2020高考数学——解析几何面积问题
2020年全国统一高考数学试卷(文科)(新课标Ⅲ)(解析版)
2
根据勾股定理可得: AB AD DB 2 2
△ADB 是边长为 2 2 的等边三角形
根据三角形面积公式可得:
S△ ADB
1 2
AB
AD sin 60
1 2
(2
2)2
3 2 2
3
该几何体的表面积是: 3 2 2 3 6 2 3 .
故选:C. 【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,
x 1,
【答案】7
【解析】
【分析】
作出可行域,利用截距的几何意义解决.
【详解】不等式组所表示的可行域如图
因为 z 3x 2 y ,所以 y 3x z ,易知截距 z 越大,则 z 越大,
22
2
平移直线 y 3x ,当 y 3x z 经过 A 点时截距最大,此时 z 最大,
2
22
y 2x x 1
由
x 1
,得
y
2
,
A(1,
2)
,
所以 zmax 3 1 2 2 7 .
故答案为:7.
【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,
是一道容易题.
14.设双曲线
C:
x2 a2
y2 b2
1
(a>0,b>0)的一条渐近线为 y=
根据新数据与原数据关系确定方差关系,即得结果.
【详解】因为数据 axi b,(i 1, 2,L ,n) 的方差是数据 xi,(i 1, 2,L , n) 的方差的 a2 倍,
所以所求数据方差为102 0.01=1
故选:C
【点睛】本题考查方差,考查基本分析求解能力,属基础题.
2020版新高考复习理科数学教学案:解析几何含答案 (2)
A1(-a,0).A2(a,0)
A1(0.-a).A2(0.a)
轴
实轴:线段A1A2.虚轴:B1B2
焦距
|F1F2|=2c
离心率
e= .e∈(1.+∞)
a.b.c的关系
c2=a2+b2
渐近线
y=± x
y=± x
三、离心率e的作用
(1)椭圆:e越大.图形越扁.
(2)双曲线:e越大.开口越小.
四、常见结论
答案:B
7.[20xx·江苏卷]在平面直角坐标系xOy中.P是曲线y=x+ (x>0)上的一个动点.则点P到直线x+y=0的距离的最小值是________.
解析:通解:设P .x>0.则点P到直线x+y=0的距离d= = ≥ =4.当且仅当2x= .即x= 时取等号.故点P到直线x+y=0的距离的最小值是4.
(2)符号语言:||MF1|-|MF2||=2a(2a<|F1F2|).
(3)当|MF1|-|MF2|=2a时.曲线仅表示焦点F2所对应的双曲线的一支;当|MF1|-|MF2|=-2a时.曲线仅表示焦点F1所对应的双曲线的一支;当2a=|F1F2|时.轨迹为分别以F1.F2为端点的两条射线;当2a>|F1F2|时.动点轨迹不存在.
(2)弦长公式:l=2a=2 .
3.切线长公式
圆的方程为f(x.y)=x2+y2+Dx+Ey+F=0.或f(x.y)=(x-a)2+(y-b)2-R2=0.圆外有一点P(x0.y0).由点P向圆引的切线的长为l= .
■自测自评——————————————
1.设a.b.c分别是△ABC中角A.B.C所对的边.则直线sinA·x+ay-c=0与bx-sinB·y+sinC=0的位置关系是( )
一个三角形面积公式在解析几何中的应用
限, 且 3−P−M→ + −P−→N = −→0 . 若 O 为坐标原点, 当三角形 OM N
的面积最大时, 求点 P 的坐标.
分析 设点 P (Xp, 0), 类似于例 1, 首先由椭圆 C 的参数
2020 年第 2 期 (上)
中学数学研究
41
√
√
方 程 假 设 点 M (2 cos α1, 3 sin α1), N (2 cos α2, 3 sin α2),
|−A→B |2 |−A→C |2
√
1 =
|−A→B |2 |−A→C |2
−
−→ (AB
·
−A→C )2 ,
2
又因为
|−A→B|2|−A→C|2 = (x21 + y12)(x22 + y22)
= x21x22 + y12y22 + x21y22 + y12x22,
−→ (AB
·
−A→C )2
=
(x1x2
式及三角形面积公式 (底乘高的一半) 转化成 x1x2, x1 + x2 (或 y1y2, y1 + y2) 的关系式, 运算求得结果. 而本文另辟蹊径 给出了不同于传统求法的方法. 这里需要用到一个与向量有
关的三角形面积公式. 现在先给出该三角形面积公式的推导.
定理
−→ 在 三 角 形 ABC 中, 已 知 AB = (x1, y1),
| sin(α2
−
α1)|,
要使上式为定值,
则由⃝1 可得当
λ
=
1 −
4
时,
⃝1 可变为 cos(α2 − α1) = 0, 所以 | sin(α2 − α1)| = 1, 即
2020年高考数学真题分类汇编:平面解析几何
2020年高考数学真题分类汇编:平面解析几何一、单选题(共15题;共30分)1.(2分)(2020·新课标Ⅲ·文)点(0,﹣1)到直线 y =k(x +1) 距离的最大值为( )A .1B .√2C .√3D .2【答案】B【解析】【解答】由 y =k(x +1) 可知直线过定点 P(−1,0) ,设 A(0,−1) ,当直线 y =k(x +1) 与 AP 垂直时,点 A 到直线 y =k(x +1) 距离最大, 即为 |AP|=√2 . 故答案为:B.【分析】首先根据直线方程判断出直线过定点 P(−1,0) ,设 A(0,−1) ,当直线 y =k(x +1) 与 AP 垂直时,点A 到直线 y =k(x +1) 距离最大,即可求得结果.2.(2分)(2020·新课标Ⅲ·文)在平面内,A ,B 是两个定点,C 是动点,若 AC ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =1 ,则点C 的轨迹为( ) A .圆B .椭圆C .抛物线D .直线【答案】A【解析】【解答】设 AB =2a(a >0) ,以AB 中点为坐标原点建立如图所示的平面直角坐标系,则: A(−a,0),B(a,0) ,设 C(x,y) ,可得: AC →=(x +a,y),BC →=(x −a,y) , 从而: AC →⋅BC →=(x +a)(x −a)+y 2 , 结合题意可得: (x +a)(x −a)+y 2=1 , 整理可得: x 2+y 2=a 2+1 ,即点C 的轨迹是以AB 中点为圆心, √a 2+1 为半径的圆. 故答案为:A.【分析】首先建立平面直角坐标系,然后结合数量积的定义求解其轨迹方程即可.3.(2分)(2020·新课标Ⅲ·理)设双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为√5.P是C上一点,且F1P⊥F2P.若⊥PF1F2的面积为4,则a=()A.1B.2C.4D.8【答案】A【解析】【解答】∵ca=√5,∴c=√5a,根据双曲线的定义可得||PF1|−|PF2||=2a,S△PF1F2=12|PF1|⋅|PF2|=4,即|PF1|⋅|PF2|=8,∵F1P⊥F2P,∴|PF1|2+|PF2|2=(2c)2,∴(|PF1|−|PF2|)2+2|PF1|⋅|PF2|=4c2,即a2−5a2+4=0,解得a=1,故答案为:A.【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案. 4.(2分)(2020·新课标Ⅲ·理)若直线l与曲线y= √x和x2+y2= 15都相切,则l的方程为()A.y=2x+1B.y=2x+ 12C.y= 12x+1D.y= 12x+ 12【答案】D【解析】【解答】设直线l在曲线y=√x上的切点为(x0,√x0),则x0>0,函数y=√x的导数为y′=2√x ,则直线l的斜率k=2√x,设直线l的方程为y−√x0=12√x−x0),即x−2√x0y+x0=0,由于直线l与圆x2+y2=15相切,则√1+4x0=1√5,两边平方并整理得5x02−4x0−1=0,解得x0=1,x0=−15(舍),则直线l的方程为x−2y+1=0,即y=12x+12.故答案为:D.【分析】根据导数的几何意义设出直线l的方程,再由直线与圆相切的性质,即可得出答案. 5.(2分)(2020·新课标Ⅲ·理)设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C的焦点坐标为()A.(14,0)B.(12,0)C.(1,0)D.(2,0)【答案】B【解析】【解答】因为直线x=2与抛物线y2=2px(p>0)交于C,D两点,且OD⊥OE,根据抛物线的对称性可以确定 ∠DOx =∠COx =π4 ,所以 C(2,2) , 代入抛物线方程 4=4p ,求得 p =1 ,所以其焦点坐标为 (12,0) ,故答案为:B.【分析】根据题中所给的条件 OD ⊥OE ,结合抛物线的对称性,可知 ∠COx =∠COx =π4 ,从而可以确定出点D 的坐标,代入方程求得P 的值,进而求得其焦点坐标,得到结果.6.(2分)(2020·新课标Ⅲ·文)设 F 1,F 2 是双曲线 C:x 2−y 23=1 的两个焦点,O 为坐标原点,点P在C 上且 |OP|=2 ,则 △PF 1F 2 的面积为( ) A .72B .3C .52D .2【答案】B【解析】【解答】由已知,不妨设 F 1(−2,0),F 2(2,0) , 则 a =1,c =2 ,因为 |OP|=2=12|F 1F 2| ,所以点 P 在以 F 1F 2 为直径的圆上, 即 △F 1F 2P 是以P 为直角顶点的直角三角形, 故 |PF 1|2+|PF 2|2=|F 1F 2|2 ,即 |PF 1|2+|PF 2|2=16 ,又 ||PF 1|−|PF 2||=2a =2 ,所以 4=||PF 1|−|PF 2||2=|PF 1|2+|PF 2|2−2|PF 1||PF 2|=16−2|PF 1||PF 2| ,解得 |PF 1||PF 2|=6 ,所以 S △F 1F 2P =12|PF 1||PF 2|=3故答案为:B【分析】由 △F 1F 2P 是以P 为直角直角三角形得到 |PF 1|2+|PF 2|2=16 ,再利用双曲线的定义得到 ||PF 1|−|PF 2||=2 ,联立即可得到 |PF 1||PF 2| ,代入 S △F 1F 2P =12|PF 1||PF 2| 中计算即可.7.(2分)(2020·新课标Ⅲ·文)已知圆 x 2+y 2−6x =0 ,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( ) A .1B .2C .3D .4【答案】B【解析】【解答】圆 x 2+y 2−6x =0 化为 (x −3)2+y 2=9 ,所以圆心 C 坐标为 C(3,0) ,半径为 3 ,设 P(1,2) ,当过点 P 的直线和直线 CP 垂直时,圆心到过点 P 的直线的距离最大,所求的弦长最短,根据弦长公式最小值为2√9−|CP|2=2√9−8=2 .故答案为:B.【分析】根据直线和圆心与点(1,2)连线垂直时,所求的弦长最短,即可得出结论.8.(2分)(2020·新课标Ⅲ·理)设O为坐标原点,直线x=a与双曲线C:x2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点,若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.32【答案】B【解析】【解答】∵C:x2a2−y2b2=1(a>0,b>0)∴双曲线的渐近线方程是y=±ba x∵直线x=a与双曲线C:x 2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点不妨设D为在第一象限,E在第四象限联立{x=ay=b a x,解得{x=ay=b故D(a,b)联立{x=ay=−b a x,解得{x=ay=−b故E(a,−b)∴|ED|=2b ∴△ODE面积为:S△ODE=12a×2b=ab=8∵双曲线C:x 2a2−y2b2=1(a>0,b>0)∴其焦距为2c=2√a2+b2≥2√2ab=2√16=8当且仅当a=b=2√2取等号∴C的焦距的最小值:8故答案为:B.【分析】因为C:x2a2−y2b2=1(a>0,b>0),可得双曲线的渐近线方程是y=±ba x,与直线x=a联立方程求得D,E两点坐标,即可求得|ED|,根据△ODE的面积为8,可得ab值,根据2c=2√a2+b2,结合均值不等式,即可求得答案.9.(2分)(2020·新课标Ⅲ·理)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x−y−3=0的距离为()A.√55B.2√55C.3√55D.4√55【答案】B【解析】【解答】由于圆上的点(2,1)在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为(a,a),则圆的半径为a,圆的标准方程为(x−a)2+(y−a)2=a2.由题意可得(2−a)2+(1−a)2=a2,可得a2−6a+5=0,解得a=1或a=5,所以圆心的坐标为(1,1)或(5,5),圆心到直线2x−y−3=0的距离均为d=√5=2√55;所以,圆心到直线2x−y−3=0的距离为2√55.故答案为:B.【分析】由题意可知圆心在第一象限,设圆心的坐标为(a,a),a>0,可得圆的半径为a,写出圆的标准方程,利用点(2,1)在圆上,求得实数a的值,利用点到直线的距离公式可求出圆心到直线2x−y−3=0的距离.10.(2分)(2020·新课标Ⅲ·理)已知⊥M:x2+y2−2x−2y−2=0,直线l:2x+y+2= 0,P为l上的动点,过点P作⊥M的切线PA,PB,切点为A,B,当|PM|⋅|AB|最小时,直线AB的方程为()A.2x−y−1=0B.2x+y−1=0C.2x−y+1=0D.2x+y+1=0【答案】D【解析】【解答】圆的方程可化为(x−1)2+(y−1)2=4,点M到直线l的距离为d=√2+1=√5>2,所以直线l与圆相离.依圆的知识可知,四点A,P,B,M四点共圆,且AB⊥MP,所以|PM|⋅|AB|=2S△PAM=2×12×|PA|×|AM|=4|PA|,而|PA|=√|MP|2−4,当直线MP⊥l时,|MP|min=√5,|PA|min=1,此时|PM|⋅|AB|最小.∴MP:y−1=12(x−1)即y=12x+12,由{y=12x+122x+y+2=0解得,{x=−1y=0.所以以MP为直径的圆的方程为(x−1)(x+1)+y(y−1)=0,即x2+y2−y−1=0,两圆的方程相减可得:2x+y+1=0,即为直线AB的方程.故答案为:D.【分析】由题意可判断直线与圆相离,根据圆的知识可知,四点A,P,B,M共圆,且AB⊥MP,根据|PM|⋅|AB|=2S△PAM=2|PA|可知,当直线MP⊥l时,|PM|⋅|AB|最小,求出以MP为直径的圆的方程,根据圆系的知识即可求出直线AB的方程.11.(2分)(2020·新课标Ⅲ·理)已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2B.3C.6D.9【答案】C【解析】【解答】设抛物线的焦点为F,由抛物线的定义知|AF|=x A+p2=12,即12=9+p2,解得p=6.故答案为:C.【分析】利用抛物线的定义建立方程即可得到答案.12.(2分)(2020·天津)设双曲线C的方程为x2a2−y2b2=1(a>0,b>0),过抛物线y2=4x的焦点和点(0,b)的直线为l.若C的一条渐近线与l平行,另一条渐近线与l垂直,则双曲线C的方程为()A.x24−y24=1B.x2−y24=1C.x24−y2=1D.x2−y2=1【答案】D【解析】【解答】由题可知,抛物线的焦点为(1,0),所以直线l的方程为x+yb=1,即直线的斜率为−b,又双曲线的渐近线的方程为y=±b a x,所以−b=−b a,−b×b a=−1,因为a>0,b>0,解得a=1,b=1.故答案为:D.【分析】由抛物线的焦点(1,0)可求得直线l的方程为x+yb=1,即得直线的斜率为-b,再根据双曲线的渐近线的方程为y=±b a x,可得−b=−b a,−b×b a=−1即可求出a,b,得到双曲线的方程.13.(2分)(2020·北京)设抛物线的顶点为O,焦点为F,准线为l.P是抛物线上异于O的一点,过P作PQ⊥l于Q,则线段FQ的垂直平分线().A.经过点O B.经过点PC.平行于直线OP D.垂直于直线OP【答案】B【解析】【解答】如图所示:.因为线段FQ的垂直平分线上的点到F,Q的距离相等,又点P在抛物线上,根据定义可知,|PQ|=|PF|,所以线段FQ的垂直平分线经过点P.故答案为:B.【分析】依据题意不妨作出焦点在x轴上的开口向右的抛物线,根据垂直平分线的定义和抛物线的定义可知,线段FQ的垂直平分线经过点P,即求解.14.(2分)(2020·北京)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为().A.4B.5C.6D.7【答案】A【解析】【解答】设圆心C(x,y),则√(x−3)2+(y−4)2=1,化简得(x−3)2+(y−4)2=1,所以圆心C的轨迹是以M(3,4)为圆心,1为半径的圆,所以|OC|+1≥|OM|=√32+42=5,所以|OC|≥5−1=4,当且仅当C 在线段 OM 上时取得等号, 故答案为:A.【分析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案.15.(2分)(2020·浙江)已知点O (0,0),A (﹣2,0),B (2,0).设点P 满足|PA|﹣|PB|=2,且P 为函数y =3 √4−x 2 图象上的点,则|OP|=( ) A .√222B .4√105C .√7D .√10【答案】D【解析】【解答】解:点O (0,0),A (﹣2,0),B (2,0).设点P 满足|PA|﹣|PB|=2,可知P 的轨迹是双曲线 x 21−y 23=1 的右支上的点,P 为函数y =3 √4−x 2 图象上的点,即 y 236+x 24=1 在第一象限的点,联立两个方程,解得P ( √132 , 3√32),所以|OP|= √134+274 = √10 .故答案为:D .【分析】求出P 满足的轨迹方程,求出P 的坐标,即可求解|OP|.二、多选题(共1题;共3分)16.(3分)(2020·新高考Ⅲ)已知曲线 C:mx 2+ny 2=1 .( )A .若m>n>0,则C 是椭圆,其焦点在y 轴上B .若m=n>0,则C 是圆,其半径为 √nC .若mn<0,则C 是双曲线,其渐近线方程为 y =±√−m n xD .若m=0,n>0,则C 是两条直线【答案】A,C,D【解析】【解答】对于A ,若 m >n >0 ,则 mx 2+ny 2=1 可化为 x 21m+y 21n=1 ,因为 m >n >0 ,所以1m <1n,即曲线 C 表示焦点在 y 轴上的椭圆,A 符合题意;对于B ,若 m =n >0 ,则 mx 2+ny 2=1 可化为 x 2+y 2=1n ,此时曲线 C 表示圆心在原点,半径为 √n n 的圆,B 不正确;对于C ,若 mn <0 ,则 mx 2+ny 2=1 可化为 x 21m+y 21n=1 ,此时曲线 C 表示双曲线, 由 mx 2+ny 2=0 可得 y =±√−mnx ,C 符合题意; 对于D ,若 m =0,n >0 ,则 mx 2+ny 2=1 可化为 y 2=1n,y =±√nn ,此时曲线 C 表示平行于 x 轴的两条直线,D 符合题意;故答案为:ACD.【分析】结合选项进行逐项分析求解, m >n >0 时表示椭圆, m =n >0 时表示圆, mn <0 时表示双曲线, m =0,n >0 时表示两条直线.三、填空题(共10题;共12分)17.(1分)(2020·新课标Ⅲ·文)设双曲线C : x 2a 2−y 2b2=1 (a>0,b>0)的一条渐近线为y= √2 x ,则C 的离心率为 .【答案】√3【解析】【解答】由双曲线方程 x 2a 2−y 2b2=1 可得其焦点在 x 轴上, 因为其一条渐近线为 y =√2x , 所以 b a =√2 , e =c a =√1+b 2a 2=√3 .故答案为: √3【分析】根据已知可得 b a=√2 ,结合双曲线中 a,b,c 的关系,即可求解.18.(1分)(2020·新课标Ⅲ·理)已知F 为双曲线 C:x 2a 2−y 2b2=1(a >0,b >0) 的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为 .【答案】2【解析】【解答】依题可得, |BF||AF|=3 ,而 |BF|=b 2a , |AF|=c −a ,即 b 2ac−a=3 ,变形得 c 2−a 2=3ac −3a 2 ,化简可得, e 2−3e +2=0 ,解得 e =2 或 e =1 (舍去). 故答案为: 2 .【分析】根据双曲线的几何性质可知, |BF|=b 2a , |AF|=c −a ,即可根据斜率列出等式求解即可.19.(1分)(2020·新高考Ⅲ)斜率为 √3 的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则 |AB| = .【答案】163【解析】【解答】∵抛物线的方程为 y 2=4x ,∴抛物线的焦点F 坐标为 F(1,0) ,又∵直线AB 过焦点F 且斜率为 √3 ,∴直线AB 的方程为: y =√3(x −1) 代入抛物线方程消去y 并化简得 3x 2−10x +3=0 , 解法一:解得 x 1=13,x 2=3所以 |AB|=√1+k 2|x 1−x 2|=√1+3⋅|3−13|=163解法二: Δ=100−36=64>0设 A(x 1,y 1),B(x 2,y 2) ,则 x 1+x 2=103, 过 A,B 分别作准线 x =−1 的垂线,设垂足分别为 C,D 如图所示.|AB|=|AF|+|BF|=|AC|+|BD|=x 1+1+x 2+1=x 1+x 2+2=163故答案为:163【分析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y 并整理得到关于x 的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果.20.(1分)(2020·新高考Ⅲ)某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC⊥DG ,垂足为C ,tan⊥ODC= 35, BH ∥DG ,EF=12 cm ,DE=2cm ,A 到直线DE 和EF 的距离均为7 cm ,圆孔半径为1 cm ,则图中阴影部分的面积为 cm 2.