处理共点力平衡问题得常见方法与技巧

合集下载

解答共点力平衡问题的常用方法

解答共点力平衡问题的常用方法

解答共点力平衡问题的常用方法物体的平衡问题,涉及力的概念、受力分析、力的合成与分解、列方程运算等多方面数学、物理知识和能力的应用,是高考中的热点。

一、共点力平衡问题的数学解法1、相似三角形法:如果在对力利用平行四边形定则运算的过程中,力三角形与几何三角形相似,则可根据相似三角形对应边成比例等性质求解。

2、拉密定理若在共点的三个力作用下,物体处于平衡状态,则各力的大小分别与另外两个力夹角的正弦成正比。

3、正交分解法:共点力平衡条件F合=0是矢量方程,通常用正交分解法把矢量运算转化为标量运算,给解题带来方便。

4、函数图象法:利用函数图象分析和解答问题,关键是分析图象的物理意义,进行推理判断和计算。

二、共点力平衡问题的物理方法1、离法与整体法通常在分析外力对系统的作用时,用整体法:在分析系统内各物体间的相互作用时,用隔离法。

二者常需交叉运用,从而优化解题思路和方法,使解题简洁明了。

2、动态平衡问题———图解法利用图解法解决此类问题的基本方法是:对研究对象在状态变化过程中的若干状态进行受力分析,依据某一参量的变化,在同一图中作出物体在平衡状态下的平衡力图(力的平行四边形),再由动态的力的四边形各边长度变化及角度变化,确定力的大小及方向的变化情况,3、临界法:从量变到质变的转变状态,叫临界状态。

分析和解决临界问题,有两种基本方法:一是演绎法———从一般到特殊的推理方法;二是临界法———从特殊到一般的推理方法。

因为临界状态总是比一般状态简单,所以解决临界问题,临界法比演绎法简单。

一般,只要分清物理过程抓住临界状态,确定临界状态,建立临界方程,问题就迎刃而解了。

物理高一共点力平衡解题方法

物理高一共点力平衡解题方法

物理高一共点力平衡解题方法
解决共点力平衡问题的基本方法
1. 明确研究对象,亦即是确定我们是要分析哪个物体的受力情况。

2. 对物体进行正确的受力分析。

在分析各力时,要注意不要“漏力”和“添力”。

受力分析的顺序一般是:重力、弹力、摩擦力。

3. 根据力的平衡条件或牛顿第二定律,列方程求解未知量。

【解题方法】
1. 合成法
物体受三个共点力作用而平衡时,将这三个力首尾相接,若能构成三角形,且合力等于零,就可以用三力合成的平行四边形定则求解,此方法称为合成法。

2. 正交分解法
物体受三个以上共点力作用而平衡时,将各个力正交分解,则有:
$F_{合x} = 0$
$F_{合y} = 0$
3. 整体法与隔离法
整体法是指对物理问题的某些部分或全部进行整体分析的方法;隔离法是指把要分析的物体从相关的物体系统中隔离出来的思维方法。

【注意事项】
1. 平衡状态是指静止或匀速直线运动状态,平衡条件是合力为零。

2. 受力分析时,不要多力或漏力,作出的两个力和第三个力的关系的平行四边形是表示物体处于平衡状态的特殊情况。

3. 求解平衡问题时,先对物体进行受力分析,画出受力分析图,再根据物体处于平衡状态,列平衡方程求解。

4. 解决三力平衡问题时,一般采用正交分解法处理比较方便。

共点力平衡的解题方法

共点力平衡的解题方法

共点力平衡的解题方法共点力平衡的解题方法1. 什么是共点力平衡?共点力平衡是解决问题时使用的一种方法,它通过平衡各种因素的力量,以达到有效解决问题的目的。

在解题过程中,我们往往会面临多个因素的影响,这些因素可能互相作用,产生相互牵引的效果。

共点力平衡的目标是找到一个最佳的平衡点,使得问题能够得到有效解决。

2. 共点力平衡的解题方法在解决问题时,我们可以采用多种方法来进行共点力平衡。

下面列举了几种常见的方法:•分析因素力量的大小在解决问题之前,我们需要先分析各种因素对问题的影响力大小。

通过对各种因素进行权衡,我们可以判断哪些因素对问题的解决最为重要,然后将注意力集中在这些因素上。

•制定优先级排序在解决问题时,我们往往会面临多个因素同时影响的情况。

为了更好地平衡这些因素,我们可以制定一个优先级排序,将重要性较高的因素放在优先考虑的位置,使得解题过程更加有序。

•整合资源解决复杂问题时,我们可能需要调动多种资源来达到共点力平衡的效果。

这些资源可以包括人力、物力、财力等方面。

通过整合这些资源,我们可以更好地平衡各种因素,从而解决问题。

•寻求妥协与折衷在解决问题时,各种因素之间可能会存在冲突和竞争。

为了达到共点力平衡,我们可能需要进行妥协与折衷。

这意味着我们需要在各种因素之间寻找一个平衡点,既考虑各个因素的需要,又尽量满足问题的解决要求。

•持续调整与改进共点力平衡是一个动态的过程,我们需要不断地进行调整与改进。

在解决问题的过程中,我们可能会发现某些因素的力量发生变化,或者有新的因素产生。

为了保持平衡,我们需要持续地调整与改进解题方法。

3. 结语共点力平衡是解决问题时非常重要的一种方法。

通过平衡各种因素的力量,我们可以找到解决问题的最佳方法。

在实际解题过程中,我们可以结合以上提到的方法,灵活运用,以达到共点力平衡的效果。

希望本文对您有所帮助!4. 示例为了更好地理解共点力平衡的解题方法,下面我们将通过一个具体的示例来说明。

共点力作用下物体的平衡常用方法

共点力作用下物体的平衡常用方法

16
课后练习
如图甲所示,两球A、B用劲度系数为k1的轻弹
簧相连,球B用长为l的细绳悬于O点,球A固定在O点正下方,
且OA之间的距离恰为l,系统平衡时绳子所受的拉力为F1.现 把A、B间的弹簧换成劲度系数为k2的轻弹簧,仍使系统平衡, 此时绳子所受的拉力为F2,则F1与F2的大小之间的关系为 ( )
A F θ O B
D. F始终不变
13
相似三角形法
“相似三角形”的主要性质是对应边成比例,对应
角相等.在物理中,一般当涉及矢量运算,又构建
了三角形时,若矢量三角形与图中的某几何三角形
为相似三角形,则可用相似三角形法解题.
14
当堂检测4:如图所示,光滑半球面上的小球被一通过
定滑轮的力F由底端缓慢拉至顶端的过程中,关
处理平衡问题的 常用方法
1
学习目标
1、能熟练应用合成法、正交分解法处 理平衡问题中的单体静平衡和动平衡。 2、体会解题技巧:矢量三角形法、图 解法、相似三角形法等。
2
1.平衡状态:物体处于静止或匀速 直线运动状态.
2.共点力的平衡条件: F合=0
3Байду номын сангаас
高考考查题型、分值、方向
对于平衡问题,高考主要以选择题型 为主,分值为6分,或者在计算题中与其他 知识点相综合出题。考查方向以平衡态情 况下力的判断和计算为主,问题设置多为 单体静平衡、单体动平衡和连接体平衡等.
(sin cos )m g F cos sin
7
(1)选用哪一种方法要视情况而定,一 般来说,当物体受到三个或三个以下的 力时,常利用合成法,若这三个力中, 有两个力互相垂直,可选用正交分解法。 (2)当物体受到三个以上的力时,常用 正交分解法。

