初中数学竞赛圆

合集下载

初中数学竞赛:共圆点问题

初中数学竞赛:共圆点问题

初中数学竞赛:共圆点问题同在一个圆上的许多点称为共圆点,或者说这些点共圆.证明这些点共圆常常利用以下一些方法思考:(1)要证明若干点共圆,先设法发现其中以某两点为端点的线段恰为一直径,然后证明其他点对这条线段的视角均为直角.(2)要证明四点共圆,可证明以这点为顶点的四边形的对角互补,或证某两点视另两点所连线段的视角相等.(3)如果两线段AB,CD相交于E点,且AE·EB=CE·ED,则A,B,C,D四点共圆.(4)若相交直线PA,PB上各有一点C,D,且PA·PC=PB·PD,则A,B,C,D四点共圆.(5)若四边形一个外角等于其内对角,则四边形的四顶点共圆.(6)要证明若干点共圆,先证其中四点共圆,然后再证其余点都在此圆上.共圆点问题不但是几何中的重要问题,而且也是直线形和圆之间度量关系或位置关系相互转化的媒介.例1 设⊙O1,⊙O2,⊙O3两两外切,Y是⊙O1,⊙O2的切点,R,S分别是⊙O1,⊙O2与⊙O3的切点,连心线O1O2交⊙O1于P,交⊙O2于Q.求证:P,Q,R,S四点共圆.分析如图3-54,连YR,则∠PRY=90°,所以∠PRS为钝角,设法证明∠Q与∠PRS互补,则P,R,S,Q共圆.证连RY,PR,RS,SQ,并作切线RX,则在四边形PRSQ中,所以所以P,Q,R,S四点共圆.例2 设△ADE内接于圆O,弦BC分别交AD,AE边于F,G,分析欲证F,D,E,G四点共圆,由于已知条件中交弦较多,因此,用圆幂定理的逆定理,若能证出AF·AD=AG·AE成立,则F,D,E,G必共圆.径,所以∠FDN=∠FMN=90°,所以F,D,N,M四点共圆,所以AD·AF=AN·AM.同理,AG·AE=AN·AM,所以AD·AF=AG·AE,所以F,D,E,G四点共圆.例3 在锐角△ABC中,BD,CE是它的两条高线,分别过B,C引直线DE的垂线,BF⊥DE于F,CG⊥DE于G,求证:EF=DG(图3-56).分析由已知,四边形BCGF为直角梯形,FG为一腰,要证EF=DG,易想,若OH为梯形中位线,则OH⊥FG于H,如果证得EH=HD,则FE=DG便是显然的了.证过BC中点O,作OH⊥DE于H.因为BD⊥AC于D,CE⊥AB于E,所以∠BEC=∠BDC=90°,所以B,E,D,C四点共圆,所以线段ED为圆O的一条弦.由垂径定理可知,EH=HD,所以FE=DG.说明在此,B,E,D,C四点共圆显然成为从EH=HD到FE=DG的转化条件.例4 在梯形ABCD中,AB∥CD,AB>CD,K,M分别是腰AD,CB上的点,∠DAM=∠CBK(图3-57).求证:∠DMA=∠CKB.证连KM,令∠DAM=∠1,∠CBK=∠2,∠AMB=∠3,∠AKB=∠4,∠ABF=∠5,∠DKC=∠6,∠CMD=∠7.由于∠1=∠2,所以A,B,M,K四点共圆,所以∠5=∠AKM.又因为AB∥CD,所以∠5=∠DCM,∠AKM=∠DCM,所以K,M,C,D四点共圆,所以∠6=∠7.又因为∠3=∠4,∠CKB=180°-∠4-∠6,∠DMA=180°-∠3-∠7,所以∠CKB=∠DMA.例5 设O为圆的弦MN的中点,过O作弦AB,CD,连AD,BC交MN于F,E.求证:EO=OF(图3-58).分析欲证OE=OF,最一般的方法是以OE,OF为对应边构造两个三角形,然后证明这两个三角形全等.为此,过A作AG∥MN交圆于G,连OG,EG,CG,以下证明△OEG≌△OFA即可.证因为AG∥MN,所以∠1=∠2=∠EOG.又∠BCG+∠2=180°,所以∠BCG+∠EOG=180°,所以E,C,G,O四点共圆,所以∠3=∠C=∠4.由于∠EOG=∠FOA,OG=OA,所以△OEG≌△OFA,所以OE=OF.说明本例是著名的“蝴蝶定理”,下例是这个定理的一个推广.例6 在过圆心的直线上取P,Q两点,使PO=OQ,过P作割线交圆于C,D,过Q作割线交圆于A,B,连AD,BC,分别交PQ于F,E,则FO=OE(图3-59).证作AG∥PQ交⊙O于G,连OA,OG,PG,CG,EG.因为OA=OG,所以∠1=∠2.因为AG∥PQ,所以∠5=∠1=∠2=∠6.又PO=OQ,所以△POG≌△QOA,PG=AQ,∠3=∠4=∠GAB.又∠GCB=∠GAB=∠3,所以P,G,E,C四点共圆,所以∠PEG=∠PCG=∠GAD=∠AFQ.这样,△AQF≌△GPE,所以PE=FQ.已知PO=OQ,所以OE=OF.四点共圆在几何证题中也往往成为证明诸圆共点(即几个圆通过同一点)的有力工具,下面再举两个例子.例7 设四条直线相交于A,B,C,D,E,F六点,求证:△BCE,△DCF,△ADE,△ABF 的外接圆共点(图3—60).证因为圆BEC和圆CDF已有一个交点C,必有另一交点O,且O与C不重合(否则圆EBC 和圆CDF相切于C(O),则AE∥AF,与假设矛盾).连OC,OD,OE,OF,则有∠A+∠DOE=∠A+∠EOC+∠COD=∠A+∠ABF+∠AFB=180°,所以A,D,O,E四点共圆,圆AED过O点.同理,圆ABF也过O点.所以△BCE,△DCF,△ADE,△ABF的外接圆共点.说明证明诸圆共点,可先证其中两圆相交(或相切)于某一点,再证此点在其他圆上.也可证诸圆通过某一特殊点.例8 设I为△ABC之内心,过B作圆切CI于I,过C作圆切BI于I.求证:此二圆与圆ABC共点(图3-61).证因为所作之二圆已有一个交点I,必有另一交点O,并且O与I不重合(否则BI,CI 是过I之两圆公切线,则B,I,C必共线,此与I为△ABC内心相矛盾).连BO,OC,OI,则∠CIO=∠IBO,∠BIO=∠ICO,=180°.所以A,B,O,C四点共圆,所以所证之三圆共点.【练习】1.设梯形ABCD中,AB∥CD,E,F分别在腰AD和BC上,若A,B,F,E四点共圆,则C,D,E,F也必四点共圆.2.四边形EFGH的顶点顺次在四边形ABCD的各边上,并且AE=AH,BE=BF,CF=CG,DG=DH.求证:E,F,G,H四点共圆.3.如图3-62.在平行四边形ABCD中,取一点P,使∠1=∠2,求证:∠3=∠4.(提示:过D引AP的平行线,过C引BP的平行线,两直线交于P′,连PP′.)4.如图3-63.CE为⊙O的直径,以E为圆心作一圆,⊙O的弦AB所在的直线与⊙E 相切于D,求证:5.设四边形的两条对角线互相垂直,从对角线交点向各边作垂线,求证:这四条垂线的垂足在同一个圆周上(图3-64).。

初中数学竞赛——圆6.圆与圆(二)

初中数学竞赛——圆6.圆与圆(二)

第3讲 圆与圆(二)典型例题【例1】 分别以梯形ABCD 的上底AD 、下底BC 的长为直径作⊙1O 、⊙2O ,若两圆的圆心距等于这个梯形的中位线长,则这两个圆的位置关系是____________.【例2】 如图,A B ⊙,⊙的半径分别为1cm ,2cm ,圆心距AB 为5cm .如果A ⊙由图示位置沿直线AB 向右平移3cm ,则此时该圆与B ⊙的位置关系是_____________.【例3】 如图,1O ⊙和2O ⊙的半径为1和3,连接12O O 交2O ⊙于点P ,128O O =,若将1O ⊙绕点P 按顺时针方向旋转360︒,则1O ⊙与2O ⊙共相切_______次.【例4】 如图,ABC △是正三角形,点C 在矩形ABDE 的边DE 上,ABC △的内切圆半径是1.则矩形ABDE 的外接圆直径是 .【例5】 如图,已知半圆O 的直径为AB ,半径长为254,点D 在AB 上,74OD =,CD AB ⊥,CD 交半圆'O 于D .那么与半圆相切,且与BC CD ,相切的'O ⊙的半径长为 .【例6】 如图,3PQ =,以PQ 为直径的圆与一个以5为半径的圆相切于点P ,正方形ABCD 的顶点A 、B 在大圆上,小圆在正方形的外部且与CD 切于点Q .则AB = .图 3BADCEP【例7】 如图,10PQ =,以PQ 为直径的圆与一个以20为半径的圆相切于点P ,正方形ABCD 的顶点A 、B 在大圆上,小圆在正方形的外部且与CD 切于Q ,若AB m =+m ,n 是正数,求m n +的值.【例8】 如图,P 为半圆弧上任意一点,圆⊙1O 、⊙2O 都与ABP △的一边和半圆相切的最大圆,⊙3O 是ABP △的内切圆,其中⊙1O 、⊙2O 、⊙3O 和半圆的半径分别1r 、2r 、3r 、R ,12r =,21r =,则3r 为 .【例9】 如图,11PQ PO O Q 、、分别是以123O O O 、、圆4C 内切于半圆1C 及外切于半圆23C C 、.若24PQ =,求圆4C 的面积.【例10】 如图,大圆O ⊙的直径cm AB a =,分别以OA OB 、为直径作1O ⊙和2O ⊙,并在O ⊙与1O ⊙和2O ⊙的空隙间作两个等圆3O ⊙和4O ⊙,这些圆互相内切或外PBA123切,则四边形1423O O O O 的面积为___________2cm .【例11】 已知A 为O ⊙上一点,B 为A ⊙与OA 的交点,A ⊙与O ⊙的半径分别为r R 、,且r R <.(1)如图1,过点B 作A ⊙的切线与O ⊙交于M N 、两点.求证:2AM AN Rr ⋅=;(2)如图2,若A ⊙与O ⊙的交点为EF 、,C 是EBF 上任意一点,过点C 作A ⊙的切线与O ⊙交于P Q 、两点,试问2AP AQ Rr ⋅=是否成立并证明你的结论.【例12】 两个圆相交于点A 和B ,由点A 作两个圆的切线,分别与两个圆相交于点M 和N .直线BM 和BN 分别与两个圆交于另外两点P 和Q (P 在BM 上,Q 在BN 上).求证:MP NQ =. 图1图2【例13】 如图(1),两半径为r 的等圆1O ⊙和2O ⊙相交于M N ,两点,且2O ⊙过点1O .过M 点作直线AB 垂直于MN ,分别交1O ⊙和2O ⊙于A B ,两点,连结NA NB ,.(1)猜想点与有什么位置关系,并给出证明; (2)猜想NAB ∆的形状,并给出证明;(3)如图(2),若过M 的点所在的直线AB 不垂直于MN ,且点A B ,在点M 的两侧,那么⑵中的结论是否成立,若成立请给出证明.【例14】 如图,1O ,2O 交于A B ,两点,直线MN 垂直于AB 于点A ,分别与12O O ,交于点N M ,,P 为MN 中点,1122AO Q AO Q ∠=∠,求证:12PQ PQ =.QMPB A2O 1O 图1图2Q 2Q 1O 2O 1P N MBA【例15】 设圆O 、圆P 外切于A ,外公切线BC 分别切两圆于B 、C ,BC 与OP 的交点为Q ,过Q 引MN BC ⊥交BA 、AC 于S 、R , 求证:QS QR =.【例16】 半径为R 的两圆之一过平行四边形ABCD 的顶点A 和B ,而另一圆过顶点D 和C ,点M 是两圆除B 外的另一个交点,求证:AMD △的外接圆半径长也为R .【例17】 如图,已知ABC △的高AD BE 、交于H ,ABC ABH △、△的外接圆分别为O ⊙和O ⊙′.求证:O ⊙与O ⊙′的半径相等. NM SRQPACBOD【例18】 在ABC △中,AB AC =,圆1O 与ABC ∆的外接圆内切于D ,与AB 、AC 分别相切于P 、Q .求证:PQ 的中点O 是ABC △的内切圆圆心.【例19】 A 是O 上一点,O 的半径为R ,以A 为圆心,r 为半径()r R <作圆,设O的弦PQ 与A 切于点M ,求证:不论PQ 的位置如何,PA QA ⋅为定值.【例20】 如图,圆O 与圆D 相交于A B ,两点,BC 为圆D 的切线,点C 在圆O 上,且AB BC =.(1)证明:点O 在圆D 的圆周上.(2)设ABC △的面积为S ,求圆D 的半径r 的最小值.【例21】 如图所示,过O ⊙上的一点C 作直径AB 的垂线,垂足为D ,'O ⊙切AB 于点E ,切CD 于点F ,内切半圆O 于点G ,证明:AC AE =.【例22】 如右图a ,在矩形ABCD 中,20cm AB =,4cm BC =,点P 从A 开始沿折线A B C D ---以4cm/s 的速度移动,点Q 从C 开始沿CD 边以1cm/s 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达D 时,另一点也随之停止运动.设运动时间为(s)t . (1)t 为何值时,四边形APQD 为矩形(2)如右图b ,如果P ⊙和Q ⊙的半径都是2cm ,那么t 为何值时,P ⊙和Q ⊙外切ODCBAO'O G FED C BA作业1. 如图,A B ⊙、⊙的圆心A B ,在直线l 上,两圆半径都为1cm ,开始时圆心距4cm AB ,现A B ⊙,⊙同时沿直线l 以每秒2cm 的速度相向移动,则当两圆相切时,A ⊙运动的时间为 秒.2. 如图,矩形内放置8个半径为1的圆,其中相邻两个圆都相切,并且左上角和右下角的两个圆和矩形的一边相切,则该矩形的面积为 .图al3. 把两个半径为5和一个半径为8的圆形纸片放在桌面上,使它们两两外切,若要用一个大圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于________.4. 已知多边形ABDEC 是由边长为2的等边三角形ABC和正方形BDEC 组成,一圆过A 、D 、E 三点,求该圆半径的长.5. 过定圆的圆心O 作A ,设A 与O 的一个交点为B ,过B 作A 的直径BC ,BC 与O 交于点D ,求证BD BC ⋅为定值.6. 已知圆1O 、2O 外切于P ,过圆1O 上一点A 作圆2O 的切线AC ,交圆1O 于B ,C 为切点.求证:PA AC PB BC=.。

初中数学竞赛——圆4.四点共圆

初中数学竞赛——圆4.四点共圆

第1讲 四点共圆典型例题一. 基础练习【例1】 如图,P 为ABC △内一点,D 、E 、F 分别在BC 、CA 、AB 上.已知P 、D 、C 、E 四点共圆,P 、E 、A 、F 四点共圆,求证:B 、D 、P 、F 四点共圆.【例2】 如图7-55,在梯形ABCD 中,AD ∥BC ,过B 、C 两点作一圆,AB 、CD 的延长线交该圆于点E 、F .求证:A 、D 、E 、F 四点共圆.【例3】 如图,⊙1O 、⊙2O 相交于A 、B 两点,P 是BA 延长线上一点,割线PCD 交⊙1O 于C 、D ,割线PEF 交⊙2O 于E 、F ,求证:C 、D 、E 、F 四点共圆.【例4】 如图7-56,在△ABC 中,AD =AE ,BE 与CD 交于点P ,DP =EP ,求证:B 、C 、E 、D 四点共圆.P E CB ADF⋅2O P1O⋅FDCBAE【例5】 如图,已知ABC △是⊙O 的内接三角形,⊙O 的直径BD 交AC 于E ,AF BD ⊥于F ,延长AF 交BC 于G ,求证:2AB BG BC =⋅.【例6】 如图7-63,在ABCD □的对角线上,任取一点P ,过点P 作AB 、CD 的公垂线EG ,又作AD 、BC 的公垂线FM .求证:EF //GM .【例7】 如图7-66,四边形ABCD 是⊙O 的内接四边形,DE ⊥AC ,AF ⊥BD ,点E 、F 是垂足.求证:EF //BC .【例8】 如图7-60,已知△ABC ,AB 、AC 的垂直平分线交AC 、AB 的延长线于点F 、E .求证:E 、F 、C 、B 四点共圆.O⋅GF ECD BA【例9】 如图,已知:60ABD ACD ∠=∠=o ,1902ADB BDC ∠=∠-∠o .求证:ABC △是等腰三角形.二. 综合提高【例10】 如图7-61,在⊙O 中,AB ∥CD ,点P 是AB 的中点,CP 的延长线交⊙O 于点F ,又点E 为弧BD上任一点,连EF 交AB 于点G .求证:P 、G 、E 、D 四点共圆.【例11】 如图7-62,在△ABC 中,∠BAC 为直角,AB =AC ,BM =MC ,过M 、C 任作一圆,与AC 交于点E ,BE 与圆交于F 点,求证:AF ⊥BE .【例12】 如图7-64,P 为△ABC 外接圆一任意一点,点P 到△ABC 三边的垂足分别为D 、E 、F 三点成一直线.CDBA【例13】如图7-65,在ABCD□中,过D、B两点作一圆,交平行四边形四条边(或它们的延长线)于点E、F、G、H.求证:EF//GH.【例14】如图7-67,AB为半圆的直径,弦AC、BD相交于点H,HP⊥AB.求证:∠1=∠2.【例15】如图7-68,四边形ABCD是正方形,点E为BC上的任一点,AE⊥EF,EF交∠BCD的外角平分线于点F.求证:EA=EF.【例16】在等边三角形ABC中,D、E分别是边BC、AC上的点,且有12BD CE CD==,连结BE、AD 交于点P ,求证:CP AD ⊥.【例17】 设凸四边形ABCD 的对角线AC 、BD 互相垂直,垂足为E ,证明:点E 关于AB 、BC 、CD 、DA 的对称点共圆.【例18】 证明:三角形的三条高交于一点.【例19】 已知在凸五边形ABCDE 中,3BAE BC CD DE α∠===,,且1802BCD CDE α︒∠=∠=-,求证:BAC CAD DAE ∠=∠=∠.EDC B A【例20】 如图所示,设N 是正九变形,O 为其外接圆的圆心,PQ 和QR 是N 的两相邻边,A 为PQ 的EC BAP中点,而B 为垂直于QR 的圆半径的中点,试求AO 与AB 的夹角.【例21】 如图,已知ABC △内接于O ⊙,AD 、BD 为O ⊙的切线,作DE BC ∥,交AC 于E ,连结EO并延长交BC 于F ,求证:BF FC =.D【例22】 如图,在凸四边形ABCD 的BC 边上取E 和F (点E 比F 更靠近点B ).已知BAE CDF∠=∠及EAF FDE ∠=∠,证明:FAC EDB ∠=∠.【例23】 如图,在平行四边形ABCD 中,BAD ∠为钝角,且AE BC AF CD ⊥⊥,.(1)求证:A E C F 、、、四点共圆;O⋅AC RQ P BFECBDA(2)设线段BD 与(1)中的圆交于M N 、.求证:BM ND =.NM F EBDAC【例24】 正方形ABCD 的中心为O ,面积为2009,P 为正方形内的一点,且45OPB ∠=︒,:4:5PA PB =,求PB .PO DCBA【例25】 如图,已知ABC △中,AH 是高,AT 是角平分线,且TD AB TE AC ⊥⊥,.求证:(1)AHD AHE ∠=∠;(2)BH CHBD CE=.THEDCBA【例26】 如图,⊙O 为ABC △的外接圆,60BAC ∠=o ,H 为AC 、AB 上高BD 、CE 的交点,在BD上取点M ,使BM CH =.连结OM OH 、,求证:OM OH =.【例27】 如图,CD 是O e 的直径,弦AE 交CD 于点Q ,点B 是弧»DE上一点,BC 和DE 交于点F .AB CD ⊥,垂足为M ,求证:QF AB ∥.DC三. 过三点的圆【例28】 如图,四边形ABCD 中,AB AC AD ==,若76CAD ︒∠=,13BDC ︒∠=,则CBD ∠=_______,BAC ∠=__________.DCBA【例29】 已知凸四边形ABCD ,2BAC BDC ∠=∠,2CAD CBD ∠=∠,求证:AB AC AD ==.O ⋅H ME DCBA思维飞跃【例30】 如图,直线AB 和AC 与O ⊙分别相切于B C 、,P 为圆上一点,P 到AB AC 、得距离分别为49、,试求P 到BC 的距离.【例31】 如图,ABC △中,90ACB ∠=o ,AB 边上的高线CH 与ABC △的两条内角平分线AM 、BN 分别交于P 、Q 两点.PM 、QN 的中点分别为E 、F .求证://EF AB .【例32】 如图,已知P 是正ABC △外接圆的弧BC 上的任一点.求证:22PA AC PB PC =+⋅.BCADCBAMNPHBACE Q F【例33】如图,PA、PB切圆O于A和B,PO交AB于M,过M任作一弦CD,求证:APC BPD∠=∠.【例34】如图,AB为⊙O的直径,P为⊙O外一点,过P引圆O的两条切线,切点分别为C、D,AD 与BC交于点E,求证:EP AP⊥.作业O⋅A BDCFPO⋅DCPBAM1. 在锐角△ABC 中,三条高AD 、BE 、CF 相交于点H .求证:点H 是△DEF 的内心.2. 已知AB 是圆的直径,AD 为圆的切线,FB 和DB 是圆的割线,分别交圆于E 、C ,求证:BE BF BC BD ⋅=⋅.3. 已知ABC △中,AB AC =,AD 是高,P 为AC 上任一点,PC 的中垂线RQ 交AD 于R ,求证:RPB DAC ∠=∠.4. 如图,设四边形ABCD 的两组对边AB 、DC 及AD 、BC 的交点分别为E 、F .若E ∠、F ∠的平分线互相垂直,则A 、B 、C 、D 四点共圆.⋅FE C DABRDCBA QP5. 如图,PA 、PB 切⊙O 于A 、B 两点,过P 作割线交⊙O 于C 、D ,过B 作BE CD ∥,连结AE交PD 于M ,求证:M 为DC 的中点.6. 过圆外一点P 作圆的两条切线和一条割线,切点为A B 、,所作割线交圆于C D 、两点,C 在P D、之间.在弦上取一点Q ,使DAQ PBC ∠=∠.求证:DBQ PAC ∠=∠.QPDCBAO⋅A DBEMCPAFEDCBM。

初中数学竞赛第十六讲和圆有关的比例线段(含解答)