【答案】4+5 2π【解析】【解答】设OB=OA=r,由题意AM=AN=7,EF=12,所以NF=5,因为AP=5,所以∠AGP=45°,因为BH//DG,所以∠AHO=45°,因为AG与圆弧AB相切于A点,所以OA⊥AG,即△OAH为等腰直角三角形;在直角△OQD中,OQ=5−√22r ,DQ=7−√22r,因为tan∠ODC=OQDQ=35,所以21−3√22r=25−5√22r,解得r=2√2;等腰直角△OAH的面积为S1=12×2√2×2√2=4;扇形AOB的面积S2=12×3π4×(2√2)2=3π,所以阴影部分的面积为S1+S2−12π=4+5π2 .故答案为:4+5π2.【分析】利用tan∠ODC=35求出圆弧AB所在圆的半径,结合扇形的面积公式求出扇形AOB的面积,求出直角 △OAH 的面积,阴影部分的面积可通过两者的面积之和减去半个单位圆的面积求得.21.(1分)(2020·天津)已知直线 x −√3y +8=0 和圆 x 2+y 2=r 2(r >0) 相交于 A,B 两点.若 |AB|=6 ,则 r 的值为 .【答案】5【解析】【解答】因为圆心 (0,0) 到直线 x −√3y +8=0 的距离 d =√1+3=4 , 由 |AB|=2√r 2−d 2 可得 6=2√r 2−42 ,解得 r =5 . 故答案为:5.【分析】根据圆的方程得到圆心坐标和半径,由点到直线的距离公式可求出圆心到直线的距离d ,进而利用弦长公式 |AB|=2√r 2−d 2 ,即可求得 r .22.(1分)(2020·江苏)在平面直角坐标系xOy 中,若双曲线 x 2a2 ﹣ y 25 =1(a >0)的一条渐近线方程为y= √52x ,则该双曲线的离心率是 .【答案】32【解析】【解答】双曲线 x 2a2−y 25=1 ,故 b =√5 .由于双曲线的一条渐近线方程为 y =√52x ,即b a =√52⇒a =2 ,所以c =√a 2+b 2=√4+5=3 ,所以双曲线的离心率为 c a =32 . 故答案为: 32【分析】根据渐近线方程求得a ,由此求得c ,进而求得双曲线的离心率.23.(1分)(2020·江苏)在平面直角坐标系xOy 中,已知 P(√32,0) ,A ,B 是圆C : x 2+(y −12)2=36 上的两个动点,满足 PA =PB ,则⊥PAB 面积的最大值是 . 【答案】10√5【解析】【解答】 ∵PA =PB ∴PC ⊥AB设圆心 C 到直线 AB 距离为d ,则 |AB|=2√36−d 2,|PC|=√34+14=1所以 S △PAB ≤12⋅2√36−d 2(d +1)=√(36−d 2)(d +1)2令 y =(36−d 2)(d +1)2(0≤d <6)∴y ′=2(d +1)(−2d 2−d +36)=0∴d =4 (负值舍去) 当 0≤d <4 时, y ′>0 ;当 4≤d <6 时, y ′≤0 ,因此当 d =4 时, y 取最大值,即 S △PAB 取最大值为 10√5 , 故答案为: 10√5【分析】根据条件得PC⊥AB,再用圆心到直线距离表示三角形PAB面积,最后利用导数求最大值.24.(2分)(2020·北京)已知双曲线C:x 26−y23=1,则C的右焦点的坐标为;C的焦点到其渐近线的距离是.【答案】(3,0);√3【解析】【解答】在双曲线C中,a=√6,b=√3,则c=√a2+b2=3,则双曲线C的右焦点坐标为(3,0),双曲线C的渐近线方程为y=±√22x,即x±√2y=0,所以,双曲线C的焦点到其渐近线的距离为3√12+2=√3.故答案为:(3,0);√3.【分析】根据双曲线的标准方程可得出双曲线C的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.25.(1分)(2020·北京)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改、设企业的污水摔放量W与时间t的关系为W=f(t),用−f(b)−f(a)b−a的大小评价在[a,b]这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污水治理能力比乙企业强;②在t2时刻,甲企业的污水治理能力比乙企业强;③在t3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污水治理能力最强.其中所有正确结论的序号是.【答案】①②③【解析】【解答】−f(b)−f(a)b−a表示区间端点连线斜率的负数,在[t1,t2]这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,甲企业在[t1,t2]这段时间内,甲的斜率最小,其相反数最大,即在[t1,t2]的污水治理能力最强.④错误;在t2时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在t3时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确;故答案为:①②③【分析】根据定义逐一判断,即可得到结果26.(2分)(2020·浙江)设直线l:y=kx+b(k>0),圆C1:x2+y2=1,C2:(x﹣4)2+y2=1,若直线l与C1,C2都相切,则k=;b=.【答案】√33;﹣2√33【解析】【解答】由条件得C1(0,0),r1=1,C2(4,0),r2=1,因为直线l与C1,C2都相切,故有d1=√1+k2=1,d2=√1+k2=1,则有|b|√1+k2=|4k+b|√1+k2,故可得b2=(4k+b)2,整理得k(2k+b)=0,因为k>0,所以2k+b=0,即b=﹣2k,代入d1=|b|√1+k2=1,解得k=√33,则b=﹣2√33,故答案为:√33;﹣2√33.【分析】根据直线l与两圆都相切,分别列出方程d1=|b|√1+k2=1,d2=|4k+b|√1+k2=1,解得即可.。
解析几何特殊面积公式
解析几何特殊面积公式一、三角形的面积公式三角形是最基本的几何图形,其面积可以通过以下公式计算:1.1 齐次坐标法在解析几何中,可以使用齐次坐标法来计算三角形的面积。
假设三角形的三个顶点分别为A(x1, y1),B(x2, y2),C(x3, y3),则三角形的面积可以通过以下公式计算:S = 1/2 * |x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)|其中,|...|表示取绝对值的运算。
1.2 海伦公式除了齐次坐标法之外,三角形的面积还可以通过海伦公式来计算。
海伦公式是利用三角形的三边长度来计算面积的公式。
假设三角形的三边长度分别为a、b、c,则三角形的面积可以通过以下公式计算:S = √(p * (p - a) * (p - b) * (p - c))其中,p为半周长,可以通过以下公式计算:p = (a + b + c) / 2二、矩形的面积公式矩形是一种特殊的四边形,其面积可以通过以下公式计算:A = l * w其中,l表示矩形的长,w表示矩形的宽。
三、圆的面积公式圆是一个没有角的几何图形,其面积可以通过以下公式计算:A = π * r^2其中,π为圆周率,约等于3.14159,r为圆的半径。
四、椭圆的面积公式椭圆是一种特殊的曲线,其面积可以通过以下公式计算:A = π * a * b其中,π为圆周率,约等于3.14159,a为椭圆的长半轴长度,b为椭圆的短半轴长度。
五、正多边形的面积公式正多边形是一种边数相等、角度相等的多边形,其面积可以通过以下公式计算:A = (n * s^2) / (4 * tan(π/n))其中,n为正多边形的边数,s为正多边形的边长,π为圆周率。
六、扇形的面积公式扇形是由圆心和圆弧组成的图形,其面积可以通过以下公式计算:A = (θ/360) * π * r^2其中,θ为扇形的圆心角度数,r为扇形的半径。
七、梯形的面积公式梯形是一种有两个平行边的四边形,其面积可以通过以下公式计算:A = (a + b) * h / 2其中,a和b为梯形的上底和下底的长度,h为梯形的高。
2020年高考数学大题分解专题05--解析几何
2020年高考数学(理)大题分解专题05--解析几何(含答案)(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--(2019年全国卷I )已知抛物线C :x y 32=的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若4||||=+BF AF ,求l 的方程; (2)若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【肢解2】若3AP PB =,求||AB .【肢解1】若4||||=+BF AF ,求l 的方程;【解析】设直线l 方程为m x y +=23,()11,A x y ,()22,B x y ,由抛物线焦半径公式可知12342AF BF x x +=++=,所以1252x x +=, 联立2323y x m y x⎧=+⎪⎨⎪=⎩得04)12(12922=+-+m x m x , 由0144)1212(22>--=∆m m 得12m <, 所以121212592m x x -+=-=,解得78m =-,所以直线l 的方程为3728y x =-,即12870x y --=.【肢解2】若3AP PB =,求||AB .大题肢解一直线与抛物线【解析】设直线l 方程为23x y t =+,联立2233x y t y x ⎧=+⎪⎨⎪=⎩得0322=--t y y ,由4120t ∆=+>得31->t , 由韦达定理知221=+y y ,因为PB AP 3=,所以213y y -=,所以12-=y ,31=y ,所以1=t ,321-=y y . 则=-+⋅+=212214)(941||y y y y AB =-⨯-⋅+)3(4294123134.设抛物线)0(22>=p px y 的焦点为F ,过点F 的而直线交抛物线于A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p.弦长的计算方法:求弦长时可利用弦长公式,根据直线方程与圆锥曲线方程联立消元后得到的一元二次方程,利用根与系数的关系得到两根之和、两根之积的代数式,然后进行整体代入弦长公式求解.温馨提示:注意两种特殊情况:(1)直线与圆锥曲线的对称轴平行或垂直;(2)直线过圆锥曲线的焦点.【拓展1】已知抛物线C :x y 32=的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .若27||||=+BF AF ,求l 在y 轴上的截距. 【解析】设直线l 方程为m x y +=23,()11,A x y ,()22,B x y ,由抛物线焦半径公式可知123722AF BF x x +=++=,所以122x x +=, 联立2323y x m y x⎧=+⎪⎨⎪=⎩得04)12(12922=+-+m x m x ,由0144)1212(22>--=∆m m 得12m <, 所以12121229m x x -+=-=,解得21m =-,所以直线l 的方程为3122y x =-,令0=x 得21-=y , 所以直线l 在y 轴上的截距为21-.【拓展2】已知抛物线C :x y 32=的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .若2AP PB =,)0,4(-M ,求ABM ∆的面积.【解析】设直线l 方程为23x y t =+, 联立2233x y ty x ⎧=+⎪⎨⎪=⎩得0322=--t y y ,由4120t ∆=+>得31->t , 由韦达定理知221=+y y ,t y y 321-=,因为PB AP 2=,所以212y y -=,所以22-=y ,41=y ,所以821-=y y .38-=t ,所以=-+⋅+=212214)(941||y y y y AB =-⨯-⋅+)8(429412132, 直线l 方程为2833x y =-,即0823=+-y x ,所以点)0,4(-M 到l 的距离13413|812|=+-=d , 所以ABM ∆的面积为413413221||21=⨯⨯=⋅d AB .1.(2019年山西太原一模)已知抛物线x y 42=的焦点为F ,过焦点F 的直线交抛物线于A ,B 两点,O 为坐标原点,若AOB ∆的面积为6,求||AB .【解析】由题意知抛物线x y 42=的焦点F 的坐标为)0,1(, 易知当直线AB 垂直于x 轴时,AOB ∆的面积为2,不满足题意, 所以可设直线AB 的方程为)0)(1(≠-=k x k y , 与x y 42=联立,消去x 得0442=--k y ky , 设),(11y x A ,),(22y x B ,由韦达定理知k y y 421=+,421-=y y , 变式训练一所以1616||221+=-k y y , 所以AOB ∆的面积为616161212=+⨯⨯k,解得2±=k , 所以6||11||212=-⋅+=y y kAB . 2.(2019年湖北荆州模拟)已知抛物线24y x =的焦点为F ,过点F 的直线交抛物线于,A B 两点.(1)若3AF FB =,求直线AB 的斜率;(2)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值.【解析】(1)依题意可设直线:1AB x my =+,将直线AB 与抛物线联立214x my y x =+⎧⎨=⎩⇒2440y my --=,设11(,)A x y ,22(,)B x y ,由韦达定理得121244y y my y +=⎧⎨=-⎩,因为3AF FB =,所以213y y -=,即312=m ,所以直线AB 的斜率为3或3-. (2)2212121212122()4161642OACB AOB S S OF y y y y y y y y m ∆==⋅⋅-=-=+-=+≥, 当0m =时,四边形OACB 的面积最小,最小值为4.(2020届广东省珠海市高三上学期期末)中心在坐标原点,对称轴为坐标轴的椭圆C 过)1,0(-A 、)21,3(B 两点,(1)求椭圆C 的方程; (2)设直线)0(21:≠+=m m x y l 与椭圆C 交于P ,Q 两点,求当所取何值时,OPQ ∆的面积最大.大题肢解二【肢解1】求椭圆C 的方程; 【肢解2】设直线)0(21:≠+=m m x y l 与椭圆C 交于P ,Q 两点,求当所取何值时,OPQ ∆的面积最大.【肢解1】求椭圆C 的方程;【解析】(1)由题意可设椭圆C 的方程为22221x y m n+=,代入()0,1A -、13,2B ⎛⎫ ⎪⎝⎭两点得()222222221011321m n m n ⎧-+=⎪⎪⎪⎨⎛⎫⎪ ⎪⎝⎭⎪+=⎪⎩ 解得21n =,24m =, 所以椭圆:C 2214x y +=.【肢解2】设直线)0(21:≠+=m m x y l 与椭圆C 交于P ,Q 两点,求当所取何值时,OPQ ∆的面积最大.【解析】将直线1:,(0)2l y x m m =+>代入2214x y +=得:221442x x m ⎛⎫++= ⎪⎝⎭.整理得222220x mx m ++-=.()()2222422840m m m ∆=--=->得22m -<<.由韦达定理得122x x m +=-,21222x x m =-.()()22221212124442284x x x x x x m m m -=+-=--=-242121222OPQ S m x x m m m m ∆=-=-=-+. 由二次函数可知当21m =即1m =时,OPQ ∆的面积的最大.直线与圆锥曲线的相交弦长问题:设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2=1+1k 2|y 1-y 2|=1+1k2(y 1+y 2)2-4y 1y 2.【变式1】中心在坐标原点,对称轴为坐标轴的椭圆C 过)1,0(-A 、)21,3(B 两点,(1)求椭圆C 的方程; (2)设直线)0(21:>+=m m x y l 与椭圆C 交于P ,Q 两点,若APQ ∆的面积为1+m ,求m 的值.【解析】(1)由题意可设椭圆C 的方程为22221x y m n+=,代入()0,1A -、13,2B ⎫⎪⎭两点得()22222221011321m n n ⎧-+=⎪⎪⎪⎨⎛⎫ ⎪⎝⎭+= 解得21n =,24m =. 所以椭圆:C 2214x y +=.(2)将直线1:,(0)2l y x m m =+>代入2214x y +=得221442x x m ⎛⎫++= ⎪⎝⎭.整理得222220x mx m ++-=.()()2222422840m m m ∆=--=->得22m -<<设),(11y x P ,),(22y x Q ,韦达定理得122x x m +=-,21222x x m =-.所以)22(4)2()21(1||222---⋅+=m m PQ 252+-⋅=m ,由点到直线的距离公式得点)1,0(-A 到直线l 的距离5|22|m d +=. 变式训练二所以APQ ∆的面积为255|22|212+-⋅⋅+⋅m m 2|1|2+-⋅+=m m , 因为APQ ∆的面积为1+m ,所以12|1|2+=+-⋅+m m m ,解得1=m 或1-=m (舍去). 所以1=m .【变式2】已知椭圆)0(1:2222>>=+b a by a x C 的离心率为22,其中左焦点为)0,2(-F .(1)求椭圆C 的方程;(2)若直线m x y +=与椭圆C 交于不同的两点A ,B ,1ABF ∆的面积为)2(6-m ,求直线的方程.【解析】(1)由题意,得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===222222c b a c a c 解得⎩⎨⎧==222b a ,所以椭圆C 的方程为14822=+y x . (2)设点),(11y x A ,),(22y x B ,由⎪⎩⎪⎨⎧+==+m x y y x 14822消去y 得0824322=-++m mx x , 由0)84(12)4(22>--=∆m m 得3232<<-m ,由韦达定理知3421mx x -=+,382221-=m x x ,所以)82(4)34(2||22---⋅=m m AB 367342+-=m , 由点到直线的距离公式得)0,2(1-F 到直线m x y +=的距离2|2|m d -=, 所以1ABF ∆的面积为36342|2|212+-⋅-⋅m m )2(6-=m ,解得3±=m ,满足3232<<-m ,所以所求直线方程为3+=x y 或3-=x y .1.(2019年山东高考模拟)已知圆22:4O x y +=,抛物线2:2(0)C x py p =>.(1)若抛物线C 的焦点F 在圆O 上,且A 为抛物线C 和圆O 的一个交点,求AF ; (2)若直线l 与抛物线C 和圆O 分别相切于,M N 两点,设()00,M x y ,当[]03,4y ∈时,求MN 的最大值.【解析】(1)由题意知(0,2)F ,所以4p =. 所以抛物线C 的方程为28x y =.将28x y =与224x y +=联立得点A 的纵坐标为2(52)A y =, 结合抛物线定义得||2522A pAF y =+=. (2)由22x py =得22x y p =,x y p'=,所以直线l 的斜率为0x p ,故直线l 的方程为()000xy y x x p-=-.即000x x py py --=. 又由0220||2py ON x p -==+得02084y p y =-且240y ->, 所以2222200||||||4MN OM ON x y =-=+- 220000020824244y py y y y y =+-=+-- ()2202200022001644164444y y y y y y -+=+-=+--- 2020641644y y =++--.令24t y =-,0[3,4]y ∈,则[5,12]t ∈,令64()16f t t t =++,则264()1f t t'=-; 当[5,8]t ∈时()0f t '≤,()f t 单调递减, 当(8,12]t ∈时()0f t '>,()f t 单调递增, 又64169(5)16555f =++=,64100169(12)16121235f =++=<, 所以max 169()5f x =,即||MN.2.(2020黑龙江省齐市地区普高联谊高二上学期期末)已知椭圆C :22221(0)x y a b a b+=>>过点)23,22(与点)22,1(--. (1)求椭圆C 的方程;(2)设直线l 过定点1(0,)2-,且斜率为()10k k -≠,若椭圆C 上存在A ,B 两点关于直线l 对称,O 为坐标原点,求k 的取值范围及AOB ∆面积的最大值.【解析】(1)由题意,可得2222231441214a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩,解得222,1a b ==,所以椭圆的方程为2212x y +=.(2)由题意,设直线AB 的方程为(0)y kx m k =+≠,由2212y kx m x y =+⎧⎪⎨+=⎪⎩,整理得222(12)4220k x kmx m +++-=, 所以∆>0,即2221k m +>,……….①且2121222422,1212km m x x x x k k-+=-=++, 所以线段AB 的中点横坐标02212km x k =-+,纵坐标为00212my kx m k=+=+,将00,x y 代入直线l 方程112y x k =--,可得2122k m += ……… ②,由①②可得232k <,又0k ≠,所以((0,22k ∈-⋃,又AB ==且原点O 到直线AB的距离d =所以2122(12)AOB m S AB d k ∆==+== 所以1m =时,AOB S ∆最大值2,此时2k =±,所以2k =±时,AOB S ∆最大值2.3.(2020福建省宁德市高三第一次质量检查)已知抛物线2:2C y px =的焦点为F,1(2Q 在抛物线C 上,且32QF. (1)求抛物线C 的方程及t 的值;(2)若过点(0,)M t 的直线l 与C 相交于,A B 两点,N 为AB 的中点,O 是坐标原点,且3AOBMONSS,求直线l 的方程.