微电子专业英语翻译

合集下载

实验室专业术语中英文翻译对照

实验室专业术语中英文翻译对照

实验室专业术语中英文翻译对照自动化实验室Automation Lab语言实验室Language Lab现代产品设计与制造技术实验室Modern Product Design & Manufacturing Technology Lab计算机集成制造实验室Computer Integrated Manufacturing System Lab先进设计技术实验室Advanced Design Technology Lab机械设计基础实验室Machine Design Lab包装工程实验室Packing Engineering Lab机械制造技术实验室Machine Manufacturing Lab精密机械测量技术实验室Precise Machine Measuring Technology Lab数控技术与传动控制实验室NC Technology & Transmission Control Lab设计创新实验室Innovation & Practice Lab机械CAD中心Mechanical CAD Center工作设计与时间研究实验室Job Design & Time Study Lab企业资源规划实验室Enterprise Resource Planning Lab系统仿真与设施规划实验室System Simulation & Facility Layout Lab人因工程实验室Human Factors & Ergonomics Lab液压与气动实验室Hydraulic & Pneumatic Lab汽车性能和结构实验室Auto Performance & Construction Lab发动机性能实验室Engine Performance Lab汽车电子电气实验室Auto Electronic & Electric Lab数字媒体技术实验室Digital Media Technology Lab数字媒体技术基础实验分室Digital Media Technology Foundation Lab数字影视实验分室Digital TV & Film Lab计算机动画与虚拟现实实验室Computer Animation & Virtual Reality Lab先进控制技术实验室Advanced Control T echnology Lab楼宇智能化实验分室Intelligent Building Lab智能测控实验分室Intelligent Measurement & Control Technology Lab运动控制与图象识别系统实验分室Motion Control & Image Recognition System Lab控制网络实验分室Control Network Lab自动控制系统实验分室Automatic Control System Lab自动控制原理实验分室Automatic Control Principle Lab自动化学科创新实验室Automation Subject Innovation Lab电力电子技术分室Power Electronics Technology Lab计算机控制技术实验分室Computer Control T echnology Lab高压实验室High Voltage Technology Lab电机与控制实验室Electrical Machinery & Control Lab电路与系统实验室Circuitry & System LabIC设计实验室IC Design LabESDA 与嵌入式技术实验室ESDA & Embedded Technology Lab微机原理实验室Microcomputer Principle Lab电力系统继电保护实验室Power System Relay Protection Lab供配电技术实验室Power Supply Lab电力系统仿真实验室Power System Emulation Lab现代工业网络技术实验室Modern Industry Networks Lab信息集成系统实验室Information Integration System Lab无机化学分室Inorganic Chemistry Lab有机化学分室Organic Chemistry Lab基础分析化学分室Basic Analytical Chemistry Lab物理化学分室Physical Chemistry Lab综合仪器实验室Instrumental Lab化工原理实验室Chemical Engineering Principle Lab化学工程与工艺实验室Chemical Engineering & Technology Lab食品科学与工程实验室Food Science & Engineering Lab生物工程实验室Biological Engineering Lab应用化学实验室Applied Chemistry Lab制药工程实验室Pharmacy Engineering Lab清洁化学技术实验室Clean Chemical Technology Lab电动汽车研究实验室Electro-Motion Auto Research Lab电动汽车驱动性能检测分室Electro-Motion Auto Performance Test Lab现代信息技术实验室Modern Information T echnology Lab宽带及视频通信分室ADSL & Video Communication LabSDH技术分室SDH Technology Lab虚拟测试技术分室Virtual Test T echnology Lab网络测控与光机电一体化分室Network Control & Electromechanical Lab光电信息分室Photo-Electricity Information Technology Lab网络多媒体技术分室Network Multimedia Technology Lab生物特征图像识别技术分室Bio- Character Image Recognition Technology Lab EDA与DSP技术分室EDA & DSP Technology Lab现代通信技术实验室Modern Communication Technology Lab通信原理分室Communication Principle Lab现代交换技术分室Modern Switch Technology Lab无线通信分室Wireless Communication Technology Lab光纤通信分室Optic-Fiber Communication Lab移动通信分室Mobile Communication Lab网络通信与软件分室Network & Software Lab应用电子技术实验室Applied Electronic Technology Lab信号与系统实验室Signal & System Lab数字电视实验室Digital TV Lab微机测控技术实验室Microcomputer Measurement & Control Technology Lab单片微机与嵌入式系统实验室Single Chip-Microcomputer & Embedded System Lab 动态测试与控制实验室Dynamic Test & Control Lab传感器与检测技术实验室Sensor & Measurement Technology Lab精密仪器与光电工程实验室Precise Instrument & Optoelectronic Engineering Lab 信息技术基础实验室IT Foundation Lab高频技术实验室High Frequency Technology Lab道路与桥梁工程实验室Highway & Bridge Engineering Lab给水排水工程实验室Water Supply & Waste Water Lab土木工程材料实验室Civil Engineering Materials Lab工程测量实验室Engineering Surveying Lab建筑与土木工程CAD实验室Architecture & Civil Engineering CAD Lab建筑设备工程实验室Building Equipment Lab交通运输工程实验室Communication & Transportation Lab结构工程实验室Structural Engineering Lab控制测量实验室Control Survey Lab力学实验室Mechanics Lab流体力学实验室Hydrodynamics Lab"S"技术实验室S Technology Lab岩土工程实验室Geotechnical Engineering Lab城市规划实验室Urban Planning Lab工程管理模拟实验室Engineering Management Simulating Lab电子商务专业实验室Electronic Commerce Lab企业管理实验室Enterprise Management Lab地理信息系统实验室Geographic Information System Lab信息系统基础实验室Information Systems Lab会计手工模拟实验室Hand Accounting Imitative Lab计算机体系结构实验室Computer Architectures & Organization Lab计算机组成原理分室Computer Organization Lab接口与通讯分室Interface & Communication Lab智能工程分室Intelligent Engineering Lab微处理器设计分室Microprocessor Design Lab计算机软件工程实验室Computer Software Engineering Lab软件分室Computer Software Lab.图象处理和图形学分室Image Processing & Computer Graphics Lab网络安全分室Network Security Lab软件项目管理分室Software Project Management Lab现代计算机技术实验室Modern Computer Technology LabSUN工作站分室SUN Work Station Lab计算机网络工程分室Computer Network Engineering Lab材料与能源学院热处理实验室Heat Treatment Lab金属腐蚀与防护实验室Metal Corrosion & Protection Lab金相显微镜实验室Metallographical Microscope Lab物理性能实验室Physical Property Lab高分子材料制备实验室Polymer Materials Preparation Lab高分子材料结构与性能实验室Polymer Materials Structure & Properties Lab 高分子材料成型实验室Polymer Materials Processing Lab热工基础实验室Basic Thermal Engineering Lab制冷与空调实验室Air Conditioning & Refrigeration Lab集成电路工艺实验室IC Process Lab电子元器件测试实验室Electronic Device Measurement Lab电子薄膜材料实验室Electronic Film Materials Lab材料成型及控制实验室Material Processing & Control Lab模具技术实验室Die & Mould Technology Lab功能材料的制备与应用技术实验室Preparation & Application of Advanced Functional Materials Lab无机纳米材料分室Inorganic Nanophase Materials Lab非晶态材料分室Amorphous Materials Lab表面工程分室Surface Engineering Lab储能材料分室Energy Storage Materials Lab先进材料结构与性能分室Advanced Materials Structure & Properties Lab环境工程实验室Environmental Engineering Lab水污染控制工程分室Water Pollution Control Lab大气污染控制工程分室Air Pollution Control Lab固体废物处理工程分室Solid Waste Treatment Lab噪声污染控制工程分室Noise Pollution Control Lab环境监测分室Environment Monitoring Lab环境科学实验室Environmental Science Lab环境信息分室Environmental Information System Lab环境化学分室Environmental Chemistry Lab环境生物实验室Environmental Biology Lab大型精密仪器室Exactitude Apparatuses Room信息与计算科学实验室Information & Computation Science Lab光电技术实验室Optoelectronic Technology Lab光信息技术实验室Technology of Optical Information Lab微电子技术实验室Microelectronic Technology Lab电子技术综合实验室Electronic T echnology Lab工业设计实验室Industrial Design Lab服装设计与工程实验室Apparel Design Lab基础造型实验室Fundamental Design Lab摄影分室Photography Lab陶艺设计与制作分室Pottery Design & Facture Lab环境艺术设计实验室Environment Design Lab视觉传达设计实验室Visual Communication Design Lab家具设计实验室Furniture Decoration Lab模拟法庭Mock Trial Room数码钢琴室Digital Piano Room社会工作实验室Social Work Lab工程训练实验教学示范中心Engineering Training Demonstration Center铸造实习室Casting铣刨磨实习室Milling/ Planer/Grinder数控加工实习室CNC Machining数控编程实习室Programming普通车床实习室Turning Lathe焊接实习室Welding钳工实习室Bench Work热处理/金相分析实习室Heat Treatment & Microstructure压力加工实习室Forging测量实习室Measurement装配实习室Assembling大学物理实验教学示范中心College Physics Experimental Teaching Demonstration Center 大学物理基础实验室College Physics Foundation Lab大学物理综合实验室College Physics Synthesized Lab电工电子实验中心Electrical & Electronic Experimental Center电子技术实验室Electrical Technology Lab电工与电子技术实训室Electrical & Electronic Training计算机基础实验中心Computer Experimental Center计算机基础实验室Computer Foundation Lab计算机组装实验室Computer Assembling Lab计算机组网实验室Computer Network Lab实验仪器名称中英文对照表仪器中文名称仪器英文名称英文缩写原子发射光谱仪Atomic Emission Spectrometer AES电感偶合等离子体发射光谱仪Inductive Coupled Plasma Emission Spectrometer ICP直流等离子体发射光谱仪 Direct Current Plasma Emission Spectrometer DCP紫外-可见光分光光度计 UV-Visible Spectrophotometer UV-Vis微波等离子体光谱仪 Microwave Inductive Plasma Emission Spectrometer MIP原子吸收光谱仪Atomic Absorption Spectroscopy AAS原子荧光光谱仪Atomic Fluorescence Spectroscopy AFS傅里叶变换红外光谱仪FT-IR Spectrometer FTIR傅里叶变换拉曼光谱仪FT-Raman Spectrometer FTIR-Raman气相色谱仪 Gas Chromatograph GC高压/效液相色谱仪High Pressure/Performance Liquid Chromatography HPLC离子色谱仪 Ion Chromatograph凝胶渗透色谱仪Gel Permeation Chromatograph GPC体积排阻色谱 Size Exclusion Chromatograph SECX射线荧光光谱仪 X-Ray Fluorescence Spectrometer XRFX射线衍射仪X-Ray Diffractomer XRD同位素X荧光光谱仪Isotope X-Ray Fluorescence Spectrometer电子能谱仪 Electron Energy Disperse Spectroscopy能谱仪 Energy Disperse Spectroscopy EDS质谱仪 Mass Spectrometer MSICP-质谱联用仪ICP-MS ICP-MS 气相色谱-质谱联用仪 GC-MS GC-MS 液相色谱-质谱联用仪 LC-MS LC-MS 核磁共振波谱仪Nuclear Magnetic Resonance Spectrometer NMR电子顺磁共振波谱仪 Electron Paramagnetic Resonance Spectrometer ESR极谱仪 Polarograph伏安仪 Voltammerter自动滴定仪 Automatic Titrator电导仪 Conductivity MeterpH计 pH Meter水质分析仪 Water Test Kits电泳仪 Electrophoresis System表面科学Surface Science电子显微镜 Electro Microscopy光学显微镜 Optical Microscopy金相显微镜 Metallurgical Microscopy扫描探针显微镜Scanning Probe Microscopy无损检测仪 Instrument for Nondestructive Testing物性分析Physical Property Analysis热分析仪Thermal Analyzer粘度计 Viscometer流变仪 Rheometer粒度分析仪 Particle Size Analyzer热物理性能测定仪 Thermal Physical Property T ester电性能测定仪 Electrical Property T ester光学性能测定仪Optical Property T ester机械性能测定仪Mechanical Property Tester燃烧性能测定仪Combustion Property Tester老化性能测定仪Aging Property Tester生物技术分析 Biochemical analysisPCR仪Instrument for Polymerase Chain Reaction PCR DNA及蛋白质的测序和合成仪 Sequencers and Synthesizers for DNA and Protein传感器 Sensors其他 Other/Miscellaneous流动分析与过程分析 Flow Analytical and Process Analytical Chemistry气体分析Gas Analysis基本物理量测定Basic Physics样品处理Sample Handling金属/材料元素分析仪 Metal/material elemental analysis环境成分分析仪CHN Analysis发酵罐 Fermenter生物反应器 Bio-reactor摇床 Shaker离心机 Centrifuge超声破碎仪 Ultrasonic Cell Disruptor超低温冰箱 Ultra-low Temperature Freezer恒温循环泵 Constant Temperature Circulator超滤器 Ultrahigh Purity Filter冻干机 Freeze Drying Equipment部分收集器 Fraction Collector氨基酸测序仪 Protein Sequencer氨基酸组成分析仪 Amino Acid Analyzer多肽合成仪 Peptide synthesizerDNA测序仪 DNA SequencersDNA合成仪 DNA synthesizer紫外观察灯 Ultraviolet Lamp分子杂交仪 Hybridization OvenPCR仪PCR Amplifier化学发光仪 Chemiluminescence Apparatus紫外检测仪 Ultraviolet Detector电泳 Electrophoresis酶标仪 ELIASACO2培养箱 CO2 Incubators超净工作台 Bechtop流式细胞仪 Flow Cytometer微生物自动分析系统 Automatic Analyzer for Microbes生化分析仪 Biochemical Analyzer血气分析仪 Blood-gas Analyzer电解质分析仪 Electrolytic Analyzer尿液分析仪 Urine Analyzer临床药物浓度仪Analyzer for Clinic Medicine Concentration 血球计数器 Hematocyte Counter实验室家具laboratory/lab furniture威盛亚wilsonart台面countertop/worktop实验台laboratory casework/cabinet中央台island bench边台wall bench试剂架reagent shelf/rack天平台balance table仪器台instrument table通风系统ventilation system通风柜/橱fume hood/cupboard药品柜medical (storage) cabinet/cupboard器皿柜vessel cabinet气瓶柜gas cylinder (storage) cabinet实验凳laboratory/lab stool实验椅lab chair配件accessories。