初中数学竞赛第十六讲和圆有关的比例线段(含解答)

第十六讲 和圆有关的比例线段【趣题引路】某建筑物上装有一块长方形广告牌,上下边相距5m,下底边距离地面5.6m.•如果人的眼部高度为 1.6m,那么从远处正对广告牌走近时,看广告牌效果最好的位置距该建筑物多远?解析 广告牌AB 在视线的水平线DF 之上.如图,因此,可过AB•两点作一个圆,使圆与DF 相切,这时可看到,当人从远处走来时,人眼在DF 的水平线上,除D 点外,•DF 上的其余各点都在圆外 ,则当人走到DE 处时∠ADB 最大,看广告效果最好. 那么如何求出CE 的距离呢?由切割线定理可知,DF 2=BF ·AF,且CE=DF,因此,很容易得到 D F 2=4×9=36,∴DF=6(m)即人距离广告牌6m 左右看广告牌的效果最好.【知识延伸】过一点P 作与圆有关的两条直线,点P 与圆的不同位置有两种:1.当点P 在圆内时,这两条直线分别交圆于A 、B 和C 、D,则PA ·PB=PC ·PD,•这就是相交弦定理,如图1.(1) (2) (3) 2.当点P 在圆外时,分两种情况:(1)这两条直线与圆都有两个交点,分别为A 、B 与C 、D,则PA ·PB=PC ·PD称作割线定理:如图2.(2)当这两条直线中一条与圆有两个交点,另一条只有一个交点(切点)M时,得切割线定理:PA·PB=PM2.相交弦定理、切割线定理及切割线定理的推论(割线定理),•我们统称为圆幂定理.圆幂定理在形式上也可以进一步统一.如图3,点P在圆内时,像所作的虚线那样,连OP,过点P作弦EF⊥OP,交圆于E、F,由于PE=PF,故PA·PB=PC·PD=PE·PF=PF2=r2-OP2,其中r为⊙O的半径.如图4,点P在圆外时,连OM、ON、OP,有PA·PB=PC·PD=•PM·PN=P M2=OP2-r2.综上所述,圆幂定理可以统一为PA·PB=│r2-OP2│.换言之,•圆幂定理可叙述为:通过不在⊙O上一定点P向⊙O任作一直线交⊙O于A、B两点,则有PA·PB=│r2-OP2│.(r2-OP2叫做点对于⊙O的幂).圆幂定理揭示了圆中线段的比例关系,对于涉及相交弦,切割线的有关计算,•常可利用圆幂定理去求.例1已知,如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,割线CDF交AB于E,并且CD:DE:EF=1:2:1,AC=4.求⊙O的直径AB.解析设CD=k,则DE=2k,EF=k,CF=4k.由切割线定理,有AC2=CD·CF.∴42=k·4k,•k=2.∴CE=6,DE=4,EF=2.在Rt△ACE中,由勾股定理,有根据相交弦定理,得AE·EB=DE·EF.∴EB=4×2,EB=5。

初中数学竞赛辅导讲义及习题解答 第23讲 圆与圆

初中数学竞赛辅导讲义及习题解答 第23讲 圆与圆

第二十三讲圆与圆圆与圆的位置关系有外离、外切、相交、内切、内含五种情形,判定两圆的位置关系有文档设计者:设计时间:文档类型:文库精品文档,欢迎下载使用。

Word精品文档,可以编辑修改,放心下载如下三种方法:1.通过两圆交点的个数确定;2.通过两圆的半径与圆心距的大小量化确定;3.通过两圆的公切线的条数确定.为了沟通两圆,常常添加与两圆都有联系的一些线段,如公共弦、共切线、连心线,以及两圆公共部分相关的角和线段,这是解圆与圆位置关系问题的常用辅助线.熟悉以下基本图形、基本结论:【例题求解】【例1】如图,⊙O l与半径为4的⊙O2内切于点A,⊙O l经过圆心O2,作⊙O2的直径BC 交⊙O l于点D,EF为过点A的公切线,若O2D=22,那么∠BAF= 度.思路点拨直径、公切线、O2的特殊位置等,隐含丰富的信息,而连O2O l必过A点,先求出∠D O2A的度数.注:(1)两圆相切或相交时,公切线或公共弦是重要的类似于“桥梁”的辅助线,它可以使弦切角与圆周角、圆内接四边形的内角与外角得以沟通.同时,又是生成圆幂定理的重要因素.(2)涉及两圆位置关系的计算题,常作半径、连心线,结合切线性质等构造直角三角形,将分散的条件集中,通过解直角三角形求解.【例2】如图,⊙O l与⊙O2外切于点A,两圆的一条外公切线与⊙O1相切于点B,若AB 与两圆的另一条外公切线平行,则⊙O l 与⊙O2的半径之比为( )A.2:5 B.1:2 C.1:3 D.2:3思路点拨添加辅助线,要探求两半径之间的关系,必须求出∠CO l O2 (或∠DO2O l)的度数,为此需寻求∠CO1B、∠CO1A、∠BO1A的关系.【例3】如图,已知⊙O l与⊙O2相交于A、B两点,P是⊙O l上一点,PB的延长线交⊙O2于点C,PA交⊙O2于点D,CD的延长线交⊙O l于点N.(1)过点A作AE∥CN交⊙O l l于点E,求证:PA=PE;(2)连结PN,若PB=4,BC=2,求PN的长.思路点拨(1)连AB,充分运用与圆相关的角,证明∠PAE=∠PEA;(2)PB·PC=PD·PA,探寻PN、PD、PA对应三角形的联系.【例4】如图,两个同心圆的圆心是O,AB是大圆的直径,大圆的弦与小圆相切于点D,连结OD并延长交大圆于点E,连结BE交AC于点F,已知AC=24,大、小两圆半径差为2.(1)求大圆半径长;(2)求线段BF的长;(3)求证:EC与过B、F、C三点的圆相切.思路点拨(1)设大圆半径为R,则小圆半径为R-2,建立R的方程;(2)证明△EBC∽△ECF;(3)过B、F、C三点的圆的圆心O′,必在BF上,连OˊC,证明∠O′CE=90°.注:本例以同心圆为背景,综合了垂径定理、直径所对的圆周角为直角、切线的判定、勾股定理、相似三角形等丰富的知识.作出圆中基本辅助线、运用与圆相关的角是解本例的关键.【例5】 如图,AOB 是半径为1的单位圆的四分之一,半圆O 1的圆心O 1在OA 上,并与弧AB 内切于点A ,半圆O 2的圆心O 2在OB 上,并与弧AB 内切于点B ,半圆O 1与半圆O 2相切,设两半圆的半径之和为x ,面积之和为y . (1)试建立以x 为自变量的函数y 的解析式; (2)求函数y 的最小值.思路点拨 设两圆半径分别为R 、r ,对于(1),)(2122r R y +=π,通过变形把R 2+r 2用“x =R+r ”的代数式表示,作出基本辅助线;对于(2),因x =R+r ,故是在约束条件下求y 的最小值,解题的关键是求出R+r 的取值范围.注:如图,半径分别为r 、R 的⊙O l 、⊙O 2外切于C ,AB ,CM 分别为两圆的公切线,O l O 2与AB 交于P 点,则: (1)AB=2r R ;(2) ∠ACB=∠O l M O 2=90°; (3)PC 2=PA ·PB ; (4)sinP=rR rR +-; (5)设C 到AB 的距离为d ,则dR r 211=+.学力训练1.已知:⊙O l 和⊙O 2交于A 、B 两点,且⊙O l 经过点O 2,若∠AO l B=90°,则∠A O 2B 的度数是 .2.矩形ABCD 中,AB=5,BC=12,如果分别以A 、C 为圆心的两圆相切,点D 在圆C 内,点B 在圆C 外,那么圆A 的半径r 的取值范围 . (2003年上海市中考题)3.如图;⊙O l 、⊙O 2相交于点A 、B ,现给出4个命题:(1)若AC 是⊙O 2的切线且交⊙O l 于点C ,AD 是⊙O l 的切线且交⊙O 2于点D ,则AB 2=BC ·BD ;(2)连结AB 、O l O 2,若O l A=15cm ,O 2A=20cm ,AB=24cm ,则O l O 2=25cm ;(3)若CA 是⊙O l 的直径,DA 是⊙O 2 的一条非直径的弦,且点D 、B 不重合,则C 、B 、D 三点不在同一条直线上,(4)若过点A 作⊙O l 的切线交⊙O 2于点D ,直线DB 交⊙O l 于点C ,直线CA 交⊙O 2于点E ,连结DE ,则DE 2=DB ·DC ,则正确命题的序号是 (写出所有正确命题的序号) .4.如图,半圆O 的直径AB=4,与半圆O 内切的动圆O l 与AB 切于点M ,设⊙O l 的半径为y ,AM 的长为x ,则y 与x 的函数关系是 ,自变量x 的取值范围是 .5.如图,施工工地的水平地面上,有三根外径都是1米的水泥管两两相切摞在一起,则其最高点到地面的距离是( )A .2B .221+C .231+D .231+ 6.如图,已知⊙O l 、⊙O 2相交于A 、B 两点,且点O l 在⊙O 2上,过A 作⊙O l l 的切线AC交B O l 的延长线于点P ,交⊙O 2于点C ,BP 交⊙O l 于点D ,若PD=1,PA=5,则AC 的长为( )A .5B .52C .52+D .537.如图,⊙O l 和⊙O 2外切于A ,PA 是内公切线,BC 是外公切线,B 、C 是切点①PB=AB ;②∠PBA=∠PAB ;③△PAB ∽△O l AB ;④PB ·PC=O l A ·O 2A . 上述结论,正确结论的个数是( )A .1B .2C .3D .48.两圆的半径分别是和r (R>r),圆心距为d ,若关于x 的方程0)(222=-+-d R rx x 有两个相等的实数根,则两圆的位置关系是( )A.一定内切B.一定外切C.相交D.内切或外切9.如图,⊙O l和⊙O2内切于点P,过点P的直线交⊙O l于点D,交⊙O2于点E,DA与⊙O2相切,切点为C.(1)求证:PC平分∠APD;(2)求证:PD·PA=PC2+AC·DC;(3)若PE=3,PA=6,求PC的长.10.如图,已知⊙O l和⊙O2外切于A,BC是⊙O l和⊙O2的公切线,切点为B、C,连结BA并延长交⊙O l于D,过D点作CB的平行线交⊙O2于E、F,求证:(1)CD是⊙O l的直径;(2)试判断线段BC、BE、BF的大小关系,并证明你的结论.11.如图,已知A是⊙O l、⊙O2的一个交点,点M是O l O2的中点,过点A的直线BC垂直于MA,分别交⊙O l、⊙O2于B、C.(1)求证:AB=AC;(2)若O l A切⊙O2于点A,弦AB、AC的弦心距分别为d l、d2,求证:d l+d2=O1O2;(3)在(2)的条件下,若d l d2=1,设⊙O l、⊙O2的半径分别为R、r,求证:R2+r2= R2r2.12.已知半径分别为1和2的两个圆外切于点P,则点P到两圆外公切线的距离为.13.如图,7根圆形筷子的横截面圆半径为r,则捆扎这7根筷子一周的绳子的长度为.14.如图,⊙O l和⊙O2内切于点P,⊙O2的弦AB经过⊙O l的圆心O l,交⊙O l于C、D,若AC:CD:DB=3:4:2,则⊙O l与⊙O2的直径之比为( )A.2:7 B.2:5 C.2:3 D.1:315.如图,⊙O l与⊙O2相交,P是⊙O l上的一点,过P点作两圆的切线,则切线的条数可能是( )A.1,2 B.1,3 C.1,2,3 D.1,2,3,416.如图,相等两圆交于A、B两点,过B任作一直线交两圆于M、N,过M、N各引所在圆的切线相交于C,则四边形AMCN有下面关系成立( )A.有内切圆无外接圆B有外接圆无内切圆C.既有内切圆,也有外接圆D.以上情况都不对17.已知:如图,⊙O与相交于A,B两点,点P在⊙O上,⊙O的弦AC切⊙P于点A,CP及其延长线交⊙P P于点D,E,过点E作EF⊥CE交CB的延长线于F.(1)求证:BC是⊙P的切线;(2)若CD=2,CB=22,求EF的长;(3)若k=PE:CE,是否存在实数k,使△PBD恰好是等边三角形?若存在,求出是的值;若不存在,请说明理由.18.如图,⊙A和⊙B是外离两圆,⊙A的半径长为2,⊙B的半径长为1,AB=4,P为连接两圆圆心的线段AB上的一点,PC切⊙A于点C,PD切⊙B于点D.(1)若PC=PD,求PB的长;(2)试问线段AB上是否存在一点P,使PC2+PD2=4?,如果存在,问这样的P点有几个?并求出PB的值;如果不存在,说明理由;(3)当点F在线段AB上运动到某处,使PC⊥PD时,就有△APC∽△PBD.请问:除上述情况外,当点P在线段AB上运动到何处(说明PB的长为多少,或PC、PD 具有何种关系)时,这两个三角形仍相似;并判断此时直线CP与OB的位置关系,证明你的结论.19.如图,D、E是△ABC边BC上的两点,F是BA延长线上一点,∠DAE=∠CAF.(1)判断△ABD的外接圆与△AEC的外接圆的位置关系,并证明你的结论;(2)若△ABD的外接圆半径是△AEC的外接圆半径的2倍,BC=6,AB=4,求BE的长.20.问题:要将一块直径为2cm的半圆形铁皮加工成一个圆柱的两个底面和一个圆锥的底面.操作:方案一:在图甲中,设计一个使圆锥底面最大,半圆形铁皮得以最充分利用的方案(要求,画示意图) .方案二;在图乙中,设计一个使圆柱两个底面最大,半圆形铁皮得以最充分利用的方案(要求:画示意图);,探究:(1)求方案一中圆锥底面的半径;(2)求方案二中圆锥底面及圆柱底面的半径;(3)设方案二中半圆圆心为O,圆柱两个底面的圆心为O1、O2,圆锥底面的圆心为O3,试判断以O1、O2、O3、O为顶点的四边形是什么样的特殊四边形,并加以证明.参考答案温馨提示After writing the test paper, you must remember to check Oh, I wish you all can achieve good results!可以编辑的试卷(可以删除)。

初中数学竞赛练习第11讲 圆(含解析)

初中数学竞赛练习第11讲 圆(含解析)

第11讲圆一、模空题I.(2022·福建·九年级统考竞赛〉如1蜀,ABCD为圆。

的内按四边形,且AC..LBD,若AB=IO,CD=8,则阁。

的面积为一一一··B2.(2022·广东·九年级统考竞赛)古希腊数学家希波克拉底曾研究过如图所示的几何图形,此图|如三个半圆构成,三个半圆的直径分别为Rt-ABC的斜边βC,]豆角边AB,AC.若以AB,AC为直径的两个半阁的弧长总长度为2π,则以斜边BC为直径的半圆顶积的;最小值为·3.(2018·全国九年级竞赛〉已知D是..ABC内一点,E是AC的中点,AB=6,BC=IO,ζBAD=ζBCD, LEDC=LABD,则DE=-A5、』ε豆、C4.(2022谷·湖南长沙·八年级校联考竞赛)如图1~4,在旦角边分别为3和4ti甘直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,因10中有10个直角三角形的内切圆,它们的面积分别记为S1,缸,缸,....S10,则S1+S2+S3+... +S10=一一.,因l国2图3国45.216秋山东泰安·九年级党赛〉如图是“横店影视城”的困弧形门,妙可同学到影视城游玩,很想知边这扇门的相关数据.于是她从景点管理人员处打听到:这个圆弧形门所在的因与水平地丽是相切的,,!也"',('�"'咀f)cm,BD = 200 c m,且AB,CD与水平地商都是垂直,的根据以上数据,你帮助妙可同学计算这个回弧形门的最高点离地丽的高度是一一一一一6.215秋,山东ilfliifr·九年级党和已知正六边形的边心距为占,ljjl]它的周长是一一一·7.215:f)、山东临沂·九年级党赛〉如果圆锥的底面周长是20π,侧面展开后所得的扇形的因心角为120。

’则因锥的母线长是·8. 215秋·山东泰安·九年级竞赛〉如图,直线AB与半径为2的。

全国初中数学竞赛《圆》历届真题

全国初中数学竞赛《圆》历届真题

初中数学竞赛《圆》历届考题1(04).D 是△AB C 的边 AB 上的一点,使得 AB=3A D ,P 是△AB C 外接圆上一 PB 点,使得 ,求 的值.ADP ACB P D解:连结 AP ,则APB ACBADP,所以,△APB ∽△A DP , …………………………(5 分)AB APAP A D∴ ,所以 ,2 AP AB AD3 AD 2 ∴ , …………………………(10 分) AP 3 A D PB P DAPA D所以 .…………………………(15 分)3BA 2、(05)已知点 I 是锐角三角形 ABC 的内心,A1,B1,C1 分别是 1D点 I 关于边 BC ,C A ,A B 的对称点。

若点 B 在△A1B1C1 的外接C 1圆上,则∠A B C 等于( ) A 、30° 答:CB 、45°C 、60°D 、90°ACB 1解:因为 IA1=IB1=IC1=2r (r 为△A B C 的内切圆半径),所以 点 I 同时是△A1B1C1 的外接圆的圆心,设 IA1 与 B C 的交点为 D ,则 I B =IA1=2ID ,所以∠IBD =30°,同理,∠IB A =30°,于是,∠A B C =60°3.(06)正方形 AB C D 内接于⊙O ,点 P 在劣弧 AB 上,连结 DP ,交 A C 于点 Q .若 Q P =Q O , Q C 则的值为( )D CQ A(A ) 2 3 1 (B ) 2 3 (C ) 3 2 (D ) 3 2 O 答:D .Q PAB解:如图,设⊙O 的半径为 r ,Q O =m ,则 Q P =m ,Q C =r +m , Q A =r -m .在⊙O 中,根据相交弦定理,得 Q A ·Q C =Q P ·Q D . (第 3 题图)r m 2 2即(r -m)(r +m)=m ·Q D ,所以 Q D = .连结 D O ,由勾股定理,得 Q D =D O 2 2m2r m3 Q C Q Ar m r m3 1 3 122 2 +Q O ,即m ,解得 所以,rrm3 222m 34.(06)如图,点 P 为⊙O 外一点,过点 P 作⊙O 的两条切线,切点分别为 A ,B .过点 A 作 PB 的平行线,交⊙O 于点 C .连结 P C ,交⊙O 于点 E ;连结 AE ,并延长 AE 交 PB 于点 K .求证:PE ·AC =C E ·K B .P证明:因为 A C ∥P B ,所以∠KPE =∠A C E .又 PA 是⊙O 的切线, 所以∠KAP =∠AC E ,故∠KPE =∠KA P ,于是K△KP E ∽△KAP ,EK P K AK E K P所以所以, 即.K P KE KA 2BA由切割线定理得 K B KE KA2O.…………………………10 分K PKB 因为 A C ∥PB ,△K P E ∽△ACE ,于是PE C EK P A CPE C EK B A C故,CP E ·A C =C E ·K B . ………………………………15 分(第 4 题)即5(07)已知△ AB C 为锐角三角形,⊙ O 经过点 B ,C ,且与边 AB ,A C 分别相交于点 D , E .若⊙ O 的半径与△ 的外接圆的半径相等,则⊙ O 一定经过△ ABC 的().A D E (A )内心 答:(B ).(B )外心 (C )重心 (D )垂心解: 如图,连接 B E ,因为△ ABC 为锐角三角形,所以 BAC ,均为锐角.又因为⊙ O 的半径与△ 的外接圆的半径相等,ABE A D E 且 为两圆的公共弦,所以 B A C A B E . D E 于是, B E C B A C A B E 2 B A C .(第 3 题答案图)若△ ABC 的外心为 O ,则BOC2B AC ,所以,⊙ O 一定过△ ABC11的外心.故选(B ).6.已知 AB 为半圆 O 的直径,点 P 为直径 AB 上的任意一点.以 点 A 为圆心,AP 为半径作⊙A ,⊙A 与半圆 O 相交于点 C ;以点 B 为圆心,BP 为半径作⊙B ,⊙B 与半圆 O 相交于点 D ,且线段C D 的中点为 M .求证:M P 分别与⊙A 和⊙B 相切.证明:如图,连接 A C ,A D ,B C ,B D ,并且分别过点 C ,D 作 AB 的垂线,垂足分别(第 13A 题答案图) 为 和,则 C E ∥D F .因为 AB 是⊙O 的直径,所以 A C BA DB 90 .在 Rt △ ABCE ,F Rt △ 中 , 由 射 影 定 理 得,AB DPA AC AE AB2 2 .……………5 分PB BD BF AB 2 2 两式相减可得 PA PB AB AE BF ,2 2 又 PA PB (PA PB )( PA PB ) AB PA PB , 2 2 于是有 ,即,PA AEPB BFAE BFPA PB 所以 ,也就是说,点 P 是线段 EF 的中点.因此,M P 是直角梯形C D F E 的中位 P E P F 线,于是有 ,从而可得 M P 分别与⊙A 和⊙B 相切.M P AB D E C FA DB C7.如图,点 E ,F 分别在四边形 AB C D 的边 A D ,BC 的延长线上,且满足.若C D , F E 的延长线相交于点 G ,△ D E G 的外接圆与△ C F G 的外接圆的另一个交点为点,连接 P A ,PB ,P C ,P D .求证:P A D B CP D P C(1);(2)△ ∽△ P D C .P A B 证明:(1)连接 PE ,PF ,P G ,因为 P D G P E G , 所以 P D C P E F .又因为 P C G P F G ,所以△ P D C ∽△ , P E F P D E P D P C P E P F于是有 ,C PD F PE ,从而△ ∽△ PCF ,所 P D D E C FD E C FA DB CA D P D 以.又已知 ,所以,. ………………10 分∽△ P C B ,从而有P CB CP C(2)由于P D A P G E P C B ,结合( 1)知,△ P D A P A P B P D, D P A C P B , 所 以A P BD P , 因 此 △∽ △P A BP CP D C . ………………15 分8、△A B C 中,A B =7,B C =8,C A =9,过△A B C 的内切圆圆心 l 作 DE ∥B C , 16 A。

初中数学竞赛:圆与圆(附练习题及答案)

初中数学竞赛:圆与圆(附练习题及答案)