求解共点力平衡问题的常见方法

求解共点力平衡问题的常见方法

求解共点力平衡问题的常见方法共点力平衡问题,涉及力的概念、受力分析、力的合成与分解、列方程运算等多方面数学、物理知识和能力的应用,是高考中的热点。

对于刚入学的高一新生来说,这个部分是一大难点。

一、力的合成法物体在三个共点力的作用下处于平衡状态,则任意两个力的合力一定与第三个力大小相等,方向相反;例1. 如图1所示,一小球在纸面内来回振动,当绳OA和OB拉力相等时,摆线与竖直方向的夹角为:()图1A. 15°B. 30°C. 45°D. 60°解析:对O点进行受力分析,O点受到OA绳和OB绳的拉力F A和F B及小球通过绳子对O点的拉力F三个力的作用,在这三个力的作用下O点处于平衡状态,由“等值、反向”原理得,F A和F B的合力F合与F是等值反向的,由平行四边形定则,作出F A和F B的合力F合,如图2所示,由图可知,故答案是A。

二、力的分解法在实际问题中,一般根据力产生的实际作用效果分解。

[例2]如图1所示,用一个三角支架悬挂重物,已知AB杆所受的最大压力为2000N,AC绳所受最大拉力为1000N,∠α=30°,为不使支架断裂,求悬挂物的重力应满足的条件?[分析]悬绳A点受到竖直向下的拉力F=G,这个拉力将压紧水平杆AB并拉引绳索AC,所以应把拉力F沿AB、CA两方向分解,设两分力为F1、F2,画出的平行四边形如图2所示。

[解]由图2可知:因为AB、AC能承受的最大作用力之比为当悬挂物重力增加时,对AC绳的拉力将先达到最大值,所以为不使三角架断裂,计算中应以AC绳中拉力达最大值为依据,即取F2=F2m=1000N,于是得悬挂物的重力应满足的条件为G m≤F2sin30°=500N,[说明]也可取A点为研究对象,由A点受力,用共点平衡条件求解。

A点受三个力:悬挂物的拉力F=G,杆的推力F B,绳的拉力F C,如图4所示。

根据共点力平衡条件,由F C sinα=G,F C cosα=F B,即得共点力平衡条件可以适用于多个力同时作用的情况,具有更普遍的意义。

共点力平衡的七大题型及解决方法

共点力平衡的七大题型及解决方法

共点力平衡的七大题型及解决方法点力平衡是一个数学概念。

通常,它用来描述定义的一组力的方式,这组力使物体保持平衡状态。

这里要讲述的是有关点力平衡的七大题型及其解决方法。

第一,悬臂梁。

悬臂梁是一种典型的力学系统,它能够平衡并自由支持多个外力。

悬臂梁系统的点力平衡是从垂直方向上来看最简单的,因为除了重力的作用,没有其他的外力参与。

解决方案是计算由重力和杆件上的力所构成的一组平衡外力,并验证这一组力是否能保持平衡。

第二,刚体动力学系统的点力平衡。

刚体动力学系统是指物体内部结构不可变,只由外力作用才能改变位置的系统。

简单理解就是把体系想成在一个固定的方向上作用于物体重力和各种外力。

解决方案是计算外力和重力构成的一组力,把它们做点力平衡,即贴合物体位置不变的要求。

第三,坐标解算的点力平衡。

坐标解算的点力平衡关系式,就是将力投射到坐标轴上,再分别比较其在x,y轴上的大小来计算物体位置及外力的大小。

解决方案是获得力学系统中物体位置以及所有外力的大小,然后把这些外力投射到x,y坐标轴上,以此确定点力平衡关系式。

第四,悬挂系统的点力平衡。

悬挂系统是一种结构性系统,它由支撑点和绳索或杆件组成。

悬挂系统中受力面中,重力的作用是最大的。

解决方案是首先根据悬挂的力学系统去确定每个支撑点的外力大小,即力的大小和方向,然后确定这些外力的作用结果,从而得出系统的点力平衡方程。

第五,连续体力学系统的点力平衡。

连续体力学是指多个连续物体串联一起,作用力传递到大片物体组成的体系。

该体系受外力的作用,在多个点的方向,并受到特殊的弹性变形,从而由这些因素影响整体体系。

解决方案是运用子块分析法,将原始系统分割成更小的子系统,对子系统的受力情况进行分析,最后综合得出整个系统的受力情况并确定点力平衡方程。

第六,滑动体系统的点力平衡。

滑动体系统是物体在水平或垂直方向上受到外力,使其移动或停止的系统。

它和悬挂系统有一个明显的区别:悬挂系统是物体固定,滑动体系统是物体移动。

求解共点力平衡问题的常见方法(经典归纳附详细答案)

求解共点力平衡问题的常见方法(经典归纳附详细答案)

求解共点力平衡问题的常见方法共点力平衡问题,涉及力的概念、受力分析、力的合成与分解、列方程运算等多方面数学、物理知识和能力的应用,是高考中的热点。

对于刚入学的高一新生来说,这个部分是一大难点。

一、力的合成法物体在三个共点力的作用下处于平衡状态,则任意两个力的合力一定与第三个力大小相等,方向相反;1.(2008年·广东卷)如图所示,质量为m的物体悬挂在轻质支架上,斜梁OB与竖直方向的夹角为θ(A、B点可以自由转动)。

设水平横梁OA和斜梁OB作用于O点的弹力分别为F1和F2,以下结果正确的是()A.F1=mgsinθB.F1= sinmgC.F2=mgcosθD.F2=cosmg二、力的分解法在实际问题中,一般根据力产生的实际作用效果分解。

2、如图所示,在倾角为θ的斜面上,放一质量为m的光滑小球,球被竖直的木板挡住,则球对挡板的压力和球对斜面的压力分别是多少?3.如图所示,质量为m的球放在倾角为α的光滑斜面上,试分析挡板AO与斜面间的倾角β多大时,AO所受压力最小。

三、正交分解法解多个共点力作用下物体平衡问题的方法物体受到三个或三个以上力的作用时,常用正交分解法列平衡方程求解:x F=合,y F=合.为方便计算,建立坐标系时以尽可能多的力落在坐标轴上为原则.θ4、如图所示,重力为500N 的人通过跨过定滑轮的轻绳牵引重200N 的物体,当绳与水平面成60°角时,物体静止。