【解析】(1)因为3||2QF ,所以13222p ,所以2p =, 抛物线C 的方程为:24y x =, 将1(2Q 代入24y x =得2t =,(2)设1122(,),(,),A x y B x y 00(,),(0,2)N x y M ,显然直线l 的斜率存在,设直线l :2(0)y kx k =+≠,联立242y x y kx ⎧=⎨=+⎩,消去y 得224(1)40k x k x --+=,因为22Δ16(1)160k k ,得12k <且0k ≠, 所以1212224(1)4,k x x x x k k -+==, 因为ΔΔ3AOBMON S S ,所以||3||AB MN ,所以1200x -=-,即120x x x -=, 因为N 是AB 的中点,所以1202x x x +=, 所以22121212()()434x x x x x x ,整理得21212()16x x x x +=所以2224(1)64[]k k k ,解得1211,3k k =-=, 所以直线l 的方程为:2y x =-+或123y x =+.4.(2020福建省龙岩市上杭县第一中学月考)已知点A(0,-2),椭圆E:22221x y a b+=(a>b>0)的离心率为F 是椭圆E 的右焦点,直线AF ,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程. 【解析】(1)设(),0F c ,因为直线AF()0,2A-, 所以23c =,c =又222,2c b a c a ==-,解得2,1a b ==, 所以椭圆E 的方程为2214x y +=.(2)设()()1122,,,P x y Q x y 由题意可设直线l 的方程为:2y kx =-,联立22142,x y y kx +==-⎧⎪⎨⎪⎩,消去y 得()221416120k x kx +-+=,当()216430k ∆=->,所以234k >,所以k <或k >由韦达定理知1212221612,1414k x x x x k k+==++.所以PQ ===, 点O 到直线l 的距离d =12OPQS d PQ ∆==设0t =>,则2243k t =+,所以244144OPQ t S t t t∆==≤=++,当且仅当2t =2=,解得k =时取等号,满足234k >, 所以OPQ ∆的面积最大时直线l 的方程为:2y x =-或2y x =-.5.(2020广东省佛山市高三教学质量检测)已知椭圆C :()222210x y a b a b +=>>的离心率为12,点31,2A ⎛⎫⎪⎝⎭在椭圆C 上,直线1l 过椭圆C 的右焦点与上顶点,动直线2l :y kx =与椭圆C 交于M ,N 两点,交1l 于P 点.(1)求椭圆C 的方程;(2)已知O 为坐标原点,若点P 满足14OP MN =,求此时MN 的长度. 【解析】(1)由题意得12c e a ==,2223121ab ⎛⎫ ⎪⎝⎭+=,结合222a bc =+, 解得24a =,23b =,21c =,故所求椭圆C 的方程为22143x y +=. (2)易知定直线1l0y +=.联立22143y kxx y =⎧⎪⎨+=⎪⎩,整理得()223412k x +=,解得x =令M 点的坐标为221212,3434k k k ⎛⎫⎪ ⎪++⎝⎭. 因为14OP MN =,由对称性可知,点P 为OM 的中点,故2212123434(,)22k k k P ++, 又P 在直线1l :330x y +-=上,故221212343433022k k k ++⨯+-=, 解得10k =,2233k =,所以M 点的坐标为()2,0或643,55⎛⎫ ⎪ ⎪⎝⎭, 所以2OM =或2215,所以MN 的长度为4或4215.6.(2020广西名校高三上学期12月高考模拟)如图,中心为坐标原点O 的两圆半径分别为11r =,22r =,射线OT 与两圆分别交于A 、B 两点,分别过A 、B 作垂直于x 轴、y 轴的直线1l 、2l ,1l 交2l 于点P .(1)当射线OT 绕点O 旋转时,求P 点的轨迹E 的方程;(2)直线l :3y kx =+E 交于M 、N 两点,两圆上共有6个点到直线l 的距离为12时,求MN 的取值范围. 【解析】(1)设(),P x y ,OT 与x 轴正方向夹角为θ,则cos sin x OA y OB θθ⎧=⎪⎨=⎪⎩,即cos 2sin x y θθ=⎧⎨=⎩,化简得2214y x +=,即P 点的轨迹E 的方程为2214y x +=.(2)当两圆上有6个点到直线1的距离为12时,原点O 至直线l 的距离13,22d ⎛⎫∈ ⎪⎝⎭,即1322<<,解得21,113k ⎛⎫∈ ⎪⎝⎭,联立方程2214y kx y x ⎧=+⎪⎨+=⎪⎩得()22410k x ++-=, 设()11,M x y ,()22,N x y ,则12x x +=,12214x x k =-+, 所以MN ==()2224134144k k k +⎛⎫==- ⎪++⎝⎭, 则1616,135MN ⎛⎫∈ ⎪⎝⎭.7.(2020辽宁省沈阳市东北育才学校高三模拟)已知(2,0)P 为椭圆2222:1(0)x y C a b a b+=>>的右顶点,点M 在椭圆C 的长轴上,过点M 且不与x 轴重合的直线交椭圆C 于A B 、两点,当点M 与坐标原点O 重合时,直线PA PB 、的斜率之积为14-.(1)求椭圆C 的标准方程;(2)若2AM MB =,求OAB ∆面积的最大值. 【解析】(1)设1(A x ,1)y ,1(B x -,1)y -,则2121144PA PBy k k x ==--. 又2211221x y a b +=,代入上式可得2214b a -=-,又2a =,解得1b =. 所以椭圆C 的标准方程为:2214x y +=.(2)设直线AB 的方程为:(0)x ty m t =+≠,(22)m -.1(A x ,1)y ,2(B x ,2)y ,联立2244x ty m x y =+⎧⎨+=⎩,化为222(4)240t y mty m +++-=, 由韦达定理知12224mty y t+=-+,212244m y y t -=+, 因为2AM MB =,所以122y y =-,所以122152y y y y +=-,代入可得:22241694t m t +=+.所以OAB ∆的面积12213|()|||22S m y y my =-=,22222222222299416161694494(4)(94)(94)t t t S m y t t t t +==⨯⨯=⨯++++.所以212||1214949||||t S t t t ==++,当且仅当249t =时取等号. 所以OAB ∆面积的最大值为1.。
2020年高考数学试题分类汇编解析几何精品
2 2c :xy、选择题22 c cc1.(重庆理8)在圆x y 2x 6y 0内,过点E (0,1)的最长弦和最短弦分别是物线顶点的坐标为五、解析几何AC和BD,则四边形ABCDW 面积为A. 5.2B. 10.2C. 15,2 D . 20.22 2 C 1 :与 戛 1(a> b>0) C 1:x 2 2.(浙江理8)已知椭圆 a b 与双曲线 2匕14有公共的焦点,C1的一条渐近线与以C 1的长轴为直径的圆相交于 A ,B两点,若C 1恰好将线段AB 三等分, 2aA.B. a 213C .b2iD. b 23.(四川理 210)在抛物线y x ax5(a 乒0)上取横坐标为 X i2的两点,过这两点引一条割线, 有平行于该割线的一条直线同时与抛物线和圆5x 2 5y 236相切,则抛A. (2, 9) B . (°, 5)C. (2,9)D. (1, 6)【解析】由知的割线的坐标(4,11 4a),(2,2 a 1),K 2a,设直线方程为4. (a 2)x2y xy (a (陕西理 2A . y5.(山东36 b 2b,则 51 (2 a)2ax 5b 6 a 2)x b2)设抛物线的顶点在原点, 8x B . y 28x理8 )已知双曲线(2, 9)准线方程为2C . y2 2 2,2a b4x 1(a> 0, 2,则抛物线的方程是D . y2 4xb> 0)的两条渐近线均和圆2 2 c:x y 6x 5 0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为1或3A. 222或皂D. 3 2cos AFB =D.(B. 3 或 22x2y_ 12x2 y_2 x 2匕1 2x2工154B. 4 5C. 3 6D. 63F案】 A(全国新课标理7)已知直线 l 过双曲线C 的一个焦点,且与 C 的对称轴垂直,l 与C 交于A. 6. A, B 两点,|ABI 为C 的实轴长的2倍,C 的离心率为(A)抵 (B)后(C) (D) 37.(全国大纲理 10)已知抛物线 2C : y4x的焦点为F,直线y2x 4与C 交于A, B 两点.则A. 53B. 5C.D.8.(江西理 9)若曲线C I:2x与曲线C2:y(y mx m ) 0有四个不同的交点,则实数 m 的取值范围是A.(B.,0) U (0,C.[ 9.(湖南理 5) 设双曲线y9的渐近线方程为3x 2y 0,则a 的值为A. 4【答案】CD. 110.(湖北理 4)将两个顶点在抛物线2px(p °)上, 另一个顶点是此抛物线焦点的正三角形个数记为 A. n=0【答案】C11.(福建理 n, 7) PF 1 : F 1F 2 : 则B. n=1 C .n=2 D. n设圆锥曲线 r 的两个焦点分别为PF 2=4:3:2,则曲线r 的离心率等于F1, F2,若曲线r 上存在点P 满足【答案】A12.(北京理8)设A。
2020全国卷高考专题:平面解析几何
10 平面解析几何1.(2020•北京卷)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ). A . 4 B . 5C . 6D . 7【答案】A【解析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案.【详解】设圆心(),C x y 1=,化简得()()22341x y -+-=,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM +≥5==,所以||514OC ≥-=, 当且仅当C 在线段OM 上时取得等号,故选:A. 【点睛】本题考查了圆的标准方程,属于基础题.2.(2020•北京卷)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ).A . 经过点OB . 经过点PC . 平行于直线OPD . 垂直于直线OP【答案】B【解析】依据题意不妨作出焦点在x 轴上的开口向右的抛物线,根据垂直平分线的定义和抛物线的定义可知,线段FQ 的垂直平分线经过点P ,即求解.【详解】如图所示:.因为线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P .故选:B.【点睛】本题主要考查抛物线的定义的应用,属于基础题.3.(2020•北京卷)已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________.【答案】 (1). ()3,0 (2).【解析】根据双曲线的标准方程可得出双曲线C 的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.【详解】在双曲线C 中,a =b =3c ==,则双曲线C 的右焦点坐标为()3,0,双曲线C 的渐近线方程为2y x=±,即0x ±=,所以,双曲线C=故答案为:()3,0【点睛】本题考查根据双曲线的标准方程求双曲线的焦点坐标以及焦点到渐近线的距离,考查计算能力,属于基础题.4.(2020•北京卷)已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.【答案】(Ⅰ)22182x y +=;(Ⅱ)1. 【解析】(Ⅰ)由题意得到关于a ,b 的方程组,求解方程组即可确定椭圆方程;(Ⅱ)首先联立直线与椭圆的方程,然后由直线MA ,NA 的方程确定点P ,Q 的纵坐标,将线段长度的比值转化为纵坐标比值的问题,进一步结合韦达定理可证得0P Q y y +=,从而可得两线段长度的比值.【详解】(1)设椭圆方程为:()222210x y a b a b+=>>,由题意可得:224112a ba b⎧+=⎪⎨⎪=⎩,解得:2282a b ⎧=⎨=⎩,故椭圆方程为:22182x y +=. (2)设()11,M x y ,()22,N x y ,直线MN 的方程为:()4y k x =+,与椭圆方程22182x y +=联立可得:()222448x k x ++=,即:()()222241326480k x k x k +++-=,则:2212122232648,4141k k x x x x k k --+==++.直线MA 的方程为:()111122y y x x ++=++, 令4x =-可得:()()()1111111141214122122222P k x k x y x y x x x x ++-++++=-⨯-=-⨯-=++++, 同理可得:()()222142Q k x y x -++=+.很明显0P Qy y <,且:P Q PB yPQ y =,注意到: ()()()()()()()()122112121242424421212222P Q x x x x x x y y k k x x x x +++++⎛⎫+++=-++=-+⨯ ⎪++++⎝⎭,而:()()()()()122112124242238x x x x x x x x +++++=+++⎡⎤⎣⎦2222648322384141k k k k ⎡⎤⎛⎫--=+⨯+⎢⎥ ⎪++⎝⎭⎣⎦()()()22226483328412041k k k k -+⨯-++=⨯=+, 故0,P Q P Q y y y y +==-.从而1PQPB y PQy ==. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.5.(2020•全国1卷)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A . 2 B . 3 C . 6 D . 9【答案】C【解析】利用抛物线的定义建立方程即可得到答案.【详解】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p=+,解得6p.故选:C.【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题.6.(2020•全国1卷)已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( ) A. 210x y --= B. 210x y +-=C. 210x y -+=D. 210x y ++=【答案】D【解析】由题意可判断直线与圆相离,根据圆的知识可知,四点,,,A P B M 共圆,且AB MP ⊥,根据44PAMPM AB SPA ⋅==可知,当直线MP l ⊥时,PM AB ⋅最小,求出以MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程.【详解】圆的方程可化为()()22114x y -+-=,点M 到直线l的距离为2d ==>,所以直线l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAMPM AB SPA AM PA ⋅==⨯⨯⨯=,而PA =,当直线MP l ⊥时,min MP =,min 1PA =,此时PM AB ⋅最小.∴()1:112MP y x -=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩. 所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=, 两圆的方程相减可得:210x y ++=,即为直线AB 的方程.故选:D .【点睛】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题.7.(2020•全国1卷)已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为______________. 【答案】2【解析】根据双曲线的几何性质可知,2b BF a=,AF c a =-,即可根据斜率列出等式求解即可.【详解】联立22222221x cx y a b a b c =⎧⎪⎪-=⎨⎪⎪=+⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,所以2b BF a =.依题可得,3BF AF =,AF c a =-,即()2223b c a a c a a c a -==--,变形得3c a a +=,2c a =, 因此,双曲线C 的离心率为2.故答案为:2.【点睛】本题主要考查双曲线的离心率的求法,以及双曲线的几何性质的应用,属于基础题.8.(2020•全国1卷)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【答案】(1)2219x y +=;(2)证明详见解析. 【解析】(1)由已知可得:(),0A a -, (),0B a ,()0,1G ,即可求得21AG GB a ⋅=-,结合已知即可求得:29a =,问题得解(2)设()06,P y ,可得直线AP 的方程为:()039y y x =+,联立直线AP 的方程与椭圆方程即可求得点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭,同理可得点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭,即可表示出直线CD 的方程,整理直线CD 的方程可得:()02043233y y x y ⎛⎫=- ⎪-⎝⎭,命题得证.【详解】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a+=>可得:(),0A a -, (),0B a ,()0,1G∴(),1AG a =,(),1GB a =-∴218AG GB a ⋅=-=,∴29a =∴椭圆方程为:2219x y += (2)证明:设()06,P y , 则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+ 所以点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭. 同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭∴直线CD 的方程为:0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭故直线CD 过定点3,02⎛⎫⎪⎝⎭【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.9.(2020•全国2卷)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A.B.C.D.【答案】B【解析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y --=的距离.【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心到直线的距离均为121132555d ⨯--==; 圆心到直线的距离均为225532555d ⨯--==圆心到直线230x y --=的距离均为d ==230x y --=.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.10.(2020•全国2卷)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A. 4 B. 8C. 16D. 32【答案】B【解析】因为2222:1(0,0)x y C a b a b -=>>,可得双曲线的渐近线方程是b y x a=±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab值,根据2c =值不等式,即可求得答案.【详解】2222:1(0,0)x y C a b a b -=>>∴双曲线的渐近线方程是b y x a=±直线x a =与双曲线2222:1(0,0)x yC a b a b-=>>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限.联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故(,)D a b ,联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩,故(,)E a b -,∴||2ED b = ∴ODE 面积为:1282ODES a b ab =⨯==△,双曲线2222:1(0,0)x y C a b a b -=>>∴其焦距为28c =≥==,当且仅当a b ==∴C 的焦距的最小值:8,故选:B.【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.11.(2020•全国2卷)已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)221:13627x y C +=,22:12C y x =.【解析】(1)求出AB 、CD ,利用43CD AB =可得出关于a 、c 的齐次等式,可解得椭圆1C 的离心率的值;(2)由(1)可得出1C 的方程为2222143x y c c+=,联立曲线1C 与2C 的方程,求出点M 的坐标,利用抛物线的定义结合5MF =可求得c 的值,进而可得出1C 与2C 的标准方程. 