数学研究课题---空间几何体的外接球与内切球问题
空间球体的外接球和内切球问题

空间球体的外接球和内切球问题在几何学中,空间球体是一个三维的球形体,有许多有趣的性质和问题。
其中,外接球和内切球问题是一种经典的几何学问题。
外接球问题给定一个空间球体,外接球问题是要找到能够刚好包围该球体的最小球体,即外接球。
这个问题可以通过寻找球心和半径来解决。
外接球必须满足以下三个条件:1. 外接球的球心与原球体的球心在同一直线上;2. 外接球的球心到原球体表面的任意一点的距离等于外接球的半径;3. 外接球的半径最小。
解决外接球问题的关键是找到外接球的球心和半径的数学表达式。
该问题的解决方案可以通过推导和几何推理来得到。
内切球问题内切球问题是要找到能够刚好被该空间球体包围的最大球体,即内切球。
与外接球问题类似,解决内切球问题也需要找到内切球的球心和半径的数学表达式。
内切球必须满足以下三个条件:1. 内切球的球心与原球体的球心在同一直线上;2. 内切球的球心到原球体表面的任意一点的距离等于内切球的半径;3. 内切球的半径最大。
解决内切球问题的方法和外接球问题类似,需要进行几何推导和推理。
应用和意义外接球和内切球问题在许多领域有着广泛的应用。
在工程学和建筑学中,解决外接球和内切球问题可以帮助设计具有最佳空间利用和结构稳定性的建筑物和零件。
在计算机图形学和计算几何学中,外接球和内切球问题是渲染和碰撞检测等算法的基础。
此外,外接球和内切球问题还与球体的包络问题和球体堆积问题等相关。
总结外接球和内切球问题是空间球体的经典几何学问题。
通过寻找最小外接球和最大内切球的球心和半径,可以解决这两个问题。
外接球和内切球问题在工程学、建筑学和计算机图形学等领域有着广泛的应用。
几何体的外接球与内切球的有关问题

几何体的外接球与内切球的有关问题一、外接球的问题简单多面体外接球问题是立体几何中的难点和重要的考点,此类问题实质是计算球的半径或确定球心O 的位置问题,其中球心的确定是关键. (一) 由球的定义确定球心球的定义:在空间中,如果一个定点与一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体的外接球的球心.由上述性质,可以得到确定简单多面体外接球的球心的如下结论. 结论1:正方体或长方体的外接球的球心其体对角线的中点.结论2:正棱柱的外接球的球心是上下底面中心的连线的中点.结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点,由球心、底面中心及底面一顶点构成的直角三角形便可得球半径.(在1BOO Rt ∆中,21212OO BO BO +=,即222)2(hr R +=.) 结论4:正棱锥的外接球的球心在其高上,具体位置可通过构造直角三角形利用勾股定理求得. (以正三棱锥为例:设正三棱锥的底面△ABC 的边长为a ,高为h ,外接球球心为O ,半径为R . 在1AOO Rt ∆中,21212OO AO AO +=,即222)(33R h a R -+⎪⎪⎭⎫ ⎝⎛=.) 结论5:若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心,则公共斜3R a=222a b c R ++=BC边的一半就是其外接球的半径.(二)构造正方体或长方体确定球心长方体或正方体的外接球的球心是在其体对角线的中点处. 1.可构造正方体的类型:①正四面体:棱长对应正方体的面对角线.① ② ③②三条侧棱两两垂直的正三棱锥:底面棱长对应正方体的面对角线,侧棱对应正方体的棱长. ③四个面都是是直角三角形的三棱锥:最长的棱长对应正方体的体对角线. 2.可构造长方体和正方体的类型①同一个顶点上的三条棱两两垂直的四面体;②三个侧面两两垂直的三棱锥;③有三个面是直角三角形的三棱锥;①与②与③ ④④相对的棱相等的三棱锥:设对应长方体的长、宽、高分别为a 、b 、c ,则BC 2=a 2+b 2,AC 2=a 2+c 2,AB 2=b 2+c 2.所以对应长方体的体对角线为2222222AB AC BC c b a ++=++.⑤含有其它线面垂直关系的棱锥. (三) 由性质确定球心利用球心O 与截面圆圆心O’的连线垂直于截面圆,确定球心. 记球的半径为R ,截面圆的半径为r ,球心O 与截面圆圆心O’A BC DA BCPABCP的距离为d,则有R2=r2+d 2.(四) 圆柱外接球模型计算球的半径一个底面半径为r ,高为h 的圆柱,求它的外接球半径. 222)2(h r R +=(1) (2) (3)变形一:如果我们对圆柱上下底面对应位置处,取相同数量的点,比如都取三个点,如图(1)所示.我们可以得到(直)三棱柱,它的外接球其实就是这个圆柱的外接球,所以说直棱柱的外接球求半径符合这个模型. 在这里棱柱的高就是公式中的h ,而棱柱底面△ABC 外接圆的半径则是公式中的r .变形二:如果把三棱柱上面的C 1去掉,如图(2)所示,我们得到有一个侧面⊥矩形底面的四棱锥,其中r 为垂直底面的侧面△ABC 的外接圆半径,h 为垂直于那个侧面的底面边长AA 1.