初中数学竞赛:圆与圆圆与圆的位置关系有外离、外切、相交、内切、内含五种情形,判定两圆的位置关系有如下三种方法:1.通过两圆交点的个数确定;2.通过两圆的半径与圆心距的大小量化确定;3.通过两圆的公切线的条数确定.为了沟通两圆,常常添加与两圆都有联系的一些线段,如公共弦、共切线、连心线,以及两圆公共部分相关的角和线段,这是解圆与圆位置关系问题的常用辅助线.熟悉以下基本图形、基本结论:【例题求解】【例1】如图,⊙O l与半径为4的⊙O2内切于点A,⊙O l经过圆心O2,作⊙O2的直径BC交⊙O l于点D,EF为过点A的公切线,若O2D=22,那么∠BAF= 度.思路点拨直径、公切线、O2的特殊位置等,隐含丰富的信息,而连O2O l必过A点,先求出∠D O2A的度数.注:(1)两圆相切或相交时,公切线或公共弦是重要的类似于“桥梁”的辅助线,它可以使弦切角与圆周角、圆内接四边形的内角与外角得以沟通.同时,又是生成圆幂定理的重要因素.(2)涉及两圆位置关系的计算题,常作半径、连心线,结合切线性质等构造直角三角形,将分散的条件集中,通过解直角三角形求解.【例2】如图,⊙O l与⊙O2外切于点A,两圆的一条外公切线与⊙O1相切于点B,若AB与两圆的另一条外公切线平行,则⊙O l 与⊙O2的半径之比为( )A.2:5 B.1:2 C.1:3 D.2:3思路点拨添加辅助线,要探求两半径之间的关系,必须求出∠CO l O2 (或∠DO2O l)的度数,为此需寻求∠CO1B、∠CO1A、∠BO1A的关系.【例3】如图,已知⊙O l与⊙O2相交于A、B两点,P是⊙O l上一点,PB的延长线交⊙O2于点C,PA交⊙O2于点D,CD的延长线交⊙O l于点N.(1)过点A作AE∥CN交⊙O l l于点E,求证:PA=PE;(2)连结PN,若PB=4,BC=2,求PN的长.思路点拨 (1)连AB,充分运用与圆相关的角,证明∠PAE=∠PEA;(2)PB·PC=PD·PA,探寻PN、PD、PA对应三角形的联系.【例4】如图,两个同心圆的圆心是O,AB是大圆的直径,大圆的弦与小圆相切于点D,连结OD并延长交大圆于点E,连结BE交AC于点F,已知AC=24,大、小两圆半径差为2.(1)求大圆半径长;(2)求线段BF的长;(3)求证:EC与过B、F、C三点的圆相切.思路点拨 (1)设大圆半径为R ,则小圆半径为R-2,建立R 的方程;(2)证明△EBC ∽△ECF ;(3)过B 、F 、C 三点的圆的圆心O ′,必在BF 上,连O ˊC ,证明∠O ′CE=90°.注:本例以同心圆为背景,综合了垂径定理、直径所对的圆周角为直角、切线的判定、勾股定理、相似三角形等丰富的知识.作出圆中基本辅助线、运用与圆相关的角是解本例的关键. 【例5】 如图,AOB 是半径为1的单位圆的四分之一,半圆O 1的圆心O 1在OA 上,并与弧AB 内切于点A ,半圆O 2的圆心O 2在OB 上,并与弧AB 内切于点B ,半圆O 1与半圆O 2相切,设两半圆的半径之和为x ,面积之和为y . (1)试建立以x 为自变量的函数y 的解析式; (2)求函数y 的最小值.思路点拨 设两圆半径分别为R 、r ,对于(1),)(2122r R y +=π,通过变形把R 2+r 2用“x =R+r ”的代数式表示,作出基本辅助线;对于(2),因x =R+r ,故是在约束条件下求y 的最小值,解题的关键是求出R+r 的取值范围.注:如图,半径分别为r 、R 的⊙O l 、⊙O 2外切于C ,AB ,CM 分别为两圆的公切线,O l O 2与AB 交于P 点,则:(1)AB=2r R ;(2) ∠ACB=∠O l M O 2=90°; (3)PC 2=PA ·PB ;(4)sinP=rR rR +-; (5)设C 到AB 的距离为d ,则dR r 211=+.专题训练1.已知:⊙O l 和⊙O 2交于A 、B 两点,且⊙O l 经过点O 2,若∠AO l B=90°,则∠A O 2B 的度数是 .2.矩形ABCD 中,AB=5,BC=12,如果分别以A 、C 为圆心的两圆相切,点D 在圆C 内,点B 在圆C 外,那么圆A 的半径r 的取值范围 . 3.如图;⊙O l 、⊙O 2相交于点A 、B ,现给出4个命题:(1)若AC 是⊙O 2的切线且交⊙O l 于点C ,AD 是⊙O l 的切线且交⊙O 2于点D ,则AB 2=BC ·BD ; (2)连结AB 、O l O 2,若O l A=15cm ,O 2A=20cm ,AB=24cm ,则O l O 2=25cm ;(3)若CA 是⊙O l 的直径,DA 是⊙O 2 的一条非直径的弦,且点D 、B 不重合,则C 、B 、D 三点不在同一条直线上,(4)若过点A 作⊙O l 的切线交⊙O 2于点D ,直线DB 交⊙O l 于点C ,直线CA 交⊙O 2于点E ,连结DE ,则DE 2=DB ·DC ,则正确命题的序号是 (写出所有正确命题的序号) .4.如图,半圆O 的直径AB=4,与半圆O 内切的动圆O l 与AB 切于点M ,设⊙O l 的半径为y ,AM 的长为x ,则y 与x 的函数关系是 ,自变量x 的取值范围是 .5.如图,施工工地的水平地面上,有三根外径都是1米的水泥管两两相切摞在一起,则其最高点到地面的距离是( ) A .2 B .221+C .231+D .231+6.如图,已知⊙O l 、⊙O 2相交于A 、B 两点,且点O l 在⊙O 2上,过A 作⊙O l l 的切线AC 交B O l的延长线于点P ,交⊙O 2于点C ,BP 交⊙O l 于点D ,若PD=1,PA=5,则AC 的长为( ) A .5 B .52 C .52+ D .537.如图,⊙O l 和⊙O 2外切于A ,PA 是内公切线,BC 是外公切线,B 、C 是切点①PB=AB ;②∠PBA=∠PAB ;③△PAB ∽△O l AB ;④PB ·PC=O l A ·O 2A . 上述结论,正确结论的个数是( ) A .1 B .2 C .3 D .48.两圆的半径分别是和r (R>r),圆心距为d ,若关于x 的方程0)(222=-+-d R rx x 有两个相等的实数根,则两圆的位置关系是( )A .一定内切B .一定外切C .相交D .内切或外切9.如图,⊙O l 和⊙O 2内切于点P ,过点P 的直线交⊙O l 于点D ,交⊙O 2于点E ,DA 与⊙O 2相切,切点为C .(1)求证:PC 平分∠APD ; (2)求证:PD ·PA=PC 2+AC ·DC ; (3)若PE=3,PA=6,求PC 的长.10.如图,已知⊙O l 和⊙O 2外切于A ,BC 是⊙O l 和⊙O 2的公切线,切点为B 、C ,连结BA 并延长交⊙O l 于D ,过D 点作CB 的平行线交⊙O 2于E 、F ,求证:(1)CD 是⊙O l 的直径;(2)试判断线段BC 、BE 、BF 的大小关系,并证明你的结论.11.如图,已知A是⊙O l、⊙O2的一个交点,点M是 O l O2的中点,过点A的直线BC垂直于MA,分别交⊙O l、⊙O2于B、C.(1)求证:AB=AC;(2)若O l A切⊙O2于点A,弦AB、AC的弦心距分别为d l、d2,求证:d l+d2=O1O2;(3)在(2)的条件下,若d l d2=1,设⊙O l、⊙O2的半径分别为R、r,求证:R2+r2= R2r2.12.已知半径分别为1和2的两个圆外切于点P,则点P到两圆外公切线的距离为.13.如图,7根圆形筷子的横截面圆半径为r,则捆扎这7根筷子一周的绳子的长度为.14.如图,⊙O l和⊙O2内切于点P,⊙O2的弦AB经过⊙O l的圆心O l,交⊙O l于C、D,若AC:CD:DB=3:4:2,则⊙O l与⊙O2的直径之比为( )A.2:7 B.2:5 C.2:3 D. 1:315.如图,⊙O l与⊙O2相交,P是⊙O l上的一点,过P点作两圆的切线,则切线的条数可能是( )A.1,2 B.1,3 C.1,2,3 D.1,2,3,416.如图,相等两圆交于A、B两点,过B任作一直线交两圆于M、N,过M、N各引所在圆的切线相交于C,则四边形AMCN有下面关系成立( )A.有内切圆无外接圆 B有外接圆无内切圆C.既有内切圆,也有外接圆 D.以上情况都不对17.已知:如图,⊙O与相交于A,B两点,点P在⊙O上,⊙O的弦AC切⊙P于点A,CP 及其延长线交⊙P P于点D,E,过点E作EF⊥CE交CB的延长线于F.(1)求证:BC是⊙P的切线;(2)若CD=2,CB=22,求EF的长;(3)若k=PE:CE,是否存在实数k,使△PBD恰好是等边三角形?若存在,求出是的值;若不存在,请说明理由.18.如图,⊙A和⊙B是外离两圆,⊙A的半径长为2,⊙B的半径长为1,AB=4,P为连接两圆圆心的线段AB上的一点,PC切⊙A于点C,PD切⊙B于点D.(1)若PC=PD,求PB的长;(2)试问线段AB上是否存在一点P,使PC2+PD2=4?,如果存在,问这样的P点有几个?并求出PB的值;如果不存在,说明理由;(3)当点F在线段AB上运动到某处,使PC⊥PD时,就有△APC∽△PBD.请问:除上述情况外,当点P在线段AB上运动到何处(说明PB的长为多少,或PC、PD 具有何种关系)时,这两个三角形仍相似;并判断此时直线CP与OB的位置关系,证明你的结论.19.如图,D、E是△ABC边BC上的两点,F是BA延长线上一点,∠DAE=∠CAF.(1)判断△ABD的外接圆与△AEC的外接圆的位置关系,并证明你的结论;(2)若△ABD的外接圆半径是△AEC的外接圆半径的2倍,BC=6,AB=4,求BE的长.20.问题:要将一块直径为2cm的半圆形铁皮加工成一个圆柱的两个底面和一个圆锥的底面.操作:方案一:在图甲中,设计一个使圆锥底面最大,半圆形铁皮得以最充分利用的方案(要求,画示意图) .方案二;在图乙中,设计一个使圆柱两个底面最大,半圆形铁皮得以最充分利用的方案(要求:画示意图);,探究:(1)求方案一中圆锥底面的半径;(2)求方案二中圆锥底面及圆柱底面的半径;(3)设方案二中半圆圆心为O,圆柱两个底面的圆心为O1、O2,圆锥底面的圆心为O3,试判断以O1、O2、O3、O为顶点的四边形是什么样的特殊四边形,并加以证明.参考答案。

初中奥林匹克数学竞赛知识点总结及训练题目-圆

初中奥林匹克数学竞赛知识点总结及训练题目-圆

初中数学竞赛辅导讲义---圆与圆圆与圆的位置关系有外离、外切、相交、内切、内含五种情形,判定两圆的位置关系有如下三种方法:1.通过两圆交点的个数确定;2.通过两圆的半径与圆心距的大小量化确定;3.通过两圆的公切线的条数确定.为了沟通两圆,常常添加与两圆都有联系的一些线段,如公共弦、共切线、连心线,以及两圆公共部分相关的角和线段,这是解圆与圆位置关系问题的常用辅助线.熟悉以下基本图形、基本结论:【例题求解】【例1】如图,⊙O l与半径为4的⊙O2内切于点A,⊙O l经过圆心O2,作⊙O2的直径BC 交⊙O l于点D,EF为过点A的公切线,若O2D=22,那么∠BAF= 度.思路点拨直径、公切线、O2的特殊位置等,隐含丰富的信息,而连O2O l必过A点,先求出∠D O2A的度数.注:(1)两圆相切或相交时,公切线或公共弦是重要的类似于“桥梁”的辅助线,它可以使弦切角与圆周角、圆内接四边形的内角与外角得以沟通.同时,又是生成圆幂定理的重要因素.(2)涉及两圆位置关系的计算题,常作半径、连心线,结合切线性质等构造直角三角形,将分散的条件集中,通过解直角三角形求解.【例2】如图,⊙O l与⊙O2外切于点A,两圆的一条外公切线与⊙O1相切于点B,若AB 与两圆的另一条外公切线平行,则⊙O l 与⊙O2的半径之比为( )A.2:5 B.1:2 C.1:3 D.2:3思路点拨添加辅助线,要探求两半径之间的关系,必须求出∠CO l O2 (或∠DO2O l)的度数,为此需寻求∠CO1B、∠CO1A、∠BO1A的关系.【例3】如图,已知⊙O l与⊙O2相交于A、B两点,P是⊙O l上一点,PB的延长线交⊙O2于点C,PA交⊙O2于点D,CD的延长线交⊙O l于点N.(1)过点A作AE∥CN交⊙O l l于点E,求证:PA=PE;(2)连结PN,若PB=4,BC=2,求PN的长.思路点拨(1)连AB,充分运用与圆相关的角,证明∠PAE=∠PEA;(2)PB·PC=PD·PA,探寻PN、PD、PA对应三角形的联系.【例4】如图,两个同心圆的圆心是O,AB是大圆的直径,大圆的弦与小圆相切于点D,连结OD并延长交大圆于点E,连结BE交AC于点F,已知AC=24,大、小两圆半径差为2.(1)求大圆半径长;(2)求线段BF的长;(3)求证:EC与过B、F、C三点的圆相切.思路点拨(1)设大圆半径为R,则小圆半径为R-2,建立R的方程;(2)证明△EBC∽△ECF;(3)过B、F、C三点的圆的圆心O′,必在BF上,连OˊC,证明∠O′CE=90°.注:本例以同心圆为背景,综合了垂径定理、直径所对的圆周角为直角、切线的判定、勾股定理、相似三角形等丰富的知识.作出圆中基本辅助线、运用与圆相关的角是解本例的关键.【例5】 如图,AOB 是半径为1的单位圆的四分之一,半圆O 1的圆心O 1在OA 上,并与弧AB 内切于点A ,半圆O 2的圆心O 2在OB 上,并与弧AB 内切于点B ,半圆O 1与半圆O 2相切,设两半圆的半径之和为x ,面积之和为y . (1)试建立以x 为自变量的函数y 的解析式; (2)求函数y 的最小值.思路点拨 设两圆半径分别为R 、r ,对于(1),)(2122r R y +=π,通过变形把R 2+r 2用“x =R+r ”的代数式表示,作出基本辅助线;对于(2),因x =R+r ,故是在约束条件下求y 的最小值,解题的关键是求出R+r 的取值范围.注:如图,半径分别为r 、R 的⊙O l 、⊙O 2外切于C ,AB ,CM 分别为两圆的公切线,O l O 2与AB 交于P 点,则: (1)AB=2r R ;(2) ∠ACB=∠O l M O 2=90°; (3)PC 2=PA ·PB ; (4)sinP=rR rR +-; (5)设C 到AB 的距离为d ,则dR r 211=+.学力训练1.已知:⊙O l 和⊙O 2交于A 、B 两点,且⊙O l 经过点O 2,若∠AO l B=90°,则∠A O 2B 的度数是 .2.矩形ABCD 中,AB=5,BC=12,如果分别以A 、C 为圆心的两圆相切,点D 在圆C 内,点B 在圆C 外,那么圆A 的半径r 的取值范围 . (2003年上海市中考题)3.如图;⊙O l 、⊙O 2相交于点A 、B ,现给出4个命题:(1)若AC 是⊙O 2的切线且交⊙O l 于点C ,AD 是⊙O l 的切线且交⊙O 2于点D ,则AB 2=BC ·BD ;(2)连结AB 、O l O 2,若O l A=15cm ,O 2A=20cm ,AB=24cm ,则O l O 2=25cm ;(3)若CA 是⊙O l 的直径,DA 是⊙O 2 的一条非直径的弦,且点D 、B 不重合,则C 、B 、D 三点不在同一条直线上,(4)若过点A 作⊙O l 的切线交⊙O 2于点D ,直线DB 交⊙O l 于点C ,直线CA 交⊙O 2于点E ,连结DE ,则DE 2=DB ·DC ,则正确命题的序号是 (写出所有正确命题的序号) .4.如图,半圆O 的直径AB=4,与半圆O 内切的动圆O l 与AB 切于点M ,设⊙O l 的半径为y ,AM 的长为x ,则y 与x 的函数关系是 ,自变量x 的取值范围是 .5.如图,施工工地的水平地面上,有三根外径都是1米的水泥管两两相切摞在一起,则其最高点到地面的距离是( )A .2B .221+C .231+D .231+6.如图,已知⊙O l 、⊙O 2相交于A 、B 两点,且点O l 在⊙O 2上,过A 作⊙O l l 的切线AC交B O l 的延长线于点P ,交⊙O 2于点C ,BP 交⊙O l 于点D ,若PD=1,PA=5,则AC 的长为( )A .5B .52C .52+D .537.如图,⊙O l 和⊙O 2外切于A ,PA 是内公切线,BC 是外公切线,B 、C 是切点①PB=AB ;②∠PBA=∠PAB ;③△PAB ∽△O l AB ;④PB ·PC=O l A ·O 2A . 上述结论,正确结论的个数是( )A .1B .2C .3D .48.两圆的半径分别是和r (R>r),圆心距为d ,若关于x 的方程0)(222=-+-d R rx x 有两个相等的实数根,则两圆的位置关系是( )A.一定内切B.一定外切C.相交D.内切或外切9.如图,⊙O l和⊙O2内切于点P,过点P的直线交⊙O l于点D,交⊙O2于点E,DA与⊙O2相切,切点为C.(1)求证:PC平分∠APD;(2)求证:PD·PA=PC2+AC·DC;(3)若PE=3,PA=6,求PC的长.10.如图,已知⊙O l和⊙O2外切于A,BC是⊙O l和⊙O2的公切线,切点为B、C,连结BA并延长交⊙O l于D,过D点作CB的平行线交⊙O2于E、F,求证:(1)CD是⊙O l的直径;(2)试判断线段BC、BE、BF的大小关系,并证明你的结论.11.如图,已知A是⊙O l、⊙O2的一个交点,点M是O l O2的中点,过点A的直线BC垂直于MA,分别交⊙O l、⊙O2于B、C.(1)求证:AB=AC;(2)若O l A切⊙O2于点A,弦AB、AC的弦心距分别为d l、d2,求证:d l+d2=O1O2;(3)在(2)的条件下,若d l d2=1,设⊙O l、⊙O2的半径分别为R、r,求证:R2+r2= R2r2.12.已知半径分别为1和2的两个圆外切于点P,则点P到两圆外公切线的距离为.13.如图,7根圆形筷子的横截面圆半径为r,则捆扎这7根筷子一周的绳子的长度为.14.如图,⊙O l和⊙O2内切于点P,⊙O2的弦AB经过⊙O l的圆心O l,交⊙O l于C、D,若AC:CD:DB=3:4:2,则⊙O l与⊙O2的直径之比为( )A.2:7 B.2:5 C.2:3 D.1:315.如图,⊙O l与⊙O2相交,P是⊙O l上的一点,过P点作两圆的切线,则切线的条数可能是( )A.1,2 B.1,3 C.1,2,3 D.1,2,3,416.如图,相等两圆交于A、B两点,过B任作一直线交两圆于M、N,过M、N各引所在圆的切线相交于C,则四边形AMCN有下面关系成立( )A.有内切圆无外接圆B有外接圆无内切圆C.既有内切圆,也有外接圆D.以上情况都不对17.已知:如图,⊙O与相交于A,B两点,点P在⊙O上,⊙O的弦AC切⊙P于点A,CP及其延长线交⊙P P于点D,E,过点E作EF⊥CE交CB的延长线于F.(1)求证:BC是⊙P的切线;(2)若CD=2,CB=22,求EF的长;(3)若k=PE:CE,是否存在实数k,使△PBD恰好是等边三角形?若存在,求出是的值;若不存在,请说明理由.18.如图,⊙A和⊙B是外离两圆,⊙A的半径长为2,⊙B的半径长为1,AB=4,P为连接两圆圆心的线段AB上的一点,PC切⊙A于点C,PD切⊙B于点D.(1)若PC=PD,求PB的长;(2)试问线段AB上是否存在一点P,使PC2+PD2=4?,如果存在,问这样的P点有几个?并求出PB的值;如果不存在,说明理由;(3)当点F在线段AB上运动到某处,使PC⊥PD时,就有△APC∽△PBD.请问:除上述情况外,当点P在线段AB上运动到何处(说明PB的长为多少,或PC、PD 具有何种关系)时,这两个三角形仍相似;并判断此时直线CP与OB的位置关系,证明你的结论.19.如图,D、E是△ABC边BC上的两点,F是BA延长线上一点,∠DAE=∠CAF.(1)判断△ABD的外接圆与△AEC的外接圆的位置关系,并证明你的结论;(2)若△ABD的外接圆半径是△AEC的外接圆半径的2倍,BC=6,AB=4,求BE的长.20.问题:要将一块直径为2cm的半圆形铁皮加工成一个圆柱的两个底面和一个圆锥的底面.操作:方案一:在图甲中,设计一个使圆锥底面最大,半圆形铁皮得以最充分利用的方案(要求,画示意图) .方案二;在图乙中,设计一个使圆柱两个底面最大,半圆形铁皮得以最充分利用的方案(要求:画示意图);,探究:(1)求方案一中圆锥底面的半径;(2)求方案二中圆锥底面及圆柱底面的半径;(3)设方案二中半圆圆心为O,圆柱两个底面的圆心为O1、O2,圆锥底面的圆心为O3,试判断以O1、O2、O3、O为顶点的四边形是什么样的特殊四边形,并加以证明.参考答案。

全国初中数学竞赛试题及答案

全国初中数学竞赛试题及答案

全国初中数学竞赛试题及答案全国初中数学竞赛试题及答案一、选择题1、在一张纸上,我们画了一个圆和一条直径,直径与圆相交于A、B 两点。

如果我们在这张纸上连续地画了8个点,使得这些点都在圆上,那么这8个点的最密集分布是()。

A. 像一个“十”字形,两边各4个点 B. 像一个“十”字形,两边各3个点 C. 像一个“米”字形,上面各4个点 D. 像一个“米”字形,上面各3个点答案:C 解析:根据圆的对称性,我们可以得知,直径两侧的点到圆心的距离相等,因此在一个“十”字形中,中间的交点是最密集的。