专业英语 缩写翻译

专业英语 缩写翻译

ABI 应用二进制接口(Application Binary Interface)ACSI 国家信息化咨询委员会(advisory committee for state informatization)ADSL 非对称数字用户线路(Asymmetric Digital Subscriber Line)AI 人工智能(artificial intelligence)AMPS 高级移动电话系统(Advanced Mobile Phone System)API 应用程序接口(Application Programming Interface)ASIC 特定用途集成电路(Application Specific Integrated Circuit)ASTM 美国试验材料学会(American Society for Testing Material)AT&T 美国电话电报公司(American Telephone and Telegraph Company)ATM 异步传输模式(Asynchronous Transfer Mode)ATOS Origin 源讯公司Auto-ID 自动识别(Auto-ID)AWS 美国航空气象处(Air Weather Service);BAP 基本汇编程序(Basic Assembler Program)BGA 集成电路采用有机载板的一种封装法BOINC 伯克利开放式网络计算 (Berkeley Open Infrastructure For Network Computing ) BSP 板级支持包(Board Support Package)Business Processing 业务处理流程CaaS 通信即服务(communication as a Service)CAN 控制器局域网络(Controller Area Network)CAS 中国科学院(Chinese Academy of SciencesCCTV 中国中央电视台(China Central Television)CDMA2000 电信移动通信系统CIP 预编目录(cataloging in publication)CITYNET 城市间合作网络CMU 卡内基梅隆大学(Carnegie Mellon University)CN 通信网络(Communicating Net)CPU 中央处理机(Central Processing Unit)CRA 应答验证 (challenge-response authentication)DARPA 美国国防部高级研究计划局(Defense Advanced Research Projects Agency)DARPA 研究计划署(Defense Advanced Research Projects Agency)DASH7Data mining 数据挖掘技术(即指从资料中发掘资讯或知识)DDoS 分布式拒绝服务(Distributed Denial of Service)DG INFSO 媒体总司DG INFSO/D4 欧盟委员会DGINFSO‐D4DMM 分布式内存多处理器(distributed memory multiprocessor)DNS 域名服务器(Domain Name Server)DoD 美国国防部(Department of Defense of the United States)DRAM 动态随机存取存储器(Dynamic Random Access Memory)DSL 数字用户线路(Digital Subscriber Line)DSP 数字信号处理器(Digital Signal Processor)DSS 决策支持系统(Decision Support Systems)DynDNS 动态DNSEAN 欧洲商品编码(Europ Article Number)EAS 电子防窃系统(Electronic Article Surveillance)ECMA 欧洲电脑制造商协会(European Computer Manufactures Association)EPC 电子产品代码(Electronic Product Code)EPCglobal 国际物品编码协会EAN和美国统一代码委员会( UCC )的一个合资公司ERP 企业资源计划(Enterprise Resource Planning)ETSI 欧洲电信标准协会(European Telecommunication Standards Institute)EU-funded CASAGRAS1 coordination 欧盟资助CASAGRAS1协调FAT 文件分配表(File Allocation Table)FP7 欧盟第七框架计划(Framework Program 7)FreeOTFE 免费实时加密FSTC 金融服务技术联盟(Financial Services Technology Consortium)FTP 文件传输协议(File Transfer Protocol)GM 通用汽车公司(General Motors)GMSA 全球移动通信系统协会(global system for mobile communications association) GPRS 通用分组无线业务(General Packet Radio Service)GPS 全球定位系统(Global Position System)GSM 全球移动通信系统(Global System for Mobile Communications)GUI-based 图形用户界面HP 惠普公司HTML5 HTML5是HTML下一个的主要修订版本,现在仍处于发展阶段HTTP 超文本传输协议(Hyper Text Transport Protocol)HTTPS 安全超文本传输协议(Hypertext Transfer Protocol Secure)I²C 两线式串行总线(Inter-Integrated Circuit)IaaS 架构即服务(Infrastructure As A Service)IATA 国际航空运输协会(International Air Transport Association)ICC 集成电路卡(integrated circuit card)ICT 集成电路计算机遥测技术(Integrated Computer Telemetry)iDA 资讯通信发展管理局(infocomm Development Authority)IEC 国际电工技术委员会(International Electrotechnical Commission)IEEE 电气与电子工程师协会(Institute of Electrical and Electronic Engineers)IETF Internet工程任务组(Internet Engineering Task Force)IMT-2000 国际移动电话系统-2000(International Mobile Telecom System-2000)IOT 物联网(Internet Of Things)IPSec 网际协议安全(Internet Protocol Security)IPSO 因特网协议安全选件(Internet protocol security option )IPv4 IPv4,是互联网协议(Internet Protocol,IP)的第四版IR 指令寄存器(instruction register)ISA 工业标准总线(Industry Standard Architecture)ISM 美国供应管理协会(the Institute for Supply Management , ISM)ISO 国际标准化组织(International Standardization Organization)ISTAG IST咨询集团(IST advisory group)IT 信息技术(Information Technology)ITSO_LtdITU 国际电信联盟(International Telecommunication Union)KAEC 阿卜杜拉国王经济城(King Abdullah Economic City)KVM 基于内核的虚拟机(K Virtual Machine)LAN 局域网(local area network)LCD 液晶显示屏(liquid crystal display)LR-WPAN 低速率无线个人区域网络(Low Rate-Wireless Personal Area Network)LSI 大规模集成电路(Large Scale Integrated circuit)MAC 多路存取计算机(Multi-Access Computer)MAN 城域网(Metropolitan Area Network)MASDAR 马斯达尔MEMS 微电子机械系统(Micro-electromechanical Systems)METI 日本经济贸易产业省(Ministry of Economy, Trade and Industry)MIC 部门内部事务和通讯(the ministry of internal affairs and communications) MIT 麻省理工学院(Massachu-setts Institute of Technology);MPP 大量信息并行处理机,大规模并行处理机(Massively Parallel Processor)MRI 核磁共振成像(Magnatic Resonance Imaging);MSI 中规模集成电路(medium-scale integration)MVNO AdicaNaaS 网络即服务(Network As A Service)NASA 美国国家航空和宇宙航行局(National Aeronautics and Space Administration)NetBSD 一个免费的,具有高度移植性的UNIX-like操作系统NFC 近场通讯(Near Field Communication)NFCIPNIC 网络接口卡(Network Interface Card)NMT 北欧移动电话(Nordic Mobile Telephone)NSF (美国)国家科学基金会(National Science Foundation)NTT DoCoMo 移动通信网公司NYU 纽约大学(New York University)OLED 有机发光二极管(Organic Light Emitting Diode)ONS 国家统计局(Office For National Statistics)P2P 点对点技术(peer-to-peer);PaaS 平台即服务(Platform As A Service)PARC 帕洛阿尔托研究中心(Palo Alto Research Center)PC 个人电脑(Personal Computer);PCI 外部控制器接口(Peripheral Component Interconnect)PHY 物理层协议(Physical Layer)PKI 公钥基础设施(Public Key Infrastructure)POTS 普通老式电话服务(Plain Old Telephone Service)QNX 嵌入式实时操作系统(Quick Unix )R&D 研发(Research & Development)RACO 德国雷科resPONDER 响应器RFID 无线射频识别(radio frequency identification devices)RISC 精简指令集计算机(Reduced Instruction-Set Computer)ROM 只读存储器(read only memory)RS-232 串行数据通信的接口标准RTOS 实时操作系统(Real Time Operating System)SaaS 软件即服务(Software as a Service)SAP SAP是目前全世界排名第一的ERP软件SAVVIS 维斯公司SCADA 监测控制和数据采集(supervisory control and data acquisition)SIM 用户身份识别卡(subscriber identity module)SIMD 单指令多数据(Single Instruction Multiple Data)SIMIT 中国科学院上海微系统与信息技术研究所SMP 对称多处理机(SymmetricalMulti-Processing)SOC 片上系统(System on a Chip)SPOM 自动程序单芯片微处理(Self Programmable One Chip Microprocessor)SPT 季票 (season parking ticket)SRI 斯坦福研究院(Stanford Research Institute)SSE 单指令多数据流式扩展 ( streaming SIMD extensions)SSI 小规模集成(电路)(Small Scale Integration);SSO 单点登录(single sign-on)T2TITTACS 全接入通信系统(Total Access Communication System)TCB 可信计算基(Trusted Computing Base)TCP/IP 传输控制/网络通讯协定(Transmission Control Protocol / Internet Protocol)TD-SCDMA 即时分同步的码分多址技术(Time Division-Synchronization Code Division Multiple Access)TEDS 传感器电子数据表(Transducer Electronic Data Sheet)TLS/SSL SSL(Secure Sockets Layer,安全套接层)TPANSmitterTRON 实时操作系统核心程序(The Realtime Operating System Nucleus)U.S.Department of Defence 美国国防部UCC 统一编码委员会(uniform code council inc)UCLA 加州大学洛杉矶分校(University of California at Los Angeles)UHF 超高频(Ultra High Frequency)UML 统一建模语言(Unified Modeling Language)UNL 无处不在的网络实验室(ubiquitous networking laboratory)USAID 美国国际开发署(United States Agency for International Development)USB 通用串行总线(Universal Serial Bus)USDA 美国农业部(United States Department of Agriculture)VLSI 超大规模积体电路(Very Large Scale Integrated Circuites)VNP-VNOWAN 广域网(Wide Area Network)WCDMA 宽带码分多址移动通信系统(Wideband Code Division Multiple Access)Wi-Fi 无线上网技术WROM 一次写/读很多内存(write once/read many memory)WSN 无线传感网络(wireless sensor network)。