变形三:如果把上面的那个三棱柱上面的B 1,C 1两点去掉,如图(3)所示,我们得到一根侧棱⊥底面的三棱锥,其中r 为底面△ABC 外接圆半径,h 为垂直于底面的那条侧棱AA 1.二、内切球问题若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.结论1:内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等. 结论2:正多面体的内切球和外接球的球心重合.结论3:正棱锥的内切球和外接球球心都在高线上,但不重合. 结论4:基本方法:构造三角形利用相似比和勾股定理. 结论5:体积分割是求内切球半径的通用做法. (一)正方体的的内切球设正方体的棱长为a ,求(1)内切球半径;(2)与棱相切的球半径.Rr2h A BC1A 1B 1C A BC1A 1B A BC1A(1)内切球:截面图为正方形的内切圆,得2a R =. (2)棱切球:切点为正方体各棱的中点,截面图为为正方形的外接圆,得22a R =. (二)棱锥的内切球(分割法)将内切球的球心与棱锥的各个顶点连线,将棱锥分割成以原棱锥的面为底面,内切球的半径为高的小棱锥,根据分割前后的体积相等,列出关于半径的方程.设三棱锥的棱长为a ,内切球半径为r.V V V V VPAB O PBC O PAC O ABC O ABCP -----+++=r S r S r S r S PAB PBC PAC ABC 31313131+++= r S S S S PAB PBC PAC ABC )(31+++= 内切球r S ABC P -=31所以ABCP ABCP S V r --=3内切球一般地,记棱锥的体积为V ,表面积为S ,则内切球的半径为SV r 3=. (三)圆柱、圆锥的内切球(截面法)(1)圆柱的内切球:圆柱的轴截面为正方形,记圆柱的底面圆的半径r ,内切球的半径R ,则R =r . (2)圆锥的内切球:圆锥的轴截面为三角形的内切圆,记圆锥的底面圆的半径r ,内切球的半径R ,由于在△ABC 中,所以CS R 2=.备注:1.三角形内切圆的半径S S S S AO BAO C BO C ABC ∆∆∆∆++=r c b a cr br ar )(21212121++=++= 内切圆r C ABC ∆=21所以三角形内切圆的半径为CSr 2=,其中S 为△ABC 的面积,C 为△ABC 的周长. 2. 三角形外接圆的半径利用正弦定理R C c B b A a 2sin sin sin ===,CcB b A a R sin 2sin 2sin 2===. ①正三角形:a a R 3360sin 2=︒=,其中a 为正三角形的边长.②直角三角形:290sin 2cc R =︒=,其中c 为直角三角形的斜边.3. 正三角形的内切圆与外接圆的半径之比正三角形的内切圆与外接圆的两个圆心“二心合一”. 设正三角形的边长为a ,内切圆半径为r ,外接圆半径为R.由于a a R 3360sin 2=︒=,a a a a a a C S r 6360sin 2122=++︒⋅⋅⋅⨯==, 所以1:2:=r R ,即圆心O 为正三角形高h 的三等分点.4. 正四面体的内切球与外接球的半径之比正四面体的内切球与外接球的两个球心“二心合一”. 设正四面体A-BCD 的棱长为a ,内切球半径为r ,外接球 半径为R ,则OA=OB=R ,OE=r.∵底面△BCD 为正三角形,∴BE=a 33 在BEO Rt ∆中,222OE BE BO +=,即22233r a R +⎪⎪⎭⎫ ⎝⎛=,得a R 46= ∴1:3:=r R ,即球心O 为正四面体高h 的四等分点. 5.正三棱柱的内切球与外接球的半径之比正三棱柱的内切球与外接球的球心是重合的,过侧棱1AA 和它们的球心O 作截面如下图所示:设正三棱柱底面边长为a . 由于内切球投影到底面的圆是底面正三角形的内切圆,所以a R 632=,从而正三棱柱的高为a R h 3322==. 在O D A Rt 11∆中,得22222211211256333a a a R D A R =⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=,a R 1251=∴因此1:5:21=R R .。
空间几何体的外接球和内切球问题讲课教案

