人教版七年级上数学同步练习题及答案

合集下载

人教版七年级初一数学上册同步练习1.3.1有理数的加法(附答案)

人教版七年级初一数学上册同步练习1.3.1有理数的加法(附答案)

11.3.1有理数的加法 同步练习基础巩固题:1、计算:(1)15+(-22) (2)(-13)+(-8)(3)(-0.9)+1.51 (4))32(21-+2、计算:(1)23+(-17)+6+(-22)(2)(-2)+3+1+(-3)+2+(-4)3、计算:(1))1713(134)174()134(-++-+-2(2))412(216)313()324(-++-+-4、计算:(1))2117(4128-+ (2))814()75(125.0)411(75.0-+-++-+应用与提高题1、(1)绝对值小于4的所有整数的和是________;(2)绝对值大于2且小于5的所有负整数的和是________。

2、若2,3==b a ,则=+b a ________。

3、已知,3,2,1===c b a 且a >b >c ,求a +b +c 的值。

4、若1<a <3,求a a -+-31的值。

35、计算:7.10)]323([3122.16---+-+-6、计算:(+1)+(-2)+(+3)+(-4)+…+(+99)+(-100)7、10袋大米,以每袋50千克为准:超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+0.5,+0.3,0,-0.2,-0.3,+1.1,-0.7,-0.2,+0.6,+0.7.10袋大米共超重或不足多少千克?总重量是多少千克?中考链接1、数轴上A 、B 两点所表示的有理数的和是________。

2、小明记录了今年元月份某五天的最低气温(单位:℃):1,2,0,-1,-2,这五天的最低温度的平均值是( )A 、1B 、2C 、0D 、-14参考答案基础检测1、-7,-21,0.61,-61 严格按照加法法则进行运算。

2、-10,-3.把符号相同的数就、或互为相反数的数结合进行简便运算3、-1,213-。

把同分母的数相结合进行简便运算。

4、756,4310-。

拆分带分数,整数部分和分数部分分别进行加法运算;把小数化成分数进行简便运算。

人教版七年级上册数学教材同步练习全套(含答案)

人教版七年级上册数学教材同步练习全套(含答案)