电子信息工程专业英语英译汉翻译

电子信息工程专业英语英译汉翻译

1 The transistor is what started the evolution of the modern computer industry in motion.晶体管开启了现代电脑工业的革命2 The storage cell only requires one capacitor and one transistor, whereas a flip-flop connected in an array requires 6 transistors.存储单元仅需要一个电容和晶体管,并而不像触发器整列那样需要6个晶体管3 There has been a never ending series of new op amps released each year since then, and their performance and reliability has improved to the point where present day op amps can be used for analog applications by anybody.从此以后每年都有新系列的运放发布,他们的性能和可靠性得到了提升,如今任何人都能用运放来设计模拟电路。

4 This is capable of very high speed conversion and thus can accommodate high sampling rates, but in its basic form is very power hungry.它具有高速转换能力,从而能适应高速采样速率,但它的基本形式非常耗电。

5 During the “on” period , energy is being stored within the core material of the inductor in the form of flux.在”on”阶段,能量以涌浪形式存储在电感的核芯材料里面6 The design goal of frequency synthesizers is to replace multiple oscillators in a system, and hence reduce board space and cost.频率合成器的设计目标是取代系统中多个振荡器,从而减小板卡面积和成本。

电子科学与技术专业英语(微电子技术分册)第一章译文

电子科学与技术专业英语(微电子技术分册)第一章译文

——电材专业英语课文翻译Semiconductor Materials• 1.1 Energy Bands and Carrier Concentration• 1.1.1 Semiconductor Materials•Solid-state materials can be grouped into three classes—insulators(绝缘体), semiconductors, and conductors. Figure 1-1 shows the electrical conductivities δ(and the corresponding resistivities ρ≡1/δ)associated with(相关)some important materials in each of three classes. Insulators such as fused(熔融)quartz and glass have very low conductivities, in the order of 1E-18 to 1E-8 S/cm;固态材料可分为三种:绝缘体、半导体和导体。

图1-1 给出了在三种材料中一些重要材料相关的电阻值(相应电导率ρ≡1/δ)。

绝缘体如熔融石英和玻璃具有很低电导率,在10-18 到10-8 S/cm;and conductors such as aluminum and silver have high conductivities, typically from 104 to 106 S/cm. Semiconductors have conductivities between those of insulators and those of conductors. The conductivity of a semiconductor is generally sensitive to temperature, illumination(照射), magnetic field, and minute amount of impurity atoms. This sensitivity in conductivity makes the semiconductor one of the most important materials for electronic applications.导体如铝和银有高的电导率,典型值从104到106S/cm;而半导体具有的电导率介乎于两者之间。

电子行业微电子专业词汇

电子行业微电子专业词汇

电子行业微电子专业词汇1. 微电子微电子是指电子学中研究和制造尺寸较小的电子元件和系统的学科。

其研究对象主要包括集成电路、微处理器、传感器等微小尺寸的电子设备。

微电子技术的应用领域包括计算机、通信、医疗、能源等众多领域。

以下是一些微电子领域常见的专业词汇。

2. 专业词汇2.1. 集成电路(Integrated Circuit, IC)集成电路是将数千甚至数百万个电子元件(如晶体管、电容等)集成在一个芯片上的电路。

根据使用的材料和工艺,集成电路可以分为光电子集成电路(Optoelectronic Integrated Circuit, OEIC)、模拟集成电路(Analog Integrated Circuit)和数字集成电路(Digital Integrated Circuit)等多种类型。

2.2. 硅晶圆(Silicon Wafer)硅晶圆是制造集成电路的基础材料,通常由纯度很高的单晶硅制成。

硅晶圆形状类似于圆盘,通过化学加工和光刻技术,在圆盘表面制造出大量微小电子元件。

2.3. MOSFET(金属氧化物半导体场效应晶体管)MOSFET是一种常见的场效应晶体管,也是数字集成电路的关键元件之一。

MOSFET结构由金属栅极、氧化物绝缘层和半导体材料构成,通过对栅极电压的控制,可以实现对电流的精确控制。

2.4. CMOS(互补金属氧化物半导体)CMOS是一种常用的数字集成电路技术,它通过同时使用N型金属氧化物半导体(NMOS)和P型金属氧化物半导体(PMOS)构成逻辑门电路。

CMOS技术具有低功耗、高集成度和抗干扰能力强的优势。

2.5. MEMS(微电子机械系统)MEMS是一种将微机械系统与集成电路技术相结合的技术,它利用微小尺寸的机械结构和传感器,实现对物理环境的感知和控制。

MEMS技术广泛应用于加速度计、陀螺仪、压力传感器等微小尺寸传感器的制造。

2.6. LSI(大规模集成电路)LSI是一种集成度较高的集成电路,其中包含数千至数十亿个晶体管和电子元件。

微电子专业英语翻译

微电子专业英语翻译

当超量载流子被导入一个直接禁带半导体时,电子与空穴直接复合的几率 较高,这是因为导带的底部与价带的顶端位于同一线上,因此在禁带间跃 迁时,无需额外的动量。直接复合率R应正比于导带中含有的电子数目及 价带中含有的空穴数目。也就是 R=βnp 。其中β为比例常数。
As discussed previously, in thermal equilibrium the recombination rate must be balanced by the generation rate . Therefore , for an n-type semiconductor, we have Gth=Rth=βn no p no where nno and pno represent electron and hole densities in an n-type semiconductor at thermal equilibrium. When we shine a light on the semiconductor to produce electron-hole pairs at a rate GL(Fig.2.11(b)), the carrier concentrations are above their equilibrium values.
当超量载流子被导入一个直接禁带半导体时电子与空穴直接复合的几率较高这是因为导带的底部与价带的顶端位于同一线上因此在禁带间跃迁时无需额外的动量
2.5 Generation and Recombination Processes 载流子产生与复合过程
3. Characteristics of Diodes二极管特性 3.1 Introduction介绍
当电子从导带向下移到价带, 一个电子 - 空穴对消失。这 种反向过程称为复合,并以 复 合 率 Rth 表 示 , 如 图 2.11 ( a )所示。在热平衡状态 下,产生速率 Gth 必定等于 复合率 Rth ,所以载流子浓 度维持常数,且维持 pn=ni2 的状况。

合肥工业大学各学院、专业名称及其英文翻译

合肥工业大学各学院、专业名称及其英文翻译
46、劳动与社会保障 Labour and Social Security
47、信息管理与信息系统 Information Management & System
48、旅游管理 Tourism Management
49、市场营销 Marketing
人文经济学院 School of Humanities and Economics
55、英语 English
56、法学 Law
57、社会工作 Social Work
生物与食品工程学院 School of Biotechnology and Food Engineering
58、生物工程 Bioengineering
16、自动化 Automation
计算机与信息学院 School of Computer and Information
17、计算机科学与技术 Computer Science & Technology
18、电子信息工程 Electronic Information Engineering
4、工业工程 Industrial Engineering
5、工业设计 Industry Design
6、过程装备与控制工程 Process Equipment & Control Engineering
7、机械设计制造及其自动化 Machine Design & Manufacture & Its Automation
50、财政学 Finance
51、广告学 Advertisement
52、国际经济与贸易 International Economy & Trade