不计滑轮与绳的摩擦,求地面对人的支持力和摩擦力。

四、相似三角形法 根据平衡条件并结合力的合成与分解的方法,把三个平衡力转化为三角形的三条边,利用力的三角形与空间的三角形的相似规律求解.5、 固定在水平面上的光滑半球半径为R ,球心0的正上方C 处固定一个小定滑轮,细线一端拴一小球置于半球面上A 点,另一端绕过定滑轮,如图5所示,现将小球缓慢地从A 点拉向B 点,则此过程中小球对半球的压力大小N F 、细线的拉力大小T F 的变化情况是 ( )A 、N F 不变、T F 不变 B. N F 不变、T F 变大 C ,N F 不变、T F 变小 D. N F 变大、T F 变小6、两根长度相等的轻绳下端悬挂一质量为m 物体,上端分别固定在天花板M 、N 两点,M 、N 之间距离为S ,如图所示。

讲解:求解共点力平衡问题的八种方法

讲解:求解共点力平衡问题的八种方法

求解共点力平衡问题的八种方法一、分解法一个物体在三个共点力作用下处于平衡状态时,将其中任意一个力沿其他两个力的反方向分解,这样把三力平衡问题转化为两个方向上的二力平衡问题,则每个方向上的一对力大小相等;二、合成法对于三力平衡时,将三个力中的任意两个力合成为一个力,则其合力与第三个力平衡,把三力平衡转化为二力平衡问题;例1如图1所示,重物的质量为m,轻细绳AO和BO的A端、B端是固定的,平衡时AO 是水平的,BO与水平面的夹角为θ,AO的拉力F1和BO的拉力F2的大小是图1A.F1=mg cos θB.F1=mg cot θC.F2=mg sin θD.F2=mg/sin θ解析解法一分解法用效果分解法求解;F2共产生两个效果:一个是水平方向沿A→O拉绳子AO,另一个是拉着竖直方向的绳子;如图2甲所示,将F2分解在这两个方向上,结合力的平衡等知识解得F1=F2′=mg cot θ,F2=错误!=错误!;显然,也可以按mg或F1产生的效果分解mg或F1来求解此题;图2解法二合成法由平行四边形定则,作出F1、F2的合力F12,如图乙所示;又考虑到F12=mg,解直角三角形得F1=mg cot θ,F2=mg/sin θ,故选项B、D正确;答案BD三、正交分解法物体受到三个或三个以上力的作用处于平衡状态时,常用正交分解法列平衡方程求解:F x合=0,F y合=0;为方便计算,建立坐标系时以使尽可能多的力落在坐标轴上为原则;例2如图3所示,用与水平成θ角的推力F作用在物块上,随着θ逐渐减小直到水平的过程中,物块始终沿水平面做匀速直线运动;关于物块受到的外力,下列判断正确的是图3A.推力F先增大后减小B.推力F一直减小C.物块受到的摩擦力先减小后增大D.物块受到的摩擦力一直不变解析对物体受力分析,建立如图4所示的坐标系;图4由平衡条件得F cos θ-F f=0F N-mg+F sin θ=0又F f=μF N联立可得F=错误!可见,当θ减小时,F一直减小,故选项B正确;答案 B四、整体法和隔离法若一个系统中涉及两个或者两个以上物体的平衡问题,在选取研究对象时,要灵活运用整体法和隔离法;对于多物体问题,如果不求物体间的相互作用力,优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;很多情况下,通常采用整体法和隔离法相结合的方法;例3多选如图5所示,放置在水平地面上的质量为M的直角劈上有一个质量为m的物体,若物体在直角劈上匀速下滑,直角劈仍保持静止,那么下列说法正确的是图5A.直角劈对地面的压力等于M+mgB.直角劈对地面的压力大于M+mgC.地面对直角劈没有摩擦力D.地面对直角劈有向左的摩擦力解析方法一:隔离法先隔离物体,物体受重力mg、斜面对它的支持力F N、沿斜面向上的摩擦力F f,因物体沿斜面匀速下滑,所以支持力F N和沿斜面向上的摩擦力F f可根据平衡条件求出;再隔离直角劈,直角劈受竖直向下的重力Mg、地面对它竖直向上的支持力F N地,由牛顿第三定律得,物体对直角劈有垂直斜面向下的压力F N′和沿斜面向下的摩擦力F f′,直角劈相对地面有没有运动趋势,关键看F f′和F N′在水平方向上的分量是否相等,若二者相等,则直角劈相对地面无运动趋势,若二者不相等,则直角劈相对地面有运动趋势,而摩擦力方向应根据具体的相对运动趋势的方向确定;对物体进行受力分析,建立坐标系如图6甲所示,因物体沿斜面匀速下滑,由平衡条件得:支持力F N=mg cos θ,摩擦力F f=mg sin θ;图6对直角劈进行受力分析,建立坐标系如图乙所示,由牛顿第三定律得F N=F N′,F f=F f′,在水平方向上,压力F N′的水平分量F N′sin θ=mg cos θ·sin θ,摩擦力F f′的水平分量F f′cos θ=mg sin θ·cos θ,可见F f′cos θ=F N′sin θ,所以直角劈相对地面没有运动趋势,所以地面对直角劈没有摩擦力;在竖直方向上,直角劈受力平衡,由平衡条件得:F N地=F f′sin θ+F N′cos θ+Mg=mg+Mg;方法二:整体法直角劈对地面的压力和地面对直角劈的支持力是一对作用力和反作用力,大小相等、方向相反;而地面对直角劈的支持力、地面对直角劈的摩擦力是直角劈和物体整体的外力,所以要讨论这两个问题,可以以整体为研究对象;整体在竖直方向上受到重力和支持力,因物体在斜面上匀速下滑、直角劈静止不动,即整体处于平衡状态,所以竖直方向上地面对直角劈的支持力等于物体和直角劈整体的重力;水平方向上地面若对直角劈有摩擦力,无论摩擦力的方向向左还是向右,水平方向上整体都不能处于平衡状态,所以整体在水平方向上不受摩擦力,整体受力如图丙所示;答案AC五、三力汇交原理物体受三个共面非平行力作用而平衡时,这三个力必为共点力;例4一根长2 m,重为G的不均匀直棒AB,用两根细绳水平悬挂在天花板上,当棒平衡时细绳与水平面的夹角如图7所示,则关于直棒重心C的位置下列说法正确的是图7A.距离B端0.5 m处B.距离B端0.75 m处C.距离B端错误!m处D.距离B端错误!m处解析当一个物体受三个力作用而处于平衡状态,如果其中两个力的作用线相交于一点,则第三个力的作用线必通过前两个力作用线的相交点,把O1A和O2B延长相交于O点,则重心C一定在过O点的竖直线上,如图8所示;由几何知识可知:BO=错误!AB=1 m,BC=错误!BO=0.5 m,故重心应在距B端0.5 m处;A项正确;图8答案 A六、正弦定理法三力平衡时,三力合力为零;三个力可构成一个封闭三角形,如图9所示;图9则有:错误!=错误!=错误!;例5一盏电灯重力为G,悬于天花板上A点,在电线O处系一细线OB,使电线OA与竖直方向的夹角为β=30°,如图10所示;现保持β角不变,缓慢调整OB方向至OB线上拉力最小为止,此时OB与水平方向的夹角α等于多少最小拉力是多少图10解析对电灯受力分析如图11所示,据三力平衡特点可知:OA、OB对O点的作用力T A、T B的合力T与G等大反向,即T=G①图11在△OT B T中,∠TOT B=90°-α又∠OTT B=∠TOA=β,故∠OT B T=180°-90°-α-β=90°+α-β由正弦定理得错误!=错误!②联立①②解得T B=错误!因β不变,故当α=β=30°时,T B最小,且T B=G sin β=G/2;答案30°错误!七、相似三角形法物体受到三个共点力的作用而处于平衡状态,画出其中任意两个力的合力与第三个力等值反向的平行四边形中,可能有力三角形与题设图中的几何三角形相似,进而得到力的三角形与几何三角形对应边成比例,根据比值便可计算出未知力的大小与方向;例6如图12所示是固定在水平面上的光滑半球,球心O′的正上方固定一小定滑轮,细线一端拴一小球A,另一端绕过定滑轮;今将小球从如图所示的初位置缓慢地拉至B点;在小球到达B点前的过程中,半球对小球的支持力F N及细线的拉力F1的大小变化情况是图12A.F N变大,F1变小B.F N变小,F1变大C.F N不变,F1变小D.F N变大,F1变大解析由于三力F1、F N与G首尾相接构成的矢量三角形与几何三角形AOO′相似,如图13所示,图13所以有错误!=错误!,错误!=错误!,所以F1=G错误!,F N=G错误!,由题意知当小球缓慢上移时,OA减小,OO′不变,R不变,故F1减小,F N不变,故C对;答案 C八、图解法1.图解法对研究对象进行受力分析,再根据平行四边形定则或三角形定则画出不同状态下力的矢量图画在同一个图中,然后根据有向线段表示力的长度变化情况判断各个力的变化情况;2.图解法主要用来解决三力作用下的动态平衡问题所谓动态平衡问题就是通过控制某一物理量,使物体的状态发生缓慢变化;从宏观上看,物体是运动的,但从微观上理解,物体是平衡的,即任一时刻物体均处于平衡状态;3.利用图解法解题的条件是1物体受三个力的作用而处于平衡状态;2一个力不变,另一个力的方向不变或大小不变,第三个力的大小、方向均变化;例7如图14所示,一个重为G的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态,今使板与斜面的夹角β缓慢增大,问:在此过程中,球对挡板和球对斜面的压力大小如何变化图14解析取球为研究对象,球受重力G、斜面支持力F1、挡板支持力F2,因为球始终处于平衡状态,故三个力的合力始终为零,三个力构成封闭的三角形,当挡板逆时针转动时,F2的方向也逆时针转动,作出如图15所示的动态矢量三角形,由图可见,F2先减小后增大,F1始终随β增大而减小;由牛顿第三定律可知,球对挡板压力先减小后增大,球对斜面压力减小;图15答案见解析。