空间几何体的外接球和内切球问题空间几何体的外接球和内切球问题类型1 外接球的问题1.必备知识:(1)简单多面体外接球的球心的结论.结论1:正方体或长方体的外接球的球心是其体对角线的中点.结论2:正棱柱的外接球的球心是上下底面中心的连线的中点.结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点.(2)构造正方体或长方体确定球心.(3)利用球心O 与截面圆圆心O 1的连线垂直于截面圆及球心O 与弦中点的连线垂直于弦的性质,确定球心.2.方法技巧:(1)几何体补成正方体或长方体.(2)轴截面法(3)空间向量法1AB DC AD BC BD AC ======例1-1、正四面体的棱长都为,求此四面体外接球和内切球的半径例1-2、四面体中,, 求此四面体外接球的表面积 例1-3.若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( )A.3B.6C.36D.9训练1(创新110页) 某几何体的三视图如图所示,则该几何体的外接球的表面积为( )A.25πB.26πC.32πD.36π训练2(创新110页)已知边长为2的等边三角形ABC ,D 为BC 的中点,沿AD 进行折叠,使折叠后的∠BDC =π2,则过A ,B ,C ,D 四点的球的表面积为( ) A.3π B.4π C.5π D.6π例2-1(创新110页)体积为3的三棱锥P -ABC 的顶点都在球O 的球面上,P A ⊥平面ABC ,P A =2,∠ABC =120°,则球O 的体积的最小值为( ) A.773π B.2873π C.19193π D.76193π 例2-1(创新109页)三棱锥P -ABC 中,平面P AC ⊥平面ABC ,AB ⊥AC ,P A =PC =AC =2,AB =4,则三棱锥P -ABC 的外接球的表面积为( )A.23πB.234πC.64πD.643π 类型2 内切球问题1.必备知识:(1)内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.(2)正多面体的内切球和外接球的球心重合. (3)正棱锥的内切球和外接球球心都在高线上,但不一定重合.2.方法技巧:体积分割是求内切球半径的通用做法.【例3】 体积为4π3的球与正三棱柱的所有面均相切,则该棱柱的体积为________. 空间几何体的外接球和内切球问题近几年高考题1、(2019全国1卷第12题)已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,△ABC 是边长为2的正三角形,E ,F 分别是PA ,PB 的中点,90CEF ∠=︒,则球O 的体积为( )A .B .C . D2、(2018全国3卷第10题).设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为( )A .B .C .D .3.(2017全国1卷第16题)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为______.4、(2017新课标全国Ⅲ理科)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.πB.3π4 C.π2 D.π4 5、(2016年全国1卷第6题).如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是 ( )(A )17π (B )18π (C )20π (D )28π6、(2016年全国3卷第10题)在封闭的直三棱柱ABC −A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) (A)4π (B)9π2 (C)6π (D)32π37、(2015年全国1卷第11题).圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r=( )(A ) 1 (B)2 (C )4 (D )88、(2015年全国2卷第9题).已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为( ) A .36πB .64πC .144πD .256π 7.(2014·大纲全国,8)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4B.16πC.9πD.27π49、(2013年课标1卷第6题)、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为( )A 、500π3cm 3B 、866π3cm 3C 、1372π3cm 3D 、2048π3cm 310、(2012课标卷第11题)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为( )()A 26 ()B 36 ()C 23 ()D 2211、(2011课标卷第15题)已知矩形的顶点都在半径为4的球的球面上,且,则棱锥的体积为 。
空间几何体的外接球内切球问题

空间几何体的外接球内切球问题空间几何体的外接球、内切球问题自己总结供参考红岩外接球问题一.棱锥的外接球三棱锥都有外接球;底面有外接圆的任意棱锥都有外接球。
1.确定棱锥外接球球心的通法先找到棱锥底面的外接圆的圆心D ,过D 作底面的垂线DP交一侧棱的中垂面于O ,点O 即为外接球的球心。
练习:1.三棱锥S-ABC 的各顶点都在同一球面上,若SB ⊥平面ABC ,SB=6,AB=AC=2120BAC ∠=?,则此球的表面积等于。