人教版七年级上册数学教材同步练习全套第一章有理数《1.1正数和负数》同步练习能力提升1.团团和圆圆共同写了下列四组数:①-3,2.3,14;②34,0,212;③113,0.3,7;④1 2,15,2.其中,3个数都不是负数的是( )A.①②B.②④C.③④D.②③④2.如果+20%表示增加20%,那么-6%表示( )A.增加14%B.增加6%C.减少6%D.减少26%3.下列判断正确的是( )①+a一定不为0;②-a一定不为0;③a>0;④a<0A.①②B.③④C.①②③④D.都不正确4.观察下列一组数:-1,2,-3,4,-5,6,…,则第100个数是( )A.100B.-100C.101D.-101★5.小嘉全班在操场上围坐成一圈.若以班长为第1人,依顺时针方向算人数,小嘉是第17人;若以班长为第1人,依逆时针方向算人数,小嘉是第21人,则小嘉班的人数共有( )A.36B.37C.38D.396.已知一个乒乓球的标准质量为 2.70 g,把质量为 2.72 g的乒乓球记为+0.02 g,则质量为2.69 g的乒乓球应记为.7.墨西哥素有“仙人掌王国”之称.每食100 g仙人掌可以产生 27-2+3千焦的热量,27-2+3千焦的含义是产生的热量在千焦至千焦之间.8.前进 5 m记为+5 m,再前进-5 m,则总共走了m,这时距离出发地m.9.张老师以班级平均分为基准成绩,超过基准成绩记为正,不足记为负.他把甲、乙、丙、丁四位同学的成绩简记为+8,-6,+12,-3(单位:分).又知道甲同学的成绩为85分,问其他三名同学的成绩是多少?10.某条河某星期周一至周日的水位变化量(单位:m)分别为+0.1,+0.4,-0.25,-0.1,+0.05,+0.25,-0.1,其中正数表示当天水位比前一天上升了,且上周日的水位是50 m.(1)水位哪天最高,哪天最低,分别为多少?(2)与上周日相比,本周日的水位是上升了还是下降了?上升(下降)了多少?创新应用★11.观察下面一列数,探究其规律: -1,12,-13,14,-15,16,…. 请问:(1)第7个数、第8个数、第9个数分别是什么? (2)第100个数是多少?它是正数还是负数?(3)分数12016,12017是不是这列数中的数?如果是,是第几个数? (4)如果把这一列数无限地排列下去,将与哪个数越来越接近?参考答案能力提升 1.D 2.C3.D a 可正、可负、可为0.4.A5.A6.-0.01 g7.25 308.10 0 前进-5m 相当于后退5m,所以总共走了10m,又回到出发地,即距离出发地0m.9.分析:本题可根据甲的成绩为85分,计算班级的平均分,再结合乙、丙、丁的记分,分别求出他们的成绩.解:因为甲的成绩为85分,且甲的记分为+8, 所以班级平均分是85-8=77(分). 所以乙的成绩是77-6=71(分); 丙的成绩是77+12=89(分); 丁的成绩是77-3=74(分).10.解:(1)周二水位最高,周一水位最低,分别为50.5m 和50.1m. (2)0.1+0.4-0.25-0.1+0.05+0.25-0.1=0.35(m), 因此,与上周日相比,本周日的水位上升了,上升了0.35m. 创新应用11.解:(1)第7个数是-17,第8个数是18,第9个数是-19. (2)第100个数是1100,1100是正数.(3)分数12016是这列数中的数,且是第2016个数;12017不是这列数中的数,当分母为奇数时,这个数应是负数.(4)如果把这列数无限地排列下去,将与0越来越接近.1.2 有理数《1.2.1 有理数》同步练习能力提升1.在-225,π,0,14,-5,0.333…六个数中,整数的个数为( ) A.1B.2C.3D.42.- 12不属于( ) A.负数B.分数C.整数D.有理数3.在下列集合中,分类正确的是( ) A.正数集合{5,32,0.5,…}B.非负数集合{0,-2,-3.6,…},…}C.分数集合{-4.5,7,13,-9,8,…}D.整数集合{5124.在有理数中,不存在这样的数( )A.既是整数,又是负数B.既不是整数,也不是负数C.既是正数,又是负数D.既是分数,又是负数,0,-2,10,+21,其中非负数有,5.已知下列各数:-4,3.5,13非正数有.6.有理数中,是整数而不是正数的是,是分数而不是负分数的是,最小的正整数是.7.用“√”表示表中各数属于哪类数.8.将下面一组数填入相应集合的圈内:-0.5,-7,+2.8,-900,-31,99.9,0,4.2(1) (2)9.写出五个数(不能重复),同时满足下列三个条件:①其中三个数是非正数;②其中三个数是非负数;③五个数都是有理数.10.在七(1)班举行的“数学晚会”上,A,B,C,D,E五名同学的手上各拿着一张卡片,卡片上分别写着下列各数:2,-12,0,-3,16,主持人要求同学们按照卡片上的这些数的特征,将这五名同学分成两组或者三组来表演节目(每组人数不限).如果让你来分,那么你会如何分组呢?创新应用★11.黑板上有10个有理数,小明说“其中有6个正数”,小红说“其中有6个整数”,小华说“其中正分数的个数与负分数的个数相等”,小林说“负数的个数不超过3个”.请你根据四名同学的叙述判断这10个有理数中共有几个负整数.参考答案能力提升1.C-225是分数;π=3.1415926…是无限不循环小数;0,14,-5是整数;0.333…是循环小数.2.C -12既是负数,又是分数,还是有理数.3.A4.C5.3.5,13,0,10,+21 -4,0,-26.0和负整数正分数 17.8.解:(1)(2)9.分析:非正数指的是负数和0,非负数指的是正数和0. 解:(答案不唯一)如-2,-1,0,1,2或-3,-1,0,3,4.10.解:(答案不唯一)如按整数、分数分成两组分别是2,0,-3和-12,1 6 .创新应用11.解:由小红说可知有4个分数,由小华说可知有2个正分数和2个负分数,由小明可知有4个非正数,由小林说可知有3个负数,另一个非正数为0,所以负整数有1个.《1.2.2 数轴》同步练习能力提升1.在数轴上,原点及原点右边的点表示的数是( )A.正数B.整数C.非负数D.非正数2.数轴上的点A与原点距离6个单位长度,则点A表示的数为( )A.6或-6B.6C.-6D.3或-33.在数轴上,表示-17的点与表示-10的点之间的距离是( )A.27个单位长度B.-27个单位长度C.7个单位长度D.-7个单位长度★4.如图所示,数轴上的点P,O,Q,R,S表示某城市一条大街上的5个公交车站点,现在有一辆公交车距P站点3 km,距Q站点0.7 km,则这辆公交车的位置在( )A.R站点与S站点之间B.P站点与O站点之间C.O站点与Q站点之间D.Q站点与R站点之间5.在数轴上,表示数-6,2.1,-12,0,-412,3,-3的点中,在原点左边的点有个, 表示的点与原点的距离最远.6.点M表示的有理数是-1,点M在数轴上向右移动3个单位长度后到达点N,则点N表示的有理数是.7.数轴上与原点距离小于4的整数点有个.8.在数轴上,与-2所对应的点距离3个单位长度的点所表示的数是.9.有几滴墨水滴在数轴上,根据图中标出的数值,写出墨迹盖住的整数.10.喜羊羊的家、懒羊羊的家、学校与美羊羊的家依次位于一条东西走向的大街上,喜羊羊家位于学校西边30 m处,美羊羊家位于学校东边100 m处,喜羊羊从学校沿这条大街向东走了40 m,接着向西走了100 m到达懒羊羊家,试用数轴表示出喜羊羊家、学校、美羊羊家、懒羊羊家的位置.★11.如图所示,在数轴上有A,B,C三点,请根据数轴回答下列问题:(1)将点B向左移动3个单位长度后,这时三个点所表示的数中哪一个最小?是多少?(2)将点A向右移动4个单位长度后,这时三个点所表示的数中哪一个最大?是多少?(3)将点C向左移动6个单位长度后,这时点B表示的数比点C表示的数大多少?创新应用★12.如图所示,一只蚂蚁从原点出发,先向右爬行2个单位长度到达点A,再向右爬行3个单位长度到达点B,然后再向左爬行9个单位长度到达点C.(1)写出A,B,C表示的数;(2)实际上,蚂蚁最终是从原点出发向什么方向爬行了几个单位长度?★13.利用数轴解答,有一座三层楼房不幸起火,一位消防员搭梯子爬往三楼去抢救物品.当他爬到梯子正中1级时,二楼窗口喷出火来,他就往下退了3级,等到火势过去了,他又向上爬了7级,这时屋顶有两块砖掉下来,他又后退了2级,幸好没打着他,他又向上爬了8级,这时他距离梯子最高层还有一级,问这个梯子共有几级?参考答案能力提升1.C 在数轴上,原点及原点右边的点表示的数是0和正数.2.A3.C4.D5.4 -66.27.7 符合条件的点有-3,3,-2,2,-1,1,0,共7个.8.-5或1 画出数轴,找出-2表示的点,与该点距离3个单位长度的点有两个,分别表示-5,1.9.分析:从图中可见墨迹盖住两段,一段是在-8~-3之间,另一段在4~9之间.解:-8~-3之间的整数有-4,-5,-6,-7;4~9之间的整数有5,6,7,8.10.解:11.解:(1)点B最小,是-5.(2)点C最大,是3.(3)点B表示的数比点C表示的数大1.创新应用12.解:(1)A表示2,B表示5,C表示-4.(2)实际上,蚂蚁最终是从原点出发向左爬行了4个单位长度.13.解:设梯子正中1级为原点,向上爬的级数为正,后退的级数为负,答案为23级.《1.2.3 相反数》同步练习能力提升1.下列说法:①若a,b互为相反数,则a+b=0;②若a+b=0,则a,b互为相反数;③若a,b互为相反数,则ab =-1;④若ab=-1,则a,b互为相反数.其中正确的结论有( )A.1个B.2个C.3个D.4个2.相反数不大于它本身的数是( )A.正数B.负数C.非正数D.非负数3.一个数在数轴上所对应的点向右移动5个单位长度后得到它的相反数的对应点,则这个数是( )A.-2B.2C.212D.-2124.如图,表示互为相反数的两个数是( )A.点A和点DB.点B和点CC.点A和点CD.点B和点D5.如果a=-a,那么表示数a的点在数轴上的位置是 ( )A.原点左侧B.原点右侧C.原点或原点右侧D.原点6.若a=-2 016,则-a= .7.-(-8)是的相反数,-(+6)是的相反数.8.在①+(+3)与-(-3);②-(+3)与+(-3);③+(+3)与-(+3);④+(-3)与-(-3)中,互为相反数的是.(填序号)9.已知a-4与-1互为相反数,求a的值.★10.在一条东西走向的马路上,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校西边300 m处,商场在学校西边600 m处,医院在学校西边500 m处,若将该马路近似地看作一条直线,向东为正方向,1个单位长度表示100 m.找一个公共场所作为原点,在数轴上表示出这四家公共场所的位置,并使得其中两个公共场所所在位置表示的数互为相反数.创新应用★11.如图所示的是两个正方体纸盒的表面展开图,请分别在标有字母的正方形内填入适当的数,使得它们折成正方体后相对面上的两个数互为相反数.参考答案能力提升 1.C 2.D3.D 这对相反数在数轴上表示的点之间的距离为5,则这两个数分别为212与-212,由题意知这个数为-212.4.C5.D a=-a,表示一个数的相反数等于它本身,相反数等于它本身的数只有0,故表示数a 的点在数轴上的位置是原点.6.2 0167.-8 6 -(-8)=8,8是-8的相反数;-(+6)=-6,-6是6的相反数. 8.③④9.解:因为1与-1互为相反数,所以a-4=1,所以a=5,即a 的值为5. 10.解:若将青少年宫作为原点,则商场在原点左侧3个单位长度处,医院在原点左侧2个单位长度处,学校在原点右侧3个单位长度处(如图所示).此时商场和学校所在位置表示的数互为相反数.创新应用11.解:A:1,B:-2,C:0,D:-0.5,E:-1,F:3.《1.2.4绝对值》同步练习一.选择题1.−2的绝对值是( )A .−2B .− 12C .12D .22.|−2|的绝对值的相反数是()A.−2 B.2 C.−3 D.33.|−2|=x,则x的值为()A.2 B.−2 C.±2 D.1 24.绝对值等于本身的数有()A.0个 B.1个 C.2个 D.无数个5.数轴上有A,B,C,D四个点,其中绝对值相等的点是()A.点A与点D B.点A与点C C.点B与点C D.点B与点D 6.若a为有理数,且|a|=−a,那么a是()A.正数 B.负数 C.非负数 D.非正数二.填空题7.−|−5|= .三.解答题11.化简下列各数:(4)−[−(−a)];(5)|−(+7)|;(6)−|−8|;12.计算:(1)|−7|−|+4|;(2)|−7|+|−2009|.答案:1.D 2.A 3.A4.D解析:因为正数的绝对值是本身,0的绝对值为0,所以绝对值等于本身的数有无数个.5.C解析:数轴上点A,B,C,D在数轴上表示的数是;A=−2,B=−1,C=1,D=3.5,∴|B|=1,|C|=1,∴绝对值相等的两个点是点B和点C.6.D解:∵|a|=−a,∴a是负数或0,即非正数.7.−58.±3解析:∵|−3|=3,∴|x|=3,∵|±3|=3,∴x=±3.9.±3解析:因为|3|=3,|−3|=3,所以绝对值是3的数是±3.10.相等或互为相反数解析:∵|a|=|b|,∴a和b的关系为:相等或互为相反数.11.解:(1)−(−5)=5;(2)−(+7)=−7;(4)−[−(−a)]=−a;(5)|−(+7)|=7;(6)−|−8|=−8;(8)−|−a|(a<0)=−(−a)=a.12.解:(1)原式=7−4=3;(2)原式=7+2009=2016.《1.2.5有理数比较大小》同步练习一.选择题1.在−4,0,−1,3这四个数中,最大的数是( ) A .−4 B .0 C .−1 D .32.在−4,2,−1,3这四个数中,比−2小的数是( ) A .−4 B .2 C .−1 D .33.以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是( )A .−3℃B .15℃C .−10℃D .−1℃4.比0大的数是( ) A .−2 B .−32C .−0.5D .15.a 、b 在数轴上位置如图所示,则a 、b 、−a 、−b 的大小顺序是( )A .−a <b <a <−bB .b <−a <a <−bC .−a <−b <b <aD .b <−a <−b <aA .−25B .0C .25 D .2.5 二.填空题9.比较大小:|−134| −(−1.8)(填“>”、“<”或“=”).10.已知a,b两数在数轴上的表示如图所示,则−a b.(填“>”、“=”或“<”)三.解答题11.利用绝对值比较大小.12.比较下列各组有理数的大小:(1)−(−8)和−8;(2)−(+8)和|−8|;(3)+(−5)和−|−8|;(4)−2.25和−|−2.25|.答案:1.D 2.A 3.C 4.D5.B解析:从数轴上可以看出b<0<a,|b|>|a|,∴−a<0,−a>b,−b >0,−b>a,即b<−a<a<−b.6.A 7.>8.一4<一227<0<0.14<2.7 9.<10.>解析:根据数轴的特征,可得a>0>b,而且|a|<|b|,∴−a>b.(3)−(−725)与>−125.12.解:(1)∵−(−8)=8,∴−(−8)>−8.(2)∵−(+8)=−8,|−8|=8,−8<8,∴−(+8)<|−8|.(3)∵+(−5)=−5,−|−8|=−8,又∵|−5|=5,|−8|=8,∴+(−5)>−|−8|.(4)∵−|−2.25|=−2.25,∴−2.25=−|−2.25|.《1.3.1有理数的加法》同步练习一.选择题1.数轴上的点A表示的数是-1,将点A向左移动5个单位,终点表示的数是()A.4 B.-4 C.6 D.-62.一个点从数轴上的-3表示的点开始,先向右移动2个单位长度,再向左移动4个单位长度,这时该点所对应的数是()A.3 B.-5 C.-1 D.-93.计算3+(-3)的结果是()A.6 B.-6 C.1 D.04.计算-2+6等于()A.4 B.8 C.-4 D.-85.计算(-3)+(-2)的结果是()A.-6 B.-5 C.6 D.56.如果|a|+|b|=0则a与b的大小关系一定是()A.a=b=0 B.a与b不相等C.a与b互为相反数 D.a与b异号二.填空题8.某地,一天早晨的温度是-6℃,中午较早晨温度上升了9℃,则该中午(2)+(-3)=8;(4)(-3)+ =0.三.解答题11.计算:(3)(−0.25)+(+14);(4)(−312)+(+413).12.已知:|a|=2,|b|=3且a>b,求a+b的值.答案:1.D 2.B 3.D 4.A 5.B6.A解析:∵|a|+|b|=0,∴|a|=0,|b|=0,∴a=0,b=0.7.-2 8.3℃9.4或-8.解析:∵a的相反数是2,∴a=-2,∵|b|=6,∴b=±6,①当a=-2,b=6时,a+b=-2+6=4;②当a=-2,b=-6时,a+b=-2+(-6)=-8.10.(1)-5,(2)11,(3)2,(4)3.(2)原式=3.25-2.5=0.75;(3)原式=-0.25+0.25=0;(4)原式=-72+133=−21+266=56.12.解:∵|a|=2,|b|=3,∴a=±2,b=±3.∵a>b,∴当a=2时,b=-3,则a+b=-1.当a=-2时,b=-3,则a+b=-5.1.3有理数的加减法《1.3.1 有理数的加法》同步练习能力提升1.如果两个有理数的和是负数,那么这两个数()A.一定都是负数B.一定是0与一个负数C.一定是一个正数与一个负数D .可能是一个正数与一个负数,可能都是负数,也可能是0和一个负数2.有理数a ,b 在数轴上的位置如图,则a+b 的值( ) A.大于0B.小于0C.小于aD.大于b3.若a 与1互为相反数,则|a+1|等于( ) A.2B.-2C.0D.-14.若三个有理数a+b+c=0,则( ) A.三个数一定同号 B.三个数一定都是0 C.一定有两个数互为相反数D.一定有一个数等于其余两个数的和的相反数5.若x 的相反数是-2,|y|=4,则x+y 的值为 .6.绝对值小于2 016的整数有 个,它们的和是 .7.计算:(-1)+(+2)+(-3)+(+4)+…+(-99)+(+100)+…+(+2 014)+(-2 015)+(+2 016)+(-2 017)= .8.计算:(1)(-5)+(-4); (2)|(-7)+(-2)|+(-3); (3)(-0.6)+0.2+(-11.4)+0.8; (4)(-423)+(-313)+(+614)+(-214).9.在抗洪抢险中,人民解放军驾驶冲锋舟沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,规定向东为正,当天航行记录如下(单位:km):16,-8,13,-9,12,-6,10.(1)B 地在A 地的哪侧?相距多远?(2)若冲锋舟每千米耗油0.45 L,则这一天共消耗了多少升油?★10.阅读(1)小题中的方法,计算第(2)小题.(1)-556+(-923)+(-312)+1734.解:原式=[(-5)+(-56)]+[(-9)+(-23)]+[(-3)+(-12)]+(17+34)=[(-5)+(-9)+(-3)+17]+[(-56)+(-23)+(-12)+34] =0+(-54)=-54.(2)上述这种方法叫做拆项法,依照上述方法计算:(-201756)+(-201623)+4 034+(-112).创新应用★11.用[x ]表示不超过x 的整数中最大的整数,如[2.23]=2,[-3.24]=-4. 请计算:(1)[3.5]+[-3]; (2)[-7.25]+[-13].★12.在如图所示的圆圈内填上不同的整数,使得每条线上的3个数之和为0,写出三种不同的答案.参考答案能力提升 1.D2.A 从数轴上可知:-1<a<0,b>1,即a ,b 异号,且|b|>|a|,故a+b>0.3.C4.D5.-2或6 因为|4|=4,|-4|=4,所以y=±4.又因为x 的相反数为-2, 所以x=2.再将x ,y 的值代入x+y 求值. 6.4 031 07.-1 009 原式=[(-1)+(+2)]+[(-3)+(+4)]+…+[(-99)+(+100)]+…+[(-2013)+(+2014)]+[(-2015)+(+2016)]+(-2017)=-1009.8.解:(1)(-5)+(-4)=-(5+4)=-9. (2)|(-7)+(-2)|+(-3)=|-9|+(-3)=9+(-3)=6.(3)(-0.6)+0.2+(-11.4)+0.8=(0.2+0.8)+[(-0.6)+(-11.4)]=1+(-12)=-11. (4)(-423)+(-313)+(+614)+(-214)=[(-423)+(-313)]+[(+614)+(-214)]=(-8)+(+4)=-4.9.解:(1)16+(-8)+13+(-9)+12+(-6)+10=28(km),B 地在A 地的东侧,且两地相距28km .(2)|16|+|-8|+|13|+|-9|+|12|+|-6|+|10|=74(km),74×0.45=33.3(L),这一天共消耗油33.3L .10.解:(2)原式=[(-2017)+(-56)]+[(-2016)+(-23)]+4034+[(-1)+(-12)]=[(-2017)+(-2016)+(-1)+4034]+[(-56)+(-23)+(-12)] =0+[(-56)+(-46)+(-36)] =-2. 创新应用11.解:(1)原式=3+(-3)=0. (2)原式=-8+(-1)=-9. 12.解:本题答案不唯一,如:1.3.2有理数的减法《第1课时有理数的减法》同步练习能力提升1.某地2019年1月1日至4日每天的最高气温与最低气温如下表:其中温差最大的一天是()A.1月1日B.1月2日C.1月3日D.1月4日2.下列计算正确的是()A.(-4)-|-4|=0B.14−12=12C.0-5=5D.(-5)-(-4)=-1★3.下列说法中正确的是() A.两数之差一定小于被减数B.某个数减去一个负数,一定大于这个数减去一个正数C.0减去任何一个数,都得负数D.互为相反数的两个数相减一定等于04.在数轴上,表示a 的点总在表示b 的点的右边,且|a|=6,|b|=3,则a-b 的值为( )A .-3B .-9C .-3或-9D .3或95.小明家冰箱冷冻室的温度为-5 ℃,调低4 ℃后的温度为 .6.-13的绝对值与-212的相反数的差是 . 7.计算:(-14)-(-6)= ; (-8)-( )=-8; 0-(-2.86)= ;-(-5)=-3; (-135)-( )=0.8.已知|x|=5,y=3,则x-y= .9.在某地有记载的最高温度是56.7 ℃(约合134 ℉,℉是华氏度的单位符号),发生在1913年7月10日.有记载的最低温度是-62.2 ℃(约合-80 ℉),是在1971年1月23日.(1)以摄氏度为单位,有记录的最高温度和最低温度相差多少? (2)以华氏度为单位,有记录的最高温度和最低温度相差多少?10.