求解共点力作用下物体平衡的方法

求解共点力作用下物体平衡的方法

求解共点力作用下物体平衡的方法(1)解三角形法:这种方法主要用来解决三力平衡问题,是根据平衡条件并结合力的合成或分解的方法,把三个平衡力转化为三角形的三条边,然后通过解这个三角形求解平衡问题,解三角形多数情况是解直角三角形,如果力的三角形并不是直角三角形,能转化为直角三角形的尽量转化为直角三角形,如利用菱形的对角线相互垂直的特点就得到了直角三角形,确实不能转化为直角三角形时,可利用力的三角形与空间几何三角形的相似等规律求解。

(2)正交分解法:正交分解法在处理四力或四力以上的平衡问题时非常方便,将物体所受各个力均在两互相垂直的方向上分解,然后分别在这两个方向上列方程。

此时平衡条件可表示为说明:应用正交分解法解题的优点:①将矢量运算转变为代数运算,使难度降低;②将求合力的复杂的解三角形问题,转化为正交分解后的直角三角形问题,使运算简便易行;③当所求问题有两个未知条件时,这种表达形式可列出两个方程,通过对方程组求解,使得求解更方便。

4. 解共点力平衡问题的一般步骤(1)选取研究对象。

(2)对所选取的研究对象进行受力分析,并画出受力图。

(3)对研究对象所受的力进行处理。

一般情况下需要建立合适的直角坐标系,对各力按坐标轴进行正交分解。

(4)建立平衡方程。

若各力作用在同一直线上,可直接用的代数式列出方程;若几个力不在同一直线上,可用与联立列出方程组。

(5)对方程求解,必要时需对解进行讨论。

注意:建立直角坐标系时,一般尽量使更多的力落在坐标轴上,以减少分解力的个数,从而达到简化计算的目的。

5. 整体法与隔离法整体法的含义:所谓整体法就是对物理问题的整个系统或整个过程进行分析、研究的方法。

整体法的思维特点:整体法是从局部到全局的思维过程;是系统论中的整体原理在物理学中的运用。

整体法的优点:通过整体法分析物理问题,可以弄清系统的整体受力情况和全过程的受力情况,从整体上揭示事物的本质和变化规律,从而避开了中间环节的繁琐推算,能够灵活地解决问题。

共点力的平衡方法

共点力的平衡方法

共点力作用下物体的平衡的解题方法总结解题途径(1).整体法与隔离法:正确地确定研究对象或研究过程,分清内力和外力. (2).平行四边形定则和三角形定则;确定合矢量与分矢量的关系. (3).正交分解法:物体受多个力的平衡情况.(4).力的合成法: 特别适合三个力平衡时,运用其中两力之和等于三个力列方程求解(5).图解法:常用于处理三个共点力的平衡问题,且其中一个力为恒力、一个力的方向不变情形.(6).相似三角形法:在共点力的平衡问题中,已知某力的大小及绳、杆等模型的长度、高度等,常用力的三角形与几何三角形相似的比例关系求解. (7).正弦定理:如果物体受三个不平行力而处于平衡状态,如图所示,则1.合成分解法利用力的合成与分解能解决三力平衡的问题,具体求解时有两种思路:一是将某力沿另两力的反方向进行分解,将三力转化为四力,构成两对平衡力。

二是某二力进行合成,将三力转化为二力,构成一对平衡力 【例1】如图所示,在倾角为θ的斜面上,放一质量为m 的光滑小球,球被竖直的木板挡住,则球对挡板的压力和球对斜面的压力分别是多少?2.三角形相似法“相似三角形”的主要性质是对应边成比例,对应角相等。

在物理中,一般地,当涉及到矢量运算,又构建了三角形时,可考虑用相似三角形。

【例题2】如图所示,支架ABC ,其中m AB 7.2=,m AC 8.1=,m BC 6.3=,在B 点挂一重物,N G 500=,求AB 、BC 上的受力。

“相似三角形”的主要性质是对应边成比例,对应角相等。

在物理中,一般地,当涉及到矢量运算,又构建了三角形时,可考虑用相似三角形。

【练习1】如图所示,光滑大球固定不动,它的正上方有一个定滑轮,放在大球上的光滑小球(可视为质点)用细绳连接,并绕过定滑轮,当人用力F 缓慢拉动细绳时,小球所受支持力为N ,则N ,F 的变化情况是:( )A .都变大;B .N 不变,F 变小;C .都变小;D .N 变小, F 不变。

