点有且只有一条直线与已知直线垂直。
性质 2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
性质 3:如图 2 所示,当 a ⊥ b 时, =
=
=
= 90°。反
之,。。。。。
三、同位角、内错角、同旁内角 两条直线被第三条直线所截形成 8 个角。(3 线 8 角) 1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线 的上方,又在直线 EF 的同侧,具有这种位置关系的两个角叫同位角。 如:∠1 和∠5。 2.内错角:(在两条直线内部,位于第三条直线两侧)在两条直线之 间,又在直线 EF 的两侧,具有这种位置关系的两个角叫内错角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册
第六章:一元一次方程
1.等式的基本性质:
(1)等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式。
如果a=b,那么a+c=b+c,a-c=b-c
(2)等式两边都乘以或除以同一个数(除数不能为0),所得结果仍是等式。
如果a=b,那么ac=bc,a/c=b/c (c不等于0)
2.由等式的基本性质得到方程的变形规则:
(1)方程两边都加上或减去同一个数或同一个整式,方程的解不变。
(2)方程两边都乘以或除以同一个不等于0的数,方程的解不变。
移向:将方程的某些项改变符号后,从方程的一边移到另一边,像这样的变形叫做移向。
3.一元一次方程的定义:
都只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数都是1,像这样的方程叫做一元一次方程。
4.一元一次方程解决问题的过程:
(1)弄清题意和其中的数量关系,用字母表示适当的未知数(设元);
(2)找出问题所给出的等量关系,它反映了未知量与已知量之间的关系;
(3)对这个等量关系中涉及的量,列出所需的代数式,根据等量关系,列出方程。
在设未知数和做出解答时,应注意量的单位。
问题——方程——解答
第七章:一次方程组
1.二元一次方程:
两个方程都含有两个未知数,并且含有未知数项的次数都是1.
2.二元一次方程组:
把这两个方程合在一起,就组成了一个二元一次方程组。
3.二元一次方程组的解:
一般地,使二元一次方程组中两个方程的左右两边的值都相等的两个未知数的值。
4.三元一次方程组的解法:
先消去一个或两个未知数,转化为一元或两元方程组,再进行求解。
第八章:一元一次不等式
1.不等式的定义:
用不等号“<”或“>”表示不等式关系的式子,叫做不等式。
2.不等式的解:
不等式中含有未知数x,能使不等式成立的未知数的值,叫做不等式的解。
3.不等式的解集定义:
一个不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集。
4.不等式的性质
(1)如果a>b,那么a-c>b-c
不等式的两边都加上或都减去同一个数或同一个整式,不等号的方向不变。
(2)如果a>b,并且c>0,那么ac>bc,a/c>b/c
(3)如果a>b,并且c<0,那么ac<bc,a/c<b/c
不等式的两边都乘以或除以同一个正数,不等号的方向不变;不等式的两边都乘以或除以同一个负数,不等号的方向改变。
5.一元一次不等式:
都只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数都是1,像这样的不等式叫做一元一次不等式。
6.不等式组的解集:
不等式组中及格不等式的解集的公共部分,叫做这个不等式组的解集。
第九章:多边形
1.三角形
它是由三条不在同一条直线上的线段首位顺次连结组成的平面图形,这三条线段就是三角形的边。
2.三角形按角来分类
所有内角都是锐角——锐角三角形;
有一个内角是直角——直角三角形;
有一个内角是钝角——钝角三角形.
3.等腰三角形与等边三角形:
有两条边相等的三角形称为等腰三角形,相等的两边叫做等腰三角形的腰;把三条边都相等的三角形称为等边三角形(或正三角形)。
4.三角形的内角和等于180°。
5.直角三角形的两个锐角互余。
6.三角形外角的两个性质:
(1)三角形的一个外角等于与它不相邻的两个内角的和。
(2)三角形的一个外角大于任何一个与它不相邻的内角。
7.三角形的外角和等于360°。
8.三角形的任何两边的和大于第三边。
9.正多边形:
如果多边形的各边都相等,各内角也想等,那么就把它称为正多边形。
10.n边形的内角和为(n-2)· 180°
11.任意多边形的外角和都是360°
第十章:轴对称、平移与旋转
1.轴对称、对称轴、对称点:
把一个图形沿着某一条直线翻折过去,如果它能与另一个图形重合,那么就说这两个图形成轴对称,这条直线就是对称轴,两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点。
2.轴对称图形(或成轴对称的两个图形)的对应线段(对折后重合的线段)相等,对应角(对折后重合的角)相等。
3.垂直平分线:
把垂直并且平分一条线段的直线称为这条线段的垂直平分线。
4.如果一个图形是轴对称图形,那么连结对称点的线段的垂直平分线应该是该图形的对称轴。
5.平移:
平面图像在它所在的平面上的平行移动,简称为平移。
它由平移的方向和距离所决定。
6.平移后的图形与原来的图形的对应线段平行并且相等,对应角相等,图形的形状和大小不变。
7.平移后对应点所连的线段平行且相等。
8.旋转与旋转中心:
绕上面的悬挂点在一个平面上转动,像这样的运动就叫做旋转。
这一悬挂点就叫做旋转的旋转中心。
9.图形中每一点都绕着旋转中心按同一旋转方向旋转了同样大小的角度,对应点到旋转中心的距离相等,对应线段相等,对应角相等,图形的形状与大小不变。
10.旋转对称图形:
旋转一定角度后能与自身重叠的图形就称为旋转对称图形。
11.中心对称图形:
一个图形绕着中心旋转180°后能与自身重合,就叫做对称中心图形,这个点就叫做对称中心。
12.在成中心对称的两个图形中,连结对称点的线段都经过对称中心,并且被对称中心平分。
如果两个图形的所有对应点连成的线段都经过某一点,并且都该被该点平分,那么这两个图形关于这一点成中心对称。
13.全等图形:
能够完全重合的两个图形叫做全等图形。
14.全等多边形:
(1)全等多边形的对应边相等,对应角相等。
(2)边、角分别对应相等的两个多边形称为全等多边形。
(3)全等三角形的对应边相等,对应角分别相等。
(4)如果两个三角形的边、角分别对应相等,那么这两个三角形全等。