某中学九(1)班学生的平均身高是166 cm .(1)下表给出了该班6名同学的身高(单位:cm).试完成下表:(2)谁最高?谁最矮?(3)最高与最矮的同学身高相差多少?11.设a是-4的相反数与-12的绝对值的差,b是比-6大5的数.(1)求a-b与b-a的值;(2)从(1)的结果中,你知道a-b与b-a之间的关系吗?创新应用★12.若|a|=7,|b|=9,且|a+b|=-(a+b),求b-a的值.参考答案能力提升1.D2.D3.B4.D5.-9 ℃(-5)-4=(-5)+(-4)=-9(℃).6.-136|-13|=13,-212的相反数等于212,13-212=13−52=26−156=-136.7.-802.86-8-1358.2或-8由|x|=5,知x=±5,故x-y=5-3=2或x-y=-5-3=-8.9.解:(1)依题意得56.7-(-62.2)=118.9(℃).故以摄氏度为单位,有记录的最高温度和最低温度相差118.9℃;(2)依题意得134-(-80)=214(℉).故以华氏度为单位,有记录的最高温度和最低温度相差214℉.10.解:(1)173158168-6+9(2)小武最高,小华最矮.(3)因为9-(-8)=17(cm),所以最高与最矮的同学身高相差17cm.11.解:由题意知a=-(-4)-|-12|=4-12=4+(-12)=-8,b=-6+5=-1. (1)a-b=-8-(-1)=-8+(+1)=-7,b-a=-1-(-8)=-1+8=7. (2)a-b 和b-a 互为相反数. 创新应用12.解:因为|a|=7,|b|=9,所以a=±7,b=±9.又|a+b|=-(a+b ), 故a+b<0.所以a=±7,b=-9. 因此,当a=7,b=-9时,b-a=-9-7=-16; 当a=-7,b=-9时,b-a=-9-(-7)=-9+7=-2.《第2课时 有理数的加减混合运算》同步练习能力提升1.等式-2-7不能读作( ) A.-2与7的差B.-2与-7的和C.-2与-7的差D.-2减去72.计算5-3+7-9+12=(5+7+12)+(-3-9)是应用了( ) A.加法交换律 B.加法结合律 C.分配律D.加法的交换律与结合律★3.在广西壮族自治区柳江县尧村有一眼奇特的报时泉,泉眼在距山脚约100 m 处的半山腰,中国地质科学院广西岩溶所的专家沿洞向上游走了1512 m,又向下游走了1513 m,再向上游走了423 m,这时专家在洞口的( )A.上游1113 m 处B.下游11 m 处C.上游23 m 处 D.上游456 m 处4.“负8、正15、负20、负8、正12的和”用算式表示为 .5.0-2123+(+314)−(-23)−(+14)的值为 . 6.计算:1-2-3+4+5-6-7+8+9-10-11+…+2013-2014-2015+2016= .7.一只跳蚤在某条直线上从点O 开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位……依此规律跳下去,当它跳第100次落下时,落点处离点O 的距离是 个单位.8.若|a+2|+|b+4|+|c-4|=0,则a+b-c= . 9.计算:(1)|112-111|+|113-112|+|114-113|; (2)1-[-1-(-37)-5+47]+|-4|; (3)314+(-235)+534+(-825).10.已知a=-312,b=+2.5,c=+3,d=-113,求(a+b)+(c+d)的值.11.下表为某公司股票在本周内每日的涨跌情况:(单位:元)计算这一周内该公司股票每股价格的变化是上涨还是下跌,上涨或下跌了多少元?创新应用★12.如图所示,一口水井,水面比井口低3 m,一只蜗牛从水面沿井壁往井口爬,第一次往上爬0.5 m 后,又往下滑了0.1 m;第二次往上爬了0.47 m 后,又往下滑了0.15 m;第三次往上爬了0.6 m 后,又往下滑了0.15 m,第四次往上爬了0.8 m 后,又往下滑了0.1 m;第五次往上爬了0.55 m 没有下滑.问:它能爬出井口吗?如果不能,那么第六次它至少要往上爬多少?★13.数学活动课上,王老师给同学们出了一道题:规定一种新运算“@”,对于任意有理数a,b,都有a@b=a-b+1.请你根据新运算,计算[2@(-3)]@(-2)的值.参考答案能力提升 1.C 2.D 3.D4.-8+15-20-8+125.-18 原式=-2123+314+23−14=-2123+23+314−14=-21+3=-18.6.07.50 设向右跳为正,向左跳为负,由题意,得1-2+3-4+5-6+…+99-100=(-1)+(-1)+…+(-1)⏟50个=-50. 所以第100次落在点O 左侧50个单位处, 故落点处离点O 的距离是50个单位.8.-10 根据绝对值的非负性和互为相反数的两个数和为0,得a+2=0,b+4=0,c-4=0,解得a=-2,b=-4,c=4,所以a+b-c=(-2)+(-4)-4=-2-4-4=-10.9.解:(1)原式=(111-112)+(112-113)+(113-114)=111−114=3154. (2)原式=1-(-1-5+47+37)+4=1+5+4=10.(3)原式=(314+534)+[(-235)+(-825)]=9+(-11)=-2. 10.解:(a+b)+(c+d)=[(-312)+(+2.5)]+[(+3)+(-113)] =-1+123=23.11.解:(+1.25)+(-1.05)+(-0.25)+(-1.55)+(+1.3) =[(+1.25)+(-0.25)]+[(-1.05)+(-1.55)]+(+1.3) =(+1)+(-2.6)+(+1.3) =[(+1)+(+1.3)]+(-2.6) =(+2.3)+(-2.6) =-0.3.答:本周内该公司股票每股价格下跌了,下跌了0.3元. 创新应用 12.解:因为0.5-0.1+0.47-0.15+0.6-0.15+0.8-0.1+0.55=2.92-0.5=2.42<3, 所以它不能爬出井口,第六次它至少要往上爬3-2.42=0.58(m). 13.解:根据运算法则,得[2@(-3)]@(-2)=[2-(-3)+1]@(-2)=6@(-2)=6-(-2)+1=6+2+1=9.1.4.1 有理数的乘法《第1课时 有理数的乘法》同步练习能力提升1.如图所示,数轴上A,B 两点所表示的两数的 ( )A.和为正数B.和为负数C.积为正数D.积为负数 2.下列计算正确的是( ) A.(-0.25)×(-16)=-14 B.4×(-0.25)=-1 C.(-89)×(-1)=-89 D.(-313)×(-115)=-43.一个有理数和它的相反数的积一定是( ) A.正数B.负数C.非正数D.非负数4.在-7,4,-4,7这四个数中,任取两个数相乘,所得的积最大是( ) A.28B.-28C.49D.-49★5.若a+b<0,且ab<0,则( ) A.a>0,b>0 B.a<0,b<0C.a,b 异号且负数的绝对值大D.a,b 异号且正数的绝对值大 6.-45的倒数的相反数是 .7.若|a|=5,b=-2,且ab>0,则a+b= .8.对任意有理数a,b,规定a*b=ab-b,则0*(-2 016)的值为 . 9.计算:(1)(-214)×(-325);(2)|-14|×(-112).★10.用正负数表示水位的变化量,上升为正,下降为负.某水库的水位每天下降3 cm,那么4天后这个水库水位的变化量是多少?创新应用★11.观察下列各式:-1×12=-1+12;-12×13=-12+13;-13×14=-13+14;…….(1)你发现的规律是-1n ×1n+1= .(n 为正整数) (2)用规律计算:(-1×12)+(-12×13)+(-13×14)+…+(-12014×12015)+(-12015×12016).参考答案能力提升 1.D 2.B3.C 由相反数的定义知,互为相反数的两个数异号或都为0,故它们的乘积是非正数.4.A 这四个数中,任取两个数相乘,所得的积分别为-28,28,-49,-16,28,-28,其中28最大.5.C 由ab<0可知a,b 异号;由a+b<0可知负数的绝对值较大.6.547.-7 由|a|=5知a=±5.因为ab>0,b=-2<0, 所以a=-5.所以a+b=-5+(-2)=-7.8.2 016 由题意,得0*(-2016)=0×(-2016)-(-2016)=0+2016=2016.9.解:(1)原式=94×175=15320.(2)原式=14×(-32)=-14×32=-38. 10.解:下降3cm,记作-3cm. (-3)×4=-12(cm).答:4天后这个水库水位下降了12cm. 创新应用11.解:(1)-1n +1n+1(2)原式=-1+12−12+13−13+…-12014+12015−12015+12016=-1+12016=-20152016.《第2课时 有理数的乘法运算律》同步练习能力提升1.大于-3且小于4的所有整数的积为( ) A.-12B.12C.0D.-1442.3.125×(-23)-3.125×77=3.125×(-23-77)=3.125×(-100)=-312.5,这个运算运用了( )A.加法结合律B.乘法结合律C.分配律D.分配律的逆用3.下列运算过程有错误的个数是( ) ①(3-412)×2=3-412×2②-4×(-7)×(-125)=-(4×125×7) ③91819×15=(10-119)×15=150-1519④[3×(-25)]×(-2)=3×[(-25)×(-2)]=3×50 A.1B.2C.3D.44.绝对值不大于2 015的所有整数的积是 .5.在-6,-5,-1,3,4,7中任取三个数相乘,所得的积最小是 ,最大是 .6.计算(-8)×(-2)+(-1)×(-8)-(-3)×(-8)的结果为 .7.计算(1-2)×(2-3)×(3-4)×…×(2 014-2 015)×(2 015-2 016)的结果是 .8.计算:(1)(-991516)×8; (2)(-11)×(-25)+(-11)×(+235)+(-11)×(-15).9.计算:(1100-1)×(199-1)×(198-1)×…×(13-1)×(12-1).10.已知|a+1|+|b+2|+|c+3|=0,求(a-1)×(b -2)×(c -3)的值.11.已知|ab cd |称为二阶行列式,规定的运算法则为|a bcd|=ad-bc,例如|3524|=3×4-5×2=2.根据上述内容计算|-79-132-314|的值.★12.观察下列等式(式子中的“!”是一种数学运算符号):1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1, (2016)2015!的值.创新应用★13.学习了有理数的运算后,王老师给同学们出了这样一道题: 计算711516×(-8),看谁算得又对又快. 下面是两位同学给出的不同解法:小强:原式=-115116×8=-920816=-57512;小莉:原式=(71+1516)×(-8)=71×(-8)+1516×(-8)=-57512. (1)以上两种解法,你认为谁的解法比较简便? (2)你还有其他解法吗?如果有,那么请写出解答过程;(3)你能用简便方法计算-999899×198吗?如果能,那么请写出解答过程.参考答案能力提升1.C 大于-3且小于4的所有整数中有一个为0,故乘积为0.2.D3.A ①错误,3也应乘2;②③④正确.4.0 符合条件的整数中有一个为0,所以它们的积为0.5.-168 2106.0 原式=(-8)×[(-2)+(-1)-(-3)] =(-8)×[(-2)+(-1)+(+3)] =(-8)×0=0.7.-1 原式=(-1)×(-1)×(-1)×…×(-1)⏟2015个(-1)=-1.8.解:(1)原式=(-100+116)×8 =-100×8+116×8 =-800+12 =-79912.(2)原式=(-11)×(-25+235-15) =-11×2=-22.9.解:原式=(-99100)×(-9899)×(-9798)×…×(-23)×(-12)=-99100×9899×9798×…×23×12=-1100.10.解:因为|a+1|+|b+2|+|c+3|=0, 所以a+1=0,b+2=0,c+3=0, 所以a=-1,b=-2,c=-3.所以原式=(-1-1)×(-2-2)×(-3-3)=(-2)×(-4)×(-6)=-48. 11.解:|-79-132-314|=(-79)×(-314)−(-13)×2=16+23=56. 12.解:2016!2015!=2016×2015×2014×…×2×12015×2014×2013×…×2×1=2016.创新应用13.解:(1)小莉的解法比较简便.(2)有,原式=(72-116)×(-8)=72×(-8)-116×(-8)=-57512.(3)能,原式=-(100-199)×198=-100×198+199×198=-19800+2=-19798.1.4.2 有理数的除法《第1课时 有理数的除法》同步练习能力提升1.有下列运算:①(-18)÷(-9)=2;②(-7289)÷8=-(72+89)×18=-919;③0.75÷(-558)=-34×845=-215;④|-9|÷|-111|=9×11=99.其中正确的个数为( )A.1B.2C.3D.42.实数a,b 在数轴上的对应点如图所示,则下列不等式中错误的是( ) A.ab>0 B.a+b<0C.ba <0D.a-b<03.下列结论错误的是( )A.若a,b 异号,则a·b<0,ab <0 B.若a,b 同号,则a·b>0,ab >0 C.-ab =a-b =-ab D.-a-b =-a b4.若m<0,则m|m |等于( ) A.1 B.±1C.-1D.以上答案都不对5.若一个数的相反数是114,则这个数是 ,这个数的倒数是 .6.计算:16÷(-2.5)= .7.若有理数a 与b(b≠0)互为相反数,则ab = . 8.计算:(-10)÷(-8)÷(-0.25).★9.计算:-123÷24×(16+34-512)÷(-212). 下面是小明和小亮两位同学的计算过程:小明:原式=-53÷(4+18-10)÷(-52)=-53×112×(-25)=118. 小亮:原式=-53×124×(212+912-512)÷(-52)=53×124×12×25=172. 他们的计算结果不一样,谁对谁错呢?错误的原因是什么?★10.已知a=-3,b=-2,c=5,求-b+c -a的值.创新应用★11.若ab≠0,则a|a|+|b|b的值不可能是( )A.0B.3C.2D.-2参考答案能力提升1.D2.C 由数轴知a,b都是负数,且a<b,所以ba>0.3.D4.C 因为m<0,所以|m|=-m,m|m|=m-m=-1,故选C.5.-114-4 56.-11516÷(-2.5)=-16×25=-115.7.-18.解:原式=-10×18×4=-5.9.解:小明的错误,小亮的正确.同级运算的顺序应从左到右依次进行,小明的运算顺序错误.10.解:-b+c-a =-(-2)+5-(-3)=2+53=73.创新应用11.B a和b都是正数时,a|a|+|b|b的值为2;a和b都是负数时,a|a|+|b|b的值为-2;a和b一正一负时,a|a|+|b|b的值为0.《第2课时有理数的混合运算》同步练习能力提升1.下列等式中成立的是( ) A.(-5)÷(1-2)=(-5)÷(-1) B.1÷(-2 015)=(-2 015)÷1 C.(-5)×6÷15=(-5)×15÷6 D.(-7)÷(17-1)=(-7)÷17-7÷(-1)2.在算式4-|-3□5|中的□所在位置,为使计算出来的值最小,应填入的运算符号是( )A.+B.-C.×D.÷3.计算(-6)÷(13-12)的结果是( ) A.6B.-6C.-36D.364.一个容器装有1 L 水,按照如下要求把水倒出:第1次倒出12 L 水,第2次倒出的水量是12 L 的13,第3次倒出的水量是13 L 的14,第4次倒出的水量是14 L 的15,……,按照这种倒水的方法,倒了10次后容器内剩余的水量是( )A .1011LB .19LC .110LD .111L5.计算:(-312)÷(-112)×313= .6.已知a=-1,b=23,c=-20,则(a-b )÷c 的值是 .7.已知C 32=3×21×2=3,C 53=5×4×31×2×3=10,C 64=6×5×4×31×2×3×4=15,……,观察上面的计算过程,寻找规律并计算C 106= .8.计算:(1)(213-312+1445)÷(-116); (2)(79-56+718)×18-1.45×6+3.95×6.9.市场销售人员把某一天两种冰箱销售情况制成表格如下:种类 售价/元 盈利/% 甲种冰箱1 50025乙种冰箱 1 500 -25已知这两种冰箱各售出一台,根据以上信息,请你判断商家是盈利还是亏本,盈利,盈了多少?亏本,亏了多少?★10.下面是小明计算-20÷15÷15的解题过程,他的计算正确吗?如果不正确,请改正.-20÷15÷15=-20÷(15÷15)=-20÷1=-20.11.现有四个有理数-1,-3,4,4,将这四个数(每个数用且只用一次)进行加、减、乘、除四则运算,使其结果为24,请写出这样的一个算式.12.已知有理数a,b,c满足|a|a +|b|b+|c|c=1,求|abc|abc的值.创新应用★13.若定义一种新的运算为a*b=ab1-ab ,计算[(3*2)]*16.参考答案能力提升1.A2.C 根据算式的特点,要使计算出来的值最小,需使|-3□5|的值最大,故只有“×”号.3.D (-6)÷(13-12)=(-6)÷(26-36)=(-6)÷(-16)=(-6)×(-6)=36. 4.D5.709 原式=72×23×103=709.6.112 当a=-1,b=23,c=-20时,(a-b )÷c=[(-1)-23]÷(-20)=(-123)÷(-20)=53×120=112.7.210 由题意可知,C 106=10×9×8×7×6×51×2×3×4×5×6=210.8.解:(1)(213-312+1445)÷(-116)=(73-72+4945)×(-67)=73×(-67)−72×(-67)+4945×(-67) =-2+3-1415=1-1415=115. (2)(79-56+718)×18-1.45×6+3.95×6=14-15+7-8710+23710=6+15010=21.9.解:1500÷(1+25%)=1200(元), 1500÷(1-25%)=2000(元).1200+2000=3200(元),1500×2=3000(元). 3000-3200=-200(元). 所以亏了,亏了200元. 10.解:小明的计算不正确. 原式=-20×5×5=-500.11.解:本题答案不唯一,如:(4+4)×(-3)÷(-1)=8×(-3)×(-1)=24. 12.解:已知|a |a+|b |b+|c |c=1,则a ,b ,c 必为一负二正,所以|abc |abc=-abc abc=-1.创新应用13.解:因为a*b=ab1-ab ,所以[(3*2)]*16=3×21-3×2∗16=(-65)∗16=-65×161-(-65)×16=-151+15=-16.1.5 有理数的乘方 《1.5.1 乘方》同步练习能力提升1.(-1)2 016的值是( ) A.1 B.-1C.2 016D.-2 0162.下列各式中,一定成立的是( ) A.(-3)2=32 B.(-3)3=33 C.-32=|-32| D.(-3)3=|(-3)3|3.28 cm 接近于( ) A.珠穆朗玛峰的高度 B.三层住宅楼的高度 C.一层住宅楼的高度D.一张纸的厚度4.现规定一种新的运算“*”,a*b=a b -1,如3*2=32-1=8,则(-12)*3等于( )A.-78 B.-118C.-212D.-325.把13×13×13×13×13写成乘方的形式为 ,其底数是 .6. 的平方是164, 的立方是-164.7.若x,y 互为倒数,则(xy)2 015= ;若x,y 互为相反数,则(x+y)2016= .★8.你喜欢吃拉面吗?拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合、拉伸,反复多次,就能拉成许多细面条.如图所示:(1)经过第3次捏合后,可以拉出 根细面条;(2)到第 次捏合后可拉出32根细面条.9.计算:(1)-52+2×(-3)2-7÷(-13)2; (2)(-5)2×(-35)+32÷(-2)3×(-114).创新应用 ★10.为了求1+2+22+23+…+22 015的值,可令S=1+2+22+23+…+22 015,则2S=2+22+23+…+22 016,因此2S-S=22 016-1,所以1+2+22+23+…+22 015=22 016-1.仿照以上推理计算出1+9+92+93+…+92 016的值是( )A.92 016-1B.92 017-1C.92016-18D.92017-18★11.观察下列各组数:①-1,2,-4,8,-16,32,…;②0,3,-3,9,-15,33,…;③-2,4,-8,16,-32,64,….(1)第①组数是按什么规律排列的?(2)第②③组数分别与第①组数有什么关系?(3)取每组数的第8个数,计算这三个数的和.参考答案能力提升1.A2.A (-3)2为正,32也为正,即(-3)2=32,所以A 一定成立;(-3)3为负,33为正,所以B 不成立;-32为负,|-32|为正,所以C 不成立;(-3)3为负,|(-3)3|为正,所以D不成立.3.C 28cm=256cm=2.56m,所以接近于一层住宅楼的高度.4.B (-12)*3=(-12)3-1=-12×12×12-1=-18-1=-118.5.(13)513 6.±18 -147.1 0 若x,y 互为倒数,则xy=1,所以(xy)2015=12015=1;若x,y 互为相反数,则x+y=0,所以(x+y)2016=02016=0.8.(1)8 (2)5 经过分析,设捏合次数为n,则可拉出的细面条根数为2n .9.解:(1)-70;(2)-10.创新应用10.D 令S=1+9+92+93+…+92016,则9S=9+92+93+…+92017,所以9S-S=92017-1,即S=92017-18.11.解:(1)后面一个数与前面一个数的比值为-2.(2)对比①②③三组中对应位置的数,第②组数比第①组数大1,第③组数是第①组数的2倍.(3)128+129+256=513.《1.5.2 科学记数法》同步练习能力提升1.为了响应国家“发展低碳经济、走进低碳生活”的号召,到目前为止,某市共有60 000户家庭建立了“低碳节能减排家庭档案”,则60 000这个数用科学记数法表示为( )A.60×104B.6×105C.6×104D.0.6×1062.用科学记数法表示870 000=m×10n ,则m,n 的值分别是( )A.m=87,n=4B.m=8.7,n=4C.m=87,n=5D.m=8.7,n=5。