解共点力平衡问题的 常见方法

解共点力平衡问题的 常见方法

解共点力平衡问题的常见方法解答共点力平衡问题,是高中物理学习的基础环节,这一知识掌握得好坏,将直接影到整个高中阶段物理的学习.下面就共点力的平衡问题,介绍几种常用的解题方法.一、力的合成与分解法对于三力平衡,一般根据任意两个力的合力与第三个力等大反向关系,或将一个力分解到另外两力的反方向上,得到的这两个分力与另外两个力等大、反向.例作用于0点的三力平衡,设其中一个力大小为F1,沿轴正方向;力F2大小未知。

与轴负方向夹角为,如图1所示.下列关于第三个力的判断中正确的是( )(A)力F3只能在第四象限(B)力F3与F2夹角越小,则F2和的合力越小(C)F 的最小值为F1 cos0(D)力F3可能在第一象限的任意区域解析由共点力的平衡条件可知,F3与F1和F2的合力等值、反向,所以F3的范围应在Fl、F2的反向延长线的区域内,不包括F1、F2的反向延长线方向,所以F3既可以在第四象限,也可以在第一象限.由于与F2的合力与F1的大小相等、相反,而F1大小方向确定,故力F3与F2的夹角变小,F2与F3的合力也不变.由于力F2大小未知,方向一定,可作图求出F3的最小值为F】cos0.综上所述本题正确答案为(C).二、正交分解法所谓正交分解法就是把力沿着两个经选定的互相垂直的方向分解,将矢量运算转化为直线上的代数运算.由F厶=0推出=0、Z =0的关系.例图2所示为一遵从胡克定律的弹性轻绳,其一端固定在天花板上的0点。

另一端与静止在动摩擦因数恒定的水平地面上的滑块A相连.当绳子沿竖直位置时,滑块A对地面有压力作用.B为紧挨绳的一光滑水平小钉,它到天花板的距离BO等于弹性绳的自然长度.现用一水平力F作用于A。

使它向右做匀速直线运动.问在运动过程中,作用于A 的摩擦力( )图2(A)逐渐增大(B)逐渐减少(C)保持不变(D)条件不足,无法判断三、整体与隔离法整体法和隔离法既互相对立又互相统一,在具体解题中,常常需交互运用,发挥各自特点,从而优化解题的思路和方法,使解题简捷、明了.例将均匀长方形木块锯成如图4所示的三部分,其中B、C两部分完全对称,现将三部分拼在一起放在粗糙水平面上,当用与木块左侧垂直的水平向右的力F作用在木块上时。

共点力平衡问题处理技巧

共点力平衡问题处理技巧

共点力平衡问题处理技巧
1、合成法:物体受三个共点力的作用而平衡,则任意两个力的合力一定与第三个力大小相等,方向相反。

2、分解法:物体受三个共点力的作用而平衡,将某一个力按力的效果分解,则其分力和其他两个力满足平衡条件。

3、正交分解法:物体受到三个或三个以上力的作用时,将物体所受的力分解为相互垂直的两组,每组力都满足平衡条件。

4、力的三角形法:对受三力作用而平衡的物体,将力的矢量图平移使三力组成一个首尾依次相接的矢量三角形,根据正弦定理、余弦定理或相似三角形等数学知识求解未知力。

扩展资料:
注意事项:
三个不平行的力作用下的物体平衡问题,是静力学中最基本的问题之一,当物体在三个共点力作用下平衡时,任意两个力的合力与第三个
力等大反向,三个力始终组成封闭的矢量三角形。

通常是用合成法画好力的合成的平行四边形后,选定半个四边形———三角形,进行解三角形的数学分析和计算。

物体受三个以上共点力平衡的问题,通常是用正交分解法,将各力分别分解到直角坐标系的x轴上和y轴上,运用两坐标轴上的合力分别等于零的条件,列两个方程进行求解(因为F合=0,则一定有Fx=0,Fy=0),这种方法常用于三个以上共点力作用下的物体的平衡。

处理共点力平衡问题的常见方法

处理共点力平衡问题的常见方法

处理共点力平衡问题的常见方法物体的共点力平衡问题,涉及力的概念、受力分析、力的合成与分解、列方程运算等多方面数学、物理知识和能力的应用,是高考中的热点。

对于刚入学的高一新生来说,这个部分是一大难点。

笔者结合自己多年的教学经验以及对学生常错易错点分析,现将处理共点力平衡问题的常见方法总结如下:1、三力平衡问题的解决方法:力的合成法、分解法、相似三角形法(1)、力的合成法:物体在三个共点力的作用下处于平衡状态,则任意两个力的合力一定与第三个力大小相等,方向相反;【例1】.(2008年·广东卷)如图1甲所示,质量为m 的物体悬挂在轻质支架上,斜梁OB 与竖直方向的夹角为θ。

设水平横梁OA 和斜梁OB 作用于O 点的弹力分别为F1和F2,以下结果正确的是( )图1甲A.F1=mgsinθB.F1= sin mgC.F2=mgcosθD.F2=cos mg【解析】根据三力平衡特点,任意两个力的合力与第三个力等大反向,可作出如图1乙所示矢量图,由三角形知识可得F1=mgtanθ,F2=mg/cosθ,故D 正确,A 、B 、C 错误。

图1乙(2)力的分解法:在实际问题中,一般根据力产生的实际作用效果分解。

【例2】如图2甲所示,质量为m的球放在倾角为α的光滑斜面上,试分析挡板AO与斜面间的倾角β多大时,AO所受压力最小。

图2甲【解析】虽然题目问的是挡板AO的受力情况,但若直接以挡板为研究对象,因挡板所受力均为未知力,将无法得出结论。

以球为研究对象。

球所受重力mg产生的效果有两个:对斜面产生了压力F N1,对挡板产生了压力F N2。

根据得力产生的效果将重力分解,如图2乙所示。

当挡板与斜面的夹角β由图示位置变化时,F N1大小改变,但方向不变,始终与斜面垂直;F N2的大小、方向均改变(图中画出一系列虚线表示变化的F N2)。

由图可看出,当F N2与F N1垂直即β=90°时,挡板AO所受压力最小,最小压力F N2min=mgsinα。

共点力作用下物体平衡问题的几种常用求解方法

共点力作用下物体平衡问题的几种常用求解方法

随笔原理:根据三力平衡,任意两个力的合力与第三个力分析:对金属球受力分析,可和拉力F的合力与重力mg使金属丝拉紧,所以可以将重力沿水平方向和金属丝的方向进行分解,作出mgF T等大反向.如图3.由几何关系可得解得:F=mg tanθ.由所得结果可见,当金属球的质量m一定时,风力F只θ有关.因此,偏角的大小就可以指示出风力的大的力平衡时,多采用正交分解法,其优点是求解较方便二、动态平衡动态平衡是指通过控制某些物理量,使物体的状态发生缓慢地变化,物体在这一变化过程中始终处于一系列的平衡状态中,这种平衡称为动态平衡.这一类题常用的解法求出因变参量与自变参量的一般函数式,然后根据自变参量的变化确定因变参量的变分析:对物块受力分析,建立墙面对球的压,设木板对球的压力大图1图2图3图4图5 图6200┆好日子2021年1期┆201教学随笔所以,随θ逐渐增大到90°的过程中,tan θ、sin θ都增大,F N 1、F N 2都逐渐减小。