微电子专业英语部分翻译第四章

微电子专业英语部分翻译第四章

第四章199页4.1 It was...有人建议在这一章介绍设计自动化在处理复杂性急剧增加的现代集成电路上起了重大的作用。

设计一个数百万晶体管电路,并确保其正常运行时的第一个硅片回报是一项艰巨的,如果没有电脑辅助设备和完善的设计方法的帮助,几乎是不可能的任务。

在一般情况下,提供给设计者的广泛的工具可以被细分成若干全球类。

●分析和验证的工具检查电路的行为,并帮助确定该响应是规范范围内。

●实施和综合的方法帮助设计人员产生和优化电路原理图和布局。

●可测试性技术提供的设计方法和CAD工具的组合来验证制造的设计的功能。

200页4.2 The primary...相对于设计自动化设计师的主要预期是准确、快速的分析工具的可用性。

第一计算机辅助设计(CAD)工具得到广泛认可是SPICE电路仿真器,这无疑是目前最利用计算机辅助数字电路[Nagel75]。

不幸的是,电路仿真考虑到所有的特殊性设计和半导体器件的二阶效应,往往是设计复杂的电路,而且往往是耗时的。

当设计复杂的电路时,它正迅速成为不实用的,除非有人愿意花数天电脑的时间。

设计者可以通过放弃建模精度和求助于更高代表性水平来处理复杂性问题。

提供给设计师不同的抽象层次的讨论及其对仿真精度的影响是本节的话题。

202页4.2.1 In the course....在本章的过程中,我们使用的电路仿真广泛地说明了数字电路的基本概念,并以此验证我们的手动挡车型。

在每章末尾的作业也严重依赖于电路模拟。

因此,你应该对这种详细程度的模拟、分析的功能和特点很熟悉了。

电路仿真的一些重要属性值得总结。

●当分析使用电路模拟器的数字网络,所得到的电压和电流信号被表示为连续的波形。

●在瞬态分析中,时间似乎是连续可变的,并且对于所有的实际目的,可以被认为是这样的。

在现实中,在数字计算机上执行的仿真计算结果仅有限数量的时间点和通过内插获得的中间数据点。

203页4.2.1 Substantial effort...随着时间的推移大量的努力已投入到用一般性的费用来减少计算时间。

微电子专业英文翻译

微电子专业英文翻译

Embedded Processor Based Automatic TemperatureControl of VLSI ChipsAbstractThis paper presents embedded processor based automatic temperature control of VLSI chips, using temperature sensor LM35 and ARM processor LPC2378. Due to the very high packing density, VLSI chips get heated very soon and if not cooled properly, the performance is very much affected. In the present work, the sensor which is kept very near proximity to the IC will sense the temperature and the speed of the fan arranged near to the IC is controlled based on the PWM signal generated by the ARM processor. A buzzer is also provided with the hardware, to indicate either the failure of the fan or overheating of the IC. The entire process is achieved by developing a suitable embedded C program.Keywords: Temperature sensor, ARM processor, VLSI chips, Brushless DC motor1.IntroductionWith the phenomenal developments in VLSI technology, the ambitious IC designers are trying to put more transistors in to smaller packages. So, the ICs run at higher speeds and produce large amount of heat which creates the problem of thermal management. For example, nowadays the CPU chips are becoming smaller and smaller with almost no room for the heat to escape. The total power dissipation levels now reside on the order of 100 W with a peak power density of 400-500 W/Cm2, and are still steadily climbing.As the chip temperature increases its performance is very much degraded by parameters shift, decrease in operating frequencies and out-of specification of timings. So the high speed chips must be cooled to maintain good performance for the longest possible operating time and over the widest possible range of environmental conditions. The maximum allowable temperature for a high speed chip to meet its parametric specifications depends on the process and how the chip is designed.Among the various cooling techniques, heat sinks, heat pipes, fans and clock throttling are usually employed. Among these techniques, fans can dramatically reduce the temperature of a high speed chip,but they also generate a great deal of acoustic noise. This noise can be reduced significantly by varying ,the fans speed based on temperature i.e. the fan can turn slowly when the temperature is low and canspeed up as the temperature increases.The other prominent method is clock throttling i.e. reducing the clock speed to reduce power dissipation. But it also reduces the system performance and the systems functionality is lost.So, the objective of the present work is, to design a hardware system consisting of a brushless DC motor fan whose speed is controlled based on the temperature of the chip, sensed by the sensor LM35.The LM35 series are precision integrated-circuit temperature sensors, whose output voltage is linearly proportional to the Celsius (Centigrade) temperature. The LM35 thus has an advantage over linear temperature sensors calibrated in Kelvin, as the user is not required to subtract a large constant voltage from its output to obtainconvenient Centigrade scaling. The LM35 does not require anyexternal calibration or trimming to provide typical accuracies of ±1⁄4°C at room temperature and ±3⁄4°C over a full −55 to +150°C temperature range. Low cost is assured by trimming and calibration at the wafer level. The LM35’s low output impedance, linear output, and precise inherent calibration make interfacing to readout or control circuitry especially easy. It can be used with single power supplies, or with plus and minus supplies. As it draws only 60 μA from its supply, it h as very low selfheating, less than 0.1°C in still air. The LM35 is rated to operate over a −55° to +150°C temperature range, while the LM35C is rated for a −40° to +110°C range (−10° with improved accuracy). The LM35 series is available packaged in hermetic TO-46 transistor packages, while the LM35C, LM35CA, and LM35D are also available in the plastic TO-92 transistor package. The LM35D is also available in an 8-lead surface mount small outline package and a plastic TO-220 package. To monitor the voltage at the terminals of the DC motor fan, the PWM signal is generated by the ARM7TDMI processor. This PWM signal is changed in accordance to the output of the LM35temperature sensor. So the important component of this entire project is the temperature sensor.2. DescriptionIn ARM processor based automatic temperature control system, the output of the temperature sensor is fed to the on chip ADC and the output of the ADC is given to the L293D driver IC which in turn is fed to DC motor fan as shown in the block diagram in Fig. 1. A graphic LCD (128x64 pixels) is interfacedto the ARM LPC 2378 processor to display the temperature of the IC and the speed of the fan. A buzzer is also connected to the processor which gives an indication, in case of the failure of the fan or overheating of the chip beyond some level. The entire circuit diagram is shown in Fig. 2.Fig. 1.Block diagram.Fig. 2. Circuit Diagram.3. Software DescriptionThe present work is implemented using ARM IAR Workbench IDE and the necessary embedded C program is developed and dumped into the embedded processor using Flash magic ISP Utility. The ARM IAR Workbench IDE is a very powerful Integrated Development Environment (IDE) that allows you to develop and manage complete embedded application projects. In-System Programming is programming or reprogramming the on-chip flash memory, using the boot-loader software and a serial port. The LPC2387 microcontroller is based on a 16-bit/32-bit ARM7TDMI-S CPU with real-time emulation that combines the microcontroller with 512 kB of embedded high-speed flash memory.A 128-bit wide memory interface and unique accelerator architecture enable 32-bit code execution at the maximum clock rate. For critical performance in interrupt service routines and DSP algorithms, this increases performance up to 30 % over Thumb mode. For critical code size applications, the alternative 16-bit Thumb mode reduces code by more than 30 % with minimal performance penalty.The LPC2387 is ideal for multi-purpose serial communication applications. It incorporates a 10/100 Ethernet Media Access Controller (MAC), USB full speed device with 4 kB of endpoint RAM,four UARTs, two CAN channels, an SPI interface, two Synchronous Serial Ports (SSP), threeI2C interfaces, and an I2S interface. This blend of serial communications interfaces combined with an on-chip 4 MHz internal oscillator, 64 kB SRAM, 16 kB SRAM for Ethernet, 16 kB SRAM for USB and general purpose use, together with 2 kB battery powered SRAM makes this device very well suited for communication gateways and protocol converters. Various 32-bit timers, an improved 10-bit ADC, 10-bit DAC, one PWM unit, a CAN control unit, and up to 70 fast GPIO lines with up to 12 edge or level sensitive external interrupt pins make this microcontroller particularly suitable for industrial control and medical systems.The LPC2378 Microcontroller provides on-chip boot-loader software that allows programming of the internal flash memory over the serial channel. Philips provides a utility program for In-System programming called Flash magic Software.4. Results and ConclusionsEmbedded ARM processor based automatic speed control DC motor fan is designed and implemented.To test the validity of the design, the temperature sensor is kept inside a small oven and its temperature is increased beyond the room temperature. Now the fan is operated to run with full speed and the temperature is found to comeback to normal temperature. This is repeated with various VLSI chips like Pentium processor, FPGA chips etc. Now the temperature sensor is kept very near to the Pentium processor of the computer and it is observed that, as the time lapses the speed of the fan is automatically increased and the temperature of the chip is found to be controlled. These results are displayed on LCD panel. Though the present system is working well in the given environment, still it is worthwhile to highlight the following conclusions.Normally, controlling fan speed or clock throttling based on temperature requires that the temperature of the high speed chip should be first measured. This is done by placing a temperature sensor close to the target chip either directly next to it or in some cases, under it or on the heat sink. The temperature measured in this way corresponds to that of the high speed chip, but can be significantly lower and the difference between measured temperature and the actual die temperature increases as the power dissipation increases. So, the temperature of the circuit board or heat sink must be correlated to the die temperature of the high speed chip. Of course a better alternative is possible with a number of high speed chips. Many CPUs, FPGAs and other high speed ICs include a thermal diode which is actually a diode connected bipolar transistor, on the die. Using a remote diode temperature sensor connected to this thermal diode, the temperature of the high speed IC’s die can be measured directly with an excellent accuracy. This not only eliminates the large temperature gradients involved in measuring temperature outside the target IC’s package, but it also eliminates the long thermal time constants,from several seconds to minutes, that cause delays in responding to die temperature changes.There is also a drawback in fan speed control. Normally the fan speed iscontrolled by adjusting the power supply voltage of the fan. This is done by a low-frequency PWM signal, usually in the range of about 50 Hz, whose duty cycle is varied to adjust the fan’s speed. This is inexpensive and also efficient. But the disadvantage of this method is that it makes the fan somewhat nosier because of the pulsed nature of the power supply. The PWM waveforms fast edges cause the fans mechanical structure to move, which is easily audible.In some systems, it is also important to limit the rate of change of the fan speed. This is critical when the system is in close proximity to users. Simply switching a fan on and off or changing speed immediately as temperature changes is acceptable in some environments. But when users are in nearby, the sudden changes in fans noise are highly annoying. So to avoid these effects the fan’s drive signal must be limited to an acceptable level.5. Future Scope of the WorkIn the present work temperature is sensed using the temperature sensor LM35 and the speed of the motor is controlled by varying the width of PWM generated by the processor. But the temperature sensed by the IC LM35 is not very accurate even though we keep the IC very near to the processor orVLSI chip. So, we can use a remote diode temperature sensor connected to the thermal diode which measures the temperature of the high speed ICs directly with excellent accuracy.Another important aspect is a variety of remote temperature sensors with up to five sensing channels is available that can detect the die temperature of the high speed chip and transmit temperature data to a microcontroller.Fan speed regulators with multiple channels of fan tachometer monitoring can provide reliable control of fan RPM or supply voltage based on commands from an external microcontroller.For this simple ICs are provided by MAXIM MAX6660 and MAX6653. The first IC can sense the remote temperature and controls the fan speed based on that temperature. It produces a DC supply voltage for the fan through an internal power transistor. The second IC also performs a similar function but drives the fan with a PWM waveform through an external pass transistor. Both include complete thermalfault monitoring with over temperature outputs, which can be used to shut down the system if the high speed chips get too hot. So, the present work can be improved further by using the above mentioned techniques.基于嵌入式处理器的VLSI芯片的温度自动控制摘要本文介绍了基于嵌入式处理器的VLSI芯片的温度自动控制,同时利用温度传感器LM35和ARM处理器LPC2378来完成设计。

《微电子专业外语》课件

《微电子专业外语》课件
与翻译技巧
总结词:理解句子结构详细描述:科技文献中长句和复杂句较多,需要学会分析句子结构,把握主要信息,理解文献含义。
总结词:注重逻辑关系详细描述:科技文献的逻辑关系较为严密,应注意把握句子之间的联系,理解作者的思路和观点。总结词:利用上下文推测词义详细描述:遇到生词时,可以根据上下文语境推测其含义,这有助于保持阅读的连贯性。
《微电子专业外语》PPT课件
延时符
Contents
目录
微电子专业外语概述微电子专业外语基础知识微电子专业外语阅读与翻译技巧微电子专业外语实践应用微电子专业外语常见问题与解答
延时符
微电子专业外语概述
技术交流
在微电子产业领域,掌握微电子专业外语有助于与国际同行进行技术交流与合作,共同推动产业发展。
通过学术数据库(如IEEE Xplore、ACM Digital Library等)订阅相关期刊和会议论文,定期获取最新的研究成果。
利用学术数据库的高级搜索功能,筛选出与微电子领域相关的文献,进行深入阅读和分析。
掌握专业外语是获取国际前沿科技文献的重要手段,有助于跟踪微电子领域最新研究成果。
参加国际学术会议是提升个人学术影响力和拓展国际合作的重要途径。
总结词
延时符
微电子专业外语常见问题与解答
阅读大量英文文献
经常阅读最新的微电子领域英文论文和行业报告,提高对专业词汇的熟悉度。
使用专业词典
遇到生词时,及时查阅专业词典,并记录下常用词汇。
注重语法和句型
理解并掌握常见的科技英语语法和句型,有助于准确理解文章含义。
阅读与思考结合
在阅读过程中,思考文章的结构、逻辑和观点,提高理解和分析能力。
光刻
Photolithography

各学院各部门专业中英文名称(仅供参考)

各学院各部门专业中英文名称(仅供参考)

20190611CUIT各部门教学专业中英文名称一、教学部门二、机关部处三、产业与产业部门四、职务职称及专业五、其它教育类相关词汇培养独立分析问题和解决问题的能力to cultivate the ability to analyze and solve concrete problems independently 毕业论文thesis/ dissertation成绩单transcript奖学金scholarship旁听生auditor人才talent授予...学位confer..degree校友alumnus/alumna住宿生boarder注册人数enrollment专业major/specialty百分制100-mark system /percentage making system办学效益efficiency in school management必修课required/compulsory course毕业典礼graduation ceremony / commencement毕业鉴定graduation appraisal毕业证书diploma /graduation certificate博士后科研流动站center for post-doctoral studies补考make-up examination财政拨款financial allocation差生underachievers / exceptional students/a below average student大专three-year higher education program /junior college program代课教师 a substitute teacher德才兼备combine ability with character/equal stress on integrity and ability德、智、体、美、劳全面发展all-round development of moral/intellectual/physical/aesthetics and labor education发挥学生主动性、创造性give scope to the students’ initiative and creativeness分校 a branch school高等教育higher education公益性文化事业non-profit cultural undertakings国家助学金state stipend/subsidy函授学院correspondence school纪律和法制教育education in discipline and the legal system教学大纲teaching program /syllabus教职员teaching and administrative staff课程表school timetable课外活动extracurricular activities理工科大学college/university of science and engineering领取奖学金的学生grant-aided student留级repeat the year’s work / to stay down母校alma mater培养大批高素质人才bring up high-caliber talents培养独立分析和解决问题的能力cultivate the ability to analyze and solve concrete problems independently培养人才nurture human talents培养学生自学能力foster the students’ ability to study on their own双学士制 a double BA degree system文化交流活动cultural exchange activities西学东渐、东学西渐the movement of Eastern learning spreading to the West and Western learning spreading to the East雄厚的教资力量 a strong teaching staff选修课elective/optional course学分制the credit system学历record of formal schooling学年school/ academic year学生会students’ union /association学术报告会symposium学习成绩academic/school record学习年限period of schooling因材施教teach students according to their aptitude应届毕业生graduating student应试教育exam-oriented education重点学科key disciplinary areas or priority fields of study综合性大学comprehensive university毕业证书graduation certificate博士后post doctor大学一年级freshman / first-year student大学二年级sophomore/second-year student大学三年级junior/third-year student大学四年级senior/fourth-year student大专生junior college student工商管理硕士Master of Business Administration教学法pedagogy品学兼优excellent in character and learning文/理学博士Doctor of Arts/ Science学位证书degree certificate。

微电子专业英语翻译(部分)

微电子专业英语翻译(部分)