【详解】(1)(),0F c ,AB x ⊥轴且与椭圆1C 相交于A 、B 两点,则直线AB 的方程为x c =,联立22222221x cx y a b a b c=⎧⎪⎪+=⎨⎪=+⎪⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,则22bAB a =,抛物线2C 的方程为24y cx =,联立24x c y cx =⎧⎨=⎩,解得2x cy c =⎧⎨=±⎩,4CD c ∴=, 43CD AB =,即2843b c a=,223b ac =,即222320c ac a +-=,即22320e e +-=, 01e <<,解得12e =,因此,椭圆1C 的离心率为12;(2)由(1)知2a c =,b =,椭圆1C 的方程为2222143x y c c+=,联立222224143y cx x y c c ⎧=⎪⎨+=⎪⎩,消去y 并整理得22316120x cx c +-=,解得23x c =或6x c =-(舍去), 由抛物线的定义可得25533c MF c c =+==,解得3c =.因此,曲线1C 的标准方程为2213627x y +=,曲线2C 的标准方程为212y x =.【点睛】本题考查椭圆离心率求解,同时也考查了利用抛物线的定义求抛物线和椭圆的标准方程,考查计算能力,属于中等题.12.(2020•全国3卷)设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( ) A. 1,04⎛⎫⎪⎝⎭B. 1,02⎛⎫ ⎪⎝⎭C. (1,0)D. (2,0)【答案】B【解析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4DOx EOx π∠=∠=,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.13.(2020•全国3卷)设双曲线C :22221x y a b -=(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( )A. 1B. 2C. 4D. 8【答案】A【解析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案. 【详解】5ca=,c ∴=,根据双曲线的定义可得122PF PF a -=, 的12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=,12F P F P ⊥,()22212||2PF PF c ∴+=, ()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A.【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.14.(2020•全国3卷)已知椭圆222:1(05)25x y C m m +=<<的离心率为4,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【答案】(1)221612525x y +=;(2)52. 【解析】(1)因为222:1(05)25x y C m m+=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积. 【详解】(1)222:1(05)25x y C m m +=<<∴5a =,b m =,根据离心率4c e a ====, 解得54m =或54m =-(舍),∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=;(2)不妨设P ,Q 在x 轴上方点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥, 过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N根据题意画出图形,如图||||BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=︒,又90PBM QBN ∠+∠=︒,90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”,可得:PMB BNQ ≅△△,221612525x y +=,∴(5,0)B ,∴651PM BN ==-=, 设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时,故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2),画出图象,如图(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:5d ===,根据两点间距离公式可得:AQ ==,∴APQ面积为:15252⨯=;②当P 点为(3,1)-时,故5+38MB ==,PMB BNQ ≅△△,∴||||8MB NQ ==,可得:Q 点为(6,8),画出图象,如图(5,0)A -,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:d ===,根据两点间距离公式可得:AQ ==∴APQ面积为:1522=,综上所述,APQ 面积为:52. 【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.15.(2020•江苏卷)在平面直角坐标系xOy 中,若双曲线22x a ﹣25y =1(a >0)的一条渐近线方程为y x ,则该双曲线的离心率是____. 【答案】32【解析】根据渐近线方程求得a ,由此求得c ,进而求得双曲线的离心率.【详解】双曲线22215xy a -=,故b =由于双曲线的一条渐近线方程为2yx =,即22b a a=⇒=,所以3c ===,所以双曲线的离心率为32c a =.故答案为:32【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的求法,属于基础题. 16.(2020•江苏卷)在平面直角坐标系xOy 中,已知0)P ,A ,B 是圆C :221()362x y +-=上的两个动点,满足PA PB =,则△PAB 面积的最大值是__________. 【答案】【解析】根据条件得PC AB ⊥,再用圆心到直线距离表示三角形P AB 面积,最后利用导数求最大值.【详解】PA PB PC AB =∴⊥设圆心C 到直线AB 距离为d ,则||1AB PC ==所以11)2PABSd ≤⋅+=令222(36)(1)(06)2(1)(236)04y d d d y d d d d '=-+≤<∴=+--+=∴=(负值舍去) 当04d ≤<时,0y '>;当46d ≤<时,0y '≤,因此当4d =时,y 取最大值,即PABS取最大值为故答案为:【点睛】本题考查垂径定理、利用导数求最值,考查综合分析求解能力,属中档题.17.(2020•江苏卷)在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值; (3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标. 【答案】(1)6;(2)-4;(3)()2,0M 或212,77⎛⎫-- ⎪⎝⎭.【解析】(1)根据椭圆定义可得124AF AF +=,从而可求出12AF F △的周长; (2)设()0,0P x ,根据点A 在椭圆E 上,且在第一象限,212AF F F ⊥,求出31,2A ⎛⎫⎪⎝⎭,根据准线方程得Q 点坐标,再根据向量坐标公式,结合二次函数性质即可出最小值;(3)设出设()11,M x y ,点M 到直线AB 的距离为d ,由点O 到直线AB 的距离与213S S =,可推出95d =,根据点到直线的距离公式,以及()11,M x y 满足椭圆方程,解方程组即可求得坐标. 【详解】(1)∵椭圆E 的方程为22143x y +=,∴()11,0F -,()21,0F由椭圆定义可得:124AF AF +=. ∴12AF F △的周长为426+=(2)设()0,0P x ,根据题意可得01x ≠.∵点A 在椭圆E 上,且在第一象限,212AF F F ⊥∴31,2A ⎛⎫⎪⎝⎭,∵准线方程为4x =,∴()4,Q Q y , ∴()()()()200000,04,4244Q OP QP x x y x x x ⋅=⋅--=-=--≥-,当且仅当02x =时取等号.∴OP QP ⋅的最小值为4-.(3)设()11,M x y ,点M 到直线AB 的距离为d .∵31,2A ⎛⎫⎪⎝⎭,()11,0F - ∴直线1AF 的方程为()314y x =+,∵点O 到直线AB 的距离为35,213S S = ∴2113133252S S AB AB d ==⨯⨯⨯=⋅,∴95d =,∴113439x y -+=① ∵2211143x y +=②,∴联立①②解得1120x y =⎧⎨=⎩,1127127x y ⎧=-⎪⎪⎨⎪=-⎪⎩. ∴()2,0M 或212,77⎛⎫-- ⎪⎝⎭. 【点睛】本题考查了椭圆的定义,直线与椭圆相交问题、点到直线距离公式的运用,熟悉运用公式以及根据213S S =推出95d =是解答本题的关键. 18.(2020•新全国1山东)已知曲线22:1C mx ny +=.( )A . 若m >n >0,则C 是椭圆,其焦点在y 轴上B . 若m =n >0,则CC . 若mn <0,则C是双曲线,其渐近线方程为y = D . 若m =0,n >0,则C 是两条直线 【答案】ACD【解析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【详解】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n+=, 因为0m n >>,所以11m n<,即曲线C 表示焦点在y 轴上的椭圆,故A 正确; 对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线CB不正确;对于C ,若0mn <,则221mx ny +=可化为22111x y m n+=,此时曲线C 表示双曲线, 由220mx ny +=可得y =,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=,y n=±,此时曲线C表示平行于x 轴的两条直线,故D 正确;故选:AC D. 【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.19.(2020•新全国1山东).C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.【答案】163【解析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y 并整理得到关于x 的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果. 【详解】∵抛物线的方程为24y x =,∴抛物线焦点F 坐标为(1,0)F , 又∵直线AB 过焦点F∴直线AB 的方程为:1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=,解法一:解得121,33x x ==所以12116||||3|33AB x x =-=-=解法二:10036640∆=-=> 设1122(,),(,)A x y B x y ,则12103x x +=,过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示. 12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:163【点睛】本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题.20.(2020•新全国1山东)已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1). (1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【答案】(1)22163x y +=;(2)详见解析. 【解析】(1)由题意得到关于a ,b ,c 的方程组,求解方程组即可确定椭圆方程.(2)设出点M ,N 的坐标,在斜率存在时设方程为y kx m =+, 联立直线方程与椭圆方程,根据已知条件,已得到m,k 的关系,进而得直线MN 恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q 的位置.的【详解】(1)由题意可得:222222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)设点()()1122,,,M x y N x y .因为AM ⊥AN ,∴·0AM AN =,即()()()()121222110x x y y --+--=,①当直线MN 的斜率存在时,设方程为y kx m =+,如图1. 代入椭圆方程消去y 并整理得:()22212k4260xkmx m +++-=2121222426,1212km m x x x x k k-+=-=++ ②, 根据1122,y kx m y kx m =+=+,代入①整理可得:()()()()221212k1x 2140x km k x x m ++--++-+=将②代入,()()()22222264k 121401212m km km k m k k -⎛⎫++---+-+= ⎪++⎝⎭, 整理化简得()()231210k m k m +++-=,∵2,1A ()不在直线MN 上,∴210k m +-≠,∴23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭, 所以直线过定点直线过定点21,33E ⎛⎫-⎪⎝⎭. 当直线MN 的斜率不存在时,可得()11,N x y -,如图2.代入()()()()121222110x x y y --+--=得()2212210x y -+-=,结合2211163x y +=,解得()1122,3x x ==舍,此时直线MN 过点21,33E ⎛⎫- ⎪⎝⎭,,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,所以AE 中点Q 满足QD 为定值(AE 3=). 由于()21,32,13,A E ⎛⎫-⎪⎝⎭,故由中点坐标公式可得41,33Q ⎛⎫ ⎪⎝⎭. 故存在点41,33Q ⎛⎫⎪⎝⎭,使得|DQ|为定值. 【点睛】本题考查椭圆的标准方程和性质,圆锥曲线中的定点定值问题,关键是第二问中证明直线MN 经过定点,并求得定点的坐标,属综合题,难度较大.21.(2020•天津卷)设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( )A. 22144x y -=B. 2214y x -=C. 2214x y -=D. 221x y -=【答案】D【解析】由抛物线的焦点()1,0可求得直线l 的方程为1yx b+=,即得直线的斜率为b -,再根据双曲线的渐近线的方程为b y x a =±,可得b b a -=-,1bb a-⨯=-即可求出,a b ,得到双曲线的方程. 【详解】由题可知,抛物线的焦点为()1,0,所以直线l 的方程为1yx b+=,即直线的斜率为b -,又双曲线的渐近线的方程为b y x a =±,所以b b a -=-,1bb a-⨯=-,因为0,0a b >>,解得1,1a b ==.故选:D .【点睛】本题主要考查抛物线的简单几何性质,双曲线的几何性质,以及直线与直线的位置关系的应用,属于基础题.22.(2020•天津卷)已知直线80x +=和圆222(0)x y r r +=>相交于,A B 两点.若||6AB =,则r 的值为_________.【答案】5【解析】根据圆的方程得到圆心坐标和半径,由点到直线的距离公式可求出圆心到直线的距离d ,进而利用弦长公式||AB =r .【详解】因为圆心()0,0到直线80x -+=的距离4d ==,由||AB =6==5r .故答案为:5.【点睛】本题主要考查圆的弦长问题,涉及圆的标准方程和点到直线的距离公式,属于基础题.23.(2020•天津卷)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【答案】(Ⅰ)221189x y +=;(Ⅱ)132y x =-,或3y x =-. 【解析】(Ⅰ)根据题意,并借助222a b c =+,即可求出椭圆的方程;(Ⅱ)利用直线与圆相切,得到CP AB ⊥,设出直线AB 的方程,并与椭圆方程联立,求出B 点坐标,进而求出P 点坐标,再根据CP AB ⊥,求出直线AB 的斜率,从而得解.【详解】(Ⅰ)椭圆()222210x y a b a b+=>>的一个顶点为()0,3A -,∴3b =,由OA OF =,得3c b ==,又由222a b c =+,得2228313a =+=,的所以,椭圆的方程为221189x y +=;(Ⅱ)直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥,根据题意可知,直线AB 和直线CP 的斜率均存在, 设直线AB 的斜率为k ,则直线AB 的方程为3y kx ,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+. 将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++, 所以,点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭,因为P 为线段AB 的中点,点A 的坐标为()0,3-, 所以点P 的坐标为2263,2121k k k -⎛⎫⎪++⎝⎭,由3OC OF =,得点C 的坐标为()1,0, 所以,直线CP 的斜率为222303216261121CPk kk k k k --+=-+-+=,又因为CP AB ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =或1k =.所以,直线AB 的方程为132y x =-或3y x =-. 【点睛】本题考查了椭圆标准方程的求解、直线与椭圆的位置关系、直线与圆的位置关系、中点坐标公式以及直线垂直关系的应用,考查学生的运算求解能力,属于中档题.当看到题目中出现直线与圆锥曲线位置关系的问题时,要想到联立直线与圆锥曲线的方程.24.(2020•浙江卷)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|P A |–|PB |=2,且P 为函数y=|OP |=( )A.2B.C.D.【答案】D【解析】根据题意可知,点P既在双曲线的一支上,又在函数y =P 的坐标,得到OP 的值.【详解】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a =-=-=,即双曲线的右支方程为()22103yx x -=>,而点P还在函数y =的图象上,所以,由()22103y x x y ⎧⎪⎨->==⎪⎩,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP ==D . 【点睛】本题主要考查双曲线的定义的应用,以及二次曲线的位置关系的应用,意在考查学生的数学运算能力,属于基础题.25.(2020•浙江卷)设直线:(0)l y kx b k =+>,圆221:1C x y +=,222:(4)1C x y -+=,若直线l 与1C ,2C 都相切,则k =_______;b =______.【答案】 (1).3 (2). 3-【解析】由直线与圆12,C C 相切建立关于k ,b 的方程组,解方程组即可. 【详解】由题意,12,C C1=1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得33k b ==-.故答案为:33-【点晴】本题主要考查直线与圆的位置关系,考查学生的数学运算能力,是一道基础题.26.(2020•浙江卷)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(Ⅰ)若116=p ,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值. 【答案】(Ⅰ)1(,0)32;(Ⅱ【解析】【详解】(Ⅰ)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(Ⅱ)设()()()112200,,,,,,:A x y B x y M x y I x y m λ=+,由()22222222220x y y my m x y m λλλ⎧+=⇒+++-=⎨=+⎩, 1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++, 由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++, 又22222()220y pxy p y m y p y pm x y mλλλ⎧=⇒=+⇒--=⎨=+⎩, 012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222m x p m λλ∴=+-+.由2222142,?22x y x px y px⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-222221822228162p p p m p p p λλλλλ+⇒-+=+⋅=++≥+,所以24218p p +≥,21160p ≤,10p ≤, 所以,p 的最大值为10,此时2105(,)A .法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=,所以点M 的纵坐标为22M mty m =-+. 将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=, 所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m xm+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以当102,5m t ==时,p 取到最大值为1040. 【点晴】本题主要考查直线与圆锥曲线的位置关系的综合应用,涉及到求函数的最值,考查学生的数学运算能力,是一道有一定难度的题.27.(2020•上海卷)椭圆22143x y +=,过右焦点F 作直线l 交椭圆于P 、Q 两点,P 在第二象限已知()(),,'','Q Q Q Q Q x y Q x y 都在椭圆上,且y'0Q Q y +=,'FQ PQ ⊥,则直线l 的方程为【答案】10x y +-=28.(2020•上海卷)双曲线22122:14x y C b-=,圆2222:4(0)C x y b b +=+>在第一象限交点为A ,(,)A A A x y ,曲线2222221,44,A A x y x x b x y b x x ⎧-=>⎪Γ⎨⎪+=+>⎩。