人教版七年级数学上册《1-5-3 近似数》作业同步练习题及参考答案

人教版七年级数学上册《1-5-3 近似数》作业同步练习题及参考答案

1.5.3 近似数1.某体育中心总建筑面积达25.6 万平方米.将25.6 万用科学记数法(四舍五入精确到万位)表示约为( )A.26×104B.2.6×104C.2.6×105D.2.6×1062.2018 年1~5 月份,某市累计完成地方税收收入216.58 亿元.数据216.58 亿是精确到了( )A.百亿位B.亿位C.百万位D.百分位3.如图是一台计算机D 盘属性图的一部分,从中可以看出该硬盘容量的大小,请用科学记数法将该硬盘容量表示为( )字节(精确到亿位)A.2.01×1010B.2.02×1010C.2.02×109D.2.018×10104.下列说法正确的是( )A.近似数5.20 与5.2 的精确度一样B.近似数2.0×103 与2 000 的意义完全一样C.3.25 与0.325 的精确度不同D.0.35 万与3.5×103 的精确度不同5.用四舍五入法得到的近似数0.270,其准确数a 的范围是( )A.0.265≤a<0.275B.0.269 5≤a<0.270 5C.0.25≤a<0.28D.0.269 5≤a≤0.270 56.甲、乙分别测量同一片树叶的长度,得到的数据分别为7.2 cm 和72.0 mm,已知他们所用直尺的最小单位分别为cm,mm,则甲、乙所得数据较准确的为( )A.甲B.乙C.一样D.无法比较7.地球与太阳之间的距离约为149 600 000 km,用科学记数法表示(精确到千万位)约为km.8.6.435 8 精确到0.01 的近似数是,精确到个位的近似数为,精确到0.001为.9.由四舍五入得到的近似数8.7 亿,精确到位.10.下列各数都是由四舍五入法得到的近似数,它们分别精确到哪一位? (1)小红的体重为45.0 kg;(2)小明妈妈的年薪约为5 万元;(3)月球轨道呈椭圆形,远地点平均距离为4.055×105 km.11.用四舍五入法,按括号里的要求对下列各数取近似值.(1)1.598 2(精确到0.01);(2)0.070 33(精确到0.001);(3)3.307 4(精确到个位);(4)7.568(精确到十分位).12.小丽与小明在讨论问题:小丽:如果你把7 498 精确到千位,那么你就会得到7 000.小明:不,我有另外一种解答方法,可以得到不同的答案,首先,将7 498 精确到百位,得到7 500,然后把7 500 精确到千位,就得到8 000.你怎样评价小丽和小明的说法呢?13.今年某种汽车的销售目标定为772 000 辆,与去年相比增长28.7%.请按要求分别取772 000 的近似数.(1)精确到千位;(2)精确到万位;(3)精确到十万位.14.已知从地面向月球发射无线电波,无线电波到月球并返回地面用了约2.562 s,已知无线电波每秒传播3×105 km,求地球和月球之间的距离.(结果精确到千位)15.珠穆朗玛峰最近的一次高程测量是在2005 年,中国国家测绘局公布的新高程为8 844.43 m,原1975 年公布的高程数据8 848.13 m 停止使用.(1)新高程数据8 844.43 m 是准确数,原高程数据8 848.13 m 是近似数,这种理解对吗?(2)两个数据至少要精确到哪一位才能完全相同?★16.有一个五位整数先四舍五入到十位,再把所得的数四舍五入到百位,然后把所得的数四舍五入到千位,最后把所得的数四舍五入到万位,这时的数为2×104,你能写出这个数的最大值与最小值吗?它们的差是多少?★17.京京说:“我和小红的身高都约为1.7×102 cm,但我比她高9 cm.”你认为有这种可能吗?若有可能, 请用近似数的有关知识说明.★18.观察:1+2=3=22-1,1+2+22=7=23-1,1+2+22+23=15=24-1,….又232 约为4.3×109,则1+2+22+23+…+231 约为多少?用科学记数法表示为a×10n 的形式,并判断它是几位数.(a 的值精确到0.1)答案与解析夯基达标1.C2.C3.B4.C5.B 用四舍五入法得到的近似数0.270,其准确数a 的范围是0.269 5≤a<0.270 5.6.B7.1.5×1088.6.44 6 6.4369.千万7 在原数8.7 亿中的千万位上,所以它精确到千万位.10.解(1)精确到十分位.(2)精确到万位.(3)精确到百位.11.解(1)1.598 2≈1.60.(2)0.070 33≈0.070.(3)3.307 4≈3.(4)7.568≈7.6.培优促能12.解小丽的说法是正确的,小明的说法是错误的.7 498 精确到千位,只要把百位上的数字四舍五入即可.13.解(1)7.72×105.(2)7.7×105.(3)8×105.14.解3×105×2.562÷2=3.843×105≈3.84×105(km).答:地球和月球之间的距离约为3.84×105 km.15.解(1)不对,都是近似数.(2)精确到百位,即均为8.8×103 m.16.解最大值是24 444,最小值是14 445,它们的差是9 999.创新应用17.解有可能.因为两人的身高虽都约为1.7×102 cm,但1.7×102 cm 是精确到十位的近似数,其准确数的范围是大于或等于165 cm,小于175 cm.若京京的身高为174 cm,小红的身高为165 cm,则京京比小红高9 cm,故有可能.18.解1+2+22+23+…+231=232-1≈4.3×109-1≈4.3×109,它是十位数.。

七年级数学上册《第一章 有理数的加法》同步练习及答案-人教版

七年级数学上册《第一章 有理数的加法》同步练习及答案-人教版

七年级数学上册《第一章有理数的加法》同步练习及答案-人教版学校:___________班级:___________姓名:___________考号:___________基础巩固练习一、选择题1.计算-2+1的结果是( )A.1B.-1C.3D.-32.下列计算正确的是( )A.(+6)+(+13)=+7B.(-6)+(+13)=-19C.(+6)+(-13)=-7D.(-5)+(-3)=83.佳佳家冰箱冷冻室的温度为-15 ℃,求调高3 ℃后的温度,这个过程可以用下列算式表示的是( )A.-15+(-3)=-18B.15+(-3)=12C.-15+3=-12D.15+(+3)=184.有理数a、b在数轴上对应的位置如图所示,则a+b的值( )A.大于0B.小于0C.小于aD.大于b5.某校小卖铺一周的盈亏情况如下表所示(每天固定成本200元,其中“+”表示盈利,“-”表示亏损)星期一二三四五盈亏+220 -30 +215 -25 +225则这个周共盈利( )A.715元B.630元C.635元D.605元6.两个有理数的和等于零,则这两个有理数( )A.都是零B.一正一负C.有一个加数是零D.互为相反数7.下列各式的结果,符号为正的是( )A.(-3)+(-2)B.(-2)+0C.(-5)+6D.(-5)+58.在一竞赛中,老师将90分规定为标准成绩,记作0分,高出此分的分数记为正,不足此分的分数记为负,五名参赛者的成绩为+1,-2,+10,-7,0.那么( )A.最高成绩为90分B.最低成绩为88分C.平均成绩为90分D.平均成绩为90.4分二、填空题9.比﹣3大2的数是.10.已知飞机的飞行高度为10 000 m,上升3 000 m后,又上升了-5 000 m,此时飞机的高度是 m.11.在下面的计算过程后面填上运用的运算律.计算:(-2)+(+3)+(-5)+(+4).解:原式=(-2)+(-5)+(+3)+(+4)( )=[(-2)+(-5)]+[(+3)+(+4)] ( )=(-7)+(+7)=0.12.-113的相反数与-34的和是____________.13.小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为______℃.14.计算(-0.5)+314+2.75+(-512)的结果为 .三、解答题15.计算:(-23)+(+58)+(-17);16.计算:|(-7)+(-2)|+(-3);17.计算:﹣27+(﹣32)+(﹣8)+27;18.计算:(+26)+(-14)+(-16)+(+18);19.若|a|=4,|b|=2,且a<b,求a+b的值.20.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?21.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:B:;(2)观察数轴,与点A的距离为4的点表示的数是:;(3)若将数轴折叠,使得A点与﹣3表示的点重合,则B点与数表示的点重合.能力提升练习一、选择题:1.如图,数轴上点A ,B 表示的有理数分别是a ,b ,则( ) A.a +b >0 B.a +b <a C.a +b <0 D.a +b >b2.若两个有理数的和为负数,则这两个有理数( )A.一定都是负数B.一正一负,且负数的绝对值大C.一个为零,另一个为负数D.至少有一个是负数3.如果a ,b 是有理数,那么下列式子成立的是( )A.如果a <0,b <0,那么a +b >0B.如果a >0,b <0,那么a +b >0C.如果a >0,b <0,那么a +b <0D.如果a <0,b >0且|a|>|b|,那么a +b <04.计算0.75+(- 114)+0.125+(-57)+(-418)的结果是( ) A.657 B.-657 C.527 D.-5275.已知|a|=5,|b|=2,且|a ﹣b|=b ﹣a ,则a +b =( )A.3或7B.﹣3或﹣7C.﹣3D.﹣76.如图,数轴上P 、Q 、S 、T 四点对应的整数分别是p 、q 、s 、t ,且有p +q +s +t =﹣2,那么,原点应是点( )A.PB.QC.SD.T二、填空题7.设a 为最小的正整数,b 是最大的负整数,c 是绝对值最小的数,则a +b +c= .8.上周五某股民小王买进某公司股票1 000股,每股35元,下表为本周内每日股票的涨跌情况(单位:元):则在星期五收盘时,每股的价格是 .9.若|x﹣2|=5,|y|=4,且x>y,则x+y的值为.10.设a<0,b>0,且a+b>0,用“<”号把a、﹣a、b、﹣b连接起来为.三、解答题:11.计算:(-1.75)+1.5+(+7.3)+(-4.25)+(-6.5).12.计算:137+(-213)+247+(-123).13.计算:(-2.125)+(+315)+(+518)+(-3.2).14.计算:(-2.125)+(+315)+(+518)+(-3.2).15.某产粮专业户出售余粮10袋,每袋重量如下(单位:千克):199、201、197、203、200、195、197、199、202、196.(1)如果每袋余粮以200千克为标准,求这10袋余粮总计超过多少千克或者不足多少千克?(2)这10袋余粮一共多少千克?16.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当n个最小的连续偶数相加时,它们的和S与n之间有什么样的关系,用公式表示出来;(2)按此规律计算:①2+4+6+…+200值;②162+164+166+…+400值.答案基础巩固练习1.B2.C3.C4.A.5.D6.D7.C.8.D9.答案为:﹣1.10.答案为:8000.11.答案为:加法交换律,加法结合律.12.答案为:7 1213.答案为:-114.答案为:0.15.解:原式=[(-23)+(-17)]+(+58)=-40+58=18.16.解:原式=|-9|+(-3)=9+(-3)=6.17.解:原式=﹣27+(﹣32)+(﹣8)+27=﹣27﹣32﹣8+27=﹣40;18.解:原式=[(-14)+(-16)]+(26+18)=-30+44=14.19.解:∵|a|=4,|b|=2∴a=4或﹣4,b=2或﹣2∵a<b∴a=﹣4,b=2或﹣2当a=﹣4,b=2时,a+b=﹣4+2=﹣2;当a=﹣4,b=﹣2时,a+b=﹣4﹣2=﹣6.20.解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.21.解:(1)由数轴上AB两点的位置可知,A点表示1,B点表示﹣2.5. 故答案为:1,﹣2.5;(2)∵A点表示1∴与点A的距离为4的点表示的数是5或﹣3.故答案为:5或﹣3;(3)∵A点与﹣3表示的点重合∴其中点==﹣1∵点B表示﹣2.5∴与B点重合的数=﹣2+2.5=0.5.故答案为:0.5.能力提升练习1.C2.D3.D;4.B.5.B.6.C.7.答案为:0.8.答案为:34元;9.答案为:11,3,﹣7.10.答案为:﹣b<a<﹣a<b.11.解:原式=[(-1.75)+(-4.25)]+[(-6.5)+1.5]+(+7.3)=-6+(-5)+7.3=-11+7.3=-3.7.12.解:原式=(137+247)+[(-213)+(-123)]=4+(-4)=0.13.原式=[(-2.125)+(+518)]+[(+315)+(-3.2)]=3.14.解:原式=[(-2.125)+(+518)]+[(+315)+(-3.2)]=3.15.解:(1)以200千克为基准,超过200千克的数记作正数,不足200千克的数记作负数则这10袋余粮对应的数分别为:-1、+1、-3、+3、0、-5、-3、-1、+2、-4. (-1)+(+1)+(-3)+(+3)+0+(-5)+(-3)+(-1)+(+2)+(-4)=-11.答:这10袋余粮总计不足11千克.(2)200×10+(-11)=2 000-11=1 989.答:这10袋余粮一共1 989千克.16.解:(1))∵1个最小的连续偶数相加时,S=1×(1+1)2个最小的连续偶数相加时,S=2×(2+1)3个最小的连续偶数相加时,S=3×(3+1)…∴n个最小的连续偶数相加时,S=n(n+1);(2)①根据(1)得:2+4+6+…+200=100×(100+1)=10100;②162+164+166+…+400=(2+4+6+...+400)﹣(2+4+6+ (160)=200×201﹣80×81=40200﹣6480=33720.。

人教版七年级上册数学课时同步练习题及答案57页

人教版七年级上册数学课时同步练习题及答案57页

第一章 有理数1.1 正数和负数基础检测 1.521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有 ,负数有 。

2.如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作 m ,水位不升不降时水位变化记作 m 。

3.在同一个问题中,分别用正数与负数表示的量具有 的意义。

4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。

用正数和负数表示这三年我国全年平均降水量比上年的增长量。

拓展提高5.下列说法正确的是( )A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是( )A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米7.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 这时甲乙两人相距 m.8.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃至 ℃范围内保存才合适。

9.如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、 ______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是( )A 、-3.14B 、0C 、37 D 、3 3、既是分数又是正数的是( )A 、+2B 、-314C 、0D 、2.3 拓展提高4、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对5、-a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数6、下列说法中,错误的有( )①742-是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。

人教版数学七年级上《4.2直线、射线、线段》同步练习(含答案)

人教版数学七年级上《4.2直线、射线、线段》同步练习(含答案)

4.2 直线射线线段2一、单选题1.已知线段AB=5,C是直线AB上一点,BC=2,则线段AC长为( )A.3 B.7 C.3或7 D.以上都不对2.A,B,C三个车站在东西方向笔直的一条公路上,现要建一个加油站使其到三个车站的距离和最小,则加油站应建在( )A.在A的左侧B.在AB之间C.在BC之间D.B处3.如果线段AB=5cm,BC=4cm,且A、B、C在同一条直线上,那么A、C两点的距离是( )A.1cm B.9cmC.1cm或9cm D.以上答案都不正确4.如果一条直线上得到10条不同的线段,那么在这条直线上至少有点( )A.20个B.10个C.7个D.5个5.下列说法错误的是( )A.两点之间的所有连线中,线段最短B.经过一点有且只有一条直线与已知直线平行C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.经过一点有且只有一条直线与已知直线垂直6.在图中,线段的条数为( )A.9B.10 C.13D.157.如图,C是AB的中点,D是BC的中点,则下列等式不成立的是()A . CD =AD-ACB . CD =AB -BDC . CD =AB D . CD=AB 2141318.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A . 171B . 190C . 210D . 3809.如图,从A 地到B 地有多条道路,一般地,为了省时人们会走中间的一条直路而不会走其它的路,其理由是( )A . 两点确定一条直线B . 垂线段最短C . 两点之间,线段最短D . 两点之间,直线最短 10.如图所示的图形表示正确的有( )A . 3个B . 4个C . 5个D . 6个11.下列说法:①两点之间的所有连线中,线段最短;②在数轴上与表示﹣1的点距离是3的点表示的数是2;③连接两点的线段叫做两点间的距离;④射线AB 和射线BA 是同一条射线;⑤若AC=BC ,则点C 是线段AB 的中点;⑥一条射线把一个角分成两个相等的角,这条射线是这个角的平分线,其中错误的有( )A . 2个B . 3个C . 4个D . 5个二、填空题12.点C 在线段AB 上,下列条件中:①AC=BC②AC=2AB③AB=2BC④AC=0.5AB。

人教版七年级上册数学课时同步练习题及答案57页

人教版七年级上册数学课时同步练习题及答案57页

第一章 有理数1.1 正数和负数基础检测 1.521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有 ,负数有 。

2.如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作 m ,水位不升不降时水位变化记作 m 。

3.在同一个问题中,分别用正数与负数表示的量具有 的意义。

4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。

用正数和负数表示这三年我国全年平均降水量比上年的增长量。

拓展提高5.下列说法正确的是( )A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是( )A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米7.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 这时甲乙两人相距 m.8.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃至 ℃范围内保存才合适。

9.如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、 ______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是( )A 、-3.14B 、0C 、37 D 、3 3、既是分数又是正数的是( )A 、+2B 、-314C 、0D 、2.3 拓展提高4、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对5、-a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数6、下列说法中,错误的有( )①742-是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。

2022-2023学年人教版七年级数学上册《3-4实际问题与一元一次方程》同步练习题(附答案)

2022-2023学年人教版七年级数学上册《3-4实际问题与一元一次方程》同步练习题(附答案)