微电子专业英语部分翻译段落参考参考教材,不通顺之处自己整理第一章1页1.1.1 Solid-state…固态材料可分为三种:绝缘体、半导体和导体。

图1-1给出了在三种材料中一些重要材料相关的电阻值(相应电导率)。

绝缘体如熔融石英和玻璃具有很低电导率,在10^-18到10^-8S/cm之间。

导体如铝和银有高的电导率,典型值从104到106S/cm;而半导体具有的电导率介乎于两者之间。

半导体的电导率一般对温度、光照、磁场和小的杂志原子非常敏感。

在电导率上的敏感变化使得半导体材料称为在电学应用上为最重要的材料。

3页1.1.2 The semiconductor…我们研究的半导体材料是单晶,也就是说,原子是按照三维周期形式排列。

在晶体中原子的周期排列称为晶格。

在晶体里,一个原子从不远离它确定位置。

与原子相关的热运动也是围绕在其位置附近。

对于给定的半导体,存在代表整个晶格的晶胞,通过在晶体中重复晶胞组成晶格。

6页1.1.3 As discussed…如1.1.2节所述,在金刚石结构的每个原子被4个相邻原子所包围。

每个原子在外轨道具有4个电子,并且每个电子与相邻原子共享价电子;每对电子组成一个共价键。

共价键存在于同种原子之间或具有相同外层电子结构的不同元素的原子间。

每个电子与每个原子核达到平衡需要相同时间。

然而,所有电子需要很多时间在两个原子核间达到平衡。

两个原子核对电子的吸引力保证两个原子在一起。

对于闪锌矿机构如砷化镓主要的价键引力主要来自于共价键。

当然,砷化镓也具有小的离子键引力即Ga+离子与四周As-离子,或As离子和四周Ga+离子。

7页1.1.4 The detailed…结晶固体的详细能带结构能够用量子理论计算而得。

图1-3是孤立硅原子的金刚石结构晶体形成的原理图。

每个孤立原子有不连续能带(在右图给出的两个能级)。

如原子间隔的减少,每个简并能级将分裂产生带。

在空间更多减少将导致能带从不连续能级到失去其特性并合并起来,产生一个简单的带。

微电子专业英语翻译

微电子专业英语翻译

费米分布函数
Fig.1.6 shows schematically(图表式的) from left to right the band diagram ,the density of states (which varies as E ),the Fermi distribution function, and the carrier concentration (浓度)for an intrinsic semiconductor .The carrier concentration can be obtained graphically from Figure 1.6 using Eq.(1.12); that is ,the product of N(E) in Fig.1.6(b) and F(E) in Fig.1.6(c) gives the n(E)-versus-E curve (upper curve ) in Fig.1.6(d).The upper shaded area in Fig.1.6(d) corresponds to the electron density.Fra bibliotek状态密度
The incremental momentum(增加的动量) dp required for a unity increase in nx is For a three-dimensional cube of side L,we have
The volume dpxdpydpz in the momentum space for a unit cube (L=1) is thus equal to h3.Each incremental change in n corresponds to a unique set of integers (nx,ny,nz) ,which in turn corresponds to an allowed energy state. Thus,the volume in momentum space for an energy state is h3 .The volume between two concentric (同中心的 同中心的)spheres (from p to p+dp is 同中心的 4πp2dp) .The number of energy states contained in this volume is then 2(4πp2dp)/ h3,where the factor 2 accounts for the electron spins .we can substitute E for p and obtain