解析几何-2020年高考数学十年真题精解(全国Ⅰ卷) 解析几何(原卷版)
十年高考真题精解解析几何十年树木,百年树人,十年磨一剑。
本专辑按照最新2020年考纲,对近十年高考真题精挑细选,去伪存真,挑选符合最新考纲要求的真题,按照考点/考向同类归纳,难度分层精析,对全国卷Ⅰ具有重要的应试性和导向性。
三观指的观三题(观母题、观平行题、观扇形题),一统指的是统一考点/考向,并对十年真题进行标灰(调整不考或低频考点标灰色)。
(一)2020考纲(二)本节考向题型研究汇总一、考向题型研究一: 圆锥曲线的基础性质(2019新课标I 卷T10理科).已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=(2013新课标Ⅰ卷T4理科)已知双曲线C :2222=1x y a b -(a >0,b >0)的离心率为2,则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x(2013新课标Ⅰ卷T10理科)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y +B .22=13627x y +C .22=12718x y + D .22=1189x y +(2015新课标I 卷T14理科)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 .(2014新课标Ⅰ卷T4理科)已知F 为双曲线C :x 2﹣my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( ) A. B. 3 C.m D.3m(2011新课标I 卷T14理科)在平面直角坐标系xoy ,椭圆C 的中心为原点,焦点F 1F 2在x 轴上,离心率为.过F l 的直线交于A ,B 两点,且△ABF 2的周长为16,那么C的方程为.(2012新课标I 卷T10文科)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =C 的实轴长为(A (B ) (C )4 (D )8轨迹条件点集:({M ||MF 1+|MF 2|=2a,|F 1F 2|<2a =点集:{M ||MF 1|-|MF 2|. =±2a,|F 2F 2|>2a}.点集{M | |MF |=点M 到直线l 的距离}.图形方程标准方程 (>0) (a>0,b>0) px y 22=参数方程(t 为参数) 范围 ─a x a ,─b y b |x| a ,y R x 0中心原点O (0,0) 原点O (0,0)顶点(a,0), (─a,0), (0,b) ,(0,─b) (a,0), (─a,0) (0,0)对称轴x 轴,y 轴;长轴长2a,短轴长2bx 轴,y 轴;实轴长2a, 虚轴长2b.x 轴焦点 F 1(c,0), F 2(─c,0) F 1(c,0), F 2(─c,0)12222=+b y a x b a >12222=-by a x 为离心角)参数θθθ(sin cos ⎩⎨⎧==b y a x 为离心角)参数θθθ(tan sec ⎩⎨⎧==b y a x ⎩⎨⎧==pt y pt x 222)0,2(p F双曲线:(1)等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率. (2)共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:. (3)共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为. 抛物线:(1)抛物线2y =2px(p>0)的焦点坐标是(2p ,0),准线方程x=-2p,开口向右;抛物线2y =-2px(p>0)的焦点坐标是(-2p ,0),准线方程x=2p ,开口向左;抛物线2x =2py(p>0)的焦点坐标是(0,2p ),准线方程y=-2p,开口向上;抛物线2x =-2py (p>0)的焦点坐标是(0,-2p ),准线方程y=2p,开口向下. (2)抛物线2y =2px(p>0)上的点M(x0,y0)与焦点F 的距离20p x MF +=;抛物线2y =-2px(p>0)上的点M(x0,y0)与焦点F 的距离02x pMF -=(3)设抛物线的标准方程为2y =2px(p>0),则抛物线的焦点到其顶点的距离为2p ,顶点到准线的距离2p ,焦点到准线的距离为p.(4)已知过抛物线2y =2px(p>0)焦点的直线交抛物线于A 、B 两点,则线段AB 称为焦点弦,设222a y x ±=-x y ±=2=e λ=-2222b y a x λ-=-2222b y a x 02222=-by a x )0(2222≠=-λλb y a x 02222=-b y a x 0=±b y a x )0(2222≠=-λλby a xA(x1,y1),B(x2,y2),则弦长AB =21x x ++p 或α2sin 2pAB =(α为直线AB 的倾斜角),221p y y -=,2,41221p x AF p x x +==(AF 叫做焦半径).二、考向题型研究二: 简单的离心率求解问题(2019新课标I 卷T10文科)双曲线C :﹣=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C的离心率为( ) A .2sin40° B .2cos40°C .D .(2016新课标I 卷T5文科)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A .13 B .12 C .23 D .34(2011新课标I 卷T7理科)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A ,B 两点,|AB|为C 的实轴长的2倍,则C 的离心率为( ) A .B .C .2D .3(2012新课标I 卷T4文科)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的左、右焦点,P 为直线32a x =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为(A )12 (B )23 (C )34 D .45一、直接求出或求出a 与b 的比值,以求解。
2020-2022年高考数学真题分类汇编专题05 平面解析几何+立体几何(教师版+学生版)
专题05 平面解析几何1.【2021年新高考1卷】已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( )A .13B .12C .9D .6【答案】C【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【解析】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C .2.【2021年新高考2卷】抛物线22(0)y px p =>的焦点到直线1y x =+的距离为2,则p =( ) A .1 B .2 C .22 D .4【答案】B【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值. 【解析】抛物线的焦点坐标为,02p ⎛⎫⎪⎝⎭,其到直线10x y -+=的距离:012211pd -+==+,解得:2p =(6p =-舍去).故选:B. 3.【2022年新高考1卷】已知O 为坐标原点,点在抛物线上,过点的直线交C 于P ,Q 两点,则( )A .C 的准线为B .直线AB 与C 相切 C .D .【答案】BCD【分析】求出抛物线方程可判断A ,联立AB 与抛物线的方程求交点可判断B ,利用距离公式及弦长公式可判断C、D.【解析】将点的代入抛物线方程得,所以抛物线方程为,故准线方程为,A错误;,所以直线的方程为,联立,可得,解得,故B正确;设过的直线为,若直线与轴重合,则直线与抛物线只有一个交点,所以,直线的斜率存在,设其方程为,,联立,得,所以,所以或,,又,,所以,故C正确;因为,,所以,而,故D正确.故选:BCD 4.【2022年新高考2卷】已知O为坐标原点,过抛物线焦点F的直线与C交于A,B两点,其中A在第一象限,点,若,则()A.直线的斜率为B.C.D.【答案】ACD【分析】由及抛物线方程求得,再由斜率公式即可判断A选项;表示出直线的方程,联立抛物线求得,即可求出判断B选项;由抛物线的定义求出即可判断C选项;由,求得,为钝角即可判断D选项.【解析】对于A,易得,由可得点在的垂直平分线上,则点横坐标为,代入抛物线可得,则,则直线的斜率为,A 正确;对于B ,由斜率为可得直线的方程为,联立抛物线方程得,设,则,则,代入抛物线得,解得,则,则,B 错误;对于C ,由抛物线定义知:,C 正确;对于D ,,则为钝角, 又,则为钝角,又,则,D 正确.故选:ACD.5.【2021年新高考1卷】已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,32PB =D .当PBA ∠最大时,32PB =【答案】ACD【分析】计算出圆心到直线AB 的距离,可得出点P 到直线AB 的距离的取值范围,可判断AB 选项的正误;分析可知,当PBA ∠最大或最小时,PB 与圆M 相切,利用勾股定理可判断CD 选项的正误.【解析】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142x y +=,即240x y +-=,圆心M 到直线AB 的距离为2252541111545512+⨯-==>+,所以,点P 到直线AB 的距离的最小值为115425-<,最大值为1154105+<,A 选项正确,B 选项错误;如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,()()22052534BM =-+-4MP =,由勾股定理可得2232BP BM MP =-=CD 选项正确.故选:ACD.【点睛】结论点睛:若直线l 与半径为r 的圆C 相离,圆心C 到直线l 的距离为d ,则圆C 上一点P 到直线l 的距离的取值范围是[],d r d r -+.6.【2021年新高考2卷】已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离 C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切 【答案】ABD【分析】转化点与圆、点与直线的位置关系为222,a b r +的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解. 【解析】圆心()0,0C 到直线l的距离2d =若点(),A a b 在圆C 上,则222a b r +=,所以2d r =,则直线l 与圆C 相切,故A 正确;若点(),A a b 在圆C 内,则222a b r +<,所以2d r =,则直线l 与圆C 相离,故B 正确;若点(),A a b 在圆C 外,则222a b r +>,所以2d r =,则直线l 与圆C 相交,故C 错误;若点(),A a b 在直线l 上,则2220a b r +-=即222=a b r +,所以2d r ,直线l 与圆C 相切,故D 正确.故选:ABD.7.【2020年新高考1卷(山东卷)】已知曲线22:1C mx ny +=.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则CC .若mn <0,则C是双曲线,其渐近线方程为y = D .若m =0,n >0,则C 是两条直线 【答案】ACD【分析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【解析】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n +=, 因为0m n >>,所以11m n<, 即曲线C 表示焦点在y 轴上的椭圆,故A 正确;对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线C 表示圆心在原点,半径为nn的圆,故B 不正确; 对于C ,若0mn <,则221mx ny +=可化为22111x y m n +=,此时曲线C 表示双曲线, 由220mx ny +=可得my x n=±-,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=, ny n=±,此时曲线C 表示平行于x 轴的两条直线,故D 正确; 故选:ACD.【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养. 8.【2022年新高考1卷】写出与圆和都相切的一条直线的方程________________. 【答案】或或【分析】先判断两圆位置关系,分情况讨论即可. 【解析】圆的圆心为,半径为,圆的圆心为,半径为,两圆圆心距为,等于两圆半径之和,故两圆外切,如图,当切线为l时,因为,所以,设方程为O到l的距离,解得,所以l的方程为,当切线为m时,设直线方程为,其中,,由题意,解得,当切线为n时,易知切线方程为,故答案为:或或.9.【2022年新高考1卷】已知椭圆,C的上顶点为A,两个焦点为,,离心率为.过且垂直于的直线与C交于D,E两点,,则的周长是________________.【答案】13【分析】利用离心率得到椭圆的方程为,根据离心率得到直线的斜率,进而利用直线的垂直关系得到直线的斜率,写出直线的方程:,代入椭圆方程,整理化简得到:,利用弦长公式求得,得,根据对称性将的周长转化为的周长,利用椭圆的定义得到周长为.【解析】∵椭圆的离心率为,∴,∴,∴椭圆的方程为,不妨设左焦点为,右焦点为,如图所示,∵,∴,∴为正三角形,∵过且垂直于的直线与C交于D,E两点,为线段的垂直平分线,∴直线的斜率为,斜率倒数为,直线的方程:,代入椭圆方程,整理化简得到:,判别式,∴,∴,得,∵为线段的垂直平分线,根据对称性,,∴的周长等于的周长,利用椭圆的定义得到周长为.故答案为:13.10.【2022年新高考2卷】设点,若直线关于对称的直线与圆有公共点,则a的取值范围是________.【答案】【分析】首先求出点关于对称点的坐标,即可得到直线的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可;【解析】解:关于对称的点的坐标为,在直线上,所以所在直线即为直线,所以直线为,即;圆,圆心,半径,依题意圆心到直线的距离,即,解得,即;故答案为:11.【2022年新高考2卷】已知直线l 与椭圆在第一象限交于A ,B 两点,l 与x轴,y 轴分别交于M ,N 两点,且,则l 的方程为___________.【答案】【分析】令的中点为,设,,利用点差法得到,设直线,,,求出、的坐标,再根据求出、,即可得解; 【解析】解:令的中点为,因为,所以,设,,则,,所以,即所以,即,设直线,,,令得,令得,即,,所以, 即,解得或(舍去),又,即,解得或(舍去),所以直线,即;故答案为:12.【2021年新高考1卷】已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______. 【答案】32x =-【分析】先用坐标表示P Q ,,再根据向量垂直坐标表示列方程,解得p ,即得结果. 【解析】抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直, 所以P 的横坐标为2p ,代入抛物线方程求得P 的纵坐标为p ±,不妨设(,)2pP p ,因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =,(6,0),(6,)2pQ PQ p ∴+∴=- 因为PQ OP ⊥,所以PQ OP ⋅=2602pp ⨯-=, 0,3p p >∴=,所以C 的准线方程为32x =-故答案为:32x =-.【点睛】利用向量数量积处理垂直关系是本题关键.13.【2021年新高考2卷】若双曲线22221x y a b -=的离心率为2,则此双曲线的渐近线方程___________.【答案】y =【分析】根据离心率得出2c a =,结合222+=a b c 得出,a b 关系,即可求出双曲线的渐近线方程.【解析】由题可知,离心率2ce a==,即2c a =,又22224a b c a +==,即223b a =,则ba=故此双曲线的渐近线方程为y =.故答案为:y =.14.【2020年新高考1卷(山东卷)C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________. 【答案】163【分析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y 并整理得到关于x 的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果.【解析】∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为(1,0)F , 又∵直线AB 过焦点F 且斜率为3,∴直线AB 的方程为:3(1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=,解法一:解得121,33x x == ,所以212116||1||13|3|33AB k x x =+-=+⋅-=解法二:10036640∆=-=>,设1122(,),(,)A x y B x y ,则12103x x +=, 过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示. 12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:163【点睛】本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题. 15.【2022年新高考1卷】已知点在双曲线上,直线l 交C 于P ,Q 两点,直线的斜率之和为0.(1)求l 的斜率; (2)若,求的面积.【答案】(1);(2).【分析】(1)由点在双曲线上可求出,易知直线l的斜率存在,设,,再根据,即可解出l的斜率;(2)根据直线的斜率之和为0可知直线的倾斜角互补,再根据即可求出直线的斜率,再分别联立直线与双曲线方程求出点的坐标,即可得到直线的方程以及的长,由点到直线的距离公式求出点到直线的距离,即可得出的面积.【解析】(1)因为点在双曲线上,所以,解得,即双曲线易知直线l的斜率存在,设,,联立可得,,所以,,.所以由可得,,即,即,所以,化简得,,即,所以或,当时,直线过点,与题意不符,舍去,故.(2)不妨设直线的倾斜角为,因为,所以,因为,所以,即,即,解得,于是,直线,直线,联立可得,,因为方程有一个根为,所以,,同理可得,,.所以,,点到直线的距离,故的面积为.16.【2022年新高考2卷】已知双曲线的右焦点为,渐近线方程为.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点在C上,且.过P且斜率为的直线与过Q且斜率为的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立:①M在上;②;③.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1);(2)见解析【分析】(1)利用焦点坐标求得的值,利用渐近线方程求得的关系,进而利用的平方关系求得的值,得到双曲线的方程;(2)先分析得到直线的斜率存在且不为零,设直线AB的斜率为k,M(x0,y0),由③|AM|=| BM|等价分析得到;由直线和的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ的斜率,由②等价转化为,由①在直线上等价于,然后选择两个作为已知条件一个作为结论,进行证明即可.【解析】(1)右焦点为,∴,∵渐近线方程为,∴,∴,∴,∴,∴.∴C的方程为:;(2)由已知得直线的斜率存在且不为零,直线的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线的斜率存在且不为零;若选①③推②,则为线段的中点,假若直线的斜率不存在,则由双曲线的对称性可知在轴上,即为焦点,此时由对称性可知、关于轴对称,与从而,已知不符;总之,直线的斜率存在且不为零.设直线的斜率为,直线方程为,则条件①在上,等价于;两渐近线的方程合并为,联立消去y并化简整理得:设,线段中点为,则,设,则条件③等价于,移项并利用平方差公式整理得:,,即,即;由题意知直线的斜率为, 直线的斜率为,∴由,∴,所以直线的斜率,直线,即,代入双曲线的方程,即中,得:,解得的横坐标:,同理:,∴∴, ∴条件②等价于,综上所述:条件①在上,等价于;条件②等价于;条件③等价于;选①②推③:由①②解得:,∴③成立;选①③推②:由①③解得:,,∴,∴②成立;选②③推①:由②③解得:,,∴,∴,∴①成立.17.【2021年新高考1卷】在平面直角坐标系xOy 中,已知点()117,0F -、()21217,02F MF MF -=,,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)()221116y x x -=≥;(2)0. 【分析】(1) 利用双曲线的定义可知轨迹C 是以点1F 、2F 为左、右焦点双曲线的右支,求出a 、b 的值,即可得出轨迹C 的方程;(2)方法一:设出点的坐标和直线方程,联立直线方程与曲线C 的方程,结合韦达定理求得直线的斜率,最后化简计算可得12k k +的值. 