而在“米”字形中,上面的4个点距离交点的距离相等且最短,因此是最密集的。

2、在一个等边三角形ABC中,D、E、F分别是AB、BC、CA的中点。

现在以D为圆心,DE为半径画圆弧,交AB于G。

则△DFE的面积是阴影部分面积的()。

A. 2倍 B. 3倍 C. 4倍 D. 6倍答案:C 解析:由题意可知,DE是△ABC的中位线,因此DE=1/2AB。

而△DFE是直角三角形,斜边DE是直径,因此∠DFE=90°。

所以,△DFE的高是DE的一半,即1/4AB。

因此,△DFE的面积是1/2×1/2AB×1/4AB=1/8AB²。

而阴影部分的面积是△ABC面积的一半,即1/2×1/2AB×√3/2AB=√3/4AB²。

所以,△DFE的面积是阴影部分面积的4倍。

3、在一个等腰直角三角形ABC中,∠C=90°,AC=BC=1。

现在以这个三角形的顶点为圆心,1为半径画圆弧,则这三个圆弧的长度之和为()。

A. 3π/2 B. π C. 2π D. 5π/2 答案:C 解析:根据题意,我们可以得到三个圆弧的半径都是1。

其中第一个圆弧的长度为1/4×2π×1=π/2,第二个圆弧的长度也为π/2,第三个圆弧的长度为1/4×2π×√2=π√2/2。

初中数学竞赛:四点共圆问题

初中数学竞赛:四点共圆问题

初中数学竞赛:四点共圆问题“四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路.1“四点共圆”作为证题目的 例1.给出锐角△ABC ,以AB 为直径的圆与AB 边的高CC ′及其延长线交于M ,N .以AC 为直径的圆与AC 边的高BB ′及其延长线将于P ,Q .求证:M ,N ,P ,Q 四点共圆.分析:设PQ ,MN 交于K 点,连接AP ,AM .欲证M ,N ,P ,Q 四点共圆,须证MK ·KN =PK ·KQ ,即证(MC ′-KC ′)(MC ′+KC ′)=(PB ′-KB ′)·(PB ′+KB ′) 或MC ′2-KC ′2=PB ′2-KB ′2. ①不难证明 AP =AM ,从而有 AB ′2+PB ′2=AC ′2+MC ′2. 故 MC ′2-PB ′2=AB ′2-AC ′2=(AK 2-KB ′2)-(AK 2-KC ′2)=KC ′2-KB ′2. ②由②即得①,命题得证.例2.A 、B 、C 三点共线,O 点在直线外,O 1,O 2,O 3分别为△OAB ,△OBC ,△OCA 的外心.求证:O ,O 1,O 2, O 3四点共圆. 分析:作出图中各辅助线.易证O 1O 2垂直平分OB ,O 1O 3垂直平分OA .观察△OBC及其外接圆,立得∠OO 2O 1=21∠OO 2B =∠OCB .观察△OCA 及其外接圆,立得∠OO 3O 1=21∠OO 3A =∠OCA .由∠OO 2O 1=∠OO 3O 1⇒O ,O 1,O 2,O 3共圆.利用对角互补,也可证明O ,O 1,O 2,O 3四点共圆,请同学自证. 2以“四点共圆”作为解题手段这种情况不仅题目多,而且结论变幻莫测,可大体上归纳为如下几个方面. (1)证角相等例3.在梯形ABCD 中,AB ∥DC ,AB >CD ,K ,M 分别在AD ,BC 上,∠DAM=∠CBK .求证:∠DMA =∠CKB .分析:易知A ,B ,M ,K 四点共圆.连接KM ,有∠DAB =∠CMK .∵∠DAB +∠ADC=180°,∴∠CMK +∠KDC =180°. 故C ,D ,K ,M 四点共圆⇒∠CMD =∠DKC .A B C K M N P Q B ′C ′A B C O O O O 123??A B C DK M··但已证∠AMB =∠BKA , ∴∠DMA =∠CKB .(2)证线垂直例4.⊙O 过△ABC 顶点A ,C ,且与AB ,BC 交于K ,N (K 与N 不同).△ABC外接圆和△BKN 外接圆相交于B 和 M .求证:∠BMO =90°. 分析:这道国际数学竞赛题,曾使许多选手望而却步.其实,只要把握已知条件和图形特点,借助“四点共圆”,问题是不难解决的. 连接OC ,OK ,MC ,MK ,延长BM 到G .易得∠GMC =∠BAC =∠BNK =∠BMK .而∠COK =2·∠BAC =∠GMC + ∠BMK =180°-∠CMK ,∴∠COK +∠CMK =180°⇒C ,O ,K ,M 四点共圆. 在这个圆中,由OC =OK ⇒ OC =OK ⇒∠OMC =∠OMK . 但∠GMC =∠BMK , 故∠BMO =90°. (3)判断图形形状例5.四边形ABCD 内接于圆,△BCD ,△ACD ,△ABD ,△ABC 的内心依次记为I A ,I B ,I C ,I D . 试证:I A I B I C I D 是矩形.分析:连接AI C ,AI D ,BI C ,BI D 和DI B .易得∠AI C B =90°+21∠ADB =90°+21∠ACB =∠AI D B ⇒A ,B ,I D ,I C 四点 共圆.同理,A ,D ,I B ,I C 四点共圆.此时∠AI C I D =180°-∠ABI D =180°-21∠ABC ,∠AI C I B =180°-∠ADI B =180°-21∠ADC ,∴∠AI C I D +∠AI C I B=360°-21(∠ABC +∠ADC )=360°-21×180°=270°.故∠I B I C I D =90°.同样可证I A I B I C I D 其它三个内角皆为90°.该四边形必为矩形. (4)计算例6.正方形ABCD 的中心为O ,面积为1989㎝2.P 为正方形内一点,且∠OPB =45°,PA :PB =5:14.则PB =__________ 分析:答案是PB =42㎝.怎样得到的呢?连接OA ,OB .易知O ,P ,A ,B 四点共圆,有∠APB =∠AOB =90°.A BO K N CMG故PA 2+PB 2=AB 2=1989.由于PA :PB =5:14,可求PB . (5)其他例7.设有边长为1的正方形,试在这个正方形的内接正三角形中找出面积最大的和一个面积最小的,并求出这两个面积(须证明你的论断).分析:设△EFG 为正方形ABCD 的一个内接正三角形,由于正三角形的三个顶点至少必落在正方形的三条边上,所以不妨令F ,G 两点在正方形的一组对边上. 作正△EFG 的高EK ,易知E ,K ,G ,D 四点共圆⇒∠KDE =∠KGE =60°.同理,∠KAE =60°.故△KAD 也是一个正 三角形,K 必为一个定点. 又正三角形面积取决于它的边长,当KF 丄AB 时,边长为1,这时边长最小,而面积S =43也最小.当KF 通过B 点时,边长为2·32-,这时边长最大,面积S =23-3也最大.例8.NS 是⊙O 的直径,弦AB 丄NS 于M ,P 为ANB 上异于N 的任一点,PS交AB 于R ,PM 的延长线交⊙O 于Q .求证:RS >MQ . 分析:连接NP ,NQ ,NR ,NR 的延长线交⊙O 于Q ′.连接MQ ′,SQ ′.易证N ,M ,R ,P 四点共圆,从而,∠SNQ ′=∠MNR =∠MPR =∠SPQ =∠SNQ .根据圆的轴对称性质可知Q 与Q ′关于NS 成轴对称⇒MQ ′=MQ . 又易证M ,S ,Q ′,R 四点共圆,且RS 是这个圆的直径(∠RMS =90°),MQ ′是一条弦(∠MSQ ′<90°),故RS >MQ ′.但MQ =MQ ′,所以,RS >MQ .练习题1.⊙O 1交⊙O 2 于A ,B 两点,射线O 1A 交⊙O 2 于C 点,射线O 2A 交⊙O 1 于D 点.求证:点A 是△BCD 的内心.(提示:设法证明C ,D ,O 1,B 四点共圆,再证C ,D ,B ,O 2 四点共圆,从而知C ,D ,O 1,B ,O 2五点共圆.)2.△ABC 为不等边三角形.∠A 及其外角平分线分别交对边中垂线于A 1,A 2;同样得到B 1,B 2,C 1,C 2.求证:A 1A 2=B 1B 2=C 1C 2.(提示:设法证∠ABA 1与∠ACA 1互补造成A ,B ,A 1,C 四点共圆;再证A ,A 2,B ,C 四点共圆,从而知A 1,A 2都是△ABC 的外接圆上,并注意∠A 1AA 2=90°.) 3.设点M 在正三角形三条高线上的射影分别是M 1,M 2,M 3(互不重合).求证:△M 1M 2M 3也是正三角形.4.在Rt △ABC 中,AD 为斜边BC 上的高,P 是AB 上的点,过A 点作PC 的垂线交过B 所作AB 的垂线于Q 点.求证:PD 丄QD . (提示:证B ,Q ,E ,P 和B ,D ,E ,P 分别共圆)A BC D E F KG ······5.AD,BE,CF是锐角△ABC的三条高.从A引EF的垂线l1,从B引FD的垂线l2,从C引DE的垂线l3.求证:l1,l2,l3三线共点.(提示:过B作AB的垂线交l1于K,证:A,B,K,C四点共圆)。

圆的初中数学竞赛题选

圆的初中数学竞赛题选

圆的初中数学竞赛题选文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]关于圆的问题圆的有关问题是与直线型紧密结合在一起的,因而综合性强,富于变化.圆的有关计算与证明例1 圆内接八边形的四条边长为1,另四条边长为2.求此八边形的面积.例2 在边长为1cm的正五边形,去掉所有与五边形各顶点距离都小于1c m的点,求余下部分的面积.例3三个全等的圆有一个公共点O,并且都在一个已知△ABC内.每个圆与△ABC 的两边相切.求证:△ABC的内心、外心和O点共线.例4如图35-4,在△ABC中,BD、CE为高,F、G分别为ED、BC的中点,O为外心,求证:AO∥FG.例5已知在凸五边形ABCDE中,∠BAE=3a,BC=CD=DE,且∠BCO=∠CDE=180°-2a,求证:∠BAC=∠CAD=∠DAE.例6如图35-6,AB 为定圆O 中的定弦,作⊙O 的弦C 1D 1,C 2D 2,…C 1988D 1988,对其中每一i (i=1,2,…,1988),C i D i 都被弦AB 平分于M i .过C i 、D i 分别作⊙O 的切线,两切线交于P i .求证:点P 1,P 2,…,P 1988与某定点等距离,并指出这定点是什么点.例7若凸四边形两对角线的乘积等于它的两组对边乘积之和,则此四边形内接于圆. 托勒密逆定理例8如图35-8,已知AD 、BC 是⊙O 的两条相交的弦,且B 在劣弧AD 上,⊙O 的半径为5,BC=6,AD 被BC 平分;又设从A 出发的弦只有AD 能被BC 等分,这样可以知道AB 劣弧对应的圆心角的正弦是一个有理数.如果把这个有理数化为最简分数nm,求mn. 例9(1962年北京中学生数学竞赛题)任意剪六个圆形纸片放在桌面上,使得没有一个纸片的中心落在另一纸片上或被另一纸片盖住,然后用一枚针去世扎这一堆纸片.证明:不论针尖落在哪一点,总是不能一次把六个纸片全部扎中.例10(第21届国际中学生数学竞赛题)如图35-10,平面上两圆相交,其中一交点为A.两动点各以匀速自A 点出发在不同的圆周上同向移动,这两点移动一周后同时返回到A 点.求证平面上有一定点P ,它不论在何时皆和两动点等距离.关于圆的问题例1 (第3届全国部分省市初中数学通讯赛试题)圆内接八边形的四条边长为1,另四条边长为2.求此八边形的面积.解 由弓形面积公式知所求的八边形的面积与八边形各边排列的顺序无关.不妨设八边形ABCDEFGH 如图35-1,且有AB=CD=EF=GH=2, BC=DE=FG=HA=1. 双向延长AH 、BC 、DE 、FG得正方形KLMN.故S 八边形ABCDEFGH =S 正方形KLMN -4S △ABK=.245)2(214)122(22+=⋅-+例2 (第19届全苏中学生竞赛题)在边长为1cm 的正五边形,去掉所有与五边形各顶点距离都小于1cm 的点,求余下部分的面积.解 以A 为圆心,1cm 长为半径的扇形ABE 内的点到点A 的距离都小于1cm.分别以正五边形的各顶点为圆心,1cm 长为半径作弧,以五段圆弧为边界的“曲边五边形”MNPQR 内的点到正五边形ABCDE 各顶点的距离小于1cm.五边形内余下的部分是五个等积的“曲边三角形”BMC 、CND 、DPE 、EQA 、ARB (如图35-2).考察“曲边三角形”BMC 与以∠BAM 为圆心角(等于60°)的扇形BAM 的面积之和,恰等于等边三角形ABM 与以∠CBM 为圆心角(等于108°-60°=48°)的扇形CBM 的面积之和.所以,所要求的面积为: 5S 曲边△BMC=5(S △ABM +S 扇形CBM -S 扇形BAM ) =5)615243(ππ-+=).(64352cm π-例3 (第22届国际数学竞赛题)三个全等的圆有一个公共点O ,并且都在一个已知△ABC 内.每个圆与△ABC 的两边相切.求证:△ABC 的内心、外心和O 点共线.证明 如图35-3,设三等圆为⊙A ′、⊙B ′和⊙C ′.故A ′B ′∥AB ,B ′C ′∥BC ,C ′A ′∥CA.于是△A ′B ′C ′∽△ABC.由于三等圆分别与△ABC 的两边相切,故AA ′、BB ′、CC ′相交于△ABC 内心I.显然,I 也是△A ′B ′C ′的内心.因此,△ABC 的外心E ,△A ′B ′C ′的外心又O 是三等圆的公共点,OA ′=OB ′=OC ′,因此O 即是△A ′B ′C ′的外心E ′.故E ,O 、I 三点共线.四点共圆例4 (1980年哈尔滨初中数学竞赛题)如图35-4,在△ABC 中,BD 、CE 为高,F 、G 分别为ED 、BC 的中点,O 为外心,求证:AO ∥FG.证明 过A 作⊙O 的切线AT.∵BD 、CE 为高,∴B 、C 、D 、E 四点共圆.∴∠TAC=∠ABC=∠ADE∴AT ∥ED.又AO ⊥AT ,∴AO⊥ED.又∵G 为BC 中点,∴DG=21BC=EG.而EF=DF ,∴FG ⊥ED.故AO∥FG.例5(1990年全国初中数学竞赛题)已知在凸五边形ABCDE 中,∠BAE=3a,BC=CD=DE ,且∠BCO=∠CDE=180°-2a ,求证:∠BAC=∠CAD=∠DAE.证明 连结BD 、CE.∵BC=CD=DE ,∠BCD=∠CDE ,∴△BCD ≌△CDE.又∠BCD=180°-2a,∴∠CBD=∠CDB=∠DCE=∠DEC=a,∴B 、C 、D 、E 四点共圆,且BC=CD=DE=2a.∴BCDE=6a.又∠BAE=3a , ∴A 、B 、C 、D 、E 共圆.∴∠BAC=∠CAD=∠DAE=a.例6 (1988年广州等五市数学联赛题)如图35-6,AB为定圆O中的定弦,作⊙O的弦C1D1,C2D2,…C1988D1988,对其中每一i(i=1,2,…,1988),CiDi都被弦AB平分于Mi.过Ci、Di分别作⊙O的切线,两切线交于Pi.求证:点P1,P2,…,P1988与某定点等距离,并指出这定点是什么点.证明连OCi 、ODi,对每个i(i=1,2,…1988),∵Ci Di均被AB平分于Mi,∴Ci Mi·DiMi=AMi·BMi.①又PiCi,PiDi分别切⊙O于Ci、Di,故知O、Ci、Pi、Di共圆,且OPi通过CiDi的中点Mi.∴CiMi·DiMi=PiMi·OMi. ②由①、②得OMi·MiPi=MiA·MiB.∴Pi和O、A、B共圆.但O、A、B为定点,∴Pi和⊙OAB的圆心距离相等.即点P1,P2,…,P1988与定点等距离,这定点为⊙OAB的圆心.例7若凸四边形两对角线的乘积等于它的两组对边乘积之和,则此四边形人接于圆.证明如图35-7,在凸四边形ABCD中,设AC·BD=AB·CD+AD·BC.(※)作∠ECD=∠ACB,∠EBC=∠CAD,于是△BEC∽△ADC,∴ACBCADBE=ACBCDCEC=②由①得BE·AC=AD·BC. ③由②及∠1=∠2,可得△ABC∽△DCE.∴∠3=∠4,.DCACDEAB=③+④即有(BE+DE)·AC=AD ·BC+AB ·DC. ⑤比较⑤式与(※)式 得BE+DE=BD. 这说明,E 在BD 上,∠3与∠BDC 重合. ∴∠BDC=∠BAC.故A 、B 、C 、D 四点共圆. 此例是托勒密逆定理.1.杂题例8(第1届美国数学邀请赛题)如图35-8,已知AD 、BC 是⊙O 的两条相交的弦,且B 在劣弧AD 上,⊙O 的半径为5,BC=6,AD被BC 平分;又设从A 出发的弦只有AD 能被BC 等分,这样可以知道AB 劣弧对应的圆心角的正弦是一个有理数.如果把这个有理数化为最简分数n m,求mn.分析设AD 、BC 交于M ,M 为AD 中点,则点M 的轨迹是在A 点与⊙O 内切的半径为25的⊙P ,依题意BC 与⊙P 切于点M. 要求mn ,须求sin ∠AOB=nm,亦是求cos ∠AOB 之值.作ON ⊥BC 于N ,连OB ,则 BN=BC 21=3,ON=.422=-BN OB作PQ ⊥ON 于Q,连PM,则PQNM 为矩形,故有QN=PM=OP=21AO=25,OQ=ON-QN=,23 MN=PQ=,222=-OQ OP BM=BN-MN=1 BP=.22922=+PM BM 在△POB 中,由余弦定理, cos ∠AOB=BOPO BP BO PO⋅⋅-+2222=5252)2921(5)25(222⋅⋅-+=2524,∴sin ∠AOB=AOB ∠-2cos 1=.257)2524(12=-∴mn=7×25=175.例9(1962年北京中学生数学竞赛题)任意剪六个圆形纸片放在桌面上,使得没有一个纸片的中心落在另一纸片上或被另一纸片盖住,然后用一枚针去世扎这一堆纸片.证明:不论针尖落在哪一点,总是不能一次把六个纸片全部扎中.分析 这命题等价于:平面上有六个圆,每个圆心都在其余各圆的外部,证明平面上任意一点都不会同时在这六个圆内部. 证明 (反证法)如图35-9,设平面上有一点M 同时在这六个圆内部,连结六个圆心: MO 1,MO 2,…,MO 6.则∠O 1MO 2+∠O 2MO 3+…+∠O 6MO 1=360°.因此,至少有一个角不大于60°,不妨设∠O1MO2≤60°,即γ≤60°.又,α+β+γ=180°则α,β中必有一个不小于60°.不妨设β≥60°,则β≥γ.∴O1O2≤O1M<r1(r1为圆⊙O1的半径).故O2在⊙O1内,这与题设矛盾,这就证明了M点不可能同时在六个圆的内部.例10(第21届国际中学生数学竞赛题)如图35-10,平面上两圆相交,其中一交点为A.两动点各以匀速自A点出发在不同的圆周上同向移动,这两点移动一周后同时返回到A点.求证平面上有一定点P,它不论在何时皆和两动点等距离.解设⊙O1与⊙O2相交于A和A′并设两动点Q1和Q2分别在⊙O1和⊙O2上,使∠AO1Q1=∠AO2Q2.连Q1A′Q2A′.因为圆周角等于同弧所对圆心角的一半,故∠AA′Q1=∠21AO1Q1,∠AA′Q2=π-∠AXQ2=π-21∠AO2Q2.∴∠AA′Q1+∠AA′Q2=π.即有Q1、B、Q2三点共线.过A点作MN⊥AA′分别交两圆于M、N,(如图35-11),设Q1和Q2表示两动点在任一时刻的位置.由圆内接四边形两对角互补可知∠MQ1A′=∠A′Q2N=.2作Q1Q的中垂线,交MN于它的中点P,点P就是所求的定点.它显然和Q1,Q2等距离.后记;。