大学各个专业名称的英文翻译

大学各个专业名称的英文翻译

中文学科、专业名称英文学科、专业名称哲学 Philosophy哲学 Philosophy马克思主义哲学 Philosophy of Marxism中国哲学 Chinese Philosophy外国哲学 Foreign Philosophies逻辑学 Logic伦理学 Ethics美学 Aesthetics宗教学 Science of Religion科学技术哲学 Philosophy of Science and Technology经济学 Economics理论经济学 Theoretical Economics政治经济学 Political Economy经济思想史 History of Economic Thought经济史 History of Economic西方经济学 Western Economics世界经济 World Economics人口、资源与环境经济学 Population, Resources and Environmental Economics应用经济学 Applied Economics国民经济学 National Economics区域经济学 Regional Economics财政学(含税收学) Public Finance (including Taxation)金融学(含保险学) Finance (including Insurance)产业经济学 Industrial Economics国际贸易学 International Trade劳动经济学 Labor Economics统计学 Statistics数量经济学 Quantitative Economics中文学科、专业名称英文学科、专业名称国防经济学 National Defense Economics法学 Law法学 Science of Law法学理论 Jurisprudence法律史 Legal History宪法学与行政法学 Constitutional Law and Administrative Law刑法学 Criminal Jurisprudence民商法学(含劳动法学、社会保障法学) Civil Law and Commercial Law (including Science of Labour Law and Science of Social Security Law )诉讼法学 Science of Procedure Laws经济法学 Science of Economic Law环境与资源保护法学 Science of Environment and Natural Resources Protection Law 国际法学(含国际公法学、国际私法学、国际经济法学、) International law (including International Public law, International Private Law and International Economic Law)军事法学 Science of Military Law政治学 Political Science政治学理论 Political Theory中外政治制度 Chinese and Foreign Political Institution科学社会主义与国际共产主义运动 Scientific Socialism and International Communist Movement中*史(含党的学说与党的建设) History of the Communist Party of China(including the Doctrine of China Party and Party Building)马克思主义理论与思想政治教育 Education of Marxist Theory and Education in Ideology and Politics国际政治学 International Politics国际关系学 International Relations外交学 Diplomacy社会学 Sociology社会学 Sociology人口学 Demography人类学 Anthropology民俗学(含中国民间文学) Folklore (including Chinese Folk Literature)民族学 Ethnology民族学 Ethnology马克思主义民族理论与政策 Marxist Ethnic Theory and Policy中国少数民族经济 Chinese Ethnic Economics中国少数民族史 Chinese Ethnic History中国少数民族艺术 Chinese Ethnic Art教育学 Education教育学 Education Science教育学原理 Educational Principle课程与教学论 Curriculum and Teaching Methodology教育史 History of Education比较教育学 Comparative Education学前教育学 Pre-school Education高等教育学 Higher Education成人教育学 Adult Education职业技术教育学 Vocational and Technical Education特殊教育学 Special Education教育技术学 Education Technology心理学 Psychology基础心理学 Basic Psychology发展与心理学 Developmental and Educational Psychology应用心理学 Applied Psychology体育学 Science of Physical Culture and Sports体育人文社会学 Humane and Sociological Science of Sports运动人体科学 Human Movement Science体育教育训练学 Theory of Sports Pedagogy and Training民族传统体育学 Science of Ethnic Traditional Sports文学 Literature中国语言文学 Chinese Literature文艺学 Theory of Literature and Art语言学及应用语言学 Linguistics and Applied Linguistics汉语言文字学 Chinese Philology中国古典文献学 Study of Chinese Classical Text中国古代文学 Ancient Chinese Literature中国现当代文学 Modern and Contemporary Chinese Literature中国少数民族语言文学 Chinese Ethnic Language andLiterature比较文学与世界文学 Comparative Literature and World Literature外国语言文学 Foreign Languages and Literatures英语语言文学 English Language and Literature俄语语言文学 Russian Language and Literature法语语言文学 French Language and Literature德语语言文学 German Language and Literature日语语言文学 Japanese Language and Literature印度语言文学 Indian Language and Literature西班牙语语言文学 Spanish Language and Literature阿拉伯语语言文学 Arabic Language and Literature欧洲语言文学 European Language and Literature亚非语言文学 Asian-African Language and Literature外国语言学及应用语言学 Linguistics and Applied Linguistics inForeign Languages新闻传播学 Journalism and Communication新闻学 Journalism传播学 Communication艺术学 Art艺术学 Art Theory音乐学 Music美术学 Fine Arts设计艺术学 Artistic Design戏剧戏曲学 Theater and Chinese Traditional Opera电影学 Film广播电视艺术学 Radio and television Art舞蹈学 Dance历史学 History历史学 History史学理论及史学史 Historical Theories and History of Historical Science考古学及博物馆学 Archaeology and Museology历史地理学 Historical Geography历史文献学(含敦煌学、古文字学) Studies of Historical Literature (including Paleography and Studies of Dunhuang)专门史 History of Particular Subjects中国古代史 Ancient Chinese History中国近现代史 Modern and Contemporary Chinese History世界史 World History理学 Natural Science数学 Mathematics基础数学 Fundamental Mathematics计算数学 Computational Mathematics概率论与数理统计 Probability and Mathematical Statistics应用数学 Applied mathematics运筹学与控制论 Operational Research and Cybernetics物理学 Physics理论物理 Theoretical Physics粒子物理与原子核物理 Particle Physics and Nuclear Physics原子与分子物理 Atomic and Molecular Physics等离子体物理 Plasma Physics凝聚态物理 Condensed Matter Physics声学 Acoustics光学 Optics无线电物理 Radio Physics化学 Chemistry无机化学 Inorganic Chemistry分析化学 Analytical Chemistry有机化学 Organic Chemistry物理化学(含化学物理) Physical Chemistry (including Chemical Physics) 高分子化学与物理 Chemistry and Physics of Polymers天文学 Astronomy天体物理 Astrophysics天体测量与天体力学 Astrometry and Celestial Mechanics地理学 Geography自然地理学 Physical Geography人文地理学 Human Geography地图学与地理信息系统 Cartography and Geography Information System大气科学 Atmospheric Sciences气象学 Meteorology大气物理学与大气环境 Atmospheric Physics and Atmospheric Environment 海洋科学 Marine Sciences物理海洋学 Physical Oceanography海洋化学 Marine Chemistry海洋生理学 Marine Biology海洋地质学 Marine Geology地球物理学 Geophysics固体地球物理学 Solid Earth Physics空间物理学 Space Physics地质学 Geology矿物学、岩石学、矿床学 Mineralogy, Petrology, Mineral Deposit Geology 地球化学 Geochemistry古生物学与地层学(含古人类学) Paleontology and Stratigraphy (including Paleoanthropology)构造地质学 Structural Geology第四纪地质学 Quaternary Geology生物学 Biology植物学 Botany动物学 Zoology生理学 Physiology水生生物学 Hydrobiology微生物学 Microbiology神经生物学 Neurobiology遗传学 Genetics发育生物学 Developmental Biology细胞生物学 Cell Biology生物化学与分子生物学 Biochemistry and Molecular Biology生物物理学 Biophysics生态学 Ecology系统科学 Systems Science系统理论 Systems Theory系统分析与集成 Systems Analysis and Integration科学技术史 History of Science and Technology工学 Engineering力学 Mechanics一般力学与力学基础 General and Fundamental Mechanics固体力学 Solid Mechanics流体力学 Fluid Mechanics工程力学 Engineering Mechanics机械工程 Mechanical Engineering机械制造及其自动化 Mechanical Manufacture and Automation机械电子工程 Mechatronic Engineering机械设计与理论 Mechanical Design and Theory车辆工程 Vehicle Engineering光学工程 Optical Engineering仪器科学与技术 Instrument Science and Technology精密仪器及机械 Precision Instrument and Machinery测试计量技术及仪器 Measuring and Testing Technologies and Instruments 材料科学与工程 Materials Science and Engineering材料物理与化学 Materials Physics and Chemistry材料学 Materialogy材料加工工程 Materials Processing Engineering冶金工程 Metallurgical Engineering冶金物理化学 Physical Chemistry of Metallurgy钢铁冶金 Ferrous Metallurgy有色金属冶金 Non-ferrous Metallurgy动力工程及工程热物理 Power Engineering and Engineering Thermophysics工程热物理 Engineering Thermophysics热能工程 Thermal Power Engineering动力机械及工程 Power Machinery and Engineering流体机械及工程 Fluid Machinery and Engineering制冷及低温工程 Refrigeration and Cryogenic Engineering化工过程机械 Chemical Process Equipment电气工程 Electrical Engineering电机与电器 Electric Machines and Electric Apparatus电力系统及其自动化 Power System and its Automation高电压与绝缘技术 High Voltage and Insulation Technology电力电子与电力传动 Power Electronics and Power Drives电工理论与新技术 Theory and New Technology of Electrical Engineering电子科学与技术 Electronics Science and Technology物理电子学 Physical Electronics电路与系统 Circuits and Systems微电子学与固体电子学 Microelectronics and Solid State Electronics电磁场与微波技术 Electromagnetic Field and Microwave Technology信息与通信工程 Information and Communication Engineering通信与信息系统 Communication and Information Systems信号与信息处理 Signal and Information Processing控制科学与工程 Control Science and Engineering控制理论与控制工程 Control Theory and Control Engineering检测技术与自动化装置 Detection Technology and Automatic Equipment系统工程 Systems Engineering模式识别与智能系统 Pattern Recognition and Intelligent Systems导航、制导与控制 Navigation, Guidance and Control计算机科学与技术 Computer Science and Technology计算机软件与理论 Computer Software and Theory计算机系统结构 Computer Systems Organization计算机应用技术 Computer Applied Technology建筑学 Architecture建筑历史与理论 Architectural History and Theory建筑设计及其理论 Architectural Design and Theory城市规划与设计(含风景园林规划与设计) Urban Planning and Design (including Landscape Planning and Design)建筑技术科学 Building Technology Science土木工程 Civil Engineering岩土工程 Geotechnical Engineering结构工程 Structural Engineering市政工程 Municipal Engineering供热、供燃气、通风及空调工程 Heating, Gas Supply, Ventilating and Air Conditioning Engineering防灾减灾工程及防护工程 Disaster Prevention and Reduction Engineering and Protective Engineering桥梁与隧道工程 Bridge and Tunnel Engineering水利工程 Hydraulic Engineering水文学及水资源 Hydrology and Water Resources水力学及河流动力学 Hydraulics and River Dynamics水工结构工程 Hydraulic Structure Engineering水利水电工程 Hydraulic and Hydro-Power Engineering港口、海岸及近海工程 Harbor, Coastal and Offshore Engineering测绘科学与技术 Surveying and Mapping大地测量学与测量工程 Geodesy and Survey Engineering摄影测量与遥感 Photogrammetry and Remote Sensing地图制图学与地理信息工程 Cartography and Geographic Information Engineering化学工程与技术 Chemical Engineering and Technology化学工程 Chemical Engineering化学工艺 Chemical Technology生物化工 Biochemical Engineering应用化学 Applied Chemistry工业催化 Industrial Catalysis地质资源与地质工程 Geological Resources and Geological Engineering矿产普查与勘探 Mineral Resource Prospecting and Exploration地球探测与信息技术 Geodetection and Information Technology地质工程 Geological Engineering矿业工程 Mineral Engineering采矿工程 Mining Engineering矿物加工工程 Mineral Processing Engineering安全技术及工程 Safety Technology and Engineering石油与天然气工程 Oil and Natural Gas Engineering油气井工程 Oil-Gas Well Engineering油气田开发工程 Oil-Gas Field Development Engineering油气储运工程 Oil-Gas Storage and Transportation Engineering纺织科学与工程 Textile Science and Engineering纺织工程 Textile Engineering纺织材料与纺织品设计 Textile Material and Textiles Design纺织化学与染整工程 Textile Chemistry and Dyeing and Finishing Engineering服装设计与工程 Clothing Design and Engineering轻工技术与工程 The Light Industry Technology and Engineering制浆造纸工程 Pulp and Paper Engineering制糖工程 Sugar Engineering发酵工程 Fermentation Engineering皮革化学与工程 Leather Chemistry and Engineering交通运输工程 Communication and Transportation Engineering道路与铁道工程 Highway and Railway Engineering交通信息工程及控制 Traffic Information Engineering & Control交通运输规划与管理 Transportation Planning and Management载运工具运用工程 Vehicle Operation Engineering船舶与海洋工程 Naval Architecture and Ocean Engineering船舶与海洋结构物设计制造 Design and Construction of Naval Architecture and Ocean Structure轮机工程 Marine Engine Engineering水声工程 Underwater Acoustics Engineering航空宇航科学与技术 Aeronautical and Astronautical Science and Technology飞行器设计 Flight Vehicle Design航空宇航推进理论与工程 Aerospace Propulsion Theory and Engineering航空宇航器制造工程 Manufacturing Engineering of Aerospace Vehicle人机与环境工程 Man-Machine and Environmental Engineering兵器科学与技术 Armament Science and Technology武器系统与运用工程 Weapon Systems and Utilization Engineering兵器发射理论与技术 Armament Launch Theory and Technology火炮、自动武器与弹药工程 Artillery, Automatic Gun and Ammunition Engineering军事化学与烟火技术 Military Chemistry and Pyrotechnics核科学与技术 Nuclear Science and Technology核能科学与工程 Nuclear Energy Science and Engineering核燃料循环与材料 Nuclear Fuel Cycle and Materials核技术及应用 Nuclear Technology and Applications辐射防护及环境保护 Radiation and Environmental Protection农业工程 Agricultural Engineering农业机械化工程 Agricultural Mechanization Engineering农业水土工程 Agricultural Water-Soil Engineering农业生物环境与能源工程Agricultural Biological Environmental and Energy Engineering农业电气化与自动化 Agricultural Electrification and Automation林业工程 Forestry Engineering森林工程 Forest Engineering木材科学与技术 Wood Science and Technology林产化学加工工程 Chemical Processing Engineering of Forest Products环境科学与工程 Environmental Science and Engineering环境科学 Environmental Science环境工程 Environmental Engineering生物医学工程 Biomedical Engineering食品科学与工程 Food Science and Engineering食品科学 Food Science粮食、油脂及植物蛋白工程 Cereals, Oils and Vegetable Protein Engineering农产品加工及贮藏工程 Processing and Storage of Agriculture Products水产品加工及贮藏工程 Processing and Storage of Aquatic Products农学 Agriculture作物学 Crop Science作物栽培学与耕作学 Crop Cultivation and Farming System作物遗传育种学 Crop Genetics and Breeding园艺学 Horticulture果树学 Pomology蔬菜学 Olericulture茶学 Tea Science农业资源利用学 Utilization Science of Agricultural Resources土壤学 Soil Science植物营养学 Plant Nutrition植物保护学 Plant Protection植物病理学 Plant Pathology农业昆虫与害虫防治 Agricultural Entomology and Pest Control农药学 Pesticide Science畜牧学 Animal Science动物遗传育种与繁殖 Animal Genetics, Breeding and ReproductionScience动物营养与饲料科学 Animal Nutrition and Feed Science草业科学 Practaculture Science特种经济动物饲养学(含蚕、蜂等) The Rearing of Special-type EconomicAnimals (including Silkworm, Honeybees, etc.)兽医学 Veterinary Medicine基础兽医学 Basic Veterinary Medicine预防兽医学 Preventive Veterinary Medicine临床兽医学 Clinical Veterinary Medicine林学 Forestry林木遗传育种学 Forest Tree Genetics and Breeding森林培育学 Silviculture森林保护学 Forest Protection森林经理学 Forest Management野生动植物保护与利用 Wildlife Conservation and Utilization园林植物与观赏园艺 Ornamental Plants and Horticulture水土保持与荒漠化防治 Soil and Water Conservation and Desertification Combating 水产学 Fisheries Science水产养殖学 Aquaculture Science捕捞学 Fishing Science渔业资源学 Science of Fisheries Resources医学 Medicine基础医学 Basic Medicine人体解剖与组织胚胎学 Human Anatomy, Histology and Embryology免疫学 Immunology病原生物学 Pathogenic Organisms病理学与病理生理学 Pathology and Pathophysiology法医学 Forensic Medicine放射医学 Radiation Medicine航空航天与航海医学 Aerospace and Nautical medicine临床医学 Clinical Medicine内科学(含心血管病学、血液病学、呼吸系病学、消化系病学、内分泌与代谢病学、肾脏病学、风湿病学、传染病学) Internal medicine (including Cardiology, Hematology, Respiratory, Gastroenterology, Endocrinology and Metabolism, Nephrology, Rheuma-tology, Infectious Diseases)儿科学 Pediatrics老年医学 Geriatrics神经病学 Neurology精神病与精神卫生学 Psychiatry and Mental Health皮肤病与性病学 Dermatology and Venereology影像医学与核医学 Imaging and Nuclear Medicine临床检验诊断学 Clinical Laboratory Diagnostics护理学 Nursing外科学(含普通外科学、骨外科学、泌尿外科学、胸心血管外科学、神经外科学、整形外科学、烧伤外科学、野战外科学) Surgery (General Surgery, Orthopedics, Urology, Cardiothoracic Surgery, Neurosurgery, Plastic Surgery, Burn Surgery, Field Surgery) 妇产科学 Obstetrics and Gynecology眼科学 Ophthalmic Specialty耳鼻咽喉科学 Otolaryngology肿瘤学 Oncology康复医学与理疗学 Rehabilitation Medicine & Physical Therapy运动医学 Sports Medicine麻醉学 Anesthesiology急诊医学 Emergency Medicine口腔医学 Stomatology口腔基础医学 Basic Science of Stomatology口腔临床医学 Clinical Science of Stomatology公共卫生与预防医学 Public Health and Preventive Medicine流行病与卫生统计学 Epidemiology and Health Statistics劳动卫生与环境卫生学 Occupational and Environmental Health营养与食品卫生学 Nutrition and Food Hygiene儿少卫生与妇幼保健学 Maternal, Child and Adolescent Health卫生毒理学 Hygiene Toxicology军事预防医学 Military Preventive Medicine中医学 Chinese Medicine中医基础理论 Basic Theories of Chinese Medicine中医临床基础 Clinical Foundation of Chinese Medicine中医医史文献 History and Literature of Chinese Medicine方剂学 Formulas of Chinese Medicine中医诊断学 Diagnostics of Chinese Medicine中医内科学 Chinese Internal Medicine中医外科学 Surgery of Chinese Medicine中医骨伤科学 Orthopedics of Chinese Medicine中医妇科学 Gynecology of Chinese Medicine中医儿科学 Pediatrics of Chinese Medicine中医五官科学 Ophthalmology and Otolaryngoloy of Chinese Medicine针灸推拿学 Acupuncture and Moxibustion and Tuina of Chinese medicine民族医学 Ethnomedicine中西医结合医学 Chinese and Western Integrative Medicine中西医结合基础医学 Basic Discipline of Chinese and Western Integrative中西医结合临床医学 Clinical Discipline of Chinese and Western Integrative Medicine 药学 Pharmaceutical Science药物化学 Medicinal Chemistry药剂学 Pharmaceutics生药学 Pharmacognosy药物分析学 Pharmaceutical Analysis微生物与生化药学 Microbial and Biochemical Pharmacy药理学 Pharmacology中药学 Science of Chinese Pharmacology军事学 Military Science军事思想学及军事历史学 Military Thought and Military History军事思想学 Military Thought军事历史学 Military History战略学 Science of Strategy军事战略学 Military Strategy战争动员学 War Mobilization战役学 Science of Operations联合战役学 Joint Operation军种战役学(含第二炮兵战役学) Armed Service Operation (including Operation of Strategic Missile Force)战术学 Science of Tactics合同战术学 Combined-Arms Tactics兵种战术学 Branch Tactics军队指挥学 Science of Command作战指挥学 Combat Command军事运筹学 Military Operation Research军事通信学 Military Communication军事情报学 Military Intelligence密码学 Cryptography军事教育训练学(含军事体育学) Military Education and Training (including Military Physical Training)军制学 Science of Military System军事组织编制学 Military Organizational System军队管理学 Military Management军队政治工作学 Science of Military Political Work军事后勤学与军事装备学 Science of Military Logistics and Military Equipment军事后勤学 Military Logistics后方专业勤务 Rear Special Service军事装备学 Military Equipment管理学 Management Science管理科学与工程 Management Science and Engineering工商管理学 Science of Business Administration会计学 Accounting企业管理学(含财务管理、市场营销学、人力资源管理学) Corporate Management (including Financial Management, Marketing, and Human Resources Management)旅游管理学 Tourist Management技术经济及管理学 Technology Economy and Management农林经济管理学 Agricultural and Forestry Economics & Management农业经济管理学 Agricultural Economics & Management林业经济管理学 Forestry Economics & Management公共管理学 Science of Public Management行政管理学 Administration Management社会医学与卫生事业管理学 Social Medicine and Health Management教育经济与管理学 Educational Economy and Management社会保障学 Social Security土地资源管理学 Land Resource Management图书馆、情报与档案学 Science of Library, Information and Archival图书馆学 Library Science情报学 Information Science档案学 Archival Science.. .. .. ..参考.资料。