【解析】(1) 因为12122217MF MF F F -=<=,所以,轨迹C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b -=>>,则22a =,可得1a =,2174b a =-=,所以,轨迹C 的方程为()221116y x x -=≥.(2)[方法一] 【最优解】:直线方程与双曲线方程联立,如图所示,设1(,)2T n ,设直线AB 的方程为112211(),,(2,(),)y n k x A x y B x y -=-.联立1221()2116y n k x y x ⎧-=-⎪⎪⎨⎪-=⎪⎩,化简得22221111211(16)(2)1604k x k k n x k n k n -+---+-=.则22211112122211111624,1616k n k n k k n x x x x k k +-+-+==--.故12,11||)||)22TA x TB x --.则222111221(12)(1)11||||(1)()()2216n k TA TB k x x k ++⋅=+--=-.设PQ 的方程为21()2y n k x -=-,同理22222(12)(1)||||16n k TP TQ k ++⋅=-. 因为TA TB TP TQ ⋅=⋅,所以22122212111616k k k k ++=--,化简得22121717111616k k +=+--,所以22121616k k -=-,即2212k k =.因为11k k ≠,所以120k k +=.[方法二] :参数方程法设1(,)2T m .设直线AB 的倾斜角为1θ,则其参数方程为111cos 2sin x t y m t θθ⎧=+⎪⎨⎪=+⎩,联立直线方程与曲线C 的方程2216160(1)x y x --≥=,可得222221111cos 116(cos )(sin 2sin )1604t m t t mt θθθθ+-++-=+,整理得22221111(16cos sin )(16cos 2sin )(12)0t m t m θθθθ-+--+=.设12,TA t TB t ==,由根与系数的关系得2212222111(12)12||||16cos sin 117cos t m m TA TB t θθθ-++⋅===--⋅.设直线PQ 的倾斜角为2θ,34,TP t TQ t ==,同理可得2342212||||117cos m T T t P Q t θ+⋅==-⋅ 由||||||||TA TB TP TQ ⋅=⋅,得2212cos cos θθ=.因为12θθ≠,所以12s o o s c c θθ=-.由题意分析知12θθπ+=.所以12tan tan 0θθ+=, 故直线AB 的斜率与直线PQ 的斜率之和为0. [方法三]:利用圆幂定理因为TA TB TP TQ ⋅=⋅,由圆幂定理知A ,B ,P ,Q 四点共圆.设1(,)2T t ,直线AB 的方程为11()2y t k x -=-,直线PQ 的方程为21()2y t k x -=-,则二次曲线1212()()022k kk x y t k x y t --+--+=. 又由22116y x -=,得过A ,B ,P ,Q 四点的二次曲线系方程为:221212()()(1)0(0)2216k k y k x y t k x y t x λμλ--+--++--=≠,整理可得:[]2212121212()()()()16k x y k k xy t k k k k k x μμλλλλ++--+++-12(2)02y k k t m λ++-+=,其中21212()42k k t m t k k λμ⎡⎤=+-+-⎢⎥⎣⎦. 由于A ,B ,P ,Q 四点共圆,则xy 项的系数为0,即120k k +=.【整体点评】(2)方法一:直线方程与二次曲线的方程联立,结合韦达定理处理圆锥曲线问题是最经典的方法,它体现了解析几何的特征,是该题的通性通法,也是最优解; 方法二:参数方程的使用充分利用了参数的几何意义,要求解题过程中对参数有深刻的理解,并能够灵活的应用到题目中.方法三:圆幂定理的应用更多的提现了几何的思想,二次曲线系的应用使得计算更为简单.18.【2021年新高考2卷】已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F ,(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =【答案】(1)2213x y +=;(2)证明见解析.【分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k =+,联立直线与椭圆方=1k =±,即可得解.【解析】(1)由题意,椭圆半焦距c =c e a ==,所以a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N ,F三点共线,可设直线(:MN y k x =即0kx y --=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以1212324x x x x +=⋅=,所以MN 所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN ==()22310k -=,所以1k =±, 所以1k b =⎧⎪⎨=⎪⎩或1k b =-⎧⎪⎨=⎪⎩:MN y x=y x =-,所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||MN = 【点睛】关键点点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.19.【2020年新高考1卷(山东卷)】已知椭圆C :22221(0)x y a b a b +=>>过点()2,1A . (1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.【答案】(1)22163x y +=;(2)详见解析.【分析】(1)由题意得到关于,,a b c 的方程组,求解方程组即可确定椭圆方程.(2)方法一:设出点M ,N 的坐标,在斜率存在时设方程为y kx m =+, 联立直线方程与椭圆方程,根据已知条件,已得到,m k 的关系,进而得直线MN 恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q 的位置. 【解析】(1)由题意可得:22222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)[方法一]:通性通法 设点()()1122,,,M x y N x y ,若直线MN 斜率存在时,设直线MN 的方程为:y kx m =+, 代入椭圆方程消去y 并整理得:()222124260kxkmx m +++-=,可得122412km x x k +=-+,21222612m x x k -=+,因为AM AN ⊥,所以·0AM AN =,即()()()()121222110x x y y --+--=, 根据1122,kx m y kx m y =+=+,代入整理可得:()()()()22121212140x x km k x x km ++--++-+=,所以()()()22222264121401212m km k km k m k k -⎛⎫++---+-+= ⎪++⎝⎭, 整理化简得()()231210k m k m +++-=,因为(2,1)A 不在直线MN 上,所以210k m +-≠,故23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭()1k ≠,所以直线过定点直线过定点21,33P ⎛⎫- ⎪⎝⎭.当直线MN 的斜率不存在时,可得()11,N x y -, 由·0AM AN =得:()()()()111122110x x y y --+---=, 得()1221210x y -+-=,结合2211163x y +=可得:2113840x x -+=, 解得:123x =或22x =(舍).此时直线MN 过点21,33P ⎛⎫- ⎪⎝⎭. 令Q 为AP 的中点,即41,33Q ⎛⎫⎪⎝⎭,若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故12DQ AP =, 若D 与P 重合,则12DQ AP =,故存在点41,33Q ⎛⎫⎪⎝⎭,使得DQ 为定值. [方法二]【最优解】:平移坐标系将原坐标系平移,原来的O 点平移至点A 处,则在新的坐标系下椭圆的方程为22(2)(1)163x y +++=,设直线MN 的方程为4mx ny .将直线MN 方程与椭圆方程联立得224240x x y y +++=,即22()2()0x mx ny x y mx ny y +++++=,化简得22(2)()(1)0n y m n xy m x +++++=,即2(2)()(1)0y y n m n m x x ⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭.设()()1122,,,M x y N x y ,因为AM AN ⊥则1212AM AN y y k k x x ⋅=⋅112m n +==-+,即3m n =--. 代入直线MN 方程中得()340n y x x ---=.则在新坐标系下直线MN 过定点44,33⎛⎫-- ⎪⎝⎭,则在原坐标系下直线MN 过定点21,33P ⎛⎫- ⎪⎝⎭.又AD MN ⊥,D 在以AP 为直径的圆上.AP 的中点41,33⎛⎫⎪⎝⎭即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在41,33Q ⎛⎫ ⎪⎝⎭,使得1||||2DQ AP =.[方法三]:建立曲线系 A 点处的切线方程为21163x y ⨯⨯+=,即30x y +-=.设直线MA 的方程为11210k x y k --+=,直线MB 的方程为22210k x y k --+=,直线MN 的方程为0kx y m -+=.由题意得121k k .则过A ,M ,N 三点的二次曲线系方程用椭圆及直线,MA MB 可表示为()()22112212121063x y k x y k k x y k λ⎛⎫+-+--+--+= ⎪⎝⎭(其中λ为系数). 用直线MN 及点A 处的切线可表示为()(3)0kx y m x y μ-+⋅+-=(其中μ为系数).即()()22112212121()(3)63x y k x y k k x y k kx y m x y λμ⎛⎫+-+--+--+=-++- ⎪⎝⎭. 对比xy 项、x 项及y 项系数得()()()121212(1),4(3),21(3).k k k k k m k k k m λμλμλμ⎧+=-⎪++=-⎨⎪+-=+⎩①②③将①代入②③,消去,λμ并化简得3210m k ++=,即2133m k =--.故直线MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭,直线MN 过定点21,33P ⎛⎫- ⎪⎝⎭.又AD MN ⊥,D 在以AP 为直径的圆上.AP 中点41,33⎛⎫⎪⎝⎭即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在41,33Q ⎛⎫ ⎪⎝⎭,使得1||||2DQ AP ==.[方法四]:设()()1122,,,M x y N x y .若直线MN 的斜率不存在,则()()1111,,,M x y N x y -. 因为AM AN ⊥,则0AM AN ⋅=,即()1221210x y -+-=.由2211163x y +=,解得123x =或12x =(舍).所以直线MN 的方程为23x =.若直线MN 的斜率存在,设直线MN 的方程为y kx m =+,则()()()222122()6120x kx m k x x x x ++-=+--=.令2x =,则()()1222(21)(21)2212k m k m x x k +-++--=+.又()()221221262y m y y y y y k k -⎛⎫⎛⎫+-=+-- ⎪ ⎪⎝⎭⎝⎭,令1y =,则()()122(21)(21)1112k m k m y y k +--+---=+.因为AM AN ⊥,所以()()()()12122211AM AN x x y y ⋅=--+--2(21)(231)12k m k m k +-++=+0=,即21m k =-+或2133m k =--.当21m k =-+时,直线MN 的方程为21(2)1y kx k k x =-+=-+.所以直线MN 恒过(2,1)A ,不合题意;当2133m k =--时,直线MN 的方程为21213333y kx k k x ⎛⎫=--=-- ⎪⎝⎭,所以直线MN 恒过21,33P ⎛⎫- ⎪⎝⎭.综上,直线MN 恒过21,33P ⎛⎫- ⎪⎝⎭,所以||3AP =又因为AD MN ⊥,即AD AP ⊥,所以点D 在以线段AP 为直径的圆上运动.取线段AP 的中点为41,33Q ⎛⎫ ⎪⎝⎭,则1||||2DQ AP =.所以存在定点Q ,使得||DQ 为定值.【整体点评】(2)方法一:设出直线MN 方程,然后与椭圆方程联立,通过题目条件可知直线过定点P ,再根据平面几何知识可知定点Q 即为AP 的中点,该法也是本题的通性通法; 方法二:通过坐标系平移,将原来的O 点平移至点A 处,设直线MN 的方程为4mx ny ,再通过与椭圆方程联立,构建齐次式,由韦达定理求出,m n 的关系,从而可知直线过定点P ,从而可知定点Q 即为AP 的中点,该法是本题的最优解;方法三:设直线:MN y kx m =+,再利用过点,,A M N 的曲线系,根据比较对应项系数可求出,m k 的关系,从而求出直线过定点P ,故可知定点Q 即为AP 的中点;方法四:同方法一,只不过中间运算时采用了一元二次方程的零点式赋值,简化了求解()()1222--x x 以及()()1211y y --的计算.20.【2020年新高考2卷(海南卷)】已知椭圆C :22221(0)x y a b a b +=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)2211612x y +=;(2)18.【分析】(1)由题意分别求得a ,b 的值即可确定椭圆方程;(2)首先利用几何关系找到三角形面积最大时点N 的位置,然后联立直线方程与椭圆方程,结合判别式确定点N 到直线AM 的距离即可求得三角形面积的最大值. 【解析】(1)由题意可知直线AM 的方程为:13(2)2y x -=-,即24-=-x y .当y =0时,解得4x =-,所以a =4,椭圆()2222:10x y C a b a b+=>>过点M (2,3),可得249116b +=,解得b 2=12.所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y +=,可得:()2232448m y y ++=, 化简可得:2216123480y my m ++-=,所以()221444163480m m ∆=-⨯-=,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:28x y -=, 直线AM 方程为:24-=-x y ,点N 到直线AM 的距离即两平行线之间的距离, 利用平行线之间的距离公式可得:12514d ==+由两点之间距离公式可得||AM =.所以△AMN 的面积的最大值:1182⨯=.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.【】专题05 平面解析几何1.【2021年新高考1卷】已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( )A .13B .12C .9D .62.【2021年新高考2卷】抛物线22(0)y px p =>的焦点到直线1y x =+的距离为2,则p =( ) A .1B .2C .22D .43.【2022年新高考1卷】已知O 为坐标原点,点在抛物线上,过点的直线交C 于P ,Q 两点,则( )A .C 的准线为B .直线AB 与C 相切 C .D .4.【2022年新高考2卷】已知O 为坐标原点,过抛物线焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点,若,则( ) A .直线的斜率为B .C .D .5.【2021年新高考1卷】已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,32PB =D .当PBA ∠最大时,32PB =6.【2021年新高考2卷】已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离 C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切7.【2020年新高考1卷(山东卷)】已知曲线22:1C mx ny +=.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则C nC .若mn <0,则C 是双曲线,其渐近线方程为my x n=±- D .若m =0,n >0,则C 是两条直线 8.【2022年新高考1卷】写出与圆和都相切的一条直线的方程________________. 9.【2022年新高考1卷】已知椭圆,C 的上顶点为A ,两个焦点为,,离心率为.过且垂直于的直线与C 交于D ,E 两点,,则的周长是________________. 10.【2022年新高考2卷】设点,若直线关于对称的直线与圆有公共点,则a 的取值范围是________.11.【2022年新高考2卷】已知直线l 与椭圆在第一象限交于A ,B 两点,l 与x轴,y 轴分别交于M ,N 两点,且,则l 的方程为___________.12.【2021年新高考1卷】已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______.13.【2021年新高考2卷】若双曲线22221x y a b -=的离心率为2,则此双曲线的渐近线方程___________.14.【2020年新高考1卷(山东卷)】斜率为3的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________. 15.【2022年新高考1卷】已知点在双曲线上,直线l 交C 于P ,Q 两点,直线的斜率之和为0.(1)求l 的斜率; (2)若,求的面积.16.【2022年新高考2卷】已知双曲线的右焦点为,渐近线方程为.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点在C 上,且.过P 且斜率为的直线与过Q 且斜率为的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立: ①M 在上;②;③.注:若选择不同的组合分别解答,则按第一个解答计分.17.【2021年新高考1卷】在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.18.【2021年新高考2卷】已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F ,(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =19.【2020年新高考1卷(山东卷)】已知椭圆C :22221(0)x y a b a b +=>>过点()2,1A . (1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.20.【2020年新高考2卷(海南卷)】已知椭圆C :22221(0)x y a b a b +=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【】三年专题05 立体几何(选择题、填空题)(理科专用)1.【2022年新高考1卷】南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()()A.B.C.D.【答案】C【解析】【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【详解】依题意可知棱台的高为(m),所以增加的水量即为棱台的体积.棱台上底面积,下底面积,∴.故选:C.2.【2022年新高考1卷】已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是()A.B.C.D.【答案】C【解析】【分析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围. 【详解】 ∵ 球的体积为,所以球的半径,设正四棱锥的底面边长为,高为,则,,所以,所以正四棱锥的体积,所以,当时,,当时,,所以当时,正四棱锥的体积取最大值,最大值为, 又时,,时,,所以正四棱锥的体积的最小值为, 所以该正四棱锥体积的取值范围是.故选:C.3.【2022年新高考2卷】已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为( ) A .B .C .D .【答案】A 【解析】 【分析】根据题意可求出正三棱台上下底面所在圆面的半径,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积. 【详解】设正三棱台上下底面所在圆面的半径,所以,即,设球心到上下底面的距离分别为,球的半径为,所以,,故或,即或,解得符合题意,所以球的表面积为.故选:A .4.【2021年甲卷理科】2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C '''满足45AC B ∠'''=︒,。
2020年高考解析几何大招题型梳理学生