【九年级数学几何培优竞赛专题】专题1 巧构圆,妙解题【含答案】

【九年级数学几何培优竞赛专题】专题1 巧构圆,妙解题【含答案】

第一章 圆专题1巧构圆,妙解题知识解读在处理平面几何中的许多问题时,常常需要借助圆的性质,问题才能解决.而有时候我们需要的圆并不存在,这就需要我们能利用已知的条件,借助图形的特点把实际存在的圆找出来,从而运用圆中的性质来解决问题,往往有事半功倍的效果,使问题获得巧解或简解,这是我们解题必须要掌握的技巧. 作辅助圆的常用依据有以下几种:①圆的定义:若几个点到某个固定点的距离相等,则这几个点在同一个圆上; ②有公共斜边的两个直角三角形的顶点在同一个圆上;③对角互补的四边形四个顶点在同一个圆上,简记为:对角互补,四点共圆;④若两个三角形有一条公共边,这条边所对的角相等,并且在公共边的同侧,则这两个三角形有公共的外接圆,简记为:同旁张等角,四点共圆.培优学案典例示范例1将线段AB 绕点A 逆时针旋转60°得到线段AC ,继续旋转(0120)αα<<得到线段AD ,连接CD . (1)连接BD .①如图1-1-1①,若α=80°,则∠BDC 的度数为;②在第二次旋转过程中,请探究∠BDC 的大小是否改变?若不变,求出∠BDC 的度数;若改变,请说明理由;(2)如图1-1-1②,以AB 为斜边作Rt △ABE ,使得∠B =∠ACD ,连接CE ,DE .若∠CED =90°,求α的值.图1-1-1②①EDCBADBA【提示】(1)①∠BDC =∠ADC -∠ADB ,利用“等边对等角及三角形内角和为180°”可求出∠BDC 为30°; ②由题意知,AB =AC =AD ,则点B ,C ,D 在以A 为圆心,AB 为半径的圆上,利用“一条弧所对的圆周角等于它所对的圆心角的一半”可快速求出∠BDC 仍然为30°;(2)过点A 作AM ⊥CD 于点M ,连接EM ,证明“点A ,C ,D 在以M 为圆心,MC 为半径的圆上”.跟踪训练如图1-1-2,菱形ABCD 中,∠B =60°,点E 在边BC 上,点F 在边CD 上.若∠EAF =60°,求证:△AEF 是等边三角形.角相等”获证.图1-1-2BFEDC A例2 (1)如图1-1-3①,正方形ABCD 中,点E 是BC 边上的任意一点,∠AEF =90°,且EF 交正方形外角平分线CF 于点F .求证:AE =EF ;(2)若把(1)中的条件“点E 是BC 边上的任意一点”,改为“点E 是BC 边延长线上的一点”,其余条件不变,如图1-1-3②,那么结论AE =EF 是否还成立?若成立,请证明;若不成立,请说明理由.①②图1-1-3A B E CFDFDCEBA【提示】连接AC ,AF ,显然∠ACF =∠AEF =90°,所以A ,E ,C ,F 四点在以AF 为直径的圆上. (1)如图1-1-4①,当点E 在BC 边上,则∠AFE =∠ACE =45°,于是△AEF 是等腰直角三角形,AE =EF 获证;(2)如图1-1-4②,当点E 在BC 边的延长线上,则∠F AE =∠FCE =45°,于是△AEF 是等腰直角三角形,AE=EF 获证.F图1-1-4②①【拓展】本题将“正方形”改为“正三角形”,“∠AEF =90°”相应改为“∠AEF =60°”,仍然可以运用构造“辅助圆”的思路.还可进一步拓展为“正n 边形”,360180AEF =-∠,仍然可延续这种思路,读者可自己完成.跟踪训练已知,将一副三角板(Rt △ABC 和Rt △DEF )如图1-1-5①摆放,点E ,A ,D ,B 在一条直线上,且D 是AB的中点.将Rt △DEF 绕点D 顺时针方向旋转角(090)αα<<,在旋转过程中,直线DE ,AC 相交于点M ,直线DF ,BC 相交于点N ,分别过点M ,N 作直线AB 的垂线,垂足为G ,H . (1)如图1-1-5②,当α=30°时,求证:AG =DH ; (2)如图1-1-5③,当α=60°时,(1)中的结论是否成立?请写出你的结论,并说明理由; (3)当090α<<时,(1)中的结论是否成立?请写出你的结论,并根据图1-1-5④说明理由.③④图1-1-5②①HGEAF D C (N )BFE DCBA【提示】本题除了常规解法外,还可考虑构造“辅助圆”.例3 已知,在△ABC 中,AB =AC ,过A 点的直线a 从与边AC 重合的位置开始绕点A 按顺时针方向旋转角θ,直线a 交BC 边于点P (点P 不与点B ,点C 重合),△BMN 的边MN 始终在直线a 上(点M 在点N 的上方),且BM =BN ,连接CN . (1)当∠BAC =∠MBN =90°时.①如图1-1-6①,当θ=45时,∠ANC 的度数为 ; ②如图1-1-6②,当45θ≠时,①中的结论是否发生变化?说明理由;(2)如图1-1-6③,当∠BAC =∠MBN ≠90°时,请直接写出∠ANC 与∠BAC 之间的数量关系,不必证明.③②C【提示】由于在旋转过程中不变的关系是:∠BAC =∠MBN ,AB =AC ,BM =BN ,易知∠ABC =∠ACB =∠BMN =∠BNM .由∠ACB =∠BNM 可知A ,B ,N ,C 四个点在同一个圆上(如图1-1-7),则∠ANC =∠ABC =1902BAC -∠,这样思考,所有问题都会迎刃而解.跟踪训练在△ABC 中,BA =BC ,∠BAC =α,M 是AC 的中点,P 是线段BM 上的动点,将线段P A 绕点P 顺时针旋转2α得到线段PQ . (1)若α=60°且点P 与点M 重合(如图1-1-8①),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出∠CDB 的度数;(2)在图1-1-8②中,点P 不与点B ,M 重合,线段CQ 的延长线与射线BM 交于点D ,猜想∠CDB 的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ =QD ,请直接写出α的范围.①图1-1-8②DP BACMQQM (P )CB A例4如图1-1-9,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.(1)使∠APB=30°的点P有个;(2)若点P在y轴上,且∠APB=30°,求满足条件的点P的坐标;(3)当点P在y轴上移动时,∠APB是否有最大值?若有,求点P的坐标,并说明此时∠APB最大的理由;若没有,也请说明理由.图1-1-9【提示】(1)已知点A、点B是定点,要使∠APB=30°,只需点P在过点A、点B的圆上,且弧AB所对的圆心角为60°即可,显然符合条件的点P有无数个.(2)结合(1)中的分析可知:当点P在y轴的正半轴上时,点P是(1)中的圆与y轴的交点,借助于垂径定理、等边三角形的性质、勾股定理等知识即可求出符合条件的点P的坐标;当点P在y轴的负半轴上时,同理可求出符合条件的点P的坐标.(3)由三角形外角的性质可证得:在同圆或等圆中,同弧所对的圆周角大于同弧所对的圆外角.要∠APB最大,只需构造过点A、点B且与y轴相切的圆,切点就是使得∠APB最大的点P,然后结合切线的性质、三角形外角的性质、矩形的判定与性质、勾股定理等知识即可解决问题.跟踪训练已知,如图1-1-10①,,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点O重合),且AB=43,在∠MON的内部,△AOB的外部有一点P,且AP=BP,∠APB=120°.(1)求AP的长;(2)求证:点P在∠MON的平分线上.(3)如图1-1-10②,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,P A的中点,连接CD,DE,EF,FC,OP.若四边形CDEF的周长用t表示,请直接写出t的取值范围.图1-1-10例5已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动.(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;(2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;(3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由.、① ②③图1-1-11【提示】本题除了建立方程模型,将问题转化为方程是否有解的判断外,还可以通过构造辅助圆,将问题转化为直线与圆的位置关系来讨论.跟踪训练1.如图1-1-12,直线y=﹣x+3与x,y轴分别交于点A,B,与反比例函数的图象交于点P(2,1).(1)求该反比例函数的关系式;(2)设PC⊥y轴于点C,点A关于y轴的对称点为A′;①求△A′BC的周长和sin∠BA′C的值;②对大于1的常数m,求x轴上的点M的坐标,使得sin∠BMC1m .图1-1-12【提示】(1)①由直线y=-x+3写出OA=3,OB=3;由等腰直角三角形的边长关系,可得AB2;由PC⊥y轴,可得QC=1,BC=2;由对称知A'B=AB2,OA'=0A=3,然后用勾股定理求出A'C的长,也就可以求出△A'BC的周长;(2)②如果选用上一题的思路求∠BMC的正弦值,会陷入计算的麻烦,这里采用转化的思想,找到外接圆的半径,另外还应分类讨论。

初中数学竞赛第十七讲圆和圆的位置关系(含解答)

初中数学竞赛第十七讲圆和圆的位置关系(含解答)

第十七讲 圆和圆的位置关系【趣题引路】如图,在篮球比赛中,进攻一方都想尽可能接近对方球篮,•但又不能轻易进入限制区,因而进攻一方往往有一两名队员站在限制区外一点,伺机接球后转身投篮,他们站在何处比较有利?解析 现以篮圈中心O 为圆心,作与限制区两边相切的圆,切点为E 、F,这时E 、F 两处并非最佳点,因为横转一步后到A 、B 或C 、D 处,反而离篮圈远了;而B 、D•两处只能向一边转身到E 和F 点投篮,因而在A 、C 两处,即可转身到E 或F 投篮,•又可向另一侧转身插入限制区后投篮,因此,高大队员站在A 、C 两处最有利.【知识延伸】圆与圆的位置关系有外离、外切、相交、内切、内含五种情形.•判定两圆的位置关系有如下方法:1.由两圆交点的个数确定;2.由计算两圆的半径与圆心距的大小量化确定;3.由两圆的公切线的条数确定.为了沟通两圆,常常添加与两圆都有联系的一些辅助线.在解两圆相交问题时,•常用的辅助线有:1.连结公共弦━━目的在于利用圆周角的性质和圆内接四边形的性质来沟通角与角的联系;2.作连结线━━目的在于利用“连心线垂直平分公共弦”及垂径定理.3.连结圆心与两圆交点的线段━━目的在于得到等弦、等弧及相等的圆心角,•特别是一个圆的圆心在另一个圆上时,常作这种辅助线.涉及两圆相切问题时,添加的辅助线有:1.过切点作两圆的公切线,利用弦切角性质或切线的有关性质;2.作连心线,利用连心线过切点的性质,为解题提供条件.在解题过程中,我们经常遇到与外切两圆有关的两个直角三角形.(1) 如图1,⊙O 1与⊙O 2相外切于点P,AB 为两圆的外公切线,切点为A 、B,•过P 作内公切线PC 交AB 于C,则△CO 1O 2是直角三角形.解析 ∵CA=CP,C O 1平分∠ACP.同理C O 2平分∠BCP,∴∠O 1CO 2=90°,则△C O 1O 2是直角三角形.(2) 如图2,⊙O 1与⊙O 2相外切于点P,AB 为两圆的外公切线,切点为A 、B,•则△PAB 为直角三角形.(1) (2) (3)解析 过P 作内公切线PC 交AB 于点C,则CA=CP=CB,即CP=12AB, 所以△PAB 是直角三角形.(3) 若⊙O 1和⊙O 2外离,如图3,O 1O 2与⊙O 1,⊙O 2分别交于C 、D 两点,•延长AC 、BD 交于点P,AP 与BP 是否仍垂直?解析 连结A O 1,BO 2,由O 1A ⊥AB,O 2B ⊥AB 可知O 1A ∥O 2B,因此∠O 1+∠O 2=180°.而△O 1AC,△O 2B D 都是等腰三角形.∴∠A CO 1+∠BDO 2=11802O ︒-∠+21802O ︒-∠=90°. ∴∠DCP+∠CDP=90°,则∠CPD=90°,即AP ⊥BP.若⊙O 1与⊙O 2相交,如图4,O 1O 2与⊙O 1,⊙O 2分别交于点C 、D.AC 、BD 交于点P.AP 与BP 是否仍垂直?显然与上面相同的办法可证得AP ⊥BP.(4) (5)我们常把三个切点A 、B 、P 构成的三角形称作“切点三角形”.如图5,•切点三角形还具有如下性质:1.AB 边上的中线等于AB 的半;2.BP 延长线交⊙O 1于点D,则AD 必为⊙O 1的直径;3.由AP ⊥BD,AD ⊥AB.可得到若干线段的等积式.遇到涉及两圆外切一类的几何命题,运用上述这些性质就会迎刃而解.例 已知,如图,⊙O 1和⊙O 2外切于点O,以直线O 1O 2为x 轴,点O•为坐标原点建立直角坐标系,直线AB 切⊙O 1于点B,切⊙O 2于点A,交y 轴于点C(0,2),交x 轴于M,•BO 的延长线交⊙O 2于点D,且OB:OD=1:3.(1)求⊙O 2的半径长;(2)求直线AB 的解析式;(3)在直线AB 上是否存在点P,使△MO 2P 与△MBO 相似?若存在,求出点P 坐标;若不存在,说明理由.解析 (1)连结BO 1,DO 2,则∠D=∠O 1BD.∴BO 1∥DO 2,∴O 1O:O 2O=BO:OD=1:3.∵CB=CO=CA,△ABO 为直角三角形,C(0,2),∴AB=4.作O 1N ⊥AO 2于点N,设B O 1=r,则A O 2=3r,对△O 1NO 2有16r 2=4r 2+16,∴12r 2=16,r=23则∴⊙O 2的半径为(2)在Rt △O 1NO 2中,N O 2= O 1O 2,∴∠N O 1O 2=30°.∵O 1N ∥AB,∴∠CMO=30°.在Rt △COM 中,tan30°=CO OM ,∴OM=tan 30CO =︒∴点M 坐标为设直线AB 的解析式为y=kx+b,则20b b =⎧⎪⎨=-+⎪⎩∴32k b ⎧=⎪⎨⎪=⎩∴直线AB 的解析式为y= 3x+2; (3)∵∠BO 1M =60°,O 1B=O 1O,∴∠BOM=30°.∴△MOB 是等腰三角形,•且顶角∠MBO=120°,若存在满足条件的点P,则∠M O 2P=30°或∠M O 2P=120°.①当∠MO 2P=30°时,O 2P 是∠AO 2O 的平分线.∵OC 是∠AO 2O 的平分线,∴点P 与点C 重合,∴点P 的坐标为(0,2).②当∠M O 2P=120°时,作PH 垂直x 轴于点H,则∠PO 2H=60°.∵点P 在直线y= x+2上,∴设点P 坐标为(a, 3a+2), 则PH=3O 2H在Rt △PO 2H 中,tan ∠PO 2H=2PH O H ,2+解得∴点P 的坐标为因此在直线AB 上存在点P,使△MO 2P 与△MOB 相似,点P 坐标为(0,2)或点评(1)作两条过切点的半径,再平移外公切线,使之构成以圆心距为斜边,两条半径之差及外公切线的长分别为直角边的直角三角形,•这是两圆外切时最常见的辅助线之一;第(2)小题是(1)小题的深化;第(3)小题是一个存在性问题,其解题方法一般是:假设存在━━依假设求解或推证━━下结论.第(3)小题也是一个比较好的分类讨论问题,解答此类问题,要加倍小心,谨防失解.【好题妙解】佳题新题品味例1 如图,⊙O 和⊙O ′相交A 、B 两点,且⊙O ′过⊙O 的圆心,直线OO ′交⊙O 于C 、D 两点,交⊙O ′于点P,AB 与OO ′交于点E.求证:(1)P A 2=PE ·PO;(2)PE ·EO=CE ·ED;(3) 22PA CE PD ED =. 证明 (1)连结AO,∵PO 是⊙O ′的直径,∴∠PAO=90°,∵⊙O 与⊙O ′相交于A 、•B,∴AB ⊥PO 于点E,∴△PAO ∽△PEA.∴ PA PE PO PA=,∴PA 2=PE ·PO; (2)在⊙O ′中,PE ·EO=AE 2,在⊙O 中,AE 2=CE ·ED,∴PE ·EO=CE ·ED.(3)连结AC,AD.∵AD 切⊙O 于点A,∴∠PAC=∠D.∵∠P=∠P,∴△PAC ∽△PDA.∴PA ACPD AD=, ∴2222PA ACPD AD=∵CD是⊙O的直径,∴∠CAD=90°.∵AE⊥CD,∴△ACE∽△DCA,∴AC CE CD AC=.∴AC2=CE·CD.同理,得A D2=ED·CD.∴22AC CE CD CE AD ED CD ED ==∴22PA CE PD ED=点评(1)将P A2=PE·PO化为PA PEPO PA=,由“三点定形法”可知,能证△PAO∽△PEA就行了;第(2)小题利用公共弦进行代换,是相交两圆用的方法;第(3)•小题要证两条线段的平方比等于另两条线段的比,•用到的方法是先通过相似三角形得到恰当的四条线段的比,再将此比例式两边分别平方,•然后再将过渡的两条线的平方分别交换成两条线段的积,从而证得结论成立,这种方法是证明类似第(3)•小题的比例线段的常用方法.例2如图,⊙O1与⊙O2内切于点P,⊙O2的弦BE与⊙O1相切于点C,PB•交⊙O1于D,PC 的延长线交⊙O2于A,连结AB、CD、PE.求证:(1)①∠BPA=∠EPA,②AB BC AC BD=;(2)若⊙O1的切线BE经过⊙O2的圆心,⊙O1、⊙O2的半径分别为r、R,•其中R•≥2r,如图.求证:PC·AC为定值.证明 (1)①过点P作两圆的公切线MN,则∠MPB=∠PCD=∠A,∴CD∥AB.∴∠ABC=∠ECD.∵BC为⊙O1的切线,∴∠BCD=∠BPA,∵∠ABC=∠EPA,∴∠BPA=∠EPA.②∵∠ABC=∠BPA,∠A=∠A,∴△ABC ∽△APB,∴AB BC PA PB =, ∴ABPA BCPB =,∵CD ∥AB,∴PA AC PB BD =, ∴AB BC AC BD = 即AB BC AC BD=. (2)连结O 1C,PO 2,则PO 2过点O 1,且O 1C=r,O 1O 2=R-r.∵BE 与⊙O 1相切,∴O 1C•⊥BE,在Rt △CO 1O 2中CO 2, ∴BC=BO 2+CO 2=,EC=E O 2-CO 2.∵PC ·AC=EC ·)=2Rt),∴PC ·AC 为定值.点评圆与圆的相交,相切等问题是研究圆与圆位置关系的重点,•解题时要熟练地掌握两圆的位置关系的判定,能灵活地用于解题中,•特别是对带有规律性的辅助线的添加更应熟悉.中考真题欣赏例1 (2003年天津市中考题)已知,如图,⊙O 1与⊙O 2外切于点A,BC•是⊙O 1和⊙O 2的公切线,B 、C 为切点.求证:(1)AB ⊥AC;(2)若r 1,r 2分别为⊙O 1,⊙O 2的半径,且r 1=2r 2,求AB AC的值. 证明:过点A 作两圆的内公切线交BC 于点O. ∵OA 、OB 是⊙O 1的切线,∴OA=OB.同理OA=OC,∴OA=OB=OC,于是,△BAC 是直角三角形,∠BAC=90°,∴AB ⊥AC.解析:(2)连结OO 1,OO 2,与AB 、AC 分别交于点E 、F,∵OA,OB 是⊙O 1的切线,∴O O 1⊥AB,同理OO 2⊥AC.根据(1)的结论AB ⊥AC,可知四边形OEAF 是矩形,有∠EOF=90°.连结O 1O 2,有OA ⊥O 1O 2,在Rt △O 1OO 2中,有Rt △O 1AO ∽Rt △OAO 2.∴12O A OA O A OA=,于是O A 2=O 1A·O 2A=r 1·r 2=2r 22. ∴又∵∠ACB 是⊙O 2的弦切角,∴∠ACB=∠A O 2O.在Rt △OAO 2中,tan ∠A O 2O=2OA O A∴AB AC=tan ∠ACB=tan ∠AO 2点评•作两圆的公切线和与外切两圆有关的两个直角三角形是解两圆相切问题的关键. 例2 (2002年山西省中考题)如图,已知,A 是⊙O 1、⊙O 2的一个交点,•点M 是O 1O 2的中点,过点A 的直线BC 垂直于MA,分别交⊙O 1、⊙O 2于B 、C.(1)求证:AB=AC.(2)若O 1A 切⊙O 2于点A,弦AB,AC 的弦心距分别为d 1,d 2,求证:d 1+d 2=O 1O 2.(3)在(2)的条件下,若d 1d 2=1,设⊙O 1、⊙O 2的半径分别为R 、r.求证:R 2+r 2=R 2r 2.证明:(1)分别作O 1D ⊥AB 于点D,O 2E ⊥AC 于点E,则AB=2AD,AC=2AE.∵AM ⊥BC,∴O 1D ∥AM ∥O 2E.∵M 为O 1O 2的中点,∴AD=AE,∴AB=AC; (2)∵O 1A 切⊙O 2于点A,∴O 1A ⊥O 2A .又∵M 为O 1O 2的中点,∴O 1O 2=•2AM.•在梯形O 1O 2E D 中,O 1D+O 2E=2AM,O 1D+O 2E=O 1O 2.即d 1+d 2=O 1O 2. (3)∵O 1A ⊥O 2A,∴∠AO 1D=∠O 2AE.∴Rt △O 1AD ∽Rt △AO 2E.∴1122O D O A AD O E AE O A==, 即12d AD R d AE r==∴AD ·AE=d 1·d 2=1. 由(1),(2)知AD=AE=1,O 1O 2=d 1+d 2.∴d 1=R r ,d 2=r R, ∴R 2+r 2=O 1O 22=(d 1+d 2)2=(R r +r R )=22222()R r R r , ∴R 2+r 2=R 2r 2.点评构建直角梯形O 1DEO 2,可证AD=AE,从而可得AB=AC.对于(2)因为△AO 1O 2为Rt △,AM 为△AO 1O 2斜边上的中线,所以O 1O 2=2A M,从而不难证明O 1D+O 2E =2AM.对于(3)•可构建以R 、r 为边的相似三角形,由(1)(2)的结论,可证得R 2+r 2=R 2r 2.竞赛样题展示例1 (2000年全国初中联赛试题)如图,⊙O 1与⊙O 2内切于点P,⊙O 2•的一弦AB 与⊙O 1相切于点Q,PQ 连线与⊙O 2相交于R,连结BR.求证:(1)AR=BR;(2)B R 2=PR ·QR.证明 (1)因⊙O 1,⊙O 2内切于点P,故O 2、O 1、P 三点共线,分别连结O 2P,O 2R,•O 1Q. 因AB是⊙O 1的切线,∴O 1Q ⊥AB.在等腰△O 1PQ 和等腰△O 2PR 中,∵∠O 1PQ=•∠O 2PR,∴∠PO 1Q=∠PO 2R,即有O 1Q ∥O 2R ,但O 1Q ⊥AB,∴O 2R ⊥AB,于是AR=BR.(2)连结PB,∵AR=BR,∴∠RBQ=∠RPB. 又∵∠BRQ=∠PRB,∴△BRQ ∽△PRB.∴BR:PR=QR:BR,故B R 2=PR ·QR.点评对于(1),连O 2R,利用同圆半径构成等腰三角形来证明.对于(2),连结BP,•证△BRQ ∽△PRB 即可.例2 (2001年第二届全澳门校际初中数学竞赛)如图,设大圆半径为R,•大圆内三个小圆两两相切,且都与大圆相切,它们的半径分别为2r,r 和r,试求r R之值. 解析 如图,点O 、B 均在图A 和图A ′的公切线上,•所以只需考虑图形的一半即可.设MO=x,MB=y,则MN=x+R.又∵MN=y+2r,于是,由x+R=y+2r,得x=y-R+2r.又AO=•OP-AP=R-r,AB=AK+KB=3r,由勾股定理,得y 2=MB 2=AB 2-A M 2=8r 2,即从而 类似地,x 2=MO 2=AO 2-A M 2=R 2-2Rr.故]2=R 2-2Rr即2r,∴r R =点评由圆的对称性只研究图形一半即可,通过两圆内切,•外切半径圆心距之间的关系,由勾股定理建立起方程,从而使问题获解.全能训练A 卷1.如果两圆相切,它们半径分别为3和5,那么它们的圆心距为________.2.已知⊙O 1与⊙O 2外切,半径分别为1cm,3cm,那么半径为5cm,且与⊙O 1、•⊙O 2都相切的圆可以共作出_________个.3.已知两圆相交,半径分别为5cm 和4cm,公共弦长为6cm,求这两圆的圆心距.4.已知两相交圆的半径分别为2,3,求圆心距d 的取值范围.5.如图,⊙O 1与⊙O 2相互外切且半径之比为2:3,O 1M 切⊙O 2于M,•O 2N •切⊙O 1于N, 笔求21O N O M的值.6.如图,已知⊙O 与⊙O ′相交于A 、B 两点,过点A 作⊙O ′的切线交⊙O 于点C,过点B 作两圆的割线分别交⊙O 、⊙O ′于点E 、F,EF 与AC 相交于点P.(1)求证: 22PE PF PC PB; (2)当⊙O ′与⊙O 为等圆且PC:CE:EP=3:4:5时,求△ECP 与△FAP 的面积的比值.A卷答案:1.8或2,当两圆外切时,圆心距为8;当两圆内切时,圆心距为2.2.4个.①与⊙O1,⊙O2都外切的圆有两个;②与⊙O1外切,与⊙O2•内切的圆有一个;③与⊙O1内切,与⊙O2外切的圆有一个.3.(1)当O1O2在公共弦AB的同侧时,O1O2(2)当O1、O2在公共弦AB•的异侧,O1O24.1<d<5.5.连结O1O2,O1N,O2M,则O1N⊥O2N,O2M⊥O1M.设⊙O1、⊙O2的半径分别为2x,•3x,则O1O2=5x,∴N O21∴2144O NO M x==.6.(1)连结AB,有∠CEB=∠F,∴EC∥AF.∴PE PFPC PA=,即2222PE PFPC PA=.又∵PA2=PB·PF,∴22PE PF PC PB=;(2)连结AE,由(1)可知△PEC∽△PFA,PC:CE:EP=3:4:5,∴PA:FA:PF=3:4:•5.•设PC=3x,CE=4x,PE=5x,PA=3y,FA=4y,PF=5y,则EP2=PC2+CE2,PF2=PA2+FA2,∴∠C=90°,∠CAF=90°.∴AE为⊙O的直径,AF为⊙O′的直径,又⊙O与⊙O′是等圆,∴AE=AF=•4y,∵A C2+CE2=AE2,∴(3x+3y)2=(4y)2-(4x)2.∴25x2+18xy-7y2=0.∴25x=7y,725xy=,∴S△ECP:S△FAP=x2:y2=49:625.B 卷1.如图1,半径为R 和r(R>r)的两圆⊙O 1与⊙O 2相交,公切线与连心线的夹角为30°,那么两圆公切线的长AB 等于( )A. 12(1) (2) (3)2.如图2,⊙O 1和⊙O 2内切于点P,⊙O 2的弦AB 经过⊙O 1的圆心O 1,交⊙O 1•于C 、D 点,其中AC:CD:DB=3:4:2,则⊙O 1和⊙O 2的直径之比为( )A.2:7B.2:5C.1:4D.1:33.如图3,⊙O 1与⊙O 2外切于点A,两圆的一条外公切线与⊙O 1相切于点B.若AB 与两圆的另一条外公切线平行,则⊙O 1与⊙O 2的半径之比为( )A.1:2B.3:4C.1:3D.2:54.如图,⊙O 与⊙O 1内切于点A,直线OO 1交⊙O 于点B,交⊙O 1于另一点F.•过B 点作⊙O 1的切线,切点为D,交⊙O 于点C,DE ⊥AB,垂足为E.(1)求证:CD=DE;(2)将两圆内切改为外切,其他条件不变,(1)中的结论是否成立?•请证明你的结论.5.如图,已知⊙O1和⊙O2外切于点A,BC是⊙O1和⊙O2的公切线,切点为B、C,连结BA并延长交⊙O1于D,过D作CB的平行线交⊙O2于点E、F.(1)求证:CD是⊙O1的直径;(2)试判断线段BC、BE、BF的大小关系,并证明你的结论.6.如图,D、E是△ABC边BC上的两点,F是BA延长线上一点,∠DAE=∠CAF.(1)判断△ABD的外接圆与△AEC的外接圆的位置关系,并证明你的结论.(2)若△ABD的外接圆半径是△AEC的外接圆半径的2倍,BC=6,AB=4,求BE的长.B卷答案:1.C.连O1A,O2B,过O2作O2E⊥O1A,在Rt△O1O2E中,可得R-r).2.D.过P作⊙O2的直径交⊙O2于Q,∵AC:CD:DB=3:4:2,可设AC=3k,CD=4k,DB=2k,AO1·O2B=O1P·O1Q,AO1=5k,O1B=4k,O1P=2k,∴5k·4k=2k·O1Q,∴O1Q=10k,∴⊙O2•直径PQ=12k,∴CD:PQ=4k.12k=1:3.3.C.连结O1C,O2D,过O1作O2D的垂线,垂足为E,两圆半径分别为r1,r2,由对称性可得∠C O1B=∠CO1A=∠AO1B=120°.故∠O2O1E=30°,于是r1+r2=2(r2-r1)•,•∴r1:r2=1:3.4.(1)连结DF,AD,AC,证Rt△EDA≌Rt△CDA即可.(2)成立,画图,证法同(1).5.(1)过点A作外公切线,连结AC,可证BA⊥AC,连结CD,则CD所对的圆周角为90°,故CD是⊙O1的直径.(2)BE=BF=BC.连结AE,△EBA∽△DBE,B E2=BA·BD.又BC2=BA·BD,∴BE=•CB.•∵∠CBE=∠BEF,∠CBE=∠EFB,∴∠EFB=∠BEF.∴BF=BE.6.(1)两圆外切,作⊙ABD的切线L交DE于H,延长BA交⊙AEC于F,可证∠HAE=∠C.•再证AH也是⊙AEC的切线.(2)延长DA交⊙AEC于G,连结GF,可证△ADB∽△AGF,∴AB:AF=2(等于两圆的半径)∵AB=4,∴AF=2.∵BA·BF=BE·BC,∴BE=4.。