2022-2023学年人教版七年级数学上册《3.4实际问题与一元一次方程》同步练习题(附答案)一.选择题1.某轮船在两个码头之间航行,已知顺水航行需要3小时,逆水航行需要5小时,水流速度是4千米/小时,求两个码头之间的距离,若设两个码头之间的距离为x千米,则可得方程为()A.+4B.C.D.2.某车间有33名工人,每人每天可以生产1200个螺钉或1800个螺母.1个螺钉配两个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?设有x名工人生产螺钉,则可列方程为()A.2×1800x=1200(33﹣x)B.2×1200x=1800(33﹣x)C.1200x=2×1800(33﹣x)D.1800x=2×1200(33﹣x)3.某人骑电动车到单位上班,若每小时骑30千米,则可早到10分种;若每小时骑20千米,则迟到5分种.设他家到单位的路程为x千米,则所列方程为()A.B.C.D.4.一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天,如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?设要用x天可以铺好这条管线,则可列方程为()A.12x+24x=1B.()x=1C.=1D.(12+24)x=15.《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡有x只,可列方程为()A.4x+2(94﹣x)=35B.4x+2(35﹣x)=94C.2x+4(94﹣x)=35D.2x+4(35﹣x)=946.整理一批图书,由一个人做要40h完成,现计划由一部分人先做4h,然后增加2人与他们一起做8h,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?如果设安排x人先做4h,下列四个方程中正确的是()A.+=1B.+=1C.+=1D.+=17.用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”的个数为()A.5个B.4个C.3个D.2个8.如图,矩形ABCD被分割成六个正方形,其中最小正方形的面积等于1,则矩形ABCD 的面积等于()A.152B.143C.132D.1089.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则其中x的值为()A.1B.3C.4D.610.在一个3×3的方格中填写9个数字,使得每行每列每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.如图方格中填写了一些数和字母,为使该方格构成一个三阶幻方,则y﹣x的值是()A.1B.17C.﹣1D.﹣1711.如图给出的是2021年某月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是()A.27B.41C.42D.69二.填空题12.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发相向而行,甲速度为120千米/时,乙速度为80千米/时,t小时后两车相距50千米,t满足的方程是.13.一项工程甲单独做要20小时,乙单独做要12小时.现在先由甲单独做5小时,然后乙加入进来合做完成了整个工程.完成整个工程其中乙一共用了多少小时?若设乙一共用了x小时,则所列的方程为.14.七年级部分学生去某处旅游,如果每辆汽车坐30人,那么有15个学生没有座位;如果每辆汽车坐45人,那么空出1辆汽车.若设有x辆汽车,则可列方程为.15.某项工作甲单独做5天完成,乙单独做8天完成,若甲先做1天,然后甲、乙合作,最后共完成此项工作的,若设甲一共做了x天,由此可列出方程.三.解答题16.某校招聘木工维修一批旧课桌,现有甲、乙两名木工参加竞聘.已知甲比乙每天少维修5张课桌,甲单独工作18天或乙单独工作12天均能完成维修工作,木工甲每天工资100元,木工乙每天工资120元.(1)这批需要维修的课桌有多少张?(2)为缩短工期,学校决定同时聘用两人合作维修,但两人合作6天后,甲因有事,由乙单独完成余下的工作,那么学校共应付出多少工资?17.绿叶水果店第一次用795元从水果批发市场购进甲、乙两种不同品种的苹果,其中甲种苹果的重量比乙种苹果重量的2倍多15千克,甲、乙两种苹果的进价和售价如下表:甲乙进价(元/千克)58售价(元/千克)1015(1)绿叶水果店第一次购进的甲、乙两种苹果各多少千克?(2)绿叶水果店第二次以第一次的进价又购进甲、乙两种苹果,其中甲种苹果的重量不变,乙种苹果的重量是第一次的3倍;甲种苹果按原价销售,乙种苹果打折销售.第二次甲、乙两种苹果都售完后获得的总利润为595元,求第二次乙种苹果按原价打几折销售?18.一水果店第一次购进400kg西瓜,由于天气炎热,很快卖完,该店马上又购进了800kg 西瓜,进货价比第一次每千克少了0.5元,两次进货共花费4400元.(1)第一次购进的西瓜进价每千克多少元;(2)在销售过程中,两次购进的西瓜售价相同,由于西瓜是易坏水果,从购进到全部售完会有部分损耗.第一次购进的西瓜有4%的损耗,第二次购进的西瓜有6%的损耗,该水果店售完这些西瓜共获利3552元,则每千克西瓜的售价为多少元.19.由甲地到乙地前三分之二的路是高速公路,后三分之一的路是普通公路,高速公路和普通公路交界处是丙地.A车在高速公路上的行驶速度是120km/h,在普通公路上的行驶速度是80km/h;B车在高速公路上的行驶速度是100km/h,在普通公路上的行驶速度是80km/h,A,B两车分别从甲,乙两地同时出发相向行驶.在高速公路上距离丙地40km 处相遇,求甲,乙两地之间的距离是多少?20.修建中的贵阳经金沙至古蔺高速公路是《贵州省交通运输“十三五”发展规划》重点实施项目,项目全长约160km,其中古蔺至金沙段全长近40km,设计时速100km的双向六车道高速公路,它的建成将加快金沙经济的快速发展.建成后若一辆小轿车以100km/h 的速度从古蔺匀速行驶,15分钟后一辆客车以80km/h的速度从金沙匀速出发.问:小轿车能否在到达贵阳之前追上客车?若不能追上说明理由;若能追上则追上时距离目的地贵阳还有多远?(列一元一次方程解)21.某商场从厂家购进了A、B两种品牌足球共100个,已知购买A品牌足球比购买B品牌足球少花2800元,其中A品牌足球每个进价是50元,B品牌足球每个进价是80元.(1)求购进A、B两种品牌足球各多少个?(2)在销售过程中,A品牌足球每个售价是80元,很快全部售出;B品牌足球每个按进价加价25%销售,售出一部分后,出现滞销,商场决定打九折出售剩余的B品牌足球,两种品牌足球全部售出后共获利2200元,有多少个B品牌足球打九折出售?参考答案一.选择题1.解:设若设两个码头之间的距离为x千米,因此可列方程为﹣4=+4,故选:A.2.解:设有x名工人生产螺钉,根据题意得,2×1200x=1800(33﹣x),故选:B.3.解:设他家到单位的路程为x千米,依题意,得:,故选:B.4.解:设要用x天可以铺好这条管线,则可列方程:(+)x=1.故选:B.5.解:∵上有三十五头,且鸡有x只,∴兔有(35﹣x)只.依题意得:2x+4(35﹣x)=94.故选:D.6.解:设应先安排x人工作,根据题意得:+=1.故选:B.7.解:设“●”“■”“▲”分别为x、y、z,由图(1)(2)可知,,解得x=2y,z=3y,所以x+z=2y+3y=5y,即“■”的个数为5.故选:A.8.解:∵最小正方形的面积等于1,∴最小正方形的边长为1,设右下角的正方形的边长为x.∴AB=x+1+(x+2)=2x+3,BC=2x+(x+1)=3x+1,∵最大正方形可表示为2x﹣1,也可表示为x+3,∴2x﹣1=x+3,解得x=4,∴AB=11,BC=13,∴矩形的面积为11×13=143,故选:B.9.解:由题意,可得8+x=2+7,解得x=1.故选:A.10.解:﹣3+3﹣2=﹣2,﹣2+3﹣(﹣3)=4,2+3+4=9,由表格中的数据知:则x﹣3+3=9,解得x=9,y+3﹣2=9,解得y=8,则y﹣x=8﹣9=﹣1.故选:C.11.解:A、设中间的数为x,则最小的数为x﹣7,最大的数为x+7.x+(x﹣7)+(x+7)=27,解得:x=9,不符合题意;B、设中间的数为x,则最小的数为x﹣7,最大的数为x+7.x+(x﹣7)+(x+7)=41,解得:x=,符合题意;C、设中间的数为x,则最小的数为x﹣7,最大的数为x+7.x+(x﹣7)+(x+7)=42,解得:x=14,不符合题意;D、设中间的数为x,则最小的数为x﹣7,最大的数为x+7.x+(x﹣7)+(x+7)=69,解得:x=23,不符合题意.故选:B.二.填空题12.解:①当甲、乙两车未相遇时,根据题意,得120t+80t=450﹣50;②当两车相遇后,两车又相距50千米时,根据题意,得120t+80t=450+50.故答案是:120t+80t=450﹣50或120t+80t=450+50.13.解:根据题意,得甲先做了×5,然后甲、乙合做了(+)•x.则有方程:×5+(+)x=1.故答案是:×5+(+)x=1.14.解:若设有x辆汽车,则可列方程为30x+15=45(x﹣1).故答案为:30x+15=45(x﹣1).15.解:由题意得:+=.故答案是:+=.三.解答题16.解:(1)设甲每天维修x张课桌,则乙每天维修(x+5)张课桌,根据题意得:18x=12(x+5),解得:x=10,∴18x=180,答:这批需要维修的课桌有180张;(2)设乙完成工作的时间为y天,甲每天维修10张课桌,乙每天维修15张课桌,根据题意得:6×10+15y=180,解得:y=8,则学校应付出的工资为100×6+120×8=600+960=1560元.17.解:(1)设绿叶水果店第一次购进乙种苹果x千克,则购进甲种苹果(2x+15)千克,依题意,得:5(2x+15)+8x=795,解得:x=40,∴2x+15=95(千克).答:绿叶水果店第一次购进甲种苹果95千克,乙种苹果40千克.(2)设第二次乙种苹果按原价打y折销售,依题意,得:(10﹣5)×95+(15×﹣8)×40×3=595,解得:y=6.答:第二次乙种苹果按原价打6折销售.18.解:(1)设第一次购进西瓜的进价为每千克x元,则第二次购进西瓜的进价为每千克(x ﹣0.5)元,依题意得:400x+800(x﹣0.5)=4400,解得:x=4.答:第一次购进西瓜的进价为每千克4元.(2)设每千克西瓜的售价为y元,依题意得:400×(1﹣4%)y+800×(1﹣6%)y﹣4400=3552,解得:y=7.答:每千克西瓜的售价为7元.19.解:设甲乙两地之间的距离是xkm,根据题意得:解这个方程得:x=528,答:甲乙两地之间的距离是528km.20.解:设小轿车xh追上客车,依题意有:(100﹣80)(x﹣)=40﹣100×,解得x=1,160﹣100×1=60(km).故小轿车能在到达贵阳之前追上客车,追上时距离目的地贵阳还有60km远.21.解:(1)设购进A品牌足球x个,则购进B品牌足球(100﹣x)个,根据题意,得80×(100﹣x)﹣50x=2800,解得x=40.100﹣x=60.答:购进A品牌足球40个,则购进B品牌足球60个;(2)设有y个B品牌足球打九折出售,根据题意,得(80﹣50)×40+80×25%×(60﹣y)+[80×(1+25%)×90%﹣80]y=2200.解得y=20.答:有20个B品牌足球打九折出售.。

人教版七年级上数学同步练习题及答案

人教版七年级上数学同步练习题及答案

第一章 有理数1.1 正数和负数基础检测 1.521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有 ,负数有 。

2.如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作 m ,水位不升不降时水位变化记作 m 。

3.在同一个问题中,分别用正数与负数表示的量具有 的意义。

4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。

用正数和负数表示这三年我国全年平均降水量比上年的增长量。

拓展提高5.下列说法正确的是( )A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是( )A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米7.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 这时甲乙两人相距 m.8.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃至 ℃范围内保存才合适。

9.如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、 ______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是( )A 、-3.14B 、0C 、37 D 、3 3、既是分数又是正数的是( )A 、+2B 、-314 C 、0 D 、2.3 拓展提高4、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对5、-a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数6、下列说法中,错误的有( )①742 是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。

2023-2024学年七年级数学上册《第二章 整式的加减》同步练习题有答案(人教版)

2023-2024学年七年级数学上册《第二章 整式的加减》同步练习题有答案(人教版)

2023-2024学年七年级数学上册《第二章整式的加减》同步练习题有答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题(共8题)1.下列式子为同类项的是( )A.abc与ab B.3x与3x2C.3xy2与4x2y D.x2y与−yx22.下列运算正确的是( )A.x+y=xy B.5x2y−4x2y=x2yC.x2+3x3=4x5D.5x3−2x3=33.下列单项式中,与−5x2y是同类项的是( )A.−5xy B.3x2y C.−5xy2D.−54.下列去(添)括号正确的是( )A.x−(y−z)=x−y−zB.−(x−y+z)=−x−y−zC.x+2y−2z=x−2(y−z)D.−a+c+d+b=−(a−b)+(c+d)5.已知一个多项式与3x2+9x的和等于5x2+4x−1,则这个多项式是( )A.2x2−5x−1B.−2x2+5x+1C.8x2−5x+1D.8x2+13x−16.若有理数a,b,c在数轴上的对应点A,B,C位置如图,化简∣c∣−∣c−b∣+∣a+b∣=( )A.a B.2b+a C.2c+a D.−a7.多项式4n−2n2+2+6n3减去3(n2+2n3−1+3n)(n为自然数)的差一定是( )A.奇数B.偶数C.5的倍数D.以上答案都不对8.如图,两个三角形的面积分别为16,9,若两阴影部分的面积分别为a,b(a>b)则(a−b)等于( )A.8B.7C.6D.5二、填空题(共5题)x a−2y3是同类项,那么(a−b)2015=.9.如果单项式−xy b+1与12x2y n与−2x m y3的和仍为单项式,则−m n的值为.10.若单项式2311.已知2a−3b2=5,则10−2a+3b2的值是.12.若代数式2x2+3x+7的值是5,则代数式4x2+6x+15的值是.13.已知多项式3x2+my−8与多项式−nx2+2y+7的差中,不含有x,y,则n m+mn=.三、解答题(共6题)14.先化简,后求值:3a2b+2(−ab2+2a2b)−(a2b−3ab2),其中a,b满足a=−1,b=2.15.已知代数式A=−6x2y+4xy2−2x−5,B=−3x2y+2xy2−x+2y−3.(1) 先化简A−B,再计算当x=1,y=−2时A−B的值;(2) 请问A−2B的值与x,y的取值是否有关系?试说明理由.16.已知∣x−3m+2n+1∣+(y−3mn)2=0.(1) 用含字母m,n的式子表示x,y;(2) 若2x+y的值与m取值无关,求出2x+y的值;(3) 若x+y=4,求5m+8mn+2与−m+2mn+4n的差的值.17.一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”.例如:1423,x=1+4,y=2+3因为x=y,所以1423是“和平数”.(1) 直接写出最小的“和平数”是,最大的“和平数”是;(2) 如果一个“和平数”的个位上的数字是千位上的数字的两倍,且百位上的数字与十位上的数字之和是12,请求出所有的这种“和平数”.18.在计算代数式(2x3+ax−5y+b)−(2bx3−3x+5y−1)的值时,甲同学把“x=−23,y=35”误写为“x=23,y=35”,其计算结果也是正确的.请你通过计算写出一组满足题意的a,b的值.19.已知含字母x,y的多项式是:3[x2+2(y2+xy−2)]−3(x2+2y2)−4(xy−x−1).(1) 化简此多项式;(2) 小红取x,y互为倒数的一对数值代入化简的多项式中,恰好计算得多项式的值等于0,那么小红所取的字母y的值等于多少?(3) 聪明的小刚从化简的多项式中发现,只要字母y取一个固定的数,无论字母x取何数,代数式的值恒为一个不变的数,请你通过计算求出小刚所取的字母y的值.参考答案1. D2. B3. B4. D5. A6. D7. C8. B9. 110. −811. 512. 1113. 314. 原式=3a 2b −2ab 2+4a 2b −a 2b +3ab 2=6a 2b +ab 2.当 a =−1,b =2 时原式=6×1×2−1×4=8.15. (1) A −B=(−6x 2y +4xy 2−2x −5)−(−3x 2y +2xy 2−x +2y −3)=−6x 2y +4xy 2−2x −5+3x 2y −2xy 2+x −2y +3=(−6+3)x 2y +(4−2)xy 2+(−2+1)x −2y −5+3=−3x 2y +2xy 2−x −2y −2.当 x =1,y =−2 时A −B=−3×12×(−2)+2×1×(−2)2−1−2×(−2)−2=6+8−1+4−2=15.(2) A −2B=(−6x 2y +4xy 2−2x −5)−2(−3x 2y +2xy 2−x +2y −3)=−6x 2y +4xy 2−2x −5+6x 2y −4xy 2+2x −4y +6=(−6+6)x 2y +(4−4)xy 2+(−2+2)x −4y −5+6=−4y +1.由化简结果可知,A −2B 的值与 x 的取值没有关系,与 y 的取值有关系.16. (1) 由题意得:x −3m +2n +1=0,y −3mn =0所以x=3m−2n−1,y=3mn.(2)2x+y=2(3m−2n−1)+3mn =6m−4n−2+3mn=(6+3n)m−4n−2,因为2x+y的值与m取值无关所以6+3n=0所以n=−2所以2x+y=−4×(−2)−2=8−2=6.(3) 因为x+y=3m−2n−1+3mn=4所以3mn+3m−2n=5所以5m+8mn+2−(−m+2mn+4n)=5m+8mn+2+m−2mn−4n=6mn+6m−4n+2=2(3mn+3m−2n)+2=2×5+2=12.17. (1) 1001;9999(2) 设这个“和平数”为abcd则d=2a,a+b=c+d,b+c=12k∴2c+a=12k即a=2,4,6,8,d=4,8,12(舍去),16(舍去)①当a=2,d=4时2(c+1)=12k可知c+1=6k且a+b=c+d∴c=5,则b=7②当a=4,d=8时2(c+2)=12k可知c+2=6k且a+b=c+d∴c=4,则b=8.综上所述,这个数为2754和4848.18. (2x 3+ax −5y +b )−(2bx 3−3x +5y −1)=2x 3+ax −5y +b −2bx 3+3x −5y +1=(2−2b )x 3+(a +3)x −10y +(1+b ).由题意知计算结果也是正确的∴ 计算结果与 x 无关∴2−2b =0,a +3=0.∴a =−3,b =1(不唯一).19. (1) 原式=3x 2+6y 2+6xy −12−3x 2−6y 2−4xy +4x +4=2xy +4x −8.(2) ∵x ,y 互为倒数∴xy =1∴2+4x −8=0解得:x =1.5,y =23.(3) 由(1)得:原式=2xy +4x −8=(2y +4)x −8,由结果与 x 的值无关,得到 2y +4=0解得:y =−2.。