方法二:图解法原理:对研究对象进行受力分析,再根据平行四边形定则或三角形法则画出不同状态下的力的矢量图(画在同一个图中),然后根据有向线段(表示力)的长度变化判断各个力的变化情况.分析:取小球为研究对象,小球受到重力G 、竖直墙面对小球的压力F N 1和木板对小球的支持力F N 2′(大小等于F N 2)三个力作用,如图7所示.F N 1和F N 2′的合力为G ′,G ′=G ,则G ′恒定不变,当木板向下转动时,F N 1、F N 2′变化如图7所示,则F N 1、F N 2′都减小,即F N 1、F N 2都减小.原理:物体受到三个力的作用而处于平衡状态时,画出的其中任意两个力的合力与第三个力等大反向的平行四边形中,可能有力的三角形与题设图中的几何三角形相似,从而得到力的三角形与几何三角形对应边成比例,根据比值可分析力的变化或计算出未知力的大小。

分析:小球受力如图9所示,根据平衡条件知,小球所受半球的支持力F N ′(与小球对半球的压力F N 大小相等)与和细线拉力F T 的合力F 跟重力G 是一对平衡力,即F =G .图8。

共点力平衡的几种解法(例题带解析)

共点力平衡的几种解法(例题带解析)

共点力平衡的几种解法1.力的合成、分解法:对于三力平衡,一般根据“任意两个力的合力与第三个力等大反向”的关系,借助三角函数、相似三角形等手段求解;或将某一个力分解到另外两个力的反方向上,得到的这两个分力势必与另外两个力等大、反向;对于多个力的平衡,利用先分解再合成的正交分解法。

2.矢量三角形法:物体受同一平面内三个互不平行的力作用平衡时,这三个力的矢量箭头首尾相接,构成一个矢量三角形;反之,若三个力矢量箭头首尾相接恰好构成三角形,则这三个力的合力必为零,利用三角形法,根据正弦定理、余弦定理或相似三角形等数学知识可求得未知力。

矢量三角形作图分析法,优点是直观、简便,但它仅适于处理三力平衡问题。

3.相似三角形法:相似三角形法,通常寻找的是一个矢量三角形与三个结构(几何)三角形相似,这一方法也仅能处理三力平衡问题。

4.正弦定理法:三力平衡时,三个力可构成一封闭三角形,若由题设条件寻找到角度关系,则可用正弦定理列式求解。

5.三力汇交原理:如果一个物体受到三个不平行外力的作用而平衡,这三个力的作用线必在同一平面上,而且必为共点力。

6.正交分解法:将各力分别分解到x轴上和y轴上,运用两坐标轴上的合力等于零的条件,多用干三个以上共点力作用下的物体的平衡,值得注意的是,对“x、y方向选择时,尽可能使落在x、y轴上的力多;被分解的力尽可能是已知力。

不宜分解待求力。

7.动态作图:如果一个物体受到三个不平行外力的作用而处于平衡,其中一个力为恒力,第二个力的方向一定,讨论第二个力的大小和第三个力的大小和方向。

三.重难点分析:1.怎样根据物体平衡条件,确定共点力问题中未知力的方向?在大量的三力体(杆)物体的平衡问题中,最常见的是已知两个力,求第三个未知力。

解决这类问题时,首先作两个已知力的示意图,让这两个力的作用线或它的反向延长线相交,则该物体所受的第三个力(即未知力)的作用线必定通过上述两个已知力的作用线的交点,然后根据几何关系确定该力的方向(夹角),最后可采用力的合成、力的分解、拉密定理、正交分解等数学方法求解。

共点力平衡题型及解题方法

共点力平衡题型及解题方法

共点力平衡题型及解题方法力的平衡是物理学中一个重要的概念,当多个力作用在一个物体上时,如果物体保持静止或者以恒定速度运动,那么这些力之间必须达到平衡状态。

在解题中,我们可以利用力的平衡条件来分析各种物理情况。

力的平衡题型通常可分为以下几类:平面力的平衡、三维力的平衡和动力学平衡。

1.平面力的平衡平面力的平衡是指所有作用在一个物体上的力都在同一平面上,且物体处于静止或者以恒定速度运动的情况。

这种情况下,对于物体的合外力和合外力矩都必须为零。

解决这类问题的步骤如下:1)绘制力的示意图,标明力的大小和方向。

2)分解力的向量成分,确定力的分量。

3)根据合外力为零的条件,列出力的平衡方程式。

4)根据合外力矩为零的条件,列出力矩的平衡方程式。

5)解方程,求解未知量。

2.三维力的平衡三维力的平衡是指力可以作用在物体的各个方向上,物体保持静止或者以恒定速度运动。

对于一个物体而言,合外力必须为零,合外力矩也必须为零。

解决这类问题的步骤如下:1)绘制力的示意图。

2)分解力的三个方向的向量成分,确定力的分量。

3)根据合外力为零的条件,列出力的平衡方程式。

4)根据合外力矩为零的条件,列出力矩的平衡方程式。

5)解方程,求解未知量。

3.动力学平衡动力学平衡是指物体在受到外力作用时,保持其速度不变。

这类问题中,物体的合外力不为零,但其加速度为零。

解决这类问题的步骤如下:1)绘制力的示意图。

2)根据物体受到的所有力,计算合外力的大小和方向。

3)根据合外力为零的条件,列出力的平衡方程式。

4)解方程,求解未知量。

在解答力的平衡问题时,需要注意以下几点:1)对于物体上的每一个力,都要考虑力的大小、方向和作用点。

2)力的合成、分解和贴近应用是解决这类问题的关键步骤。

3)选择合适的参照系和坐标系,确定正方向和正角度。

这样可以简化平衡条件的表达。

4)力的单位通常使用牛顿(N)或者千克重(kgf)。

需要注意的是,力的平衡问题中往往涉及到刚体力学的知识。

处理共点力平衡问题的常见方法和技巧

处理共点力平衡问题的常见方法和技巧

处理共点力平衡问题的常见方法和技巧物体所受各力的作用线(或其反向延长线)能交于一点,且物体处于静止状态或匀速直线运动状态,则称为共点力作用下物体的平衡。

它是静力学中最常见的问题,下面主要介绍处理共点力作用下物体平衡问题的一些思维方法。

1.解三个共点力作用下物体平衡问题的方法解三个共点力作用下物体平衡问题的常用方法有以下五种:(1 )力的合成、分解法:对于三力平衡问题,一般可根据“任意两个力的合成与第三个力等大反向”的关系,即利用平衡条件的“等值、反向”原理解答。

例1•如图1所示,一小球在纸面内来回振动,当绳OA和OB拉力相等时,摆线与竖直方向的夹角■为:()图1A.15°B. 30°C. 45°D. 60°解析:对O点进行受力分析,O点受到OA 绳和OB绳的拉力F A和F B及小球通过绳子对O点的拉力F三个力的作用,在这三个力的作用下O点处于平衡状态,由“等值、反向”原理得,F A和F B的合力F合与F是等值反向的,由平行四边形定则,作出F A和F B的合力F 合,如图2所示,由图可知匠=词,故答案是A。