2. 点A 、B 、C 、D 均在同一球面上,其中△ ABC 是正三角形,AD ⊥平面ABC ,AD=2AB=6则该球的体积为。
3.四面体ABCD 的四个顶点在同一球面上,AB=BC=CD=DA=3,32=AC ,6=BD ,则该球的表面积为()A .π14 B.π15 C.π16 D.π182.补成长方体或正方体,再利用体对角线是外接球直径这一结论求解。
练习:1.三棱锥O ABC -中,,,OA OB OC 两两垂直,且22OA OB OC a ===,则三棱锥O ABC -外接球的表面积为()A .26a π B .29a π C .212a π D .224a π2.已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,BC =O 表面积等于(A )4π (B )3π (C )2π (D )π3.,四个顶点在同一个球面上,则此球的表面积为( )A.3πB.4πD.6π4.3.公共边所对的两个角为直角确定球心法练习1.在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积为A.12512π B.1259π C.1256π D.1253π2.空间四边形ABCD中,1,AB BC AD DC ====ABCD 的外接球的表面积为4.利用轴截面截球为大圆确定球半径正四、六、八棱锥的外接球的一个轴截面为大圆,该圆的半径等于外接球的半径. 练习:1.正四棱锥S ABCD -S A B C D 、、、、都在同一球面上,则此球的体积为 .2.正六棱锥EF S ABCD -的底面边长为1S A B C D 、、、、、E 、F 都在同一球面上,则此球的表面积为 .3.表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为_ C_ A_ O_ D _ BA B.13π C.23π D二.棱柱的外接球底面有外接圆的直棱柱才有外接球。
立体几何中的“内切”与“外接”问题的探究(完美版)

立体几何中的“内切”与“外接”问题的探究(完美版)探究立体几何中“内切”与“外接”问题在立体几何中,我们经常遇到“内切”和“外接”的问题。
在研究这些问题之前,我们需要先明确球心的定义。
如果一个定点与一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体的外接球球心。
根据上述性质,我们可以得出以下多面体外接球的结论:1.正方体或长方体的外接球的球心是其体对角线的中点。
2.正棱柱的外接球的球心是上下底面中心的连线的中点。
3.直三棱柱的外接球的球心是上下底面三角形外心的连线的中点。
4.正棱锥的外接球的球心在其高上,具体位置可通过计算得到。
5.若棱锥的顶点可构成共斜边的直角三角形,则共斜边的中点就是其外接球的球心。
接下来我们来探究一下正方体和长方体的外接球的问题。
根据结论1,正方体或长方体的外接球的球心是其体对角线的中点。
我们可以利用构造法(补形法)来解决这类问题。
例如,对于一个长方体,如果从一个顶点出发的三条棱长分别为a、b、c,则体对角线长为√(a^2+b^2+c^2),几何体的外接球直径2R为体对角线长l,因此R=√(a^2+b^2+c^2)/2.举个例子,如果一个三棱锥的三个侧面两两垂直,且侧棱长均为3,则可以将这个三棱锥补成一个棱长为3的正方体,于是正方体的外接球就是三棱锥的外接球。
设其外接球的半径为R,则有(2R)^2=3^2+3^2+3^2=27.因此,其外接球的表面积为S=4πR^2=36π。
另外,对于一个矩形ABCD,如果AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角B-AC-D,则四面体ABCD的外接球的体积为(125π)/(1296)。
最后,如果出现正四面体外接球的问题,我们可以利用构造法(补形法),联系正方体。
一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为多少?解析:由于所有棱长都相等,所以可以构造一个正方体,再寻找棱长相等的四面体。
如图2所示,四面体ABDE满足条件,即AB=AD=AE=BD=DE=BE=2.由此可求得正方体的棱长为1,对角线为$\sqrt{3}$,从而外接球的直径也为$\sqrt{3}$,所以此球的表面积为$4\pi$,故选B。
【高中数学】空间几何体外接球与内切球问题

8.16作业 空间几何体外接球与内切球问题
1. 已知正四面体棱长为2,分别求该正四面体的外接球与内切球的半径.
2. 已知圆柱的内切球(圆柱的上、下底面及侧面都与球相切)的体积为43
π,求该圆柱的体积.
3. O 内切于该圆锥. (1)求该圆锥的高;
(2)求内切球O 的体积.
4.
5. 在长方体1111ABCD A B C D −中,AB =6,BC =8,16AA =.
(1)求三棱锥1D ABC −的体积;
(2)在三棱柱111ABC A B C −内放一个体积为V 的球,求V 的最大值.