人教版数学七年级上《1.5有理数的乘方》同步练习(含答案)

人教版数学七年级上《1.5有理数的乘方》同步练习(含答案)

人教版数学七年级上册 同步练习第一章 有理数1.5 有理数的乘方第1课时 乘方的意义及运算1.比较(-4)3和-43,下列说法正确的是( )A .它们底数相同,指数也相同B .它们底数相同,但指数不相同C .它们所表示的意义相同,但运算结果不相同D .虽然它们底数不同,但运算结果相同2.下列各式:①-(-2);②-|-2|;③-22;④-(-2)2.计算结果为负数的个数有( )A .4个B .3个C .2个D .1个3.填空:(1)在73中底数是____,指数是____,读作____;(2)在⎝ ⎛⎭⎪⎫342中底数是________,指数是____,读作____________; (3)在(-5)4中底数是____,指数是____,读作____;(4)在8中底数是____,指数是____.4.计算:(1)(-2)6=____;(2)4×(-2)3=____;(3)-(-2)4=____.5.用带符号键(-)的计算器计算(-6)4的按键顺序是________________________.6.在计算器上,依次按键2x 2=,得到的结果是____.7.按照如图所示的操作步骤,若输入x 的值为2,则输出的值为____.输入x →加上3→平方→减去5→输出8.计算:(1)(-5)4;(2)-54;(3)⎝ ⎛⎭⎪⎫-433;(4)-235;(5)(-1)2 017.9.用计算器计算:(1)(-12)3;(2)-186;(3)9.85;(4)(-7.2)4.10.计算:(1)(-2)2×(-3)2; (2)-32×⎝ ⎛⎭⎪⎫-13;(3)⎝ ⎛⎭⎪⎫-452÷⎝ ⎛⎭⎪⎫253; (4)(-3)2×⎝ ⎛⎭⎪⎫-322×⎝ ⎛⎭⎪⎫232.11.13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()A.42 B.49 C.76D.7712.某种细菌在培养过程中,每半个小时分裂一次(由1个分裂成2个).若经过4小时,100个这样的细菌可分裂成____个.13.拉面师傅制作拉面时,按对折、拉伸的步骤,重复多次.(1)先用乘法计算拉面12次得到的面条数,再改用计算器计算,这两种方法哪种算得快?(2)如果拉面师傅每次拉伸面条的长度为0.8 m,那么他拉12次后,得到的面条的总长度是多少米?14.给出依次排列的一列数:2,-4,8,-16,32,….(1)依次写出32后面的三个数:_____________________________________________________________;(2)按照规律,第n个数为____.参考答案1.D 2.B3.(1)7 3 7的3次方 (2)34 2 34的2次方 (3)-5 4 -5的4次方 (4)8 1 4.(1)64 (2)-32 (3)-16 5.( (-) 6 ) ∧ 4 =6.4 7.208.(1)625 (2)-625 (3)-6427 (4)-85(5)-1 9.(1)-1 728 (2)-34 012 224 (3)90 392.079 68(4)2 687.385 610.(1)36 (2)3 (3)10 (4)911.C 12.25 60013.(1)利用计算器算得快;(2)他拉12次后得到的面条的总长度是3 276.8 m .14.(1)-64,128,-256 (2)(-1)n +12n 或-(-2)n第2课时 有理数的混合运算1.算式-23+49×⎝ ⎛⎭⎪⎫-232的运算顺序是( ) A .乘方、乘法、加法 B .乘法、乘方、加法C .加法、乘方、乘法D .加法、乘法、乘方2.下列计算中正确的是( )A .-14×(-1)3=1B .-(-3)2=9C.13÷⎝ ⎛⎭⎪⎫-133=9 D .-32÷⎝ ⎛⎭⎪⎫-13=-27 3.计算(-1)5×23÷(-3)2÷⎝ ⎛⎭⎪⎫133的结果是( ) A .-26 B .-24 C .10 D .124.[2017·重庆A 卷]计算:|-3|+(-1)2=__4__.5.计算:(1)||-4+23+3×(-5); (2)⎝ ⎛⎭⎪⎫122÷⎣⎢⎡⎦⎥⎤()-4-⎝ ⎛⎭⎪⎫-34.6.计算:(1)(-2)2×⎝ ⎛⎭⎪⎫1-34; (2)42÷(-4)-54÷(-5)3;(3)-(-2)5-3÷(-1)3+0×(-2.1)7;(4)-32×⎣⎢⎡⎦⎥⎤-32×⎝ ⎛⎭⎪⎫-232-2.7.按照如图所示的操作步骤,若输入的值为3,则输出的值为____.8.刘谦的魔术表演风靡全国,小明也学习刘谦发明了一个魔术盒,当任意有理数对(a ,b )进入其中时,会得到一个新的有理数:a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将有理数对(-2,-3)放入其中,得到的有理数是_ .9.有一种“24点”的扑克牌游戏规则是:任抽4张牌,用各张牌上的数和加、减、乘、除四则运算(可用括号)列一个算式,先得计算结果为“24”者获胜(J,Q,K分别表示11,12,13,A表示1).小明、小聪两人抽到的4张牌如图所示,这两组牌都能算出“24点”吗?怎样算?如果算式中允许包含乘方运算,你能列出符合要求的不同的算式吗?10.[2016·滨州]观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 016个式子为____.参考答案1.A 2.A 3.B4.4 5.(1)-3(2)-1136.(1)1(2)1(3)35(4)97.558.09.小明、小聪抽到的牌都能算出24点,如(3+4+5)×2=24,11×2+10÷5=24.如果允许包含乘方运算,可列算式如52-4+3=24,52-11+10=24.10.(32 016-2)×32 016+1=(32 016-1)2第3课时科学记数法1.据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82 600 000人次,数据82 600 000用科学记数法表示为() A.0.826×106B.8.26×107C.82.6×106D.8.26×1082.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12 630 000张.将12 630 000用科学记数法表示为()A.0.126 3×108B.1.263×107C.12.63×106D.126.3×1053.总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×10114.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204 000米/分,这个数用科学记数法表示,正确的是()A.204×103B.20.4×104C.2.04×105D.2.04×1065.用科学记数法表示下列各数:(1)2 730=____;(2)7 531 000=____;(3)-8 300.12=____.6.2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气试开采量约为16 000立方米,把16 000立方米用科学记数法表示为____立方米.7.用科学记数法表示下列横线上的数.(1)地球的半径约为6__400__000 m;(2)青藏铁路建成后,从青海西宁到西藏拉萨的铁路全长约1__956__000 m;(3)长江每年流入大海的淡水约是10__000亿立方米;(4)太平洋西部的马里亚纳海沟在海平面下约11__000 m 处;(5)地球上已发现的生物约1__700__000种.8.地球上的水的总储量约为1.39×1018m3,但目前能被人们生产、生活利用的水只占总储量的0.77%,即约为0.010 7×1018m3,因此我们要节约用水.请将0.010 7×1018m3用科学记数法表示是()A.1.07×1016m3B.0.107×1017m3C.10.7×1015m3D.1.07×1017m39.某市2015年底机动车的数量是2×106辆,2016年新增3×105辆,用科学记数法表示该市2016年底机动车的数量是()A.2.3×105辆B.3.2×105辆C.2.3×106辆D.3.2×106辆10.写出下列用科学记数法表示的数的原数:(1)长城长约6.3×103 km;(2)太阳和地球的距离大约是1.5×108 km;(3)一双没有洗过的手上大约有8×104万个细菌.11.生物学指出:生态系统中,输入每一个营养级的能量,大约只有10%的能量能够流动到下一个营养级,在H1→H2→H3→H4→H5→H6这条生物链中(H n表示第n个营养级,n=1,2,…,6),要使H6获得10 kJ的能量,则H1需要提供的能量大约为多少千焦?参考答案1.B 2.B 3.C 4.C5.(1)2.73×103(2)7.531×106(3)-8.300 12×1036.1.6×1047.(1)6.4×106(2)1.956×106(3)1×1012(4)1.1×104(5)1.7×1068.A9.C10.(1)6 300(2)150 000 000(3)800 000 00011.H1需要提供的能量大约为1×106kJ.第4课时近似数1.下列数据中为准确数的是()A.上海科技馆的建筑面积约为98 000 m2B.“小巨人”姚明身高2.26 mC.我国的神舟十号飞船有3个舱D.截至去年年底,中国国内的生产总值(GDP)达676 708亿元2.用四舍五入法按要求对0.050 49取近似数,其中错误的是() A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.050(精确到0.001)3.G20峰会,在全民的公益热潮中,杭州的志愿者们摩拳擦掌,想为世界展示一个美丽幸福文明的杭州.据统计,目前杭州市注册志愿者已达9.17×105人,则近似数9.17×105精确到了()A.百分位B.个位C.千位D.十万位4.小亮用天平称得一个罐头的质量为2.026 kg,用四舍五入法将2.026精确到0.01的近似值为()A.2 B.2.0C.2.02 D.2.035.下列说法错误的是()A.近似数16.8与16.80表示的意义不同B.近似数0.290 0是精确到0.000 1的近似数C.3.850×104是精确到十位的近似数D.49 564精确到万位是4.9×1046.(1)用四舍五入法,精确到0.1,对5.649取近似数的结果是__5.6__;(2)用四舍五入法,对1 999.508取近似数(精确到个位),得到的近似数是____;(3)用四舍五入法,求36.547精确到百分位的近似数是____.7.圆周率π=3.141 592 6…,取近似数3.142,是精确到__ __位.8.下列由四舍五入法得到的数各精确到哪一位?(1)0.023 3;(2)3.10;(3)4.50万;(4)3.04×104.9.用四舍五入法按括号里的要求对下列各数取近似数.(1)0.001 49(精确到0.001);(2)203 500(精确到千位);(3)49 500(精确到千位).10.我国以2010年11月1日零时为标准计时点进行了第六次全国人口普查,普查得到全国总人口为1 370 536 875人,该数用科学记数法(精确到千万位)表示为()A.13.7 亿B.13.7×108C.1.37×109D.1.4×10911.用四舍五入法,按要求对下列各数取近似数,并用科学记数法表示:(1)太空探测器“先驱者10号”从发射到2003年2月人们收到它最后一次发回的信号时,它已飞离地球12 200 000 000 km;(精确到100 000 000 km)(2)光年是天文学中的距离单位,1光年大约是9 500 000 000 000 km;(精确到100 000 000 000 km)(3)某市全年的路灯照明用电约需4 200万千瓦时.(精确到百万位)12.某次小明乘出租车时看到车内放有一张计价说明,如图1-5-4所示,但后面的几个字已受损.(1)小明乘车行驶4 km的时候,计价器显示的价格为8.6元.问超过部分每千米收费多少元?(2)如果小明这次乘出租车时付了12.2元,求他乘坐路程的范围(计价器每1 km跳价一次,不足1 km按1 km计价).参考答案1.C 2.C 3.C 4.D 5.D6.(1)5.6(2)2 000(3)36.557.千分8.(1)万分位(2)百分位(3)百位(4)百位9.(1)0.001(2)2.04×105(3)5.0×10410.C11.(1)1.22×1010km(2)9.5×1012km(3)4.2×107千瓦时12.(1)1.8元(2)大于5 km且小于或等于6 km。

人教版 七年级数学上册 有理数的除法同步练习(含答案)

人教版 七年级数学上册 有理数的除法同步练习(含答案)