图2(2)矢量三角形法:物体受同一平面内三个互不平行的力作用平衡时,这三个力的矢量箭头首尾相接,构成一个矢量三角形;反之,若三个力矢量箭头首尾相接 恰好构成三角形,则这三个力的合成必为 零,因此可利用三角形法,求得未知力。

例2.图3中重物的质量为 m ,轻细线 AO 和BO 的A 、B 端是固定的。

平衡时AO 是水平的,BO 与水平面的夹角为。

AO 的拉力和BO 的拉力的大小是:()= ^gsin.6 F TJL = ?«gcot 8F T& = mg^8凉一宜血总解析:因结点O 受三力作用而平衡,且 与mg 垂直,所以三力应组成一个封闭的直角三角形,如图4所示,由直角三角形 知识得:=—.:」-.,: : “,所以选项 B 、D 正确。

共点力平衡的七大题型及解决方法

共点力平衡的七大题型及解决方法

共点力平衡的七大题型及解决方法共点力平衡是力学中一个重要的概念,指的是在一个物体或系统受到多个力的作用下,力的合力等于零,使物体或系统保持静止或平衡状态。

在力学中,共点力平衡问题是非常常见的,下面将介绍七种常见的共点力平衡的题型及解决方法。

1.单个物体受力平衡的题目这种题型是最基本的共点力平衡问题,即一个物体受到多个力的作用,要求求解物体所受力的大小和方向。

解决这个问题的关键是列出物体受力的平衡方程,根据力的平衡性质求解未知量。

2.多个物体受力平衡的题目这种题型相对于单个物体受力平衡问题来说,更加复杂一些。

题目要求求解多个物体之间受力的大小和方向,以及各个物体之间的平衡条件。

解决这个问题的关键是建立力的平衡条件方程组,并通过代入法或消元法求解未知量。

3.杆平衡问题这种题型是常见的三角形杆平衡问题,题目给出杆上的多个力及其大小和方向,要求求解该杆的平衡位置。

解决这个问题的关键是寻找杆的平衡条件,通常是杆受力和力的合力方向垂直,通过解这个平衡条件方程组求解未知量。

4.杆与物体的平衡问题这种题型是在杆平衡问题基础上增加了一个物体的问题,即杆上除了多个力之外,还有一个质量为m的物体。

要求求解该杆和物体的平衡位置。

解决这个问题的关键是建立杆与物体的平衡条件方程组,并通过代入法或消元法求解未知量。

5.系统平衡问题6.夹具平衡问题这种题型是在多个物体受力平衡问题基础上增加了夹具的问题,即物体之间通过夹具连接。

夹具可以是支架、滑轮等,并且在平衡时可能有些部分是不受力的。

要求求解夹具和物体的平衡位置。

解决这个问题的关键是分析夹具的受力情况,并建立物体和系统的平衡条件方程组,通过代入法或消元法求解未知量。

7.多个力垂直平衡问题这种题型是在多个物体受力平衡问题基础上,要求物体所受力之间两两垂直。

解决这个问题的关键是分解各个力的分量,并利用垂直性质建立物体和系统的平衡条件方程组,通过代入法或消元法求解未知量。

无论是哪种类型的共点力平衡问题,解决问题的关键是分析受力情况和建立平衡条件方程组。

物理共点力平衡问题解题技巧

物理共点力平衡问题解题技巧

物理共点力平衡问题解题技巧物理共点力平衡问题是一类比较常见的力学问题,掌握其解题技巧对于解决这类问题非常有帮助。

下面从平衡条件、平衡条件的应用、解题方法三个方面来探讨物理共点力平衡问题的解题技巧。

一、平衡条件共点力平衡条件是物体所受的合外力为零,即物体所受的力相互平衡。

根据牛顿第三定律,物体所受的力必须满足以下三个条件:1.物体所受的合力为零,即物体处于静止或匀速直线运动状态;2.物体所受的合力矩为零,即物体不发生旋转;3.物体所受的各个力在其作用点上的力矩平衡,即物体不发生力矩的转动。

二、平衡条件的应用共点力平衡条件在日常生活和工程实际中有着广泛的应用,例如在建筑物结构分析、物体受力分析、机械能守恒等方面都有应用。

下面举两个例子:1.建筑物结构分析在建筑物结构分析中,共点力平衡条件可以帮助我们分析建筑物各个部分的受力情况,从而判断建筑物的稳定性和安全性。

例如,我们可以利用共点力平衡条件分析建筑物受到的风力和地震力的影响,从而设计出更加安全的建筑结构。

2.物体受力分析在物体受力分析中,共点力平衡条件可以帮助我们判断物体的运动状态和受力情况。

例如,我们可以利用共点力平衡条件分析物体的重力、弹力和摩擦力等力的作用,从而了解物体的运动状态和变化趋势。

三、解题方法解决共点力平衡问题需要掌握一定的解题方法,下面介绍两种常用的方法:1.合成法合成法是将两个或两个以上的力合成一个合力,然后根据合力的大小和方向来分析物体的受力情况。

这种方法适用于已知物体受到的各个力的方向和大小的情况。

例如,在分析物体的重力、弹力和摩擦力时,可以先将这三个力合成一个合力,然后根据合力的方向和大小来判断物体的运动状态。

2.分解法分解法是将一个力分解成两个或两个以上的分力,然后根据分力的方向和大小来分析物体的受力情况。

这种方法适用于已知物体受到一个力的方向和大小的情况。

例如,在分析物体的重力时,可以将重力分解成水平方向的分力和竖直方向的分力,然后根据分力的方向和大小来判断物体的运动状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

处理共点力平衡问题得常见方法与技巧
物体所受各力得作用线(或其反向延长线)能交于一点,且物体处于静止状态或匀速直线运动状态,则称为共点力作用下物体得平衡。

它就是静力学中最常见得问题,下面主要介绍处理共点力作用下物体平衡问题得一些思维方法。

1、解三个共点力作用下物体平衡问题得方法
解三个共点力作用下物体平衡问题得常用方法有以下五种:
(1)力得合成、分解法:对于三力平衡问题,一般可根据“任意两个力得合成与第三个力等大反向”得关系,即利用平衡条件得“等值、反向”原理解答。

例1、如图1所示,一小球在纸面内来回振动,当绳OA与OB拉力相等时,摆线与竖直方向得夹角为:( )
图1
A、 15°
B、 30°
C、 45°
D、 60°
解析:对O点进行受力分析,O点受到OA绳与OB绳得拉力F A与F B及小球通过绳子对O 点得拉力F三个力得作用,在这三个力得作用下O点处于平衡状态,由“等值、反向”原理得,F A 与F B得合力F合与F就是等值反向得,由平行四边形定则,作出F A与F B得合力F合,如图2所示,由图可知,故答案就是A。

图2
(2)矢量三角形法:物体受同一平面内三个互不平行得力作用平衡时,这三个力得矢量箭头首尾相接,构成一个矢量三角形;反之,若三个力矢量箭头首尾相接恰好构成三角形,则这三个力得合成必为零,因此可利用三角形法,求得未知力。