初中数学竞赛专题-第27章 圆的解析性质及应用

初中数学竞赛专题-第27章  圆的解析性质及应用

第二十七章 圆的解析性质及应用【基础知识】圆有如下一系列有趣的解析性质:性质1 圆心为(,)a b ,半径为r 的圆的方程为222()()x a y b r -+-=.性质2 二次方程表示圆的方程所应满足的条件是2240D E F +->,且220x y Dx Ey F ++++=. 性质3 圆心为(,a b ),半径为r 的圆的参数方程为cos sin x a r y b r θθ=+⋅⎧⎨=+⋅⎩(θ为参数).性质 4 与两定点(,0)a ,(,0)b (a b ≠)距离的比为mn(n m ≠且0,0n m >>)的点的轨迹是圆:22222222()an bm mn a b x y n m n m ⎛⎫--⎡⎤-+= ⎪⎢⎥--⎣⎦⎝⎭. 性质 5 与两定点(,0)a ,(0,)c 的距离的比为mn (n m ≠且0n >,0m >)的轨迹是圆:2222an x n m ⎛⎫- ⎪-⎝⎭ 2222222()cm mn a c y n m n m ⎛⎫+⎡⎤++= ⎪⎢⎥--⎣⎦⎝⎭. 性质6 以点11(,)A x y ,22(,)B x y 为圆的直径两端点的圆的方程为 1212()()()()0x x x x y y y y --+--=.注 上述方程可变形为2212121212()()0x y x x x y y y x x y y +-+-+++=.此式说明:若两曲线的两交点坐标满足它,则此两点为这圆的直径的两端点.性质7 若直线(),0f x y =与二次曲线(,)0F x y =相交于P ,Q 两点,且由(,)0,(,)0.f x y F x y =⎧⎨=⎩消去y ,得()0g x =;消去x ,得()0h y =(其中()g x 与()h y 的二次项系数均为1),那么以P ,Q 为直径端点的圆的直径式方程为()()0g x h y +=.证明 设P ,Q 的坐标分别为11(,)P x y ,22(,)Q x y ,则1x ,2x 是方程()0g x =的两个根;1y ,2y 是方程()0h y =的两个根,即12()()()0g x x x x x =--=,12()()()0h y y y y y =--=.两式相加,有1212()()()()()()0g x h y x x x x y y y y +=--+--=.由性质6,即证得结论成立.性质8 设O 为平面直角坐标系原点,P 为直线l :(,)1g x y Ax By =+=(A ,B 不同时为零)上一点,射线OP 交圆:2222(,)1x y f x y r r=+=于点R ,若点Q 在OP 上且满足22OQ OP OR r ⋅==,则点P 在l 上移动时,Q 点的轨迹是圆2222224()224Ar Br A B r x y ⎛⎫⎛⎫+⋅-+-=⎪ ⎪⎝⎭⎝⎭,或(,)(,)0f x y g x y -=. 证明 设00(,)P x y ,(,)Q x y ,则由Q 在OP 上可设OP k OQ =⋅.由2OQ OP r ⋅=,有OQ R OQ ⋅⋅= 2r ,即22r k OQ=,亦即22r OP OQ OQ=⋅,从而2022r x x x y =⋅+,2022r y y x y =⋅+.又00(,)x y 在直线l 上,即有001Ax By +=,亦即2222221r x r yA B x y x y ⋅⋅⋅+⋅=++,由此得222Ar x ⎛⎫- ⎪⎝⎭22224()24Br A B r y ⎛⎫+⋅+-=⎪⎝⎭. 上式又可化为2222x y Ax By r r+=+,故(,)(,)0f x y g x y -=.性质9 过两圆1(,)0f x y =,2(,)0f x y =(或一圆与一二次曲线)交点的圆的方程为1(,)f x y +2(,)0(1)f x y λλ=≠-.注 若1λ=-,则为一直线方程.性质10 设直线l :0Ax By C ++=,圆Γ:222()()x a y b r -+-=,圆心(,)O a b 到直线l 的距离为d =则(1)当d R <时,直线l 与圆Γ相交,反之亦真;(2)当d R =时,直线l 与圆Γ相切,反之亦真; (3)当d R >时,直线l 与圆Γ相离,反之亦真.性质11 直线0Ax By C ++=与圆222x y r +=相切的充要条件是()2222A B r C +=. 性质12 设00(,)M x y ,圆的方程222x y r +=,对于直线l 的方程200x x y y r +=,则(1)当M 在圆上时,l 为圆的切线;(2)当M 在圆外时,l 为圆的切点弦直线;(3)当M 在圆内时,l 为与以M 为中点的弦平行且过此弦端点切线交点的直线.事实上,这可由第二十五章的性质7推论后的注即得.这里,其实l 即为点M 关于圆的极线. 【典型例题与基本方法】例1 已知一圆在x 轴上的截距为a ,b ,在y 轴上的截距为(0)c c ≠,求此圆的方程.解法1 由于圆过点(,0)A a ,(,0)B b ,(0,)C c 三点,则圆心M 在AB ,AC 的垂直平分线上,即M 点是两直线1()2x a b =+,2222()()x a y x y c -+=+-的交点,求得2,22a b c ab M c ⎛⎫++ ⎪⎝⎭,又可求得半径22222a b c ab r MA b c ⎛⎫++⎛⎫==-+ ⎪ ⎪⎝⎭⎝⎭.故由性质1,得所求圆的方程为22222a b c ab x y ⎛⎫++⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭22222b a c ab c ⎛⎫-+⎛⎫+⎪ ⎪⎝⎭⎝⎭. 解法2 设此圆的方程为220x y Dx Ey F ++++=.此圆在x 轴上的距离是a ,b ,则20a Da F ++=,① 20b Db F ++=. ②由①,②知a ,b 是方程20x Dx F ++=的两根,从而由韦达定理,有a b D +=-,ab F =. 又此圆在y 轴上截距为c ,有20c Ec F ++=.③从而20c Ec ab ++=,即2c abE c+=-.此时,显然满足2240D E F +->,故由性质2知所求圆的方程为22()0ab x y a b x c y ab c ⎛⎫+-+-++= ⎪⎝⎭.注 也可由①,②,③联立求出D ,E ,F .例2 设A 为定点(b ,0),P 为圆229x y +=上一点,M 是AP 上的一点,且满足12AM MP =.当点P 在圆上运动时,求点M 的轨迹方程.解法1 如图27-1,作MN PO ∥交x 轴于N ,显见MN 为定长,即1MN =,且N 为定点(4,0).由圆的平面几何定义知,到定点的距离等于定长的点的轨迹是圆,定点是圆心,定长为半径,故所求圆的方程为22(4)1x y -+=.解法2 设点M 的坐标是(,)x y ,设圆229x y +=的参数方程为3cos ,3sin .x y θθ=⎧⎨=⎩(θ为参数)于是可设点P 的坐标为(3cos ,3sin )θθ,由此例定理(或由定比分点坐标公式)得点M 的轨迹的参数方程为4cos ,sin .x y θθ=+⎧⎨=⎩(θ为参数)由此即知,线段AP 上的点M 的轨迹是以点(4,0)为圆心,以1为半径的圆.例3 已知一曲线是与两个定点(0,0)O ,A (3,0)的距离的比为12的点的轨迹,求此曲线的方程. 解法1 由题设,运用性质4,知0a =,3b =,1m =,2n =.或运用性质5,知3a =,0c =,1n =,2m =,可求得曲线方程为22(1)4x y ++=.解法 2 由题设及圆的轨迹定义和所求的曲线为圆,即可推知其圆心在直线OA 上,且圆与直线OA 的两个交点即为直径的两端点.由平面几何知识得动点P 满足12PO PA=点为(1,0)P ,(3,0)Q -,从而所求方程为(1)(3)(0)(0)0x x y y -++--=,即22(1)4x y ++=.例 4 求以相交两圆1C :22410x y x y ++++=,及2C :222210x y x y ++++=的公共弦为直径的圆的方程.解法1 由两圆的方程相减即得公共弦所在直线的方程:20x y -=. 设所求圆的方程为2241(2)0x y x y x y λ+++++-=,即 22(42)(1)10x y x y λλ++++-+=.其圆心12,2λλ-⎛⎫-- ⎪⎝⎭必在直线20x y -=上,即由()122202λλ----=,求得75λ=-. 故所求圆的方程为2255161250x y x y ++++=. 解法2 可求得两已知圆的公共弦方程为20x y -=. 运用性质7,由22410,20.x y x y x y ⎧++++=⎨-=⎩分别消去y ,x ,得25610x x ++=及251240y y ++=.此两式相加,得225561250x y x y ++++=,此即为所求圆的方程. 例5 直线2y x =-与抛物线22y x =相交于A ,B .求证:OA OB ⊥. 证明 由222y x y x=-⎧⎨=⎩分别消去y ,x ,得2640x x -+=,2240y y -+=.此两式相加,得以AB 为直径的圆的方程:22620x y x y +--=. 显然,原点O 在圆22620x y x y +--=上,故OA OB ⊥.例6 已知双曲线的中心在原点,焦点在x 轴上,P ,Q 两点.若OP OQ ⊥,且4PQ =,求双曲线的方程.(1991年全国高考理科题)解 设双曲线方程为22221x y a b-=,直线方程为3()5y x c =-,其中22c a b =+. 联立直线和双曲线方程分别消去y ,x ,得2222222222635()05353a c a c a b g x x x b a b a+=+-=--. 24222222153()05353b c b h y y y b a b a =++=--.由性质7,知以PQ 为直径的圆的方程为()()0g x h y +=.因OP OQ ⊥,所以圆过原点,则(0)(0)0g h +=,即222243530a c a b b +-=.解得223b a =.设11(,)P x y ,22(,)Q x y ,则PQ 的中点为1212,22x x y y M ++⎛⎫⎪⎝⎭.由题设得122OM PQ ==,即221212()()16x x y y +++=.而2122261532a c x x cb a +=-=--,21221515b c y y +==. 将其代入()*式,得22151644c c +=,解得24c =.由此求得21a =,23b =.故所求双曲线方程为2x213y -=. 例7 已知函数1sin 1sin y x x =+-求y 的最大值.(新加坡竞赛题)解 令1sin u x =+1sin v x -则有直线方程:0u v y +-=,及圆的方程:222u v +=. 由已知可知直线与圆有公共点(,)u v ),从而22y即2y ≤,等号当且仅当0x =时成立,故max 2y =. 例8 确定最大的实数z ,使5x y z ++=,3xy yz zx ++=,并且x ,y 也是实数. (第7届加拿大竞赛题)解 由已知,得22222()2()52319x y z x y z xy yz zx ++=++-++=-⋅=. 令直线l :(5)0x y z ++-=,O :22219x y z +=-.由已知可知l 与O 有公共点,从而 25192z z --即2310130z z --≤. 解得313z 1-≤≤,故max 133z =.例9 112()2x y z x y z --++.(1978年罗马竞赛题)解 x u =1y v -2z t -=,u v t s ++=,则可令l :()0u v t s ++-=,O :222u v s +=- 23t -.因l 与O 有公共点,2232t s S t ---即222(2)360s t t s t -+++≤.因s 有实数解,则22[2(2)]4(36)0t t ∆=-+-+≥,即2(1)0t -≤,故1t =.此时23s t =+=,223z t =+=,代入l 与O 的方程得2u v +=,222u v +=.解此方程得1u v ==,故原方程的解为1x =,2y =,3z =.【解题思维策略分析】1.运用圆的解析性质证明圆锥曲线性质例10 从椭圆22221x y a b+=上一点P ,引以短轴为直径、原点为圆心的O 的两条切线,切点为A ,B ,直线AB 与x 轴,y 轴分别相交点M ,N ,则222222a b a bONOM+=.图27-2证明 如图27-2,设00(,)P x y ,O 的方程为222x y b +=,则切点弦AB 的方程为200x x y y b +=.由0x =得20b ON y y ==,0y =得20b OM x x ==,从而2222222220022442a y b x a b a b a b b bON OM++===.注 类似地,(i )可证明将上例中的O 换为以长轴为直径的圆,P 为此圆上一点,引椭圆的两条切线,则44222a b a OMON+=;(ii)可证明对于双曲线22221(0,0)x y a b a b -=>>,抛物线22(0)y px p =>的类似于上例的结论:(a)从双曲线22221(0,0)x y a b a b-=>>上一点P ,向以实轴为直径、原点为圆心的圆O 引两条切线,切点为A ,B ,直线AB 与x 轴、y 轴分别交于M ,N ,则 222222b a b a OMON-=. (b)从双曲线22221(0,0)x y a b a b-=>>上一点P ,向以虚轴为直径,原点为圆心的圆O 引两条切线,切点为A ,B ,直线AB 与x 轴、y 轴分别交于M ,N ,则 222222b a a b OMON-=. (c)从抛物线22(0)y px p =>上一点P ,向以2p (通径)为直径,原点为圆心的圆引两条切线,切点为A ,B ,直线AB 与x 轴,y 轴相交于点M ,N ,则222OM pON=. 例11 设P 是半径为R 的圆O 内任意一点,过点P 任意引(2)n n ≥条直线1l ,2l ,…,n l .如果这n 条直线相邻两条所成的角都为πn ,且第i 条直线i l 交圆于i M ,i M '两点(1i =,2,…,n ),那么221()ni i i PM PM ='+∑是与P 点无关的定值22nR .证明 以圆心O 为坐标原点,射线OP 为x 轴正半轴建立直角坐标系,则圆的方程为222x y R +=.设(,0)P r ,不妨设直线1l 的倾斜角α最小,1l 的参数方程为cos ,sin ,x r t y t αα=+⎧⎨=⎩(t 为参数)将此方程代入圆的方程222x y R +=,整理得 2222cos 0t r t r R α+⋅⋅+-=.设关于t 的上述二次方程的两根为1t ,2t ,则知 122cos t t r α+=-,2212()t t R r =--.由t 的几何意义,从而222211121212()2PM PM t t t t t '+=+=+-222222(1cos2)2()2(cos2)r R r r R αα=++-=+ (*)设直线i l (1i =,2,…,n )对应的倾斜角为(1)πi n α-+,分别以πn α+,2πn α+,…,(1)πn nα-+代(*)式的α,然后将n 个式子(连同(*)式)相加,并注意三角公式 12(1)πcos 0ni m i n θ=-⎡⎤+=⎢⎥⎣⎦∑,(n m >均为正整数) 从而22222112(1)π()2cos 22nn ii i i i PMPM r nR nR n α==⎧-⎫⎡⎤'+=++=⎨⎬⎢⎥⎣⎦⎩⎭∑∑. 注 若注意到22211111212()4M M PM PM t t t t ''=-=+-,可得22212(2)niii M M n R r ='=⋅-∑;211PM +21212222121()21t t t t t t PM +-=⋅',可得2222221112()n i i i nR R r PM PM =⎛⎫ ⎪+= ⎪-'⎝⎭∑;221212221112()411t t t t PM PM t t ⎛⎫+-+= ⎪ ⎪'⋅⎝⎭,可得22222212(2)()i i n R r PM PM R r ⎛⎫1-∑+= ⎪ ⎪'-⎝⎭等. 2.注意点圆方程的巧用例12 已知圆0C 的方程为222x y r +=,求经过圆0C 上一点00(,)M x y 的切线方程.解 视点00(,)M x y 为点圆曲线0Γ:2200()()0x x y y -+-=.于是00{}C M Γ=∩,由性质9,得曲线系2222200[()()]0x y r x x y y λ+-+-+-=.且由题设知其中1λ=-,故有22220000222x x y y x y r r +=++=.即得200x x y y r +=即为所求.例13 求与圆C :2268170x y x y +--+=切于点(1,2)的圆的方程. 解 视点(1,2)为点圆曲线0Γ:22(1)(2)0x y -+-=,由性质9得所求圆的方程为2268x y x y +-- 2217[(1)(2)]0x y λ-+-+-=.即 ()2223428111x y λλλλλ+⎛⎫⎛⎫-+-= ⎪ ⎪++⎝⎭⎝⎭+.由228(1)λ=+⎝⎭,求得115λ=-或295λ=-.于是得1C :2227922x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭⎝⎭及2C :2223122x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭⎝⎭. 易知点(1,2)满足圆1C 的方程,且圆1C 与圆C 的圆心距等于两圆半径之差的绝对值,所以圆1C 与圆C 内切于点(1,2),圆1C 为所求.同理,圆1C 与圆C 外切于点(1,2),圆2C 也为所求. 3.借助圆的解析性质求解其他代数问题例14 若正数x ,y ,z 满足x y z a ++=,2222(0)2a x y z a ++=>,求证:203x <≤,203y <≤,203z <≤.证明 由已知有x y a z +=-,22222a x y z +=-,此二式同时成立,即知直线x y a z +=-与圆22222a x y z +=-(z )有公共点,即原点到直线的距离不大于圆的半径,得2320z az -≤.又0a >,则203z a <≤.同理有203y a <≤,203z a <≤.例15 已知cos cos 2m αβ+=,sin sin 2n αβ+=.求cot cot αβ的值.解 令(cos ,sin )A αα,(cos ,sin )B ββ,则知A ,B 在圆221x y +=上.设线段AB 的中点为(,)C m n ,则1(cos cos )2m αβ=+,1(sin sin )2n αβ=+,且OC n k m =,AB m k n =-.AB 的方程为22m m n y x n n +=-+,并代入圆的方程,得222222222222()()10m m m n n m n x x n n n ⎛⎫++-+-+= ⎪⎝⎭.又cos α,cos β为此方程两根,有222222()cos cos n m n m n αβ+-⋅=+. 同理22222()sin sin m n m m n αβ+-⋅=+.故2222222()cot cot ()m n n m n m αβ+-⋅=+-为所求.【模拟实战】习题A1.求过直线l :240x y ++=与圆C :222410x y x y ++-+=的两个交点P ,Q ,且面积最小的圆的方程.2.已知直线1y x =-与椭圆22221(1)1x y a a a +=>-相交于A ,B 两点,若以AB 为直径的圆过椭圆的左焦点,求a 的值.3.已知圆C :2224x y +=,直线l :1128x y+=,P 是l 上一点,射线OP 交圆于点R ,又点Q 在OP 上且满足:2OQ OP OR ⋅=.当点P 在l 上移动时,求点Q 的轨迹方程,并说明轨迹是什么曲线. 4.求与抛物线24y x =相切于点P (1,4)且过点(3,0)的圆的方程. 5.求函数3cos ()2sin xy f x x+==-的值的取值范围.6.解方程组222 1.x y z x y z ⎧++⎪⎨++=⎪⎩7.已知a ,b +∈R ,且1a b +=,求证:2211252a b b a ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭≥.8.已知α,β是锐角,目4422sin cos 1cos sin ααββ+=.求证:π2αβ+=.9.已知sin sin()cos()ααβαβ++++=,π,π4β⎡⎤∈⎢⎥⎣⎦,求β的值.习题B1.自点A (3-,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线与圆224470x y x y +--+=相切,求光线l 所在直线方程.2.半径等于某个正三角形高的圆在这个正三角形的一边上滚动.证明三角形两边截圆的弧的总长等于60︒. 3.(九点圆定理)证明:三角形三边的中点,三高的垂足,垂心与顶点连接线段的中心,这九个点共圆.第二十七章 圆的解析性质及应用 习题A1.面积最小的圆是以PQ 为直径的圆,由240x y ++=与222410x y x y ++-+=分别消去y ,x ,得()22633055g x x x =++=,()2124055h y y y =-+=,故所求圆的方程为22261240555x y x y ++-+=. 2.将1y x =-代入椭圆方程,得()2242222202121a a a g x x x a a -=-+=--.将1x y =+代入椭圆方程,得()22422222202121a a a h y y y a a --=++=--.从而以AB 为直径的圆的方程为2224222222224210212121a a a a x y y a a a ---+-++=---. 因为此圆过椭圆的左焦点()1,0-,由此代入上述方程得42410a a -+=.而1a >,从而求得()1622a =+.3.由2224241218x y x y +=+整理,得()22313124x y ⎛⎫-+-= ⎪⎝⎭,此即为以31,2⎛⎫ ⎪⎝⎭为圆心,132为半径的圆. 4.因为点()1,4P 在抛物线上,所以由圆锥曲线的一般性质,知过点P 与抛物线相切的切线方程为442y x +=,即840x y --=. 视点()1,4为点圆曲线0Γ:()()22140x y -+-=,设所求圆方程为()()()2214840x y x y λ-+-+--=.此圆过点()3,0,从而求得1λ=-.于是有22107210x y x y +--+=. 将上述方程与24y x =联立,消去y ,得42162710210x x x --+=,即()()2211632210x x x -++=.易知此方方程的实根有仅有二重根1x =,从而推知抛物线24y x =与圆22107210x y x y +--+=有且仅有公共点()1,4,也即它们相切于点()1,4,因此22107210x y x y +--+=为所求圆的方程. 5.令cos u x =,sin v x =,则l :()320u yv y ++-=,O :221u v +=,由已知l 与O 有公共点,有23211y y -+≤,即231280y y -+≤,解得23232233y -+≤≤. 6.令l :()30x y z ++-=,O :2221x y z +=-.由已知l 与O 有公共点,知2312z z --≤,即()310z -≤,故33z =,由此求得33x y ==.7.令2211a b u b a ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,1a x b +=,1b y a +=,则l :110x y ab ⎛⎫+-+= ⎪⎝⎭O :22x y u +=.由已知条件知l 与O 有公共点,有112ab u ⎛⎫-+ ⎪⎝⎭,即21112u ab ⎛⎫+ ⎪⎝⎭≥.又由已知1a b +=得14ab ≤,由此知()21251422u +=≥. 8.令2sin cos x αβ=,2cos sin y αβ=,则l :cos sin 10x y ββ⋅+⋅-=,O :221x y +=(由已知所设).又l 与O 有公共点,从而有1,即22cos sin 1ββ+=,而22cos sin 1ββ+=,这说明l 与O 有且只有一个公共点,而22sin cos ,cos sin P ααββ⎛⎫⎪⎝⎭与点()cos ,sin Q ββ均是l 与O 上的点,从而2sin cos cos αββ=,亦即22sin cos αβ=,又α,β均为锐角,故2αβπ+=. 9.由已知得()()1cos sin sin sin cos cos ββαββα+-⋅++⋅.令sin u α=,cos v α=, 则l :()()1cos sin sin cos cos 0u ββββα+-⋅++⋅. O :221u v +=.由l 与O 有公共点,1即cos sin ββ≥,而,4βπ⎡⎤∈π⎢⎥⎣⎦,从而cos sin ββ=,故4βπ=.习题B1.已知圆的方程为22221x y -+-=()(),它关于x 轴的对称圆方程为()()22221x y -++=.此圆与直线l 相切,设切点()11,B x y ,l 上任一点为(),M x y ,B 分MA 为定比λ,则131x x λλ-=+,131y y λλ+=+.又B 在圆上有()()22249255194470y x x y x y λλ+-+++-++=,又l 与圆相切有0=△,即()()83434330x y x y -+-++=,故所求两条光线方程为3430x y +-=,4330x y ++=.2.取正ABC △的顶点A 为原点,BC 边上的高DA 所在直线为y 轴建立直角坐标系,则AB,AC 的 程分别为0y -=,0y +=.若正ABC △的高为r ,则与边BC 相切而滚动的圆的方程为()222x m y r -+=.设圆与AB ,AC 分别交于Q ,R 两点,则Q ,R 两点的横坐标Q x ,R x 为方程()2223x m x r -+=,即222420x mx m r -+-=的根.即有2Q R m x x +=,()214Q R x x mr ⋅=-.又Q Q y ,R R y ,则()()()2222222232Q R Q R Q Q R R Q Q R R RQ x x y y x x x x x x x x =-+-=-++++()222224444Q R Q R m m r x x x x r ⎛⎫-⎡⎤=+-=-= ⎪⎢⎥⎣⎦⎝⎭. 从而RQ r =,故RQ 在圆心所张的角恒为60︒的圆上.3.以垂心为原点,ABC △的高AD 所在直线为y 轴建立直角坐标系.设()0,2A a ,()22B b d ,,()22C c d ,,则三边中点的坐标分别为()2P b c d +,,(),Q c a d +,(),R b a d +垂心与三顶点连线的中点分别为()0,J a ,(),K b d ,(),L c d .因AD ,BE ,CF 是ABC △的三条高,则JPD △,KQE △,LRF △都是直角三角形,故它们的外接圆直径分别为JP ,KQ ,LR .又因这三条线段的中点坐标均为2,22b c a d ++⎛⎫⎪⎝⎭,故三外接圆的圆心重合.而()()2222JP b c d a =++-,()2222KQ LR b c a ==-+,且从BE AC ⊥可得()2220d d a b c -+⋅=,即2d bca d+=,故 ()()()22222220JP KQ b c d a b c a -=++----=,故JP KQ LR ==,即三圆直径相等,由此得JPD △,KQE △,LRF △的三外接圆重合,故九个点共圆.。