1.4.2 有理数的除法一.选择题(共6小题).1.关于“0”,下列说法不正确的是()A.0有相反数B.0有绝对值C.0有倒数D.0是绝对值和相反数都相等的数2.下列运算有错误的是()A.÷(﹣3)=3×(﹣3)B.C.8﹣(﹣2)=8+2D.2﹣7=(+2)+(﹣7)3.下列运算正确的是()A.﹣3﹣(﹣)=4B.0﹣2=﹣2C.×(﹣)=1D.﹣2÷(﹣4)=24.已知a<0.且|a|<1,那么的值()A.等于1B.小于零C.等于﹣1D.大于零5.两个不为零的有理数相除,如果交换它们的位置,商不变,那么()A.两数相等B.两数互为相反数C.两数互为倒数D.两数相等或互为相反数6.计算(﹣1)÷(﹣9)×的结果是()A.﹣1B.1C.D.﹣二.填空题7.若a=﹣,b=﹣,c=,则=.8.已知a为有理数,且a≠0,则=.9.若=0,则一定有m,n.10.化简:=;=.11.计算:(﹣9)×÷(﹣2)=;(+)÷(﹣6)=.12.在如图所示的运算流程中,若输出的数y=3,则输入的数x=.13.若a>0,则=;若a<0,则=.14.如果>0,>0,那么0.三、解答题15.计算:(1);(2).16.当x=1,y=﹣3时,求[x÷(y﹣1)]×(﹣4)﹣[xy÷(﹣3)]÷(﹣1)的值.17.已知M=﹣++3(1)当a=3,b为a的倒数时,求M的值;(2)当a=﹣5时,b为a的相反数时,求M的值.18一天,小红与小莉利用温差测量山峰的高度,小红在山顶测得温度是﹣1℃,小莉此时在山脚测得温度是5℃.已知该地区高度每增加100米,气温大约降低0.8℃,这个山峰的高度大约是多少米?参考答案与试题解析一.选择题1.关于“0”,下列说法不正确的是()A.0有相反数B.0有绝对值C.0有倒数D.0是绝对值和相反数都相等的数【分析】分别根据相反数、绝对值和倒数的定义判断.解:A、0的相反数为0,所以A选项的说法正确;B、0的绝对值为0,所以B选项的说法正确;C、0没有倒数,所以C选项的说法错误;D、0的绝对值和相反数都等于0,所以D选项的说法正确.故选:C.2.下列运算有错误的是()A.÷(﹣3)=3×(﹣3)B.C.8﹣(﹣2)=8+2D.2﹣7=(+2)+(﹣7)【分析】根据有理数的运算法则判断各选项的计算过程.减去一个数等于加上这个数的相反数;除以一个数等于乘以这个数的倒数.解:只有A中的计算是错误的,理由:÷(﹣3)=×(﹣)=﹣,3×(﹣3)=﹣9.故选:A.3.下列运算正确的是()A.﹣3﹣(﹣)=4B.0﹣2=﹣2C.×(﹣)=1D.﹣2÷(﹣4)=2【分析】原式各项计算得到结果,即可做出判断.解:A、原式=﹣3+=﹣3,错误;B、原式=﹣2,正确;C、原式=﹣1,错误;D、原式=,错误,故选:B.4.已知a<0.且|a|<1,那么的值()A.等于1B.小于零C.等于﹣1D.大于零【分析】先根据a的取值范围确定a﹣1及a的符号,再根据绝对值的性质去掉绝对值符号,最后根据分式的性质进行化简.解:∵a<0.且|a|<1,∴﹣1<a<0,∴|a﹣1|=1﹣a>0,|a|﹣1=﹣a﹣1<0,∴=<0.故选:B.5.两个不为零的有理数相除,如果交换它们的位置,商不变,那么()A.两数相等B.两数互为相反数C.两数互为倒数D.两数相等或互为相反数【分析】根据相反数(0除外)的商为﹣1,以及相同两数(0除外)的商为1可得答案.解:交换它们的位置,商不变则两数相等或互为相反数,故选:D.6.计算(﹣1)÷(﹣9)×的结果是()A.﹣1B.1C.D.﹣【分析】根据除以一个数等于乘以这个数的倒数,可转化成有理数的乘法,根据有理数的乘法,可得答案.解:(﹣1)÷(﹣9)×=﹣1×(﹣)×=,故选:C.二.填空题7.若a=﹣,b=﹣,c=,则=﹣.【分析】将a、b、c的值代入所求式子,然后计算即可.解:∵a=﹣,b=﹣,c=,∴===﹣×4=﹣,故答案为:﹣.8.已知a为有理数,且a≠0,则=1或﹣1.【分析】由于a为有理数且a≠0,所以可分a为正数和负数两种情况,去绝对值符号后约分即可求解.解:(1)当a>0时,==1;(2)当a<0时,==﹣1.则=1或﹣1.故答案为:1或﹣1.9.若=0,则一定有m=0,n≠0.【分析】根据0除以任何一个不等于0的数,都得0,即可得出答案.解:若=0,则一定有m=0,n≠0.故答案为:=0,≠0.10.化简:=﹣;=.【分析】根据分数的基本性质化简即可求解.解:=﹣;=.故答案为:﹣;.11.计算:(﹣9)×÷(﹣2)=6;(+)÷(﹣6)=﹣.【分析】将除法变为乘法,再约分计算即可求解;先算小括号里面的加法,再算括号外面的除法.解:(﹣9)×÷(﹣2)=(﹣9)××(﹣)=6;(+)÷(﹣6)=÷(﹣6)=﹣.故答案为:6;﹣.12.在如图所示的运算流程中,若输出的数y=3,则输入的数x=5或6.【分析】根据所给的图可知,若x为偶数,则x=2y,若x不是偶数,则x=2y﹣1,分两种情况计算x的值.解:当x是偶数时,有x=2×3=6,当x是奇数时,有x=2×3﹣1=5.故本题答案为:5或6.13.若a>0,则=;若a<0,则=.【考点】绝对值;有理数的除法.【答案】见试题解答内容【分析】由绝对值的性质化简求解,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.若a>0,则求得的值;若a<0,则可求得的值.解:∵a>0,∴==1;∵a<0,∴==﹣1.14.如果>0,>0,那么0.【考点】有理数的除法.【答案】见试题解答内容【分析】求出a>0,b>0,然后根据同号得正解答.解:∵>0,>0,∴a>0,b>0,∴>0.故答案为:>.三、解答题15.计算:(1);(2).【考点】有理数的混合运算.【专题】计算题;实数;运算能力.【答案】(1)﹣1;(2)﹣.【分析】(1)先算乘除,后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;注意乘法分配律的灵活运用;(2)先算乘除,后算减法;同级运算,应按从左到右的顺序进行计算;如果有括号和绝对值,要先做括号和绝对值内的运算.解:(1)=(1﹣×24﹣×24+×24)÷(﹣5)=(1﹣9﹣4+18)÷(﹣5)=6÷(﹣5)=﹣1;(2)=×(﹣)××=﹣.16.当x=1,y=﹣3时,求[x÷(y﹣1)]×(﹣4)﹣[xy÷(﹣3)]÷(﹣1)的值.【考点】有理数的混合运算.【专题】实数;运算能力.【答案】.【分析】将x、y的值代入原式,再根据有理数的混合运算顺序和运算法则依次计算即可.解:当x=1=,y=﹣3时,原式=[÷(﹣3﹣1)]×(﹣4)﹣[×(﹣3)÷(﹣3)]÷(﹣1)=×(﹣)×(﹣4)﹣×3××(﹣1)=+=.17.已知M=﹣++3(1)当a=3,b为a的倒数时,求M的值;(2)当a=﹣5时,b为a的相反数时,求M的值.【考点】相反数;倒数.【专题】实数;数感;运算能力.【答案】(1);(2).【分析】(1)根据倒数的意义得出ab=1,求出a、b的值代入计算即可;(2)根据互为相反数的意义,求出a、b的值代入计算即可.解:(1)∵a=3,b为a的倒数,∴ab=1,b=,∴M=﹣++3=﹣++3=;(2)∵a=﹣5时,b为a的相反数,∴b=5,∴M=﹣++3=.18一天,小红与小莉利用温差测量山峰的高度,小红在山顶测得温度是﹣1℃,小莉此时在山脚测得温度是5℃.已知该地区高度每增加100米,气温大约降低0.8℃,这个山峰的高度大约是多少米?【考点】一元一次方程的应用.【专题】应用题.【答案】见试题解答内容【分析】根据题意,找到等量关系式:山顶温度=山脚温度﹣山高÷100×0.8.【解答】设这个山峰的高度大约是x米,根据题意得:5﹣×0.8=﹣1,解得:x=750.即这个山峰大约是750米;。

同步练习册数学七年级上册答案必备

同步练习册数学七年级上册答案必备

同步练习册数学七年级上册答案必备七年级上册数学同步练习册参考答案人教版§1.2.2数轴一、1. D 2. C 3. C二、1. 右 5 左 3 2. 3. -3 4. 10三、1. 略 2.(1)依次是-3,-1,2.5,4 (2)1 3. ±1,±3§1.2.3相反数一、1. B 2. C 3. D二、1. 3,-7 2. 非正数 3. 3 4. -9三、1. (1) -3 (2) -4 (3) 2.5 (4) -62. -33. 提示:原式= =§1.2.4绝对值一、1. A 2. D 3. D二、1. 2. 3. 7 4. ±4三、1. 2. 20 3. (1)|0|<|-0.01| (2) >§1.3.1有理数的加法(一)一、1. C 2. B 3. C二、1. -7 2.这个数 3. 7 4. -3,-3.三、1. (1) 2 (2) -35 (3) - 3.1 (4) (5) -2 (6) -2.75;2.(1) (2) 190.七年级上册数学同步练习答案沪教版基础检测:1.2.5,,106; 1, 1.732, 3.14,拓展提高4. 两个,±55. -2,-1,0,1,2,36. 74362, 1 757.-3,-1 8.11.2.3相反数基础检测1、5,-5,-5,5;2、2,2.-3, 0.3.相反4.解:2010年我国全年平均降水量比上年的增长量记作-24㎜2009年我国全年平均降水量比上年的增长量记作+8㎜2008年我国全年平均降水量比上年的增长量记作-20㎜拓展提高:5.B6.C7.-32m ,808.18 22℃9. +5m表示向左移动5米,这时物体离它两次前的位置有0米,即它回到原处。

1.2.1有理数测试基础检测1、正整数、零、负整数;正分数、负分数;正整数、零、负整数、正分数、负分数; 正有理数、零;负有理数、零;负整数、零;正整数、零;有理数;无理数。

人教版七年级数学上册同步练习题 第一章有理数 1.5.3近似数

人教版七年级数学上册同步练习题 第一章有理数 1.5.3近似数

人教版七年级数学上册同步练习题第一章有理数 1.5.3近似数一、单选题1.下列说法正确的是()A.近似数13.5亿精确到亿位B.近似数3.1×105精确到十分位C.近似数1.80精确到百分位D.用四舍五入法取2.258精确到0.1的近似值是2.22.用四舍五入法得到的近似数0.270,其准确数a的范围是()A.0.265≤a<0.275B.0.2695≤a<0.2705C.0.25≤a<0.28D.0.2695≤a≤0.27053.近似数35.04万精确到()A.百位B.百分位C.万位D.个位4.由四舍五入得到的近似数2.6万,精确到()A.千位B.万位C.个位D.十分位5.按括号内的要求用四舍五人法取近似数,下列正确的是()A.403.53≈403(精确到个位)B.2.604≈2.60(精确到十分位)C.0.0296≈0.03(精确到0.01)D.0.0136≈0.014(精确到0.0001)6.近似数4.50所表示的真值a的取值范围是()A.4.495≤a)4.505B.4.040≤a)4.60C.4.495≤a≤4.505D.4.500≤a)4.50567.-31.999精确到百分位的近似数的有效数字的个数是()A.2B.3C.4D.58.按括号内的要求,用四舍五入法,对1022.0099取近似值, 其中错误的是().A.1022.01(精确到0.01)B.1.0×103(保留2个有效数字)C.1020(精确到十位)D.1022.010(精确到千分位)9.1.449精确到十分位的近似数是()A.1.5B.1.45C.1.4D.2.010.中国人口达到13亿,精确到()A.千万位B.个位C.万位D.亿位二、填空题11.用四舍五入法把3.1415926精确到千分位是_______;近似数3.0×106精确到______位.12.将12.348用四舍五入法取近似数,精确到0.01,其结果是________.13.某种计算机每秒运算次数是4.66亿次,4.66亿次精确到_____位,4.66亿次用科学记数法可以表示为_____次.14.据统计:某市2016年末户籍总人口数已超过5.48×106人,则5.48×106精确到_____位.15.用四舍五入法对3.07069取近似值,结果是(精确到十分位)________.三、解答题16.珠穆朗玛峰最近的一次高程测量是在2005年,中国国家测绘局公布的新高程为8 844.43 m,原1975年公布的高程数据8 848.13 m停止使用.(1)新高程数据8 844.43 m是精确值,原高程数据8 848.13 m是近似值,这种理解对吗?(2)两个数据至少要精确到哪一位才能完全相同?17.有一个5位整数先四舍五入到十位,再把所得的数四舍五入到百位,然后把所得的数四舍五入到千位,最后把所得的数四舍五入到万位,这时的数为2×104,你能写出这个数的最大值与最小值吗?它们的差是多少?18.从地面向月球发射无线电波)无线电波到月球并返回地面需要2.57秒)已知无线电波每秒传播3×105千米)则地球与月球之间的距离为多少千米?(结果精确到万位).19.世界上最大的沙漠——非洲的撒哈拉沙漠可以粗略地看成是一个长方形,撒哈拉沙漠的长度大约是5 149 900 m,沙层的深度大约是366 cm.已知撒哈拉沙漠中沙的体积约为33 345 km3.请分别按下列要求取近似数.(1)将撒哈拉沙漠的长度用科学记数法表示;(2)将撒哈拉沙漠中沙层的深度四舍五入到10 cm;(3)将撒哈拉沙漠中沙的体积精确到1000 km3.20.1公顷生长茂盛的树林每天大约可以吸收二氧化碳1 t,成人每小时平均呼出二氧化碳38 g.如果要通过森林吸收10 000人一天呼出的二氧化碳,那么至少需要多少公顷的树林?(1t=1 000 000 g,结果精确到0.1公顷)21.向月球发射无线电波,无线电波到月球并返回地面要2.56 s.已知无线电波的传播速度为3×105 km/s,求月球与地球之间的距离.(精确到10 000 km)22.下列由四舍五入得到的近似数,各精确到哪一位?(1)6.208;(2)0.050 70;(3)45.3万;(4)9.80×104.23.车工小王加工生产了两根轴,当它把轴交给质检员验收时,质检员说:“不合格,作废!”小王不服气地说:“图纸要求精确到2.60m,一根为2.56m,另一根为2.62m,怎么不合格?”)1)图纸要求精确到2.60m,原轴的范围是多少?)2)你认为是小王加工的轴不合格,还是质检员故意刁难?【参考答案】1.C 2.B 3.A 4.A 5.C 6.A 7.C 8.C 9.C 10.D11.3.142十万12.9.3213.百万 4.66×10814.万15.3.116.(1)不对,都是近似值.(2)精确到百位.17.最大值是24444,最小值是14445,它们的差是9999.18.3.9×105(千米))19.(1)5.149 9×106 m(2)3.7×102 cm(3)3.3×104 km320.9.12≈9.2(公顷)21.3.84×105≈3.8×105(km)22.(1)千分位(2)十万分位(3)千位(4)百位23.)1)原轴的范围是2.595m≤x)2.605m))2)产品不合格,理由略。