2020年高考解析几何大招题型梳理(学生版)目录第1课面积问题 (2)第2课中点弦问题 (4)第3课圆锥曲线的垂直问题 (6)第4课定值问题 (8)第5课定点问题 (10)第6课对称问题 (13)第7课三点共线问题 (15)第8课切线问题 (18)第9课最值或取值范围问题 (21)第10课圆锥曲线中的探究问题 (24)第1课 面积问题基本方法:方法一:直线与圆锥曲线的位置关系常涉及圆锥曲线的性质和直线的基本知识,圆锥曲线中的面积问题经常会涉及到弦长公式和点到直线的距离公式.弦长公式:12AB x -=12y y =-=;点到直线距离公式d =.此时1||2S d AB =. 方法二:如图,当已知直线与坐标轴的交点时,也可用121||||2AOB S OM y y =⋅-V 求其面积.一、典型例题1. 已知抛物线2:4C y x =的焦点为F ,过点F 的直线l 与抛物线C 交于,A B 两点,O 为坐标原点,若3AF =,求AOB ∆的面积.2. 已知椭圆22:143x y C +=,设,,A B P 三点均在椭圆C 上,O 为坐标原点, OP OA OB =+u u u r u u u r u u u r ,求四边形OAPB 的面积.x二、课堂练习1. 已知抛物线24y x =,过点()2,0M 的直线l 交抛物线于,A B 两点,若ABO ∆的面积为,求直线l 的方程.2. 已知椭圆22:14x C y +=过点()1,0D 作直线l 与C 交于P ,Q 两点,A 为椭圆的右顶点,连接直线PA ,QA 分别与直线3x =交于M ,N 两点.若APQ V 和AMN V的面积相等,求直线l 的方程.三、课后作业1. 已知抛物线2:4C y x =,若O 为坐标原点,F 是C 的焦点,过点F 且倾斜角为45o 的直线l 交C 于A ,B 两点,求AOB ∆的面积.2. 已知椭圆22:14x E y +=,过点()1,0P 的直线l 交E 于M ,N 两点,O 为坐标原点,MON ∆,求直线l 的方程.3. 已知椭圆22:143x y C +=,过原点O 的两条直线EG ,FH ,交椭圆C 于E ,G ,F ,H 四点,若3·4EG FH k k =-,求四边形EFGH 的面积.第2课 中点弦问题基本方法:直线与圆锥曲线的位置关系常涉及圆锥曲线的性质和直线的基本知识,中点弦问题主要涉及点差法和中点坐标公式. 常用到的公式:中点坐标公式1202x x x +=. 涉及到中点和斜率问题,也可以考虑设而不求法,利用点差法求解.一、典型例题1. 已知抛物线2:2E x y =的焦点为F ,,A B 是E 上两点,且AF BF m +=.若线段AB 的垂直平分线与y 轴仅有一个公共点()0,2C ,求m 的值.2. 已知椭圆2222:1(0)x y C a b a b+=>>的一个顶点为()0,1B ,半焦距为c ,离心率e ,又直线():0l y kx m k =+≠交椭圆于()11,M x y ,()22,N x y 两点.(1)求椭圆C 的标准方程;(2)若1,1k m ==-,求弦MN 的长;(3)若点11,2Q ⎛⎫ ⎪⎝⎭恰好平分弦MN ,求实数,k m .x二、课堂练习1. 已知()(2,0),2,0A B -,斜率为k 的直l 上存在不同的两点,M N 满足MA MB -=,NA NB -=且线段MN 的中点为()6,1,求直线的斜率k .2. 已知椭圆22:14x C y +=,直线l 与椭圆C 交于,A B 两点,线段AB 的垂直平分线交y 轴于点30,2P ⎛⎫ ⎪⎝⎭,且AB =l 的方程.三、课后作业1. 已知椭圆22:1164x y C +=,过点()2,1P 作直线l 与该椭圆相交于,A B 两点,若线段AB 恰被点P 所平分,求直线l 的方程.2. 已知抛物线26y x =,过点()2,1P 引一条弦12P P 使它恰好被点P 平分,求这条弦所在的直线方程及12P P .3. 已知椭圆22:12x E y +=,设直线:(0)l y x m m =+<与椭圆E 交于A ,B 两点,线段AB 的垂直平分线交x 轴于点T ,当点T 到直线l 时,求直线l 方程和线段AB 长.第3课 圆锥曲线的垂直问题基本方法:垂直转化为向量的数量积为零;联立方程,韦达定理;代入化简.一、典型例题1. 已知抛物线2:2C y x =,过点(2,0)的直线l 交C 于,A B 两点,圆M 是以线段AB 为直径的圆.证明:坐标原点O 在圆M 上.2. 过圆222:3E x y +=上任意一点P 作圆的切线l 与椭圆22:12x C y +=交于,A B 两点,O 为坐标原点,求AOB ∠.二、课堂练习1. 已知直线l 是抛物线24x y =的准线,点M 在直线l 上运动,过点M 做抛物线C 的两条切线,切点分别为12,P P ,在平面内找一点N ,使得12MN PP⊥恒成立.2. 已知椭圆2222:1(0)x y C a b a b +=>>的焦距为,且C 过点12⎫⎪⎭. (1)求椭圆C 的方程;(2)设12,B B 分别是椭圆C 的下顶点和上顶点,P 是椭圆上异于12,B B 的任意一点,过点P 作PM y ⊥轴于M ,N 为线段PM 的中点,直线2B N 与直线1y =-交于点D ,E 为线段1B D 的中点,O 为坐标原点,求证:.ON EN ⊥三、课后作业1. 已知抛物线28y x =,直线8y x =-与抛物线交于,A B 两点,O 为坐标原点. 求证:OA OB ⊥.2. 动直线:l y kx m =+是圆2283x y +=的切线,且与椭圆22:184x y C +=交于,P Q 两点,求证OP OQ ⊥.3. 已知()2,0A -,()2,0B ,点C 是动点,且直线AC 和直线BC 的斜率之积为34-. (1)求动点C 的轨迹方程;(2)设直线l 与(1)中轨迹相切于点P ,与直线4x =相交于点Q ,且()1,0F ,求证:90PFQ ∠=o .第4课 定值问题基本方法:1. 求解定点和定值问题的思路是一致的,定点问题是求解的一个点(或几个点)的坐标,使得方程的成立与参数无关,定值问题是证明求解的量与参数无关.2.在解析几何中,有些几何量,如斜率、距离、面积、比值等基本量和动点坐标或动线中的参变量无关,这类问题统称为定值问题.3.探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.解答的关键是认真审题,理清问题与题设的关系,建立合理的方程或函数,利用等量关系统一变量,最后消元得出定值.一、典型例题1. 在平面直角坐标系xOy 中,22:1168x y E +=. 过点()4,0A -作直线l 交E 于点P ,交y 轴于点Q ,过O 作直线l l 'P ,l '交E 于点R .试判断2||AQ AP OR ⋅是否为定值?若是,求出其定值;若不是,请说明理由.2. 已知抛物线2:8E x y =,直线AB 与曲线E 交于不同两点()()1122,,,A x y B x y ,且2211x x m -=+(m 为常数),直线l '与AB 平行,且与曲线E 相切,切点为C ,试问ABC ∆的面积是否为定值.若为定值,求出ABC ∆的面积;若不是定值,说明理由.二、课堂练习1. 设抛物线2:2(0)C y px p =>的焦点为F ,准线为l .已知点A 在抛物线C 上,点B 在l 上, ABF ∆是边长为4的等边三角形.(1)求p 的值;(2)在x 轴上是否存在一点N ,当过点N 的直线l '与抛物线C 交于Q ,R 两点时,2211||||NQ NR +为定值?若存在,求出点N 的坐标,若不存在,请说明理由.2. 已知点31,2P ⎛⎫ ⎪⎝⎭,椭圆22:143x y C +=上不与P 点重合的两点D ,E 关于原点O 对称,若直线PD ,PE 分别交y 轴于M ,N 两点.求证:以MN 为直径的圆被直线32y =截得的弦长是定值.三、课后作业 1. 已知椭圆C :22184x y +=,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . 证明:直线OM 的斜率与直线l 的斜率的乘积为定值.2. 已知椭圆22:12x C y +=,若直线l :2y kx =+与椭圆C 相交于A ,B 两点,在y 轴上是否存在点D ,使直线AD 与BD 的斜率之和AD BD k k +为定值?若存在,求出点D 坐标及该定值,若不存在,试说明理由.3. 已知椭圆22:143x y C +=的右焦点为F ,过点F 的直线交椭圆C 于,A B 两点,交直线:4l x =于点P ,若1PA AF λ=,2PB BF λ=,求证:12λλ-为定值.第5课 定点问题基本方法:1. 求解定点和定值问题的思路是一致的,定点问题是求解的一个点(或几个点)的坐标,使得方程的成立与参数无关,定值问题是证明求解的量与参数无关.2. 直线过定点的解题策略一般有以下几种:(1)如果题设条件没有给出这个定点,那么,我们可以这样思考:由于这个定点对符合要求的一些特殊情况必然成立,那么我们根据特殊情况先找到这个定点,再证明这个点与变量无关.(2)直接推理、计算,找出参数之间的关系,并在计算过程中消去部分参数,将直线方程化为点斜式方程,从而得到定点. (3)若直线方程含多个参数并给出或能求出参数满足的方程,观察直线方程特征与参数方程满足的方程的特征,即可找出直线所过定点坐标,并代入直线方程进行检验.注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算.3. 对于直线过定点,有以下常用结论:若直线l :y kx m =+(其中m 为常数),则直线l 必过定点()0,m ;若直线l :y kx nk =+(其中n 为常数),则直线l 必过定点(),0n -;若直线l :y kx nk b =++(其中,n b 为常数),则直线l 必过定点(),n b -;若直线l :x ty m =+(其中m 为常数),则直线l 必过定点(),0m ;若直线l :x ty nt =+(其中n 为常数),则直线l 必过定点()0,n -;若直线l :x ty nt b =++(其中,n b 为常数),则直线l 必过定点(),b n -.一、典型例题1. 已知椭圆C :22221x y a b +=()0a b >>,四点()11,1P ,()20,1P ,3P ⎛- ⎝⎭,4P ⎛ ⎝⎭中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于A 、B 两点,若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.2. 已知椭圆C :22142x y +=,如图,椭圆左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于P ,Q 两点,直线P A ,QA 分别与y 轴交于M ,N 两点,试问以MN 为直径的圆是否经过定点?请证明结论.二、课堂练习1. 已知抛物线()2:20C x py p =>过点()2,1,直线l 过点()0,1P -与抛物线C 交于A ,B 两点.点A 关于y 轴的对称点为A ',连接A B '. 问直线A B '是否过定点?若是,求出定点坐标;若不是,请说明理由.x2. 已知椭圆C :22142x y +=,过点()1,0做两条相互垂直的直线1l 、2l 分别与椭圆C 交于P 、Q 、M 、N 四点. 若MS SN =u u u r u u u r ,PT TQ =u u u r u u u r ,证明直线ST 是否过定点.三、课后作业1. 已知抛物线24y x Γ=:,过点()12,8P 的两条直线1l 、2l 分别交抛物线Γ于点C 、D 和E 、F ,线段CD 和EF 的中点分别为M 、N .如果直线1l 与2l 的倾斜角互余,求证:直线MN 经过一定点.2. 已知椭圆2212x y +=,直线l 不经过点A (0,1),且与椭圆交于M ,N 两点,若以MN 为直径的圆经过点A ,求证:直线l 过定点,并求出该定点的坐标.3. 已知过抛物线2:2(0)C y px p =>的焦点F ,()()112212,,,()A x y B x y x x <两点,且6AB =.(1)求该抛物线C 的方程;(2)已知抛物线上一点(),4M t ,过点M 作抛物线的两条弦MD 和ME ,且MD ME ⊥,判断直线DE 是否过定点?并说明理由.第6课 对称问题基本方法:对称问题是解析几何中的一个重要问题,主要类型有:1. 点关于点成中心对称问题(即线段中点坐标公式的应用问题)设点()000,P x y ,对称中心为(),A a b ,则点()000,P x y 关于(),A a b 的对称点为()002,2P a x b y '--.2. 点关于直线成轴对称问题由轴对称定义可知,对称轴即为两对称点连线的垂直平分线,利用“垂直”“平分”这两个条件建立方程,就可以求出对称点的坐标,一般情形如下:设点()000,P x y 关于直线y kx b =+的对称点为(),P x y ''',则有0000122y y k x x y y x x k b '-⎧⋅=-⎪'-⎪⎨''++⎪=⋅+⎪⎩,可求得(),P x y '''.特殊情形:①点()000,P x y 关于直线x a =对称的点为()002,P a x y '-;②点()000,P x y 关于直线y b =对称的点为()00,2P x b y '-;③若对称轴的斜率为1±,则可把()000,P x y 直接代入对称轴方程求得对称点P '的坐标.一、典型例题1.已知椭圆C :2214x y +=,A 为椭圆左顶点,设椭圆C 上不与A 点重合的两点D ,E 关于原点O 对称,直线AD ,AE 分别交y 轴于M ,N 两点.求证:以MN 为直径的圆被x 轴截得的弦长是定值.2.已知椭圆22143x y +=与直线y kx m =+相交于不同的两点,M N ,如果存在过点10,2P ⎛⎫- ⎪⎝⎭的直线l ,使得点M N ,关于l 对称,求实数m 的取值范围.二、课堂练习1.已知椭圆22184x y +=,上顶点为,P O 为坐标原点,设线段PO 的中点为M ,经过M 的直线l 与椭圆交于,A B 两点,()3,0C -,若点A 关于x 轴的对称点在直线BC 上,求直线l 方程.2.已知椭圆22:194x y C +=. 点P 为圆22:13M x y +=上任意一点,O 为坐标原点.设直线l 经过点P 且与椭圆C 相切,l 与圆M 相交于另一点A ,点A 关于原点O 的对称点为B ,证明:直线PB 与椭圆C 相切.三、课后作业1.已知椭圆:Γ221106x y +=.ABC ∆的顶点都在椭圆Γ上,其中,A B 关于原点对称,试问ABC ∆能否为正三角形?并说明理由.2.已知椭圆2212y x +=,记椭圆的右顶点为C ,点(),D m n (0n ≠)在椭圆上,直线CD 交y 轴于点M ,点E 与点D 关于y 轴对称,直线CE 交y 轴于点N .问:x 轴上是否存在点Q ,使得OQM ONQ ∠=∠(O 为坐标原点)?若存在,求点Q坐标;若不存在,说明理由.3.已知椭圆22413yx+=,右顶点为A,设直线l:1x=-上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于点A),直线BQ与x轴相交于点D. 若APDV AP的方程.第7课三点共线问题基本方法:三点共线问题解题策略一般有以下几种:①斜率法:若过任意两点的直线的斜率都存在,通过计算证明过任意两点的直线的斜率相等证明三点共线;②距离法:计算出任意两点间的距离,若某两点间的距离等于另外两个距离之和,则这三点共线;③向量法:利用向量共线定理证明三点共线;④直线方程法:求出过其中两点的直线方程,再证明第三点也在该直线上;⑤点到直线的距离法:求出过其中某两点的直线方程,计算出第三点到该直线的距离,若距离为0,则三点共线.⑥面积法:通过计算求出以这三点为三角形的面积,若面积为0,则三点共线.在处理三点共线问题时,离不开解析几何的重要思想:“设而不求思想”.一、典型例题1.已知椭圆22:12xC y+=,41,33M⎛⎫⎪⎝⎭为椭圆上一点,若,R S是椭圆C上的两个点,线段RS的中垂线l的斜率为12且直线l与RS交于点P,O为坐标原点,求证:,,P O M三点共线.2.已知椭圆的焦点在x轴上,它的一个顶点恰好是抛物线24x y=的焦点,离心率e=.过椭圆的右焦点F 作与坐标轴不垂直的直线l,交椭圆于A、B两点.(1)求椭圆的标准方程;(2)设点(,0)M m 是线段OF 上的一个动点,且()MA MB AB +⊥u u u r u u u r u u u r ,求m 的取值范围;(3)设点C 是点A 关于x 轴的对称点,在x 轴上是否存在一个定点N ,使得C 、B 、N 三点共线?若存在,求出定点N 的坐标,若不存在,请说明理由.二、课堂练习1.抛物线2:4C y x =,已知斜率为k 的直线l 交y 轴于点P ,且与曲线C 相切于点A ,点B 在曲线C 上,且直线PB x P 轴,P 关于点B 的对称点为Q ,判断点,,A Q O 是否共线,并说明理由.2.已知椭圆22143x y +=,点F 是椭圆的右焦点. 是否在x 轴上存在定点D ,使得过D 的直线l 交椭圆于,A B 两点.设点E 为点B 关于x 轴的对称点,且,,A F E 三点共线?若存在,求D 点坐标;若不存在,说明理由.三、课后作业1. 已知抛物线2:4C y x =的焦点为F ,直线l 过点()1,0-,直线l 与抛物线C 相交于,A B 两点,点A 关于x 轴的对称点为D . 证明:,,B F D 三点共线.2.已知椭圆:E 22162x y +=,其右焦点为F ,过x 轴上一点()3,0A 作直线l 与椭圆E 相交于,P Q 两点,设(1)AP AQ λλ=>u u u r u u u r ,过点P 且平行于y 轴的直线与椭圆E 相交于另一点M ,试问,,M F Q 是否共线,若共线请证明;反之说明理由.3.已知椭圆22:132x y E +=,过定点()3,4P -且斜率为k 的直线交椭圆E 于不同的两点,M N ,在线段MN 上取异于,M N 的点H ,满足PM MH PN NH =,证明:点H 恒在一条直线上,并求出这条直线的方程.第8课 切线问题基本方法:圆锥曲线的切线问题有两种处理思路:思路1,导数法,将圆锥曲线方程化为函数)(x f y =,利用导数法求出函数)(x f y =在点00(,)x y 处的切线方程,特别是焦点在y 轴上常用此法求切线;思路2,根据题中条件设出切线方程,将切线方程代入圆锥切线方程,化为关于x (或y )的一元二次方程,利用切线与圆锥曲线相切的充要条件为判别式0=∆,即可解出切线方程,注意关于x (或y )的一元二次方程的二次项系数不为0这一条件.圆锥曲线的切线问题要根据曲线不同,选择不同的方法.一、典型例题1.已知椭圆C :221(0)42x y a b +=>>上顶点为D ,右焦点为F ,过右顶点A 作直线l DF P ,且与y 轴交于点()0,P t ,又在直线y t =和椭圆C 上分别取点Q 和点E ,满足OQ OE ⊥(O 为坐标原点),连接EQ .(1)求t 的值,并证明直线AP 与圆222x y +=相切;(2)判断直线EQ 与圆222x y +=是否相切?若相切,请证明;若不相切,请说明理由.x2. 已知椭圆221:143x y C +=,在椭圆1C 上是否存在这样的点P ,过点P 引抛物线22:4C x y =的两条切线12,l l ,切点分别为,B C ,且直线BC 过点()1,1A ?若存在,指出这样的点P 有几个(不必求出点的坐标);若不存在,请说明理由.二、课堂练习1.已知椭圆22:194x y C +=. 点P 为圆22:13M x y +=上任意一点,O 为坐标原点.设直线l 经过点P 且与椭圆C 相切,l 与圆M 相交于另一点A ,点A 关于原点O 的对称点为B ,证明:直线PB 与椭圆C 相切.2.已知椭圆22221(0)x y a b a b+=>>与抛物线22(0)y px p =>共焦点2F ,抛物线上的点M 到y 轴的距离等于21MF -,且椭圆与抛物线的交点Q 满足252QF =. (1)求抛物线的方程和椭圆的方程;(2)过抛物线上的点P 作抛物线的切线y kx m =+交椭圆于A 、B 两点,求此切线在x 轴上的截距的取值范围.三、课后作业1.已知椭圆22:162x y C +=,点()3,0A ,P 是椭圆C 上的动点. 若直线AP 与椭圆C 相切,求点P 的坐标.2.对任意的椭圆()222210x y a b a b+=>>,有如下性质:若点()00,x y 是椭圆上的点,则椭圆在该点处的切线方程为00221x x y y a b+=.利用此结论解答下列问题.已知椭圆22143x y +=,若动点P 在直线3x y +=上,经过点P 的直线m ,n 与椭圆C 相切,切点分别为M ,N .求证:直线MN 必经过一定点.3.已知抛物线2:2E x y =,O 为坐标原点,设T 是E 上横坐标为2的点,OT 的平行线l 交于E 于A ,B 两点,交E 在T 处的切线于点N . 求证:25||2NT NA NB =⋅.第9课 最值或取值范围问题基本方法:最值或取值范围问题解题策略一般有以下几种:(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质求解.(2)代数法:在利用代数法解决范围问题时常从以下五个方面考虑:①利用判别式来构造不等关系,从而确定参数(自变量)的取值范围;②利用已知参数(自变量)的范围,求新参数(新自变量)的范围,解这类问题的核心是在两个参数(自变量)之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数(自变量)的取值范围;④利用基本不等式求出参数(自变量)的取值范围;⑤利用函数的值域的求法,如导数法等,确定参数(自变量)的取值范围.最值或取值范围问题,是解析几何中的一类常见问题,解决这类问题的关键是构造含参数(自变量)的不等式,通过解不等式求出其范围,韦达定理、曲线与方程的关系等在构造不等式中起着重要作用.一、典型例题1. 已知抛物线2y x =和C e :()2211x y ++=,过抛物线上的一点()()000,1P x y y ≥,作C e 的两条切线,与y 轴分别相交于A ,B 两点.求ABP ∆面积的最小值.x2. 已知椭圆:C 2214y x +=,过点()0,3M 的直线l 与椭圆C 相交于不同的两点A ,B . 设P 为椭圆上一点,且OA OB OP λ+=u u u v u u u v u u u v (O 为坐标原点).求当AB <λ的取值范围.二、课堂练习1. 已知椭圆C :2214x y +=,过点()4,0M 的直线l 交椭圆于A ,B 两个不同的点,且MA MB λ=⋅,求λ的取值范围.2. 