初中奥林匹克数学竞赛知识点总结及训练题目-圆的基本性质

初中奥林匹克数学竞赛知识点总结及训练题目-圆的基本性质

初中数学竞赛辅导讲义---圆的基本性质到定点(圆心)等于定长(半径)的点的集合叫圆,圆常被人们看成是最完美的事物,圆的图形在人类进程中打下深深的烙印.圆的基本性质有:一是与圆相关的基本概念与关系,如弦、弧、弦心距、圆心角、圆周角等;二是圆的对称性,圆既是一个轴对称图形,又是一中心对称图形.用圆的基本性质解题应注意:1.熟练运用垂径定理及推论进行计算和证明;2.了解弧的特性及中介作用;3.善于促成同圆或等圆中不同名称等量关系的转化.熟悉如下基本图形、基本结论:【例题求解】【例1】在半径为1的⊙O 中,弦AB 、AC 的长分别为3和2,则∠BAC 度数为 .作出辅助线,解直角三角形,注意AB 与AC 有不同的位置关系.注: 由圆的对称性可引出许多重要定理,垂径定理是其中比较重要的一个,它沟通了线段、角与圆弧的关系,应用的一般方法是构造直角三角形,常与勾股定理和解直角三角形知识结 合起来.圆是一个对称图形,注意圆的对称性,可提高解与圆相关问题周密性.【例2】 如图,用3个边长为1的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径为( )A .2B .25C .45D .16175思路点拨 所作最小圆圆心应在对称轴上,且最小圆应尽可能通过圆形的某些顶点,通过设未知数求解.【例3】 如图,已知点A 、B 、C 、D 顺次在⊙O 上,AB=BD ,BM ⊥AC 于M ,求证:AM=DC+CM .思路点拨 用截长(截AM)或补短(延长DC)证明,将问题转化为线段相等的证明,证题的关键是促使不同量的相互转换并突破它.【例4】 如图甲,⊙O 的直径为AB ,过半径OA 的中点G 作弦C E ⊥AB ,在CB 上取一点D ,分别作直线CD 、ED ,交直线AB 于点F ,M .(1)求∠COA 和∠FDM 的度数;(2)求证:△FDM ∽△COM ; (3)如图乙,若将垂足G 改取为半径OB 上任意一点,点D 改取在EB 上,仍作直线CD 、ED ,分别交直线AB 于点F 、M ,试判断:此时是否有△FDM ∽△COM? 证明你的结论.思路点拨 (1)在Rt △COG 中,利用OG=21OA=21OC ;(2)证明∠COM=∠FDM ,∠CMO= ∠FMD ;(3)利用图甲的启示思考.注:善于促成同圆或等圆中不同名称的相互转化是解决圆的问题的重要技巧,此处,要努力把圆与直线形相合起来,认识到圆可为解与直线形问题提供新的解题思路,而在解与圆相关问题时常用到直线形的知识与方法(主要是指全等与相似).【例5】 已知:在△ABC 中,AD 为∠BAC 的平分线,以C 为圆心,CD 为半径的半圆交BC 的延长线于点E ,交AD 于点F ,交AE 于点M ,且∠B=∠CAE ,EF :FD =4:3.(1)求证:AF =DF ;(2)求∠AED 的余弦值;(3)如果BD =10,求△ABC 的面积.思路点拨 (1)证明∠ADE =∠DAE ;(2)作AN ⊥BE 于N ,cos ∠AED =AEEN ,设FE=4x ,FD =3x ,利用有关知识把相关线段用x 的代数式表示;(3)寻找相似三角形,运用比例线段求出x 的值.⌒ ⌒ ⌒ ⌒注:本例的解答,需运用相似三角形、等腰三角形的判定、面积方法、代数化等知识方法思想,综合运用直线形相关知识方法思想是解与圆相关问题的关键.学历训练1.D是半径为5cm的⊙O内一点,且OD=3cm,则过点D的所有弦中,最小弦AB= .2.阅读下面材料:对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖.对于平面图形A,如果存在两个或两个以上的圆,使图形A上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A被这些圆所覆盖.例如:图甲中的三角形被一个圆所覆盖,图乙中的四边形被两个圆所覆盖.回答下列问题:(1)边长为lcm的正方形被一个半径为r的圆所覆盖,r的最小值是cm;(2)边长为lcm的等边三角形被一个半径为r的圆所覆盖,r的最小值是cm;(3)长为2cm,宽为lcm的矩形被两个半径都为r的圆所覆盖,r的最小值是cm.(2003年南京市中考题)3.世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图形中都有圆:它们看上去多么美丽与和谐,这正是因为圆具有轴对称和中心对称性.(1)请问以下三个图形中是轴对称图形的有,是中心对称图形的有(分别用下面三个图的代号a,b,c填空).(2)请你在下面的两个圆中,按要求分别画出与上面图案不重复的图案(草图) (用尺规画或徒手画均可,但要尽可能准确些,美观些).a .是轴对称图形但不是中心对称图形.b .既是轴对称图形又是中心对称图形.4.如图,AB 是⊙O 的直径,CD 是弦,若AB=10cm ,CD =8cm ,那么A 、B 两点到直线CD 的距离之和为( )A .12cmB .10cmC . 8cmD .6cm5.一种花边是由如图的弓形组成的,ACB 的半径为5,弦AB =8,则弓形的高CD 为( )A .2B .25C .3D .316 6.如图,在三个等圆上各自有一条劣弧AB 、CD 、EF ,如果AB+CD=EF ,那么AB+CD 与E 的大小关系是( )A .AB+CD =EFB .AB+CD=FC . AB+CD<EFD .不能确定7.电脑CPU 芯片由一种叫“单晶硅”的材料制成,未切割前的单晶硅材料是一种薄形圆片,叫“晶圆片”.现为了生产某种CPU 芯片,需要长、宽都是1cm 的正方形小硅片若干.如果晶圆片的直径为10.05cm ,问:一张这种晶圆片能否切割出所需尺寸的小硅片66张?请说明你的方法和理由(不计切割损耗).8.如图,已知⊙O 的两条半径OA 与OB 互相垂直,C 为AmB 上的一点,且AB 2+OB 2=BC 2,求∠OAC 的度数.9.不过圆心的直线l 交⊙O 于C 、D 两点,AB 是⊙O 的直径,AE ⊥l ,垂足为E ,BF ⊥l ,垂足为F .(1)在下面三个圆中分别补画出满足上述条件的具有不同位置关系的图形;(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);(3)请你选择(1)中的一个图形,证明(2)所得出的结论.⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒10.以AB 为直径作一个半圆,圆心为O ,C 是半圆上一点,且OC 2=AC ×BC , 则∠CAB=.11.如图,把正三角形ABC 的外接圆对折,使点A 落在BC 的中点A ′上,若BC=5,则折痕在△ABC 内的部分DE 长为 .12.如图,已知AB 为⊙O 的弦,直径MN 与AB 相交于⊙O 内,MC ⊥AB 于C ,ND ⊥AB 于D ,若MN=20,AB=68,则MC —ND= .13.如图,已知⊙O 的半径为R ,C 、D 是直径AB 同侧圆周上的两点,AC 的度数为96°,BD 的度数为36°,动点P 在AB 上,则CP+PD 的最小值为 .14.如图1,在平面上,给定了半径为r 的圆O ,对于任意点P ,在射线OP 上取一点P ′,使得OP ×OP ′=r 2,这种把点P 变为点P ′的变换叫作反演变换,点P 与点P ′叫做互为反演点.(1)如图2,⊙O 内外各有一点A 和B ,它们的反演点分别为A ′和B ′,求证:∠A ′=∠B ;(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.①选择:如果不经过点O 的直线与⊙O 相交,那么它关于⊙O 的反演图形是( )A .一个圆B .一条直线C .一条线段D .两条射线②填空:如果直线l 与⊙O 相切,那么它关于⊙O 的反演图形是 ,该图形与圆O 的位置关系是 .15.如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点为P ,AB=BD ,且PC=0.6,求四边形ABCD 的周长.16.如图,已知圆内接△ABC 中,AB>AC ,D 为BAC 的中点,DE ⊥AB 于E ,求证:BD 2-AD 2=AB×AC .⌒ ⌒ ⌒17.将三块边长均为l0cm 的正方形煎饼不重叠地平放在圆碟内,则圆碟的直径至少是多少?(不考虑其他因素,精确到0.1cm)18.如图,直径为13的⊙O ′,经过原点O ,并且与x 轴、y 轴分别交于A 、B 两点,线段OA 、OB(OA>OB)的长分别是方程0602=++kx x 的两根.(1)求线段OA 、OB 的长; (2)已知点C 在劣弧OA 上,连结BC 交OA 于D ,当OC 2=CD ×CB 时,求C 点坐标;(3)在⊙O ,上是否存在点P ,使S △POD =S △ABD ?若存在,求出P 点坐标;若不存在,请说明理由.⌒参考答案。

圆——竞赛题

圆——竞赛题

第7题图圆中的竞赛例题与习题1.已知:如图,△ABC 的外接圆直径AE 交BC 于D.求证:.DEAD tgC tgB =⋅2.G 是ΔABC 的重心,过A 和G 作圆与BG 相切于G ,延长CG 交圆于D ,求证:DG CG AG ∙=23.在锐角ΔABC 的BC 边上取D 、E 两点,使∠BAD=∠CAE ,EM ⊥AB 于M ,EN ⊥AC 于N ,AD 的延长线交ΔABC 的外接圆于P ,求证:BAC AC AB MN AP ∠∙∙=∙sin 。

4.⊙O 半径为2,半径OA ⊥OB ,C 是半径OB 上异于O 、B 的任一点,AC 交⊙O 于D ,过D 作⊙O 的切线交OB 的延长线于E ,设OC=x ,DE=y ,点C 是否存在这样的位置,使ΔBCD ∽ΔDCE ?若存在,求出此时2tan E ∠的值;若不存在,请说明理由。

5.(2004年全国初中数学联赛成都初赛)如图,不等边ΔABC 内接于⊙O ,I 是其内心并且AI ⊥OI 。

求证:AB+AC=2BC 6.(1999年全国初中数学联赛)如图,设△ABC 是直角三角形,点D 在斜边BC 上,BD =4DC 。

已知圆过点C 且与AC 相交于F ,与AN 相切于AB 的中点G 。

求证:AD ⊥BF 。

7.(1995年全国初中数学联赛)已知∠ACE =∠CDE =90°,点B在CE 上,CA =CB =CD ,经A 、C 、D 三点的圆交AB 于F (如图)求证F 为△CDE 的内心。

8.(2003年全国初中数学联赛天津复赛)如图所示,已知AB 是⊙O 的直径,BC 是⊙O 的切线,OC 平行于弦AD ,过点D 作DE ⊥AB 于点E ,连结AC ,与DE 交于点P .问EP 与PD 是否相等?证明你的结论.第1题图第2题图第3题图第4题图第5题图 第6题图 第8题图PE DCBA O9.(2004年全国初中数学竞赛)D 是△ABC 边AB 上的一点,使得AB =3AD ,P 是△ABC 外接圆上一点(P 在弧AC 上),使得∠ADP =∠ACB ,求PB/PD 的值。