微电子专业专业英语翻译

微电子专业专业英语翻译

Practical Applications of Semiconductor Reliability ModelingLori E. Bechtold, Boeing Commercial AirplanesFlorian Molière, PhD, Airbus Group InnovationsDavid A. Sunderland, PhD, Boeing Space & Intelligence SystemsBahig Tawfellos, Honeywell AerospaceKey Words: Physics-of-Failure, Predictions, Semiconductor ReliabilitySUMMARY & CO CLUSIO SA practical methodology for modeling the reliability of deep submicron (<90 nm) semiconductor microcircuits provides timely and needed information for the integration of commercial off the shelf (COTS) electronics in airborne and high reliability applications.(1)Designing and assuring customer confidence in airborne high reliability applications becomes more challenging as electronics technologies develop rapidly and commercial application demands drive the increasing use of faster, more integrated, higher density commercial off the shelf (COTS) electronics. (2)Use of COTS electronics provides advantages of greater computational power, with higher manufacturing volumes driving better quality control. COTS also introduce the new problem of life-limited semiconductors [1]. Outdated adequately support reliable aerospace system design [2].The Semiconductor Reliability project, that launched in April 2013 by the Aerospace Vehicle Systems Institute (A VSI) under the Authority for Expenditure (AFE) 83, (3)developed a practical approach to modeling the random and wearout failure mechanisms of deep sub-micron (<90nm) microcircuits. Unlike prior physics of failure approaches, the methodology was kept simple and was implemented in a spreadsheet. (4)This spreadsheet is provided free of charge to R&M practitioners to help promote understanding and common usage of the methodology. (5)Recipients of the spreadsheet are expected to provide feedback to the A VSI team in return. The project also encourages microcircuit device suppliers to provide reliability information in some form, (6)either by using the spreadsheet or directly providing the cumulative defect fraction (CDF) of their product in theapplication environments.When microcircuit device suppliers provide test data results for their products, the spreadsheet is used to scale the results from test to usage environments.(7)The methodology developed by A VSI differs from traditional Arrhenius methods in that scaling is not only based on temperature but also on voltage, current and frequency. (8)Models of time dependent dielectric breakdown (TDDB), hot carrier injection (HCI), negative bias temperature instability (NBTI) and electromigration (EM) are used to gain an accurate reliability assessment for technologies sensitive to these mechanisms.(9)This paper describes the A VSI reliability research project,the semiconductor microcircuit reliability models, andcommercial and provides examples of the application of these models to support reliable avionics systems design.I TRODUCTIO(10)COTS microcircuit wearout has become a major concern for both military/aerospace (mil/aero) integrators and avionics equipment manufacturer companies (OEMs) . (11)By contrast with packaging reliability issues, microcircuit wearoutelectronics degradations cannot be easily addressed and revealed by means of the typical qualification tests performed on equipment. (12)This is because equipment qualification tests mainly accelerate environmental tresses (thermal cycle vibration, moisture) without the necessary functional constraints required to bring to light the life limited semiconductor issues. In this sense, wearout concerns have to be addressed in an early design phase at the sub-assembly level (Figure 1) through component selection methodologies like the one proposed in this paper.(13)Designing for high reliability applications is a challenge that requires multi-level collaboration to assure vertical integration of the requirements and information flow necessary for design. (14)Figure 2 illustrates the flow of information between members of the supply chain, showing generally the downward flow of requirements and upward flow of analysis and test data needed to design systems to meet the requirements.(15)Mil/aero integrators design aircraft and other platforms for commercial and military applications. (16)All companies in this market segment face the common need to use the best available COTS electronics in high reliability applications. (17)Airborne high reliability mil/aero applications generally experience greater environmental stresses than ground based commercial applications. (18)They drive reliability requirements in the context of thermal profiles, thermal cycling and vibration environments down to their suppliers, the avionics OEMs.(19)Avionics OEMs must find architecture solutions and trade multiple and often conflicting requirements.The avionics OEMs procure electronics devices from the microcircuit device suppliers and must understand how the device will operate in the required environments. (20)Mitigation measures at the avionics OEM level include adequately derating the device in the context of thermal profiles, thermal cycling, vibration, voltage and frequency, and assuring adequate architecture redundancy to guarantee reliability and safety requirements are met throughout the unit life.The microcircuit device suppliers must provide avionics OEMs with enough information and substantiating data so the OEM can make good design decisions while using their devices in electronics modules. The avionics OEM must provide the mil/aero integrators with enough information and substantiating data for them to use the modules in an airborne platform that meets their customer requirements for high functionality, safety and reliability over the operational lifetimes of the equipment.(21)The AFE 83 project aims to break down communication barriers betweenthese market segments to improve practical semiconductor reliability assessments. (22)AFE 83 is working in collaboration with 与...合作microcircuit device suppliers to develop a practicable methodology for predicting the reliability of integrated circuit semiconductors for high reliability applications. It is developing a simple reliability prediction methodology for random failure rate and the time to intrinsic.(23)The random failure rate portion of the model is similar to MIL-HDBK-217 models [3], because it is scaled with device complexity复杂性and use conditions. (24)The physics of failure semiconductor wearout models developed in prior A VSI projects [4] are used as a starting point and will be modified based on the inputs from semiconductor suppliers.2 A VSIA VSI is a research cooperative that addresses issues impacting the aerospace community through international collaborative research conducted by industry, government and academia.(25)(翻译)Members combine their resources and talents to organize and conduct research projects directly benefiting the member organizations and often benefiting the aerospace industry as a whole.(26)A VSI provides a voice for their membership to jointly influence standards, processes and technologies related to aerospace industry.A VSI has invested over a decade of research into electronics reliability, including deep sub-micron (<130nm) semiconductor wearout mechanisms, atmospheric radiation effects and the integration of physics of failure methods into reliability predictions. In 2010, A VSI reliability roadmap project, AFE 74, engaged a broad community of reliability subject matter experts to develop a consensus based Reliability Prediction Technology Roadmap. The Roadmap identified many gaps in reliability prediction capability to support the application needs identified by the stakeholders.(27)The stakeholders require a methodology that results in timely,accurate and necessary information to support design engineering processes that build customer confidence in product reliability. Semiconductor reliability modeling was identified as a high priority by the roadmap project[5].3 APPLICATIO SAerospace applications often require a 20-30 year service life, while COTS electronics usually are designed for shorter market cycles. while COTS electronics usually are designed for high performance and low cost, consequently long termreliability is less of a concern. This leaves less incentive for COTS suppliers to address the need for extended life by applying mitigation measures for these failure mechanisms. If “design for reliability”measures have been applied within the microcircuit, these may be proprietary or not fully understood by the user, so will not figure in the user’s reliability modeling. By focusing at the part level, the AFE 83 spreadsheet allows these mitigation measures to be included by the supplierAvionics systems are designed to rigorous high standards of safety and reliability, with growing processing demands of advanced navigation, guidance and communication systems. High functional density and high speed processing to support the growing avionics systems requirements is enabled through the use of COTS electronics with deep sub-micron (<90 nm) integrated circuit (IC) technologies.Airborne environments are generally harsher than ground based applications. Each flight cycle induces vibration combined with a thermal cycle in many electronics, especially those in partially protected areas such as the electronics bay.(28)Flight environments are harsh on electronics and electronic packaging, due to extremes of temperature, frequent thermal cycling, moisture, vibration, pressure, and atmospheric radiation. (29)In aviation applications, reliability needs can be higher as application conditions become worse.The effect of temperature on reliability may be seen in Fig.3. (30)This chart, provided by Xilinx, is an example of one type of result that could come out of the spreadsheet. Here Xilinx has used an internal tool, described in [6], to compute time to an acceptable percent failure for each of three distinct intrinsic wearout failure mechanisms, as well as the net lifetime value considering all three. They then plotted the result versus use temperature.(31)(翻译).The AFE 83 spreadsheet similarly can provide the user with calculations of reliability at multiple temperatures, which can be convolved with the application’s temperature vs. time profile (e.g., Fig. 4 for commercial avionics) to enable mission analysis or decisions on whether to provide a more protected environment for the electronics. [7](32)The results of such reliability calculations are intended to provide reasonable inputs to estimates of system-level reliability. (33)Aggregated, part-level reliability parametric data can be used to compute a reliability estimate at the circuit board, line replaceable unit, or subsystem level. This is based on the system designer’s understanding of the intended operation of the system and the environment in which it is intended to operate.While the proposed methodology is more involved than traditional reliability estimation methods, it may not be necessary to analyze every device in a given unit. (34)For many,conservative estimates will be adequate to meet random failure rate targets, and combination of older technology and limited stress will suggest that wearout life is adequate. The practical understanding of the inner relationship between the effects of the wearout failure mechanisms within a part may be controversial. The source of controversy is whether such effects can be treated as competing effects or if it is more accurate to model them as enhancing each other. (35)Asimplifying assumption in the spreadsheet is that the mechanisms are independent, and that the cumulative failure fractions may be combined numerically without correcting for an interaction between them.Figure 5 shows a sample flow diagram of the decision process an equipment manufacturer may use to determine the application of these analyses or equivalent. (36)It is important to note that if a component is expected to experience early wearout it must have the dominant wearout mechanisms accounted for in a prediction or the results will be misleading.(37)Figure 6 shows another approach to system level analysis where the traditional random failure reliability prediction (Mean Time Between Failures) is normalized to a Mean Life,so that it can be compared with the Geometric Mean Life the wearout of each small geometry part over the usage profile.[8] The Avionics OEM can then understand whether the small geometry part will be a key driver in their ability to meet the MTBF requirement.EM, TDDB, HCI and NBTI have been identified as dominant failure mechanisms for complementary metal-oxide semiconductors (CMOS) [9]. Models for these mechanisms were developed by various researchers and studied during the A VSI projects AFE 17, 71 and 71s1 and validated [10]. They have also been presented in detail in a previous RAMS paper [11], and are summarized here.The AFE 83 spreadsheet offers models for all four mechanisms, based on equations (1)-(4).T2 is the test temperature in K.These equations differ in some ways from traditional forms [12] to make the independent variables those directly controllable by the IC user, (e.g. for EM we use voltage as a proxy for current density.) (38)In addition, alternate forms of voltage acceleration models are provided in the spreadsheet,for different technologies.The failure mechanism AF models for TDDB, EM, HCI and NBTI provide an assessment at the feature level within the logic circuitry of an IC. The effects of these mechanisms become more pronounced as feature sizes shrink and functional density increases. (39)A recent study of field failures of communications technology semiconductors found that failures due to these effects are increasing, in a way similar to Moore’s Law [13] [14]. (40)Models have been developed for NBTI; however as semiconductor feature sizes continue to reduce Positive Bias Temperature Instability (PBTI) may become an issue and models will need to be developed.A traditional approach is to use the Arrhenius model to scale test data to usageenvironments using empirically derived activation energy factors. (41)It does not consider the relying on a generalized temperaturewere developed by various researchers and studied during the related failure rate model. [15] The models provided in the spreadsheet offer a more detailed failure characterization, the ability to consider multiple failure mechanisms and to directly model voltage and frequency effects as well as thermal effects.5 RELIABILITY PREDICTIO OF SEMICO DUCTORSIn any practical reliability analysis the best data available is used, and this is also true for use of the AFE 83 spreadsheet.Due to budget and time constraints and possibly the limited availability of COTS vendor data, analyses are sometimes performed with less than ideal data precision. The ideal strategy is to seek the best data first then fall back on other sources. The following is the prioritized order for finding data and analyzing semiconductor microcircuits:1. Ideal–Supplier provides all the necessary reliability in the usage environments and considering operational stresses2. Second best –Supplier provides some test information, and the user adjusts it to usage conditions using AFE 83 spreadsheet3. Third best –If no test data is available, the user runsIn (1)-(4), their own set of tests and uses AFE 83 spreadsheet to are the acceleration perform prediction4.Fourth option –When no information is available, a factors for T DDB, EM, HCI and NBTI, respectively, prediction can be performed using AFE 83 spreadsheet defaults .The AFE 83 spreadsheet PoF models are used to start the conversation with semiconductor supplier companies about what is needed for the analysis. A potential approach is to have semiconductor manufacturers take the spreadsheet develop it to accurately model their particular product line, and provide it on a webpage for use by reliability engineers applying their product in an electronic system.The prototype spreadsheet has assumed numerical values in places where the device-specific parameters are unknown.The spreadsheet is a starting point and not the final solution is used as a basis for how semiconductors are modeled.Participants and partners in this project will need to describe the methodology for estimating reliability with key objectives of identifying the data needed from device manufacturers and thatdefining the method for integrating the data into a usable result. This is accomplished through guidelines which are to be published as a deliverable of AFE83.The AFE 83 spreadsheet includes a wearout prediction model and assessment based on the four mechanisms from AFE 71s1. An initial slope factor 2 provides an example of how a Weibull analysis may characterize wearout. Although initial parametric model input values are offered in the spreadsheet, the actual parameters of the model will be provided by semiconductor suppliers, or used by them to perform wearout reliability assessment for their customers.一语言点(1)designing 和assuring 都是动词的ing形式作形容词来修饰customer。