已知A ,B 为椭圆Γ:22142x y +=的左,右顶点,若点()()000,0P x y y ≠为直线4x =上的任意一点,PA ,PB 交椭圆Γ于C ,D 两点,求四边形ACBD 面积的最大值.三、课后作业1. 已知椭圆22:143x y C +=,过点1,02⎛⎫ ⎪⎝⎭作直线l 与椭圆C 交于点,E F (异于椭圆C 的左、右顶点),线段EF 的中点为M .点A 是椭圆C 的右顶点.求直线MA 的斜率k 的取值范围.2. 已知抛物线2:4C y x =的焦点为F ,准线为l ,过焦点F 的直线交C 于()11,A x y ,()22,B x y 两点,点B 在准线l 上的投影为E ,D 是C 上一点,且AD EF ⊥,求ABD V 面积的最小值及此时直线AD 的方程.3. 已知F 为椭圆2214x y +=的一个焦点,过点F 且不与坐标轴垂直的直线交椭圆于,A B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.x第10课 圆锥曲线中的探究问题基本方法:解决直线与圆锥曲线位置关系的存在性问题,往往是先假设所求的元素存在,然后推理论证,检验说明假设是否正确.这类题型存在两类问题:一是判断位置关系,二是依据位置关系确定参数的范围. 这两类问题在解题方法上是一致的,都要将直线方程与圆锥曲线方程联立,利用判别式及根与系数的关系进行求解.一、典型例题1.已知菱形ABCD ,AB 在y 轴上且()0,1A ,C (),1t -(0t ≠,t ∈R ).(1)求D 点轨迹Γ的方程;(2)延长DA 交轨迹Γ于点M ,轨迹Γ在点M 处的切线与直线BD 交于点N ,试判断以N 为圆心,线段NA 为半径的圆与直线DA 的位置关系,并证明你的结论.2. 已知椭圆C :22198x y +=,过点()0,2P 作斜率为()0k k ≠的直线l 与椭圆C 交于两点A ,B ,试判断在x 轴上是否存在点D ,使得ADB ∆为以AB 为底边的等腰三角形.若存在,求出点D 的横坐标的取值范围,若不存在,请说明理由.x二、课堂练习1. 已知椭圆22:143x y E +=,31,2P ⎛⎫ ⎪⎝⎭,过点()1,1M 任作一条直线l ,l 与椭圆E 交于不同于点P 的A ,B 两点,l 与直线:34120m x y +-=交于C 点,记直线PA ,PB ,PC 的斜率分别为1k ,2k ,3k .试探究12k k +与3k 的关系,并证明你的结论.2. 已知椭圆C 的标准方程2214x y +=,直线l 过点(1,1),且与椭圆C 交于A ,B 两点,点M 满足AM MB =u u u u r u u u r ,点O 为坐标原点,延长线段OM 与椭圆C 交于点R ,四边形OARB 能否为平行四边形?若能,求出此时直线l 的方程,若不能,说明理由.三、课后作业1. 在直角坐标系xOy 中,曲线:C 24x y =与直线:l y kx a =+(0a >)交于M ,N 两点. 在y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由.2. 已知椭圆C 的标准方程2212x y +=,12,A A 是椭圆C 的长轴的两个端点(2A 位于1A 右侧),B 是椭圆在y轴正半轴上的顶点,是否存在经过点且斜率为k 的直线l 与椭圆C 交于不同两点P 和Q ,使得向量OP OQ +u u u r u u u r 与2A B u u u u r 共线?若存在,求出直线l 方程,若不存在,请说明理由.3. 已知抛物线E :24x y =,m ,n 是过点(,1)A a -且倾斜角互补的两条直线,其中m 与E 有唯一公共点B ,n 与E 相交于不同的两点C ,D .是否存在常数λ,使得2||||||AC AD AB λ⋅=?若存在,求λ的值;若不存在,说明理由.。
2020高考数学解析几何内容剖析及备考建议
2020高考数学解析几何内容剖析及备考建议解析几何是高中数学的重要内容。
高考主要考查直线与圆、椭圆、抛物线、双曲线的定义、标准方程和简单的几何性质。
其中直线与圆、直线与圆锥曲线的位置关系是考查重点。
运动与变化是研究几何问题的基本观点,利用代数方法研究几何问题是基本方法。
试题强调综合性,综合考查数形结合思想、函数与方程思想、特殊与一般思想等思想方法,突出考查考生推理论证能力和运算求解能力。
一、直线与方程1.在平面直角坐标系下,结合具体图形掌握确定直线位置的几何要素.2. 理解直线的倾斜角概念,掌握过两点的直线斜率的计算公式.3.能根据两条直线的斜率判断两条直线平行或垂直.4.掌握确定直线的几何要素,掌握直线方程的三种形式(点斜式、两点式、一般式),了解斜截式与一次函数的关系.5.能用解方程组的方法求两条相交直线的交点坐标.6.掌握两点间的距离公式,点到直线的距离公式,会求两平行直线间的距离.二、圆的方程1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.2.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判定圆与圆的位置关系.3.能用直线与圆的方程解决一些简单的问题。
4 .初步了解用代数方法处理几何问题的思想。
三、空间直角坐标系1.了解空间直角坐标系,会用空间直角坐标表示点的位置。
2.会简单应用空间两点间的距离公式。
四、圆锥曲线(理科)1.了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用。
2.掌握椭圆、抛物线的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).3.了解双曲线的定义、几何图形和标准方程,知道双曲线的简单的几何性质(范围、对称轴、顶点、离心率、渐近线).4.了解曲线与方程的对应关系。
5.理解数形结合思想。
了解圆锥曲线的简单应用。
四、圆锥曲线(文科)1.掌握椭圆的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).2.了解双曲线的定义、几何图形和标准方程,知道双曲线的简单的几何性质(范围、对称轴、顶点、离心率、渐近线).3.了解抛物线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称轴、顶点、离心率).4.理解数形结合思想。
2020年高考数学试题分项版—解析几何(原卷版)
2020年高考数学试题分项版——解析几何(原卷版)一、选择题1.(2020·全国Ⅰ理,4)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p 等于( ) A .2 B .3 C .6 D .92.(2020·全国Ⅰ理,11)已知⊙M :x 2+y 2-2x -2y -2=0,直线l :2x +y +2=0,P 为l 上的动点,过点P 作⊙M 的切线PA ,PB ,切点为A ,B ,当|PM |·|AB |最小时,直线AB 的方程为( ) A .2x -y -1=0 B .2x +y -1=0 C .2x -y +1=0D .2x +y +1=03.(2020·全国Ⅱ理,5)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( ) A.55 B.255 C.355 D.4554.(2020·全国Ⅱ理,8)设O 为坐标原点,直线x =a 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于D ,E 两点.若△ODE 的面积为8,则C 的焦距的最小值为( ) A .4 B .8 C .16 D .325.(2020·全国Ⅲ理,5)设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( ) A.⎝⎛⎭⎫14,0 B.⎝⎛⎭⎫12,0 C .(1,0) D .(2,0) 6.(2020·全国Ⅲ理,10)若直线l 与曲线y =x 和圆x 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +127.(2020·全国Ⅲ理,11)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为 5.P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a 等于( ) A .1 B .2 C .4 D .88.(2020·新高考全国Ⅰ,9)已知曲线C :mx 2+ny 2=1.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则C 是圆,其半径为nC .若mn <0,则C 是双曲线,其渐近线方程为y =±-m nxD .若m =0,n >0,则C 是两条直线9.(2020·新高考全国Ⅱ,10)已知曲线C :mx 2+ny 2=1.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则C 是圆,其半径为nC .若mn <0,则C 是双曲线,其渐近线方程为y =±-m nx D .若m =0,n >0,则C 是两条直线10.(2020·北京,5)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ) A .4 B .5 C .6 D .711.(2020·北京,7)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ ⊥l 于Q ,则线段FQ 的垂直平分线( ) A .经过点O B .经过点PC .平行于直线OPD .垂直于直线OP12.(2020·天津,7)设双曲线C 的方程为x 2a 2-y 2b 2=1(a >0,b >0),过抛物线y 2=4x 的焦点和点(0,b )的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( ) A.x 24-y 24=1 B .x 2-y 24=1 C.x 24-y 2=1 D .x 2-y 2=113.(2020·浙江,8)已知点O (0,0),A (-2,0),B (2,0),设点P 满足|PA |-|PB |=2,且P 为函数y =34-x 2图象上的点,则|OP |等于( ) A.222 B.4105C.7D.10 14.(2020·全国Ⅰ文,6)已知圆x 2+y 2-6x =0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )A .1B .2C .3D .415.(2020·全国Ⅰ文,11)设F 1,F 2是双曲线C :x 2-y 23=1的两个焦点,O 为坐标原点,点P 在C 上且|OP |=2,则△PF 1F 2的面积为( ) A.72 B .3 C.52D .2 16.(2020·全国Ⅱ文,8)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( ) A.55 B.255 C.355 D.45517.(2020·全国Ⅱ文,9)设O 为坐标原点,直线x =a 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于D ,E 两点.若△ODE 的面积为8,则C 的焦距的最小值为( ) A .4 B .8 C .16 D .3218.(2020·全国Ⅲ文,7)设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( ) A.⎝⎛⎭⎫14,0 B.⎝⎛⎭⎫12,0 C .(1,0) D .(2,0) 19.(2020·全国Ⅲ文,8)点(0,-1)到直线y =k (x +1)距离的最大值为( ) A .1 B. 2 C. 3 D .2 二、填空题1.(2020·全国Ⅰ理,15)已知F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为________. 2.(2020·新高考全国Ⅰ,13)斜率为3的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB |=________.3.(2020·新高考全国Ⅱ,14)斜率为3的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB |=________.4.(2020·北京,12)已知双曲线C :x 26-y 23=1,则C 的右焦点的坐标为________;C 的焦点到其渐近线的距离是________.5.(2020·天津,12)已知直线x -3y +8=0和圆x 2+y 2=r 2(r >0)相交于A ,B 两点.若|AB |=6,则r 的值为________.6.(2020·江苏,6)在平面直角坐标系xOy 中,若双曲线x 2a 2-y 25=1(a >0)的一条渐近线方程为y =52x ,则该双曲线的离心率是________. 7.(2020·江苏,14)在平面直角坐标系xOy 中,已知P ⎝⎛⎭⎫32,0,A ,B 是圆C :x 2+⎝⎛⎭⎫y -122=36上的两个动点,满足PA =PB ,则△PAB 面积的最大值是________.8.(2020·浙江,15)已知直线y =kx +b (k >0)与圆x 2+y 2=1和圆(x -4)2+y 2=1均相切,则k =________,b =________.9.(2020·全国Ⅲ文,14)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线为y =2x ,则C的离心率为________. 三、解答题1.(2020·全国Ⅰ理,20)已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a >1)的左、右顶点,G 为E的上顶点,AG →·GB →=8.P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.2.(2020·全国Ⅱ理,19)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.3.(2020·全国Ⅲ理,20)已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为154,A ,B 分别为C的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积.4.(2020·新高考全国Ⅰ,22)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.5.(2020·新高考全国Ⅱ,21)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12.(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.6.(2020·北京,20)已知椭圆C :x 2a 2+y 2b 2=1过点A (-2,-1),且a =2b .(1)求椭圆C 的方程;(2)过点B (-4,0)的直线l 交椭圆C 于点M ,N ,直线MA ,NA 分别交直线x =-4于点P ,Q .求|PB ||BQ |的值.7.(2020·天津,18)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,-3),右焦点为F ,且|OA |=|OF |,其中O 为原点.(2)已知点C 满足3OC →=OF →,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.8.(2020·江苏,18)在平面直角坐标系xOy 中,已知椭圆E :x 24+y 23=1的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP →·QP →的最小值; (3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.9.(2020·浙江,21)如图,已知椭圆C 1:x 22+y 2=1,抛物线C 2:y 2=2px (p >0),点A 是椭圆C 1与抛物线C 2的交点.过点A 的直线l 交椭圆C 1于点B ,交抛物线C 2于点M (B ,M 不同于A ).(1)若p =116,求抛物线C 2的焦点坐标;(2)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.10.(2020·全国Ⅰ文,21)已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a >1)的左、右顶点,G 为E的上顶点,AG →·GB →=8.P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.11.(2020·全国Ⅱ文,19)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.12.(2020·全国Ⅲ文,21)已知椭圆C:x225+y2m2=1(0<m<5)的离心率为154,A,B分别为C的左、右顶点.(1)求C的方程;(2)若点P在C上,点Q在直线x=6上,且|BP|=|BQ|,BP⊥BQ,求△APQ的面积.。
2020年高考全国I卷理科数学解析几何解答题评析
查, 在难度设计上, 不仅有层次性, 而且在思维的灵活性和 深刻性, 方法的综合性和创新性等方面给学生提供了多种分 析问题和解决问题的途径.试题难度适中, 区分度好, 发挥数 学学科高考的选拔性功能.
一、 近 5 年高考全国 I 卷理科数学解析几何解答题回顾
类别 2016 年
2017 年
题目
考点
思想方法
应考方略 数学有数
2020 年高考全国 I 卷理科数学解析几何解答题评析
文/广东省江门市教育局教育研究院 钟烙华
2020 年高考全国 I 卷理科数学第 20 题 (文科第 21 题) 是解析几何解答题, 第 1 问是用平面向量数量积包装, 确定 参数的值, 从而确定椭圆的方程, 解法简单直接; 第 2 问是 证明动直线经过定点, 入口宽, 方法多.本题重视数学运算、 直观想象和逻辑推理等数学核心素养, 突出对运算能力的考
线 C1, 直线 l 交 C1 于 M, N 两点, 过 B 且与 l 垂直的直线与圆 A 交于 点 到 直 线 的 距 离 、 入、 分类讨论
P, Q 两点, 求四边形 MPNQ 面积的取值范围.
弦长公式
20. 已知椭圆 C:
x2 a2
+
y2 b2=1(aFra bibliotekb>0),
四点 P1
(1, 1), P2
整体代
C, PB 与 E 的另一个交点为 D. (1) 求 E 的方程; (2) 证明: 直线 CD 程、 动直线过定点 入、 分类讨论
过定点.
从上表可以得出, 近 5 年高考全国 I 卷理科数学解析几 何解答题不仅题型稳定, 而且难度也稳定, 为平稳过渡新高 考奠定基础.5 年第 1 问都是求曲线方程, 2016、 2017、 2020 这三年都是求椭圆的标准方程, 2018、 2019 这两年都是求直 线方程. 第 2 问中 2017、 2020 这两年都是证明动直线经过定
2020届江苏高考数学:解析几何试题解析
4k 4k
2
,x1
x2
3
1 4k2
,
N E
O
x
非对称式 消元
y 4k1 x2x 3x1 x2 (*) 消去x2 3x1 x2
M B1
y 4kx1 x2 x1 x2 4x1
2x1 (x1 x2 )
4k 3 1 4k 2
4k 1 4k
设直线
M
N:y
kx
1 2
写直线 B2M 求点 T
写直线 B1N
(用 x1,y1,x2,y2 表示)
得x1 x2
1
4k 4k
2
,x1 x2
3
1 4k 2
求点 T 轨迹方程
02 解法赏析
【运算过程
2】由
x2 4
y
y2 kx
1
1 2
得:
x
1 ②,
由①②联立,求得 y 2 ,所以点T 在直线 y 2 上.
02 解法赏析
【构图方式 2】过点 E 的直线 MN 与椭圆交于 M,N,连结 B2M 与 B1N 并延长交于点 T.
y T
【运算路径 2】两点均未知——“设而不求”
B2 N
E
O
x
M B1
设 M(x1,y1),N(x2,y2)
为8 3
3.
(1)求椭圆的方程;
(2)已知
B2,B1
分别是椭圆的上、下顶点,过点
E(0,
1 2
)的直线
l
与
椭圆交于 M,N 两点,直线 MB2 与直线 NB1 交于点 T.
y T
解析几何面积新高度
解析几何面积新高度在解析几何的奇妙世界里呀,面积这个概念可真是有着独特的魅力呢。
一、基础回顾。
咱们先来说说解析几何里那些和面积有关的基本元素。
比如说三角形,在平面直角坐标系里,三角形的顶点坐标要是知道了,那求它的面积就有好多有趣的办法。
最常见的一种就是用行列式来求啦。
假如有个三角形,三个顶点坐标分别是(x_1,y_1),(x_2,y_2),(x_3,y_3),那它的面积S就可以用这个行列式的绝对值的一半来表示:S = (1)/(2)begin{vmatrix}x_1y_11 x_2y_21 x_3y_31end{vmatrix}。
这个方法就像是一把神奇的小钥匙,一下子就把三角形的面积和坐标联系起来了。
还有一种就是用向量的叉乘来求三角形面积。
如果有两个向量→AB和→AC,那三角形ABC的面积S=(1)/(2)|→AB×→AC|。
这感觉就像是在向量的海洋里找到了一片和面积有关的小岛屿呢。
二、曲线围成的面积。
再说说曲线围成的面积。
像椭圆(x^2)/(a^2)+(y^2)/(b^2)=1,要求它的面积,咱们就得用积分这个厉害的工具啦。
根据椭圆的对称性,咱们只需要算出第一象限的面积,然后乘以4就好啦。
通过定积分S = 4∫_0^ay dx,把y = b√(1 - frac{x^2){a^2}}代进去,经过一番计算,就能得到椭圆的面积是π ab。
这个过程就像是一场小冒险,在积分的道路上一步步探索,最后找到宝藏——椭圆的面积。
还有抛物线y = ax^2+bx + c 和直线围成的面积,也是用定积分来求解。
先求出它们的交点坐标,然后确定积分的上下限,再对(ax^2+bx + c - mx - n)(这里y = mx + n是直线方程)进行积分,就能算出面积啦。
这就像是在曲线和直线交织的迷宫里找到出口一样,算出面积的时候可开心啦。
三、面积的拓展应用。
在实际的问题里,解析几何中的面积问题也是超有用的呢。
比如说在建筑设计里,如果要设计一个特殊形状的建筑,这个建筑的平面图可能是由一些曲线和直线组成的不规则图形。