6. 半正多面体亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体
现了数学的对称美.如图,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,得到一个有十四个面的半正多面体,它们的棱长都相等,其中八个为正三角形,六个为正方形,称这样的半正多面体为二十四等边体.若二十四等边体的棱长2,
(1)求其体积;
(2)若其各个顶点都在同一个球面上,求该球的表面积.。
空间几何体的外接球与内切球问题(学生版)

空间几何体的外接球与内切球问题目录一、必备秘籍二、典型题型题型一:内切球等体积法题型二:内切球独立截面法题型三:外接球公式法题型四:外接球补型法题型五:外接球单面定球心法题型六:外接球双面定球心法三、专项训练一、必备秘籍1.球与多面体的接、切定义1;若一个多面体的各顶点都在一个球面上,则称这个多面体是这个球的内接多面体,这个球是多面体的外接球。
定义2;若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是多面体的内切球。
类型一球的内切问题(等体积法)例如:在四棱锥P-ABCD中,内切球为球O,求球半径r.方法如下:V P-ABCD=V O-ABCD+V O-PBC+V O-PCD+V O-PAD+V O-PAB即:V P-ABCD=13S ABCD⋅r+13S PBC⋅r+13S PCD⋅r+13S PAD⋅r+13S PAB⋅r,可求出r.类型二球的外接问题1、公式法正方体或长方体的外接球的球心为其体对角线的中点2、补形法(补长方体或正方体)①墙角模型(三条线两个垂直)题设:三条棱两两垂直(重点考察三视图)②对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(AB=CD,AD=BC,AC=BD) 3、单面定球心法(定+算)步骤:①定一个面外接圆圆心:选中一个面如图:在三棱锥P-ABC中,选中底面ΔABC,确定其外接圆圆心O1(正三角形外心就是中心,直角三角形外心在斜边中点上,普通三角形用正弦定理定外心2r=asin A);②过外心O1做(找)底面ΔABC的垂线,如图中PO1⊥面ABC,则球心一定在直线(注意不一定在线段PO1上)PO1上;③计算求半径R:在直线PO1上任取一点O如图:则OP=OA=R,利用公式OA2=O1A2+OO12可计算出球半径R.4、双面定球心法(两次单面定球心)如图:在三棱锥P-ABC中:①选定底面ΔABC,定ΔABC外接圆圆心O1②选定面ΔPAB,定ΔPAB外接圆圆心O2③分别过O1做面ABC的垂线,和O2做面PAB的垂线,两垂线交点即为外接球球心O.二、典型题型题型一:内切球等体积法1(22·23·全国·专题练习)正三棱锥P-ABC的三条棱两两互相垂直,则该正三棱锥的内切球与外接球的半径之比为()A.1:3B.1:3+3C.3+1 :3D.3-1 :32(22·23下·朔州·阶段练习)正四面体的内切球、棱切球(与各条棱均相切的球)及外接球的半径之比为.3(23·24上·萍乡·期末)已知球O 是棱长为1的正四面体的内切球,AB 为球O 的一条直径,点P 为正四面体表面上的一个动点,则PA ⋅PB的取值范围为.4(22·23上·张家口·期中)球O 为正四面体ABCD 的内切球,AB =4,PQ 是球O 的直径,点M 在正四面体ABCD 的表面运动,则MP ⋅MQ的最大值为.5(22·23上·河南·阶段练习)已知正四面体ABCD 的棱长为12,球O 内切于正四面体ABCD ,E ,F 是球O 上关于球心O 对称的两个点,则AE ⋅BF的最大值为.6(22·23上·扬州·期中)中国古代数学名著《九章算术》中将底面为矩形且有一条侧棱垂直于底面的四棱锥称为“阳马”.现有一“阳马”的底面是边长为3的正方形,垂直于底面的侧棱长为4,则该“阳马”的内切球表面积为,内切球的球心和外接球的球心之间的距离为.