广东工业大学各学院专业英文名称

广东工业大学各学院专业英文名称
英语(经贸方向)
English (In the orientation of economics and trade)
英语(翻译方向)
English (In the orientation of translation and interpretation)
日语(经贸方向)
Japanese (In the orientation of economics and trade)
化学工程与技术
Chemical Engineering and Technology
食品科学与工程
Food Science and Engineering
生物工程
Biological Engineering
应用化学
Applied Chemistry
制药工程
Pharmaceutical Engineering
广东工业大学各学院专业英文名称
各位同学,是不是很喜欢英语呢?是不是有时在跟别人介绍自己的学院专业时,不知道怎么用英文表达呢?小编整理了广工学院的各学院专业英文名称,让大家学习。
注:以下英文都是在学校官网上找的词汇,绝不是小编自己胡乱编造的,希望对你们有用。
编号
学院
专业
专业英文名称
1
自动化学院
School of Automation
14
政法学院
School of Politics and Law
法学
Law
社会工作
Social Work
公共事业管理
Public Service Administration
15
建筑与城市规划学院
School of Architecture and Urban Planning

合肥工业大学各学院、专业名称及其英文翻译

合肥工业大学各学院、专业名称及其英文翻译

合肥工业大学各学院、专业名称及其英文翻译仪器科学与光电工程学院 School of Instrument Science and Opto-electronic Engineering1、测控技术与仪器 Measurement & Control Technology and Instrument2、光信息科学与技术 Optic Information Science & Technology机械与汽车工程学院 School of Machinery and Automobile Engineering3、车辆工程 Vehicles Engineering4、工业工程 Industrial Engineering5、工业设计 Industry Design6、过程装备与控制工程 Process Equipment & Control Engineering7、机械设计制造及其自动化 Machine Design & Manufacture & Its Automation8、交通工程 Transportation Engineering9、热能与动力工程 Thermal Energy & Power Engineering材料科学与工程学院 School of Material Science and Engineering10、金属材料工程 Metal Materials Engineering11、材料物理 Materials Physics12、无机非金属材料工程 Inorganic Non-metallic Materials Engineering13、材料成型及控制工程 Material Forming & Control Engineering电气与自动化工程学院 School of Electric Engineering and Automation14、电气工程及其自动化 Electric Engineering and Automation15、生物医学工程 Biomedical Engineering16、自动化 Automation计算机与信息学院 School of Computer and Information17、计算机科学与技术 Computer Science & Technology18、电子信息工程 Electronic Information Engineering19、电子信息科学与技术 Electronic Information Science & Technology20、通信工程 Communications Engineering21、信息安全Information Security化学工程学院 School of Chemical Engineering22、高分子材料与工程 Macromolecule Material and Engineering23、化学工程与工艺 Chemical Engineering and Technics24、制药工程 Pharmacy Engineering25、应用化学 Applied Chemistry土木建筑工程学院 School of Civil Engineering26、给排水工程 Water Supply & Drainage Engineering27、工程力学 Engineering Mechanics28、水利水电工程 Hydraulic and Hydro-Power Engineering29、土木工程 Civil Engineering30、建筑环境与设备工程 Architectural Environment & Equipment Engineering建筑与艺术学院 School of Architecture and Arts31、城市规划 Urban Planning32、建筑学 Architecture33、艺术设计 Artistic Design资源与环境学院 School of Resources and Environment34、地理信息系统 Geographic Information System35、环境工程 Environment Engineering36、勘查技术与工程 Exploration Technology & Engineering37、资源勘查工程 Resources Exploration Engineering理学院 School of Sciences38、电子科学与技术 Electronic Science & Technology39、数学与应用数学 Applied Mathematics40、微电子学 Microelectronics41、信息与计算科学 Science of Information & Computation42、应用物理学 Applied Physics管理学院 School of Management43、电子商务 Electronic Commerce44、会计学 Accounting45、工商管理 Business Management46、劳动与社会保障 Labour and Social Security47、信息管理与信息系统 Information Management & System48、旅游管理 Tourism Management49、市场营销 Marketing人文经济学院 School of Humanities and Economics50、财政学 Finance51、广告学 Advertisement52、国际经济与贸易 International Economy & Trade53、经济学 Economics54、思想政治教育 Education in Ideology and Politics55、英语 English56、法学 Law57、社会工作 Social Work生物与食品工程学院 School of Biotechnology and Food Engineering58、生物工程 Bioengineering59、生物技术 Biotechnology60、食品科学与工程 Food Science and Engineering。

大学专业名称英文对照表

大学专业名称英文对照表
外国语学院
College of Foreign Languages
34
050201
英语
English Language and Literature
外国语学院
College of Foreign Languages
35
080903
网络工程
Network Engineering
网络空间安全学院
College of Cybersecurity
25
080908T
空间信息与数字技术
Spatial-Informatics and Digitalized Technology
软件工程学院
College of Software Engineering
26
080910T
数据科学与大数据技术
Data Science and Big Data Technology
资源环境学院
College of Resources and Enviro
Environmental Engineering
资源环境学院
College of Resources and Environment
53
082503
环境科学
Environmental Science
College of Control Engineering
23
080803T
机器人工程
Robot Engineering
控制工程学院
College of Control Engineering
24
080902
软件工程
Software Engineering
软件工程学院
College of Software Engineering
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Recombination phenomena can be classified as direct and indirect processes . Direct recombination , also called band-to-band recombination , usually dominates in direct-bandgap semiconductors , such as gallium arsenide ; while indirect recombination via bandgap recombination centers dominates in indirect bandgap semiconductors , such as silicon.
2.5 Generation and Recombination Processes 载流子产生与复合过程
Whenever the thermal-equilibrium condition is disturbed (i.e.,pn ≠ ni2) , processes exist to restore the syetem to equilibrium(i.e.pn=ni2).In the case of the injection of excess carriers, the mechanism that restores equilibrium is recombination of the injected minority carrier with the majority carriers. Depending on the nature of the recombination process, the released energy that results from the recombination process can be emitted as a photon or dissipated as heat to the lattice. When a photon is emitted , the process is called radiative recombination ;otherwise, it is called nonradiative recombination. 当热平衡条件受到扰乱时(即pn ≠ ni2),会出现一些使系统回复平衡的机制(即 pn=ni2 )。在超量载流子注入的情形下,回复平衡的机制是将注入的少数载流子 与多数载流子复合。视复合过程的本征而定,复合过程所释放出的能量,一般以 光子形式辐射出或是对晶格产生热而消耗掉。一个光子被辐射出,此过程称为辐 射复合,反之则称为非辐射复合。
当电子从导带向下移到价带, 一个电子 - 空穴对消失。这 种反向过程称为复合,并以 复 合 率 Rth 表 示 , 如 图 2.11 ( a )所示。在热平衡状态 下,产生速率 Gth 必定等于 复合率 Rth ,所以载流子浓 度维持常数,且维持 pn=ni2 的状况。
When excess carries are introduced to a direct-bandgap semiconductor, the probability is high that electrons and holes will recombine directly ,because the bottom of the conduction band and the top of the valence band are lined up and no additional crystal momentum is required for the transition across the bandgap . The rate of the direct recombination R is expected to be proportional to the number of holes available in the valence band; that is R=βnp where β is the proportionality constant.
复合现象可分为直接和间接过程。直接复合,又称为带至带复合,通常在直 接禁带的半导体中较为显著,如砷化镓;而通过禁带复合中心的间接复合则 在间接禁带的半导体中较为显著,如硅晶。
Consider a direct-bandgap semicond uctor in thermal equilibrium . The continuous thermal vibration of lattice atoms causes some bonds between neighboring atoms to be broken . When a bond is broken ,an electron-hole pair is generated. In terms of the band diagram, the thermal energy enables a valence electron to make an upward transition to the conduction band leaving a hole in the valence band. This process is called carrier generation and is represented by the generation rate Gth(number of electron-hole pairs generated per cm3 per second) in Fig.2.11(a).
考虑一个在热平衡状态下的直接禁带半导体。 晶格原子连续的热扰动造成邻近原子间的键 断裂。当一个键断裂,一对电子空穴对就产 生了。以能带图的观点而言,热能使得一个 价电子向上移到导带,而留下一个空穴在价 带。这个过程称为载流子产生,并以产生速 率 Gth (每立方厘米每秒产生的电子 - 空穴对 数目)表示,如图2.11(a)所示。
Therefore , the net recombination rate is proportional to the excess minority carrier concentration .The proportionality constant 1/β nno is called the lifetime Tp of the excess minority carriers . The physical meaning of lifetime can best be illustrated by the transient response of a device after the sudden removal of the light source . Consider an n-type sample, as shown in Fid.2.12(a) ,that is illuminated with light and in which the electron-hole pairs are generated uniformly throughout the sample with a generation rate GL. Fig.1.12(b) shows the variation of pn with time. The minority carriers recombine with majority carriers and decay exponentially with a time constant Tp which corresponds to the lifetime. 因此,净复合率正比于超量少数载流子浓 度。比例常数1/β nno称为超量少数载流子 的寿命Tp。寿命的物理意义可通过器件在 瞬间移去光源后的暂态响应作最好的说明。 考虑一个n型样品,如图2.12(a),光照 射其上且整个样品中以一个产生速率 GL 均匀地产生电子-空穴对。图2.12(b)显 示pn随时间的变化。少数载流子与多数载 流子复合,且寿命Tp成指数衰减。
如前面所讨论的,在热平衡下 复合率必定与产生速率保持平 衡,因此,对以n型半导体而言, 我们可以得到 G th=R th=βn no p no 。nno及pno分别表示在热 平衡下,n型半导体中的电子及 空穴浓度。我们在半导体上照 光,使它以GL的速率产生电子空穴对(如图2.11(b)),载 流子浓度将大于平衡时的值。
The above case illustrates the main idea of measuring the carrier lifetime using photoconductivity method . Fig.2.12(c) shows a schematic setup .The excess carriers ,generated uniformly throughout the sample by the light pulse , cause a momentary increase in the conductivity . The increase in conductivity manifests itself by a drop in voltage across the sample when a constant current is passed through it . The decay of the conductivity can be observed on an oscilloserved on an oscilloscope and is a measure of the lifetime of the excess minority carriers. 以上情形说明使用光电导方法来测量 载流子寿命的主要概念。如图2.12(c) 显示一个图示的装置。通过光脉冲照 射,整个样品中均匀产生超量载流子, 因而造成电导率瞬间增加。而电导率 的增加,可由将一定电流通过样品使 样品两端产生一小电压而显示出来。 电导率的衰减可由示波器上观察得知, 它同时又是测量超量少数载流子寿命 的一种方法。
相关文档
最新文档