例2、图3中重物得质量为m,轻细线AO与BO得A、B端就是固定得。

平衡时AO就是水平得,BO与水平面得夹角为。

AO得拉力与BO得拉力得大小就是:( )
图3
A、B、
C、D、
解析:因结点O受三力作用而平衡,且与mg垂直,所以三力应组成一个封闭得直角三角形,如图4所示,由直角三角形知识得:,所以选项B、D正确。

图4
(3)正弦定理法:三力平衡时,三个力可构成一封闭三角形,若由题设条件寻找到角度关系,则可用正弦定理列式求解。

例3、如图5(a)所示,质量为m得物体用一轻绳挂在水平轻杆BC得C端,B端用铰链连接,C点由轻绳AC系住,已知AC、BC夹角为,则轻绳AC上得张力与轻杆BC上得压力大小分别为多少?
图5
解析:选C点为研究对象,受力情况如图5(b)所示,由平衡条件与正弦定理可得
即得与
所以由牛顿第三定律知,轻绳AC上得张力大小为,轻杆BC上得压力大小为。

(4)三力汇交原理:如果一个物体受到三个不平行外力得作用而平衡,这三个力得作用线必在同一平面上,而且必为共点力。

例4、如图6所示,两光滑板AO、BO与水平面夹角都就是60°,一轻质细杆水平放在其间,用竖直向下得力F作用在轻杆中间,杆对两板得压力大小为____________。

图6
解析:选轻杆为研究对象,其受三个力而平衡,因此这三力必为共点力(汇交于O”),作出受力分析如图7所示。

图7
由图可知,F TA与F TB对称分布,所以,且这两力得夹角为120°,其合力F”应与F相等,以F TA,F TB为邻边构成得平行四边形为菱形,其性质为对角线垂直且平分,根据三角形知识,有
又因为
所以
2、解多个共点力作用下物体平衡问题得方法
多个共点力作用下物体得平衡问题,常采用正交分解法。

可将各力分别分解到x轴上与y轴上,运用两坐标轴上得合力等于零得条件,即、求解。

值得注意得就是,对x、y方向选择时,要尽可能使落在x、y轴上得力多,且被分解得力尽可能就是已知力,不宜分解待求力。

例5、在机械设计中亦常用到下面得力学原理,如图8所示,只要使连杆AB与滑块m
所在平面间得夹角大于某个值,那么,无论连杆AB对滑块施加多大得作用力,都不可能使之滑动,且连杆AB对滑块施加得作用力越大,滑块就越稳定,工程力学上称之为“自锁”现象。

为使滑块能“自锁”,应满足什么条件?(设滑块与所在平面间得动摩擦因数为)
图8
解析:滑块m得受力分析如图9所示,将力F分别在水平与竖直两个方向分解,则:
图9
在竖直方向上
在水平方向上
由以上两式得
因为力F可以很大,所以上式可以写成
故应满足得条件为
3、研究对象得灵活选择–––整体法与隔离法
用整体法还就是用隔离法,其实质就就是如何合理选取研究对象,使受力分析与解题过程简化。

对一个较为复杂得问题,两者应灵活选用、有机结合,才能到达迅速求解得目得。

例6、在粗糙水平面上有一个三角形得木块,在它得两个粗糙斜面上分别放有两个质量m1与m2得小木块,,如图10所示,已知三角形木块与两个小木块都就是静止得,则粗糙水平面对三角形木块( )
图10
A、有摩擦力得作用,摩擦力得方向水平向右;
B、有摩擦力得作用,摩擦力得方向水平向左;
C、有摩擦力得作用,但摩擦力得方向不能确定,因m1、m2与、得数值并未给出;
D、以上结论都不对。

解析:因为三角形木块与两个小木块都静止,所以可将三者瞧成一个整体如图11所示,其在竖直方向受重力与水平面得支持力,合力为零。

在水平方向没有受其她力得作用,所以整体在水平方向上没有相对水平面得运动趋势,因此粗糙水平面对三角形木块没有静摩擦力。

图11
例7、如图12所示,两块相同得竖直木板之间有质量均为m得四块相同得砖,用两个大小为F得水平压力压木板,使砖块静止不动。

设所有接触面均粗糙,则第3块砖对第2块砖得摩擦力为( )
图12
A、 0
B、
C、 mg
D、 2mg
解析:将4块砖为整体进行受力分析如图13所示,可知两侧木板对砖得静摩擦力均为竖直向上,且大小为2mg;再把第1、2两块砖为整体进行受力分析如图14所示,由图可知木板对砖得静摩擦力与砖得重力2mg就是一对平衡力,这表明第3块与第2块砖之间没有静摩擦力。

所以选项A正确。

4、求共点力作用下物体平衡得极值问题得方法
共点力作用下物体平衡得极值问题就是指研究平衡问题中某个力变化时出现得最大值或最小值,处理这类问题常用解析法与图解法。

例8、如图15所示,物体得质量为2kg,两根轻细绳AB与AC得一端连接于竖直墙上,另一端系于物体上,且AC绳水平时,两绳所成角为。

在物体上另施加一个方向与水平线成得拉力F,若要使绳都能伸直,求拉力F得大小范围。

图15
解析:作出A受力示意图,并建立直角坐标如图16所示,由平衡条件有:
图16
由以上两式得

及②
要使两绳都能绷直,需有③

由①③两式得F有最大值
由②④两式得F有最小值
综合得F得取值范围为
例9、重量为G得木块与水平地面间得动摩擦因数为,一人欲用最小得作用力F使木块做匀速运动,则此最小作用力得大小与方向应如何?
解析:由于,所以不论F N如何改变,与F N得合力F1得方向都不会发生变化,如图17(甲)所示,合力F1与竖直方向得夹角一定为。

由木块做匀速运动可知F、F1与G三力平衡,且构成一个封闭三角形,当改变F得方向时,F与F1得大小都会发生改变,由图17(乙)知,当F与F1得方向垂直时F最小。

故由图中几何关系得。

图17
5、共点力平衡问题中得“变”与“不变”
物体在共点力作用下处于平衡状态时,即使在一些量变得过程中某些本质并不变。

因此寻找变化中保持不变得部分,乃就是解决平衡问题得一种重要方法。

例10、三个相同得支座上分别搁着三个质量与直径都相等得光滑圆球a、b、c,支点P、Q在同一水平面上,a球得重心位于球心,b球与c球得重心、分别位于球心得正上方与球心得正下方,如图18所示,三球均处于平衡状态,支点P对a球得弹力为,对b球与c球得弹力分别为、,则( )
图18
A、B、
C、D、
解析:本题得干扰因素就是三个球得重心在竖直方向得位置发生了变化(a在球心、b在球心之上、c在球心之下)。

但就是三个球得质量与直径都相等,重力方向均竖直向下,而且支点得支持力方向也完全相同,所以它们受力情况完全相同,支持力大小也必然相同,所以选项A正确。

评析:在变化中求不变得思想就是最普遍得物理思想,本题中圆球重心得高度虽然发生了变化,但问题得本质––––圆球得受力情况并不变化,所以支点P对三球得弹力应相同。

相关文档
最新文档