初中数学竞赛奥数培优资料第三辑专题23 圆与圆的位置关系

初中数学竞赛奥数培优资料第三辑专题23 圆与圆的位置关系

专题23圆与圆的位置关系【阅读与思考】两圆的半径与圆心距的大小量化确定圆与圆的外离、外切、相交、内切、内含五种位置关系.圆与圆相交、相切等关系是研究圆与圆位置关系的重点,解题中经常用到相关性质.解圆与圆的位置关系问题,往往需要添加辅助线,常用的辅助线有:1.相交两圆作公共弦或连心线;2.相切两圆作过切点的公切线或连心线;3.有关相切、相离两圆的公切线问题常设法构造相应的直角三角形.熟悉以下基本图形和以上基本结论.【例题与求解】【例1】如图,大圆⊙O 的直径a AB cm ,分别以OA ,OB 为直径作⊙O 1和⊙O 2,并在⊙O 与⊙O 1和⊙O 2的空隙间作两个等圆⊙O 3和⊙O 4,这些圆互相内切或外切,则四边形3241O O O O 的面积为________cm 2.(全国初中数学竞赛试题)解题思路:易证四边形3241O O O O 为菱形,求其面积只需求出两条对角线的长.【例2】如图,圆心为A ,B ,C 的三个圆彼此相切,且均与直线l 相切.若⊙A ,⊙B ,⊙C 的半径分别为a ,b ,c (b a c <<<0),则a ,b ,c 一定满足的关系式为()A .c a b +=2B .c a b +=2C .ba c 111+=D .ba c111+=(天津市竞赛试题)解题思路:从两圆相切位置关系入手,分别探讨两圆半径与分切线的关系,解题的关键是作圆的基本辅助线.【例3】如图,已知两圆内切于点P ,大圆的弦AB 切小圆于点C ,PC 的延长线交大圆于点D .求证:(1)∠APD =∠BPD ;(2)CB AC PC PB P A ∙+=∙2.(天津市中考试题)解题思路:对于(1),作出相应辅助线;对于(2),应化简待证式的右边,不妨从AC ·BC =PC ·CD 入手.【例4】如图⊙O 1和⊙O 2相交于点A 及B 处,⊙O 1的圆心落在⊙O 2的圆周上,⊙O 1的弦AC 与⊙O 2交于点D .求证:O 1D ⊥BC .(全俄中学生九年级竞赛试题)解题思路:连接AB ,O 1B ,O 1C ,显然△O 1BC 为等腰三角形,若证O 1D ⊥BC ,只需证明O 1D 平分∠B O 1C .充分运用与圆相关的角.【例5】如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =1,AB =2,DC =22,点P 在边BC 上运动(与B ,C 不重合).设PC =x ,四边形ABPD 的面积为y .(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)若以D 为圆心,21为半径作⊙D ,以P 为圆心,以PC 的长为半径作⊙P ,当x 为何值时,⊙D 与⊙P 相切?并求出这两圆相切时四边形ABPD 的面积.(河南省中考题)解题思路:对于(2),⊙P 与⊙D 既可外切,也可能内切,故需分类讨论,解题的关键是由相切两圆的性质建立关于x 的方程.【例6】如图,ABCD 是边长为a 的正方形,以D 为圆心,DA 为半径的圆弧与以BC 为直径的半圆交于另一点P ,延长AP 交BC 于点N ,求NCBN的值.(全国初中数学联赛试题)解题思路:AB 为两圆的公切线,BC 为直径,怎样产生比例线段?丰富的知识,不同的视角激活想象,可生成解题策略与方法.【能力与训练】A 级1.如图,⊙A ,⊙B 的圆心A ,B 在直线l 上,两圆的半径都为1cm .开始时圆心距AB =4cm ,现⊙A ,⊙B 同时沿直线l 以每秒2cm 的速度相向移动,则当两圆相切时,⊙A 运动的时间为_______秒.(宁波市中考试题)2.如图,O 2是⊙O 1上任意一点,⊙O 1和⊙O 2相交于A ,B 两点,E 为优弧AB 上的一点,EO 2及延长线交⊙O 2于C ,D ,交AB 于F ,且CF =1,EC =2,那么⊙O 2的半径为_______.(四川省中考试题)(第1题图)(第2题图)(第3题图)3.如图,半圆O 的直径AB =4,与半圆O 内切的动圆O 1与AB 切于点M .设⊙O 1的半径为y ,AM 的长为x ,则y 与x 的函数关系是_________________.(要求写出自变量x 的取值范围)(昆明市中考试题)4.已知直径分别为151+和315-的两个圆,它们的圆心距为115-,这两圆的公切线的条数是__________.5.如图,⊙O 1和⊙O 2相交于点A ,B ,且⊙O 2的圆心O 2在圆⊙O 1的圆上,P 是⊙O 2上一点.已知∠A O 1B =60°,那么∠APB 的度数是()A .60°B .65°C .70°D .75°(甘肃省中考试题)6.如图,两圆相交于A 、B 两点,过点B 的直线与两圆分别交于C ,D 两点.若⊙O 1半径为5,⊙O 2的半径为2,则AC :AD 为()A .52:3B .3:52C .1:52D .2:5(第5题图)(第6题图)(第7题图)7.如图,⊙O 1和⊙O 2外切于点T ,它们的半径之比为3:2,AB 是它们的外公切线,A ,B 是切点,AB =64,那么⊙O 1和⊙O 2的圆心距是()A .65B .10C .610D .1339208.已知两圆的半径分别为R 和r (r R >),圆心距为d .若关于x 的方程0)(222=-+-d R rx x 有两相等的实数根,那么这两圆的位置关系是()A .外切B .内切C .外离D .外切或内切(连云港市中考试题)9.如图,⊙O 1与⊙O 2相交于A ,B 两点,点O 1在⊙O 2上,点C 为⊙O 1中优弧AB ⌒上任意一点,直线CB 交⊙O 2于D ,连接O 1D .(1)证明:DO 1⊥AC ;(2)若点C 在劣弧AB ⌒上,(1)中的结论是否仍成立?请在图中画出图形,并证明你的结论.(大连市中考试题)图1图210.如图,已知⊙O 1与⊙O 2外切于点P ,AB 过点P 且分别交⊙O 1和⊙O 2于点A ,B ,BH 切⊙O 2于点B ,交⊙O 1于点C ,H .(1)求证:△BCP ∽△HAP ;(2)若AP :PB =3:2,且C 为HB 的中点,求HA :BC .(福州市中考试题)11.如图,已知⊙B ,⊙C 的半径不等,且外切于点A ,不过点A 的一条公切线切⊙B 于点D ,切⊙C 于点E ,直线AF ⊥DE ,且与BC 的垂直平分线交于点F .求证:BC =2AF .(英国数学奥林匹克试题)12.如图,AB 为半圆的直径,C 是半圆弧上一点.正方形DEFG 的一边DG 在直径AB 上,另一边DE 过△ABC 得内切圆圆心O ,且点E 在半圆弧上.(1)若正方形的顶点F 也在半圆弧上,求半圆的半径与正方形边长的比;(2)若正方形DEFG 的面积为100,且△ABC 的内切圆半径4 r ,求半圆的直径AB .(杭州市中考试题)B 级1.相交两圆的半径分别为5cm 和4cm ,公共弦长为6cm ,这两圆的圆心距为_______.2.如图,⊙O 过M 点,⊙M 交⊙O 于A ,延长⊙O 的直径AB 交⊙M 于C .若AB =8,BC =1,则AM =_______.(黑龙江省中考试题)(第2题图)(第3题图)(第4题图)3.已知圆环内直径为a cm ,外直径为b cm ,将50个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度为___________cm .4.如图,已知PQ =10,以PQ 为直径的圆与一个以20为半径的圆相切于点P .正方形ABCD 的顶点A ,B 在大圆上,小圆在正方形的外部且与CD 切于点Q .若AB =n m +,其中m ,n 为整数,则=+n m ___________.(美国中学生数学邀请赛试题)5.如图,正方形ABCD 的对角线AC ,BD 交于点M ,且分正方形为4个三角形,⊙O 1,⊙O 2,⊙O 3,⊙O 4,分别为△AMB ,△BMC ,△CMD ,△DMA 的内切圆.已知AB =1.则⊙O 1,⊙O 2,⊙O 3,⊙O 4所夹的中心(阴影)部分的面积为()A .(4)(316π--B .(34π-C .(4)(34π--D .416π-(太原市竞赛试题)(第5题图)(第6题图)(第7题图)6.如图,⊙O 1与⊙O 2内切于点E ,⊙O 1的弦AB 过⊙O 2的圆心O 2,交⊙O 2于点C ,D .若AC :CD :BD =2:4:3,则⊙O 2与⊙O 1的半径之比为()A .2:3B .2:5C .1:3D .1:47.如图,⊙O 1与⊙O 2外切于点A ,两圆的一条外公切线与⊙O 1相切于点B ,若AB 与两圆的另一条外公切线平行,则⊙O 1与⊙O 2的半径之比为()A .2:5B .1:2C .1:3D .2:3(全国初中数学联赛试题)8.如图,已知⊙O 1与⊙O 2相交于A ,B 两点,过点A 作⊙O 1的切线,交⊙O 2于点C ,过点B 作两圆的割线分别交⊙O 1,⊙O 2于点D ,E ,DE 与AC 相交于点P .(1)求证:PA PE PC PD∙=∙(2)当AD 与⊙O 2相切且PA =6,PC =2,PD =12时,求AD 的长.(黄冈市中考试题)9.如图,已知⊙O 1和⊙O 2外切于A ,BC 是⊙O 1和⊙O 2的公切线,切点为B ,C .连接BA 并延长交⊙O 1于D ,过D 点作CB 的平行线交⊙O 2于E ,F .(1)求证:CD 是⊙O 1的直径;(2)试判断线段BC ,BE ,BF 的大小关系,并证明你的结论.(四川省中考试题)10.如图,两个同心圆的圆心是O ,大圆的半径为13,小圆的半径为5,AD 是大圆的直径,大圆的弦AB ,BE 分别与小圆相切于点C ,F ,AD ,BE 相交于点G ,连接BD .(1)求BD 的长;(2)求2ABE D ∠+∠的度数;(3)求BGAG的值.(淄博市中考试题)11.如图,点H 为△ABC 的垂心,以AB 为直径的⊙O 1与△BCH 的外接圆⊙O 2相交于点D ,延长AD 交CH 于点P .求证:P 为CH 的中点.(“《数学周报杯”全国初中数学竞赛试题)12.如图,已知AB 为半圆O 的直径,点P 为直径AB 上的任意一点,以点A 为圆心,AP 为半径作⊙A ,⊙A与半圆O相交于点C,以点B为圆心,BP为半径作⊙B,⊙B与半圆O相交于点D,且线段CD的中点为M.求证:MP分别与⊙A,⊙B相切.(“《数学周报杯”全国初中数学竞赛试题)专题23圆与圆的位置关系例121a 6提示:连接14QP CP ==必过点O ,则34O O ⊥AB ,设⊙3O ,⊙4O 的半径为xcm ,在Rt △31O O O 中,有222a a a x =x 424⎛⎫⎛⎫⎛⎫+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得x=a 6.例2D提示:连接AB ,1AA ,1BB ,作2AB ⊥1BB ,则22222AB AB BB =+,即()()2222a b =b a AB ++-,得22211=A B 4ab AB =,同理,211A 4ac C =,2114bc C B =,由111111=A B A C C B +++例3提示:⑴过P 点作两圆的公切线.⑵即证PA PB PC PD ∙=∙.例412BO C BAC ∠=∠,1112BO D BAC BO C ∠=∠=∠,则1O D 为1BO C ∠的平分线,又11O B O C =,故1O D BC ⊥.例5⑴过D 作DQ ⊥BC 于Q ,则BQ=AD=1,AB=DQ=2,CQ=,故()1y=13x 2=4x 2+-⨯-(0<x<3).⑵分两种情况讨论:①当⊙P 与⊙D 外切时,如图1,QC=2,PC=x ,QP=2x -,PD=x+12,DQ=2,在Rt △DQP 中,由()22212x 2=x+2⎛⎫-+ ⎪⎝⎭得,31x=20,3149y=4=2020-.②当⊙P 与⊙D 内切时,如图2,PC=x ,QC=2,PQ=x-2,PD=x-12,DQ=2,在Rt △DPQ 中,由()2221x 22=x-2⎛⎫-+ ⎪⎝⎭得,31x=12,3117y=4=1212-.例6就图1给出解答:连接CP 并延长交AB 于点Q ,连接BP ,得∠BPC90°,又22QA QP CQ QB =∙=,得AQ=QB=12AB ,在Rt △CQP 中,2214BQ QP CQ QP BC CP CQ CP ∙===∙.过Q 作QM ∥BC 交AN 于M ,则MQ=12BN .由△MQP ∽△NCP ,得14MQ QP CN CP ==,故BN NC =2142MQ MQ =.A 级1.12或32 2.23.y =214x -+x (0<x <4) 4.3条5.D 6.D 7.B 8.D9.提示:(1)连结AB ,A 1O ,并延长交⊙1O 于E ,连结CE .(2)结论仍然成立.10.(1)略(2)提示:设AP =3t ,由BC ·BH =BP ·BA ,BH =2BC ,BC =5t .易证△HAP ∽△BAH ,得HA =15t ,故155HA t BC t ==3.11.连结BD ,CE ,作BM ⊥CE 于M ,作HN ⊥CE 于N ,则BM ∥HN .∵H 是BC 的中点,故N 是CM 的中点,∴CN =12CM =12(CE -EM )=12(CE -BD ),而AH =BH -AB =12BC -AB =12(AB +AC )–AB =12(AC -AB ),因此CN =AH .由CE ⊥DE ,AF ⊥DE ,得CE //AF ,故∠NCH =∠HAF ,又∠CNH =∠AHF =90°,得△CNH ≌△AHF ,从而BC =2CH =2AF .12.(l )5:2提示:由题意,设正方形边长为l ,则22212R l l ⎛⎫=+ ⎪⎝⎭,得R :l =5:2.由2ED =AD ×DB ,DE=10,得AD ×DB =l 00.设AC 与内切圆交点S ,CB 与内切圆交点H ,设AD =r ,DB =100x .AB =x +100x,AS =AD =x ,BH =BD =100x .又△ABC 为直角三角形。

圆环模型数学初中竞赛

圆环模型数学初中竞赛

圆环模型数学初中竞赛
圆环模型是指将一个圆环问题转化为一个等效的线性问题来进行求解的一种数学方法。

在数学初中竞赛中,圆环模型常常用来解决关于环的排列、组合和计数的问题。

以下是一些常见的圆环模型问题:
1. 环的排列问题:
- 有n个不同的珠子要穿在一个环上,求有多少种不同的排列方式。

- 有n个不同的人要坐在一个环形桌子上,求有多少种不同的座位安排方式。

2. 环的组合问题:
- 有n个不同的球要放在一个环形篮子中,求有多少种不同的放置方式。

- 有n个不同的糖果要分发给m个孩子,每个孩子至少分到一个糖果,求有多少种不同的分发方式。

3. 环的计数问题:
- 有n个不同的键要按在一个环形键盘上,求有多少种不同的按键序列。

- 有n个不同的数字要填写在一个环形数表中,求有多少种不同的填写方式。

在解决这些问题时,可以利用等效的线性问题来简化计算。

例如,对于一个有n个珠子的排列问题,可以将环拆开成一条线,并在线上排列n个珠子;对于一个有n个人的座位安排问题,可以将环拆开成一条线,并在线上排列n个座位。

通过将环形问题转化为线性问题,可以更方便地利用数学思想和方法进行求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、(05)已知点I 是锐角三角形ABC 的内心,A1,B1,C1分别是点I 关于边BC ,CA ,AB 的对称点。

若点B 在△A1B1C1的外接圆上,则∠ABC 等于( ) A 、30° B 、45° C 、60° D 、90°3.(06)正方形ABCD 内接于⊙O ,点P 在劣弧AB 上,连结DP ,交AC 于点Q .若QP=QO ,则QAQC的值为( ) (A )132-(B )32 (C )23+(D )23+5(07)已知△ABC 为锐角三角形,⊙O 经过点B ,C ,且与边AB ,AC 分别相交于点D ,E .若⊙O 的半径与△ADE 的外接圆的半径相等,则⊙O 一定经过△ABC 的( ).(A )内心 (B )外心 (C )重心 (D )垂心10.已知线段AB 的中点为C ,以点A 为圆心,AB 的长为半径作圆,在线段AB 的延长线上取点D ,使得BD =AC ;再以点D 为圆心,DA 的长为半径作圆,与⊙A 分别相交于F ,G 两点,连接FG 交AB于点H ,则AH AB的值为 .8、△ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆心l 作DE ∥BC ,分别与AB 、AC 相交于点D ,E ,则DE 的长为 。

9、已知AB 是半径为1的圆O 的一条弦,且AB =a <1,以AB 为一边在圆O 内作正△ABC ,点D 为圆O 上不同于点A 的一点,且DB =AB =a ,DC 的延长线交圆O 于点E ,则AE 的长为(第3题图)C 1(第8题) CEI ADB( )。

A、2a B 、1 C、2D 、a1(04).D 是△ABC 的边AB 上的一点,使得AB =3AD ,P 是△ABC 外接圆上一点,使得ACB ADP ∠=∠,求PDPB的值.4.(06)如图,点P 为⊙O 外一点,过点P 作⊙O 的两条切线,切点分别为A ,B .过点A 作PB 的平行线,交⊙O 于点C .连结PC ,交⊙O 于点E ;连结AE ,并延长AE 交PB 于点K .求证:PE ·AC=CE ·KB .6.已知AB 为半圆O 的直径,点P 为直径AB 上的任意一点.以点A 为圆心,AP 为半径作⊙A ,⊙A 与半圆O 相交于点C;以点(第4题)CB 为圆心,BP 为半径作⊙B ,⊙B 与半圆O 相交于点D ,且线段CD 的中点为M .求证:MP 分别与⊙A 和⊙B 相切.7.如图,点E ,F 分别在四边形ABCD 的边AD ,BC 的延长线上,且满足DE ADCF BC=.若CD ,FE 的延长线相交于点G ,△DEG 的外接圆与△CFG 的外接圆的另一个交点为点P ,连接PA ,PB ,PC ,PD .求证:(1)AD PDBC PC=; (2)△PAB ∽△PDC .11(10).如图,△ABC 为等腰三角形,AP 是底边BC 上的高,点D 是线段PC 上的一点,BE 和CF 分别是△ABD和△ACD 的外接圆直径,连接EF . 求证: tan EFPAD BC∠=.12(11)、如图,点H 为△ABC 的垂心,以AB 为直径的⊙1O 和△BCH 的外接圆⊙2O 相交于点D ,延长AD 交CH 于点P ,求证:点P 为CH 的中点。

初中数学竞赛《圆》历届考题1(04).D 是△ABC 的边AB 上的一点,使得AB =3AD ,P 是△ABC 外接圆上一点,使得ACB ADP ∠=∠,求PD PB的值.解:连结AP ,则ADP ACB APB ∠=∠=∠,所以,△APB ∽△ADP , …………………………(5分) ∴AD AP AP AB =, 所以223AD AD AB AP =∙=,∴AD AP 3=, …………………………(10分)所以3==ADAPPD PB . …………………………(15分)2、(05)已知点I 是锐角三角形ABC 的内心,A1,B1,C1分别是点I 关于边BC ,CA ,AB的对称点。

若点B 在△A1B1C1的外接 圆上,则∠ABC 等于( )A 、30°B 、45°C 、60°D 、90° 答:C解:因为IA1=IB1=IC1=2r (r 为△ABC 的内切圆半径),所以 点I 同时是△A1B1C1的外接圆的圆心,设IA1与BC 的交点为D ,则IB =IA1=2ID ,所以∠IBD =30°,同理,∠IBA =30°,于是,∠ABC =60°3.(06)正方形ABCD 内接于⊙O ,点P 在劣弧AB 上,连结DP ,交AC 于点Q .若QP=QO ,则QAQC的值为( ) (A )132-(B )32 (C )23+(D )23+答:D .解:如图,设⊙O 的半径为r ,QO=m ,则QP=m ,QC=r +m ,QA=r -m .在⊙O 中,根据相交弦定理,得QA ·QC=QP ·QD .即 (r -m )(r +m )=m ·QD ,所以 QD=mm r 22-.连结DO ,由勾股定理,得QD 2=DO 2+QO 2,B 1C 1 (第3题图)即22222m r m m r +=⎪⎪⎭⎫ ⎝⎛-,解得r m 33=所以, 231313+=-+=-+=m r m r QA QC 4.(06)如图,点P 为⊙O 外一点,过点P 作⊙O 的两条切线,切点分别为A ,B .过点A 作PB 的平行线,交⊙O 于点C .连结PC ,交⊙O 于点E ;连结AE ,并延长AE 交PB 于点K .求证:PE ·AC=CE ·KB .证明:因为AC ∥PB ,所以∠KPE=∠ACE .又PA 是⊙O所以∠KAP=∠ACE ,故∠KPE=∠KAP ,于是△KPE ∽△KAP ,所以KPKE KA KP =, 即 KA KE KP ⋅=2. 由切割线定理得 KA KE KB ⋅=2所以 KB KP =. …………………………10分因为AC ∥PB ,△KPE ∽△ACE ,于是AC KP CE PE = 故 ACKBCE PE =, 即 PE ·AC=CE ·KB . ………………………………15分5(07)已知△ABC 为锐角三角形,⊙O 经过点B ,C ,且与边AB ,AC 分别相交于点D ,E .若⊙O 的半径与△ADE 的外接圆的半径相等,则⊙O 一定经过△ABC 的( ).(A )内心 (B )外心 (C )重心 (D )垂心 答:(B ).解: 如图,连接BE ,因为△ABC 为锐角三角形,所以BAC ∠,ABE ∠均为锐角.又因为⊙O 的半径与△ADE 的外接圆的半径相等,且DE 为两圆的公共弦,所以BAC ABE ∠=∠. 于是,2BEC BAC ABE BAC ∠=∠+∠=∠.若△ABC 的外心为1O ,则12B OC B A C ∠=∠,所以,⊙O 一定过△ABC的外心.故选(B ).6.已知AB 为半圆O 的直径,点P 为直径AB 上的任意一点.以点A 为圆心,AP 为半径作⊙A ,⊙A 与半圆O 相交于点C ;以点B 为圆心,BP 为半径作⊙B ,⊙B 与半圆O 相交于点D ,且线段CD 的中(第4题)C(第3题答案图)点为M .求证:MP 分别与⊙A 和⊙B 相切.证明:如图,连接AC ,AD ,BC ,BD ,并且分别过点C ,D 作AB 的垂线,则CE ∥DF .因为AB 是⊙O 的直径,所以90ACB ADB ∠=∠=︒.在Rt △中,由射影定理得22PA AC AE AB ==⋅,22PB BD BF AB ==⋅. ……………5分两式相减可得()22PA PB AB AE BF -=-,又 ()22()()PA PB PA PB PA PB AB PA PB -=+-=-, 于是有 AE BF PA PB -=-,即PA AE PB BF -=-,所以PE PF =,也就是说,点P 是线段EF 的中点.因此,MP 是直角梯形CDFE 的中位线,于是有MP AB ⊥,从而可得MP 分别与⊙A 和⊙B 相切.7.如图,点E ,F 分别在四边形ABCD 的边AD ,BC 的延长线上,且满足DE ADCF BC=.若CD ,FE 的延长线相交于点G ,△DEG 的外接圆与△CFG 的外接圆的另一个交点为点P ,连接PA ,PB ,PC ,PD .求证:(1)AD PDBC PC=; (2)△PAB ∽△PDC .证明:(1)连接PE ,PF ,PG ,因为PDG PEG ∠=∠, 所以PDC PEF ∠=∠.又因为PCG PFG ∠=∠,所以△PDC ∽△PEF ,于是有,PD PECPD FPE PC PF=∠=∠,从而△PDE ∽△PCF ,所以PD DE PC CF =.又已知DE AD CF BC =,所以,AD PD BC PC=. ………………10分 (2)由于PDA PGE PCB ∠=∠=∠,结合(1)知,△PDA ∽△PCB ,从而有,PA PDPB PC= DPA CPB ∠=∠,所以A P B D P∠=∠,因此△PAB ∽△PDC . ………………15分8、△ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆心l 作DE ∥BC ,分别与AB 、AC 相交于点D ,E ,则DE 的长为 163。

解:如图,设△ABC 的三边长为,,a b c , 内切圆l 的半径为r ,BC 边上的高为a h ,则C(第8题)11()22a ABC ah S a b c r ∆==++,所以ar a h a b c =++, 因为△ADE ∽△ABC ,所以它们对应线段成比例,因此,a a h r DEh BC-= 所以DE =()(1)(1)a a a h r r a a b c a a a h h a b c a b c-+⋅=-=-=++++ 故 DE =8(79)168796⨯+=++。

9、已知AB 是半径为1的圆O 的一条弦,且AB =a <1,以AB 为一边在圆O 内作正△ABC ,点D 为圆O 上不同于点A 的一点,且DB =AB =a ,DC 的延长线交圆O 于点E ,则AE 的长为( B )。

A、2a B 、1 C、2D 、a 解:如图,连接OE ,OA ,OB ,设∠D =a ,则 ∠ECA =120°-a =∠EAC又因为∠ABO =11(601802)12022ABD a a ∠=︒+︒-=︒-所以 △ACE ≌△ABO ,于是AE =OA =110.已知线段AB 的中点为C ,以点A 为圆心,AB 的长为半径作圆,在线段AB 的延长线上取点D ,使得BD =AC ;再以点D 为圆心,DA 的长为半径作圆,与⊙A分别相交于F ,G 两点,连接FG 交AB 于点H ,则AHAB的值为 .解:如图,延长AD 与⊙D 交于点E ,连接AF ,EF .由题设知13AC AD =,13AB AE =,在△FHA 和△EFA 中,90EFA FHA ∠=∠=︒,FAH EAF ∠=∠ 所以Rt△FHA ∽Rt △EFA ,AH AF AF AE =.而AF AB =,所以AH AB 13=.(第9题)11(10).如图,△ABC 为等腰三角形,AP 是底边BC 上的高,点D 是线段PC 上的一点,BE 和CF 分别是△ABD 和△ACD 的外接圆直径,连接EF . 求证: tan EFPAD BC∠=. 证明:如图,连接ED ,FD . 因为BE 和CF 都是直径,所以ED ⊥BC , FD ⊥BC ,因此D ,E ,F 三点共线. …………(5分) 连接AE ,AF ,则AEF ABC ACB AFD ∠=∠=∠=∠,所以,△ABC ∽△AEF . …………(10分)作AH ⊥EF ,垂足为H ,则AH =PD . 由△ABC ∽△AEF 可得EF AHBC AP =, 从而 EF PDBC AP=, 所以 tan PD EFPAD AP BC ∠==. …………(20分)12(11)、如图,点H 为△ABC 的垂心,以AB 为直径的⊙1O 和△BCH 的外接圆⊙2O 相交于点D ,延长AD 交CH 于点P ,求证:点P 为CH 的中点。

相关文档
最新文档