2022-2023学年全国初中七年级上数学人教版同步练习(含答案解析)094308

2022-2023学年全国初中七年级上数学人教版同步练习(含答案解析)094308

2022-2023学年全国初中七年级上数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 如图是一组有规律的图案,第①个图中共有个矩形,第②个图中共有个矩形,第③个图中共有个矩形,…,则第个图中矩形个数为( )A.B.C.D.2. 将一些相同的“○”按如图所示摆放,观察每个图形中的“○”的个数,若第个图形中“○”的个数是,则的值是( )A.B.C.D.3. 设三个连续自然数中的第二个自然数为,则另外两个自然数是( )A.,B.,C.D.15118557189109n 78n 11121314m−1m−2m2m 3m2m−1,2m+1m+1,m+24. 按一定规律排列的单项式:,,,,,,第个单项式是( )A.B.C.D.5. 如图,观察下列图形,第个图形有个三角形,第个图形有个三角形,第个图形有11个三角形,依照此规律,第个图形中共有三角形 ( )A.个B.个C.个D.个6. 至个月的婴儿生长发育得非常快,他们的体重和月龄(月)间的关系可以用来表示,其中是婴儿出生时的体重.一个婴儿出生时的体重是,这个婴儿第个月的体重为( )A.B.C.D.7. 如图是由的方格构成的,每个方格内各有一数,每一横行,每一竖列以及两条斜对角线上的三个数之和都相等,那么方格内所对应的数是 A.2x −4x 36x 5−8x 710x 9⋯n (2n)(−1)n+1x 2n−1(2n)(−1)n x 2n−1(2n)(−1)n+1x 2n+1(2n)(−1)n x 2n+113273124743393616y(g)x y =a +700x a 3000g 237004000440067003×3a ()3C.D.8. 如图所示是一组有规律的图案:第个图案由个基础图形组成,第个图案由个基础图形组成,…,第个图案中的基础图形个数为 A.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 如图,下面是用火柴棍摆的正方形,仔细观察第个图形中共有________根(用的代数式表示)火柴棍.10. 设某数为,则某数的一半减去某数的平方的差可以表示为________.11. 观察下图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第个图形中共有________个“”.12. 下列图形都是由完全相同的小梯形按一定规律拼成的.如果第个图形的周长为,那么第个图形的周长为________三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )阅读理解:有足够多的如图所示的长方形和正方形的卡片,57142710()30313233n n x 2021∘152020如果选取号卡片张、号卡片张、号卡片张,可拼成一个如图所示的正方形(不重叠无缝隙),正方形的边长为.如果选取号、号、号卡片分别为张、张、张,可拼成一个长方形(不重叠无缝隙),请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义;小明想用类似的方法解释多项式乘法,那么需用号卡片________张,号卡片________张,号卡片________张.14. 观察下列等式:第个等式: ;第个等式: ;第个等式: ;第个等式: ;按照以上规律,解决下列问题:写出第个等式:________.写出你猜想的第个等式(用含的等式表示),并说明你写的等式的正确性.15. 为了增强学校文化氛围,提升同学们的班级归属感,太原市某中学举办了第一届班徽设计征集大赛.七年级班数学兴趣小组受到班徽启发,设计了如下一道习题,如图,将图的正方形剪开得到图,图中有个正方形;将图中的一个正方形剪开得到图,图中有个正方形;将图中最小的一个正方形剪开得到图,图中有个正方形,,如此剪下去,则第个图中的正方形有( )A.个B.个C.个1122312a +b (1)123132(2)(a +3b)(2a +b)1231+−×=21122112322+−×=1221322133+−×=23142314344+−×=2415241535⋯⋯(1)5(2)n n 11224233734410⋯n (3n+1)(3n−1)(3n+2)16. 已知:.求的值;求的值.+a −1=0a 2(1)2+2a a 2(2)+2+2a 3a 2015参考答案与试题解析2022-2023学年全国初中七年级上数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】B【考点】规律型:图形的变化类规律型:数字的变化类【解析】由已知图形得出第个图中矩形的个数为=,再将=代入即可得.【解答】解:∵图②矩形有个,图③矩形有个,…∴第个图有个矩形.当时,,即第个图中矩形个数为.故选.2.【答案】B【考点】规律型:图形的变化类规律型:数字的变化类有理数的加法【解析】n ×2−1n(n−1)2+n−1n 2n 85=2×(2+1)−111=3×(3+1)−1n n(n+1)−1=+n−1n 2n =8+n−1n 2=+8−1=8271871B【解答】解:第个图形有个小圆;第个图形有个小圆;第个图形有个小圆;第个图形有个小圆;第个图形有个小圆;∵第个图形中“○”的个数是,∴,解得:,(不合题意舍去).故选.3.【答案】A【考点】列代数式【解析】根据每两个相邻的自然数相差,所以三个连续自然数,中间一个是.另外的两个数,一个比多,一个比少.由此得出答案.【解答】解:因为每两个相邻的自然数相差,所以三个连续自然数,中间一个是,另外的两个数分别是 .故选.4.【答案】A【考点】规律型:数字的变化类【解析】观察指数规律与系数、符号规律,进行解答便可.【解答】解:,1121+2=331+2+3=641+2+3+4=10n 1+2+3+...+n =n(n+1)2n 7878=n(n+1)2=12n 1=−13n 2B 1m−1m−11m−111m−1:m−2,m A 2x =⋅(2×1)⋅(−1)1+1x 2×1−1,,,由上可知,第个单项式是.故选.5.【答案】A【考点】规律型:图形的变化类【解析】【解答】解:第一个图案有三角形个,第二图案有三角形=个,第三个图案有三角形=个,…第个图案有三角形个,第个图中三角形的个数是=个.故选.6.【答案】C【考点】列代数式【解析】直接利用函数关系式,把,的值代入进而得出答案.【解答】6=⋅(2×3)⋅x 5(−1)3+1x 2×3−1−8=⋅(2×4)⋅x 7(−1)4+1x 2×4−110=⋅(2×5)⋅x 9(−1)5+1x 2×5−1⋯n (2n)(−1)n+1x 2n−1A 33+473+4+411n 3+4(n−1)123+4(12−1)47A a x故选.7.【答案】D【考点】规律型:数字的变化类【解析】解决此题的关键是确定所在横行的另一方格内(即最左边)的数.【解答】解:由题可知,解得,.故选.8.【答案】B【考点】规律型:图形的变化类【解析】先写出前三个图案中基础图案的个数,并得出后一个图案比前一个图案多个基础图案,从而得出第个图案中基础图案的表达式,然后把代入进行计算即可得解.【解答】解:观察可知,第个图案由个基础图形组成,;第个图案由个基础图形组成,;第个图案由个基础图形组成,;…,第个图案中基础图形有:,当时,,即第个图案中的基础图形个数为.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.C P a +2=5+4a =7D 3n n =9144=3+1277=3×2+131010=3×3+1n 3n+1n =103×10+1=30+1=311031B【考点】规律型:图形的变化类【解析】通过观察图形可知,第一个图形是由四根火柴摆成,以后加三根就可加一个正方形,以此类推,得出结论.【解答】解:从图中可知每增加,就要多用根火柴棍,所用火柴棍根;,所用火柴棍根;,所用火柴棍根;,所用火柴棍根;第个图形中就该有火柴棍根.故答案为:.10.【答案】【考点】列代数式【解析】根据题意可得,某数的一半为,某数的平方为,然后列出代数式即可.【解答】解:由题意,得.故答案为:.11.【答案】【考点】(3n+1)n 13n =13+1=4n =22×3+1=7n =33×3+1=10n =44×3+1=13⋯n (3n+1)(3n+1)x−12x 2x 12x 2x−12x 2x−12x 26064规律型:图形的变化类【解析】首先确定第,,,个图形中“○”的个数,然后归纳总结第个图形“○”的个数,最后计算当时的值即可.【解答】解:如图可知:第个图形中共有个“”;第个图形中共有个“”,;第个图形中共有个“”,;第个图形中共有个“”,;∴第个图形中“”的个数为:.当时,(个).∴第个图形中“”的个数为个.故答案为:.12.【答案】【考点】规律型:图形的变化类【解析】根据已知图形得出每增加一个小梯形其周长就增加,据此可得答案.【解答】解:第个图形的周长为,第个图形的周长为,第个图形的周长为,∴第个图形的周长为.故答案为:三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】1234n n =202114∘27∘7=4+3310∘10=4+3+3=4+3×2413∘13=4+3+3+3=4+3×3⋯n ∘4+3(n−1)=3n+1n =20214+3×(2021−1)=60642021∘606460646062312+3×1=522+3×2=832+3×3=11⋯20202+3×2020=60626062.(1);,,【考点】列代数式【解析】左侧图片未给出解析左侧图片未给出解析【解答】解:见下图;;.号卡片的面积为,号卡片的面积为,号卡片的面积为,小明想用类似的方法解释该多项式的乘法时,需用号卡片张,号卡片张,号卡片张.故答案为:;;.14.【答案】第个等式是 ;说明:因为等式左边等式右边,所以猜想成立.【考点】规律型:数字的变化类(a +b)(a +2b)=+3ab +2a 2b 2273(1)(a +b)(a +2b)=+3ab +2a 2b 2(2)(a +3b)(2a +b)=2+ab +6ab +3a 2b 2=2+7ab +3a 2b 2∵1a 22ab 3b 2∴122733273+−×==251625163612(2)n +−×=2n 1n+12n 1n+13n+1====2(n+1)+n−2n(n+1)3nn(n+1)3n+1解:第个等式: .故答案为:.第个等式是 ;说明:因为等式左边等式右边,所以猜想成立.15.【答案】D【考点】规律型:图形的变化类【解析】从第一、第二、第三、第四个……图形中的正方形个数,容易得出规律,从而得出答案.【解答】解:第一个图形中有个正方形,第二个图形中有个正方形,第三个图形中有个正方形,第四个图形中有个正方形,……第个图形中有个正方形.故选.16.【答案】解:由得:,..【考点】列代数式(1)5+−×==251625163612+−×==251625163612(2)n +−×=2n 1n+12n 1n+13n+1====2(n+1)+n−2n(n+1)3n n(n+1)3n+1(3×1−2)(3×2−2)(3×3−2)(3×4−2)n (3n−2)D (1)+a −1=0a 2+a =1a 22+2a =2(+a)=2×1=2a 2a 2(2)+2+2015a 3a 2=+++2015a 3a 2a 2=a(+a)++2015a 2a 2=a ++2015a 2=1+2015=2016解:由得:,..(1)+a −1=0a 2+a =1a 22+2a =2(+a)=2×1=2a 2a 2(2)+2+2015a 3a 2=+++2015a 3a 2a 2=a(+a)++2015a 2a 2=a ++2015a 2=1+2015=2016。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 有理数1.1 正数和负数基础检测 1.521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有,负数有。

2.如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作m ,水位不升不降时水位变化记作m 。

3.在同一个问题中,分别用正数与负数表示的量具有的意义。

4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。

用正数和负数表示这三年我国全年平均降水量比上年的增长量。

拓展提高5.下列说确的是( )A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是( )A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米7.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为这时甲乙两人相距m.8.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在℃至℃围保存才合适。

9.如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、 ______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是( )A 、-3.14B 、0C 、37D 、3 3、既是分数又是正数的是( )A 、+2B 、-314C 、0D 、2.3 拓展提高4、下列说确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对5、-a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数6、下列说法中,错误的有( )①742-是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。

A 、1个B 、2个C 、3个D 、4个7、把下列各数分别填入相应的大括号:24,10,213,03.0,1713,0,1415.3,5.3,7---- 自然数集合{ …};整数集合{ …};正分数集合{…};非正数集合{…};8、简答题:(1)-1和0之间还有负数吗?如有,请列举。

(2)-3和-1之间有负整数吗?-2和2之间有哪些整数?(3)有比-1大的负整数吗?有比1小的正整数吗?(4)写出三个大于-105小于-100的有理数。

1.2.2数轴基础检测1、在数轴上表示-4的点位于原点的边,与原点的距离是个单位长度。

2、比较大小,在横线上填入“>”、“<”或“=”。

10;0-1;-1-2;-5-3;-2.52.5.拓展提高4.数轴上与原点距离是5的点有个,表示的数是。

5.已知x是整数,并且-3<x<4,那么在数轴上表示x的所有可能的数值有。

6.在数轴上,点A、B分别表示-5和2,则线段AB的长度是。

7.从数轴上表示-1的点出发,向左移动两个单位长度到点B,则点B表示的数是,再向右移动两个单位长度到达点C,则点C表示的数是。

8.数轴上的点A表示-3,将点A先向右移动7个单位长度,再向左移动5个单位长度,那么终点到原点的距离是个单位长度。

1.2.3相反数基础检测1、-(+5)表示的相反数,即-(+5)=;-(-5)表示的相反数,即-(-5)=。

5的相反数是;0的相反数是。

2、-2的相反数是;73、化简下列各数:3)=-(-68)= -(+0.75)= -(-5-(+3.8)= +(-3)= +(+6)=4、下列说法中正确的是()A、正数和负数互为相反数B、任何一个数的相反数都与它本身不相同C、任何一个数都有它的相反数D、数轴上原点两旁的两个点表示的数互为相反数拓展提高:5、-(-3)的相反数是。

6、已知数轴上A、B表示的数互为相反数,并且两点间的距离是6,点A在点B的左边,则点A、B表示的数分别是。

7、已知a与b互为相反数,b与c互为相反数,且c=-6,则a=。

8、一个数a的相反数是非负数,那么这个数a与0的大小关系是a0.9、数轴上A点表示-3,B、C两点表示的数互为相反数,且点B到点A的距离是2,则点C 表示的数应该是。

10、下列结论正确的有()①任何数都不等于它的相反数;②符号相反的数互为相反数;③表示互为相反数的两个数的点到原点的距离相等;④若有理数a,b互为相反数,那么a+b=0;⑤若有理数a,b互为相反数,则它们一定异号。

A 、2个B、3个C、4个D、5个11、如果a=-a,那么表示a的点在数轴上的什么位置?1.2.4 绝对值基础检测:1.-8的绝对值是,记做。

2.绝对值等于5的数有。

3.若︱a︱= a , 则 a 。

4.的绝对值是2004,0的绝对值是。

5一个数的绝对值是指在上表示这个数的点到的距离。

6.如果x <y <0, 那么︱x ︱︱y︱。

7.︱x - 1 ︱=3 ,则x =。

8.若︱x+3︱+︱y -4︱= 0,则x + y = 。

9.有理数a ,b在数轴上的位置如图所示,则a b,︱a︱︱b︱。

10.︱x ︱<л,则整数x = 。

11.已知︱x︱-︱y︱=2,且y =-4,则x = 。

12.已知︱x︱=2 ,︱y︱=3,则x +y = 。

13.已知︱x +1 ︱与︱y -2︱互为相反数,则︱x ︱+︱y︱= 。

14. 式子︱x +1 ︱的最小值是,这时,x值为。

15. 下列说法错误的是()A 一个正数的绝对值一定是正数B 一个负数的绝对值一定是正数C 任何数的绝对值一定是正数D 任何数的绝对值都不是负数16.下列说法错误的个数是 ( )(1) 绝对值是它本身的数有两个,是0和1(2) 任何有理数的绝对值都不是负数(3) 一个有理数的绝对值必为正数(4) 绝对值等于相反数的数一定是非负数A 3B 2C 1D 017.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则 a + b + c 等于 ( )A -1B 0C 1D 2拓展提高:18.如果a , b 互为相反数,c, d 互为倒数,m 的绝对值为2,求式子a b a b c+++ + m -cd 的值。

19.某司机在东西路上开车接送乘客,他早晨从A 地出发,(去向东的方向正方向),到晚上送走最后一位客人为止,他一天行驶的的里程记录如下(单位:㎞)+10 ,— 5, —15 ,+ 30 ,—20 ,—16 ,+ 14(1) 若该车每百公里耗油 3 L ,则这车今天共耗油 多少升?(2)据记录的情况,你能否知道该车送完最后一个乘客是,他在A地的什么方向?距A地多远?20.工厂生产的乒乓球超过标准重量的克数记作正数,低于标准重量的克数记作负数,现对5个乒乓球称重情况如下表所示,分析下表,根据绝对值的定义判断哪个球的重量最接近标准?1.3.1有理数的加法基础检测1、计算:(1)15+(-22)(2)(-13)+(-8)(3)(-0.9)+1.512、计算:(1)23+(-17)+6+(-22)(2)(-2)+3+1+(-3)+2+(-4)3、计算:(1))1713(134)174()134(-++-+-(2))412(216)313()324(-++-+-拓展提高4.(1)绝对值小于4的所有整数的和是________;(2)绝对值大于2且小于5的所有负整数的和是________。

5.若2,3==b a ,则=+b a ________。

6.已知,3,2,1===c b a 且a >b >c ,求a +b +c 的值。

7.若1<a <3,求a a -+-31的值。

8.计算:7.10)]323([3122.16---+-+-9.计算:(+1)+(-2)+(+3)+(-4)+…+(+99)+(-100)10.10袋大米,以每袋50千克为准:超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+0.5,+0.3,0,-0.2,-0.3,+1.1,-0.7,-0.2,+0.6,+0.7.10袋大米共超重或不足多少千克?总重量是多少千克?1.3.2有理数的减法基础检测1、(1)(-3)-________=1 (2)________-7=-22、计算:(1))9()2(--- (2)110-(3))8.4(6.5-- (4)435)214(--3、下列运算中正确的是( )A 、2)58.1(58.3)58.1(58.3=-+=--B 、6.646.2)4()6.2(=+=---C 、1)57(5257)52(57)52(0-=-+=-+=-+-D 、4057)59(8354183-=-+=-4、计算:(1))5()3(9)7(-+---- (2)104.87.52.4+-+-(3)21326541-++-拓展提高5、下列各式可以写成a -b +c 的是( )A 、a -(+b)-(+c)B 、a -(+b)-(-c)C 、a +(-b)+(-c)D 、a +(-b)-(+c)6、若,3,4,==-=-n m m n n m 则=-n m ________。

7、若x <0,则)(x x --等于( )A 、-xB 、0C 、2xD 、-2x8、下列结论不正确的是( )A 、若a >0,b <0,则a -b >0B 、若a <0,b >0,则a -b <0C 、若a <0,b <0,则a -(-b)>0D 、若a <0,b <0,且a b ,则a -b >0.9、红星队在4场足球赛中的成绩是:第一场3:1胜,第二场2:3负,第三场0:0平,第四场2:5负。

红星队在4场比赛中总的净胜球数是多少?10、一个病人每天下午需要测量一次血压,下表是该病人周一至周五高压变化情况,该病人上个周日的高压为160单位。

星期一 二 三 四 五 高压的变化 (与前一天比较) 升25单位降15单位 升13单位 升15单位 降20单位(1) 该病人哪一天的血压最高?哪一天血压最低?(2) 与上周比,本周五的血压是升了还是降了?1.4.1有理数乘法基础检测 1、填空:(1)-7的倒数是__,它的相反数是__,它的绝对值是___;(2)522-的倒数是___,-2.5的倒数是___;(3)倒数等于它本身的有理数是___。

2、计算:(1))32()109(45)2(-⨯-⨯⨯-; (2)(-6)×5×72)67(⨯-;(3)(-4)×7×(-1)×(-0.25);(4)41)23(158)245(⨯-⨯⨯- 3、一个有理数与其相反数的积( ) A 、符号必定为正 B 、符号必定为负 C 、一定不大于零 D 、一定不小于零 4、下列说法错误的是( )A 、任何有理数都有倒数B 、互为倒数的两个数的积为1C 、互为倒数的两个数同号D 、1和-1互为负倒数 拓展提高 5、32-的倒数的相反数是___。

相关文档
最新文档