题型二:内切球独立截面法1(23·24上·淮安·开学考试)球M 是圆锥SO 的内切球,若球M 的半径为1,则圆锥SO 体积的最小值为()A.43π B.423π C.83π D.4π2(22·23下·咸宁·期末)已知球O 内切于圆台(即球与该圆台的上、下底面以及侧面均相切),且圆台的上、下底面半径r 1:r 2=2:3,则圆台的体积与球的体积之比为()A.32B.1912C.2D.1963(22·23·全国·专题练习)若圆锥的内切球(球面与圆锥的侧面以及底面都相切)的半径为1,当该圆锥体积取最小值时,该圆锥体积与其内切球体积比为.4(23·24上·佛山·开学考试)若圆锥的内切球(球面与圆锥的侧面以及底面都相切)的体积为4π3,当该圆锥体积取最小值时,该圆锥的表面积为.5(22·23下·成都·阶段练习)已知圆锥的底面半径为2,高为42,则该圆锥的内切球表面积为.题型三:外接球公式法1(16·17·全国·单元测试)若长方体从一个顶点出发的三条棱长分别为3,4,5,则该长方体的外接球表面积为 ()A.50πB.100πC.150πD.200π2(22·23·全国·专题练习)设球O 是棱长为4的正方体的外接球,过该正方体的棱的中点作球O 的截面,则最小截面的面积为()A.3πB.4πC.5πD.6π3(14·15上·佛山·阶段练习)正方体的外接球(正方体的八个顶点都在球面上)与其内切球(正方体的六个面都与球相切)的体积之比是.题型四:外接球补型法1(23·24上·成都·开学考试)在三棱锥P -ABC 中,PA =PB =PC =2,PA ⊥PB ,PA ⊥PC ,PB ⊥PC ,则该三棱锥的外接球的表面积为()A.43πB.12πC.48πD.323π2(22·23下·揭阳·期中)在三棱锥S -ABC 中,SA =BC =5,SB =AC =41,SC =AB =34,则该三棱锥的外接球表面积是()A.50πB.100πC.150πD.200π3(23·24上·成都·开学考试)已知四面体ABCD 满足AB =CD =3,AD =BC =5,AC =BD =2,且该四面体ABCD 的外接球的表面积是()A.2πB.6πC.6π11D.4π4(22·23下·黔西·阶段练习)正三棱锥P -ABC 的三条棱两两互相垂直,则该正三棱锥的内切球与外接球的半径之比为.5(22·23下·黔西·期中)如图,已知在三棱锥P -ABC 中,PA ⊥PB ,PB ⊥PC ,PC ⊥PA ,且PA =2PB =2PC =2,求该三棱锥外接球的表面积是.题型五:外接球单面定球心法1(23·24上·汉中·模拟预测)如图,在三棱锥P -ABC 中,PA ⊥平面ABC ,PA =6,BC =3,∠CAB =π6,O为△ABC 外接圆的圆心,O 为三棱锥P -ABC 外接球的球心,OQ ⊥PA ,则三棱锥P -ABC 的外接球O 的表面积为.2(23·24上·秦皇岛·开学考试)三棱锥P-ABC中,AB⊥BC,P在底面的射影O为△ABC的内心,若AB=4,BC=3,PO=5,则四面体PABC的外接球表面积为.3(22·23下·石家庄·阶段练习)已知球O是正四面体P-ABC的外接球,E为棱PA的中点,F是棱PB上的一点,且FC=2EF,则球O与四面体P-EFC的体积比为.4(22·23下·淄博·期末)已知四棱锥P-ABCD的底面ABCD是矩形,侧面PAD为等边三角形,平面PAD⊥平面ABCD,其中AD=2,AB=3,则四棱锥P-ABCD的外接球表面积为.题型六:外接球双面定球心法1(22·23上·抚州·期中)已知菱形ABCD的各边长为2,∠D=60°.如图所示,将△ACD沿AC折起,使得点D到达点S的位置,连接SB,得到三棱锥S-ABC,此时SB=3.若E是线段SA的中点,点F在三棱锥S-ABC的外接球上运动,且始终保持EF⊥AC则点F的轨迹的面积为.2(22·23·赣州·模拟预测)如图,正三角形ABC中,D,E分别为边AB,AC的中点,其中AB=4,把△ADE沿着DE翻折至△A DE的位置,得到四棱锥A -BCED,则当四棱锥A -BCED的体积最大时,四棱锥A -BCED外接球的球心到平面A BC的距离为.3(22·23下·湖南·期末)为加强学生对平面图形翻折到空间图形的认识,某数学老师充分利用习题素材开展活动,现有一个求外接球表面积的问题,活动分为三个步骤,第一步认识平面图形:如图(一)所示的四边形PABC中,AB=BC=2,PA=PC,∠ABC=60°,PA⊥PC.第二步:以AC为折痕将△PAC折起,得到三棱锥P-ABC,如图(二).第三步:折成的二面角P-AC-B的大小为120°,则活动结束后计算得到三棱锥P-ABC外接球的表面积为.三、专项训练一、单选题1(22·23下·河南·模拟预测)已知直六棱柱的所有棱长均为2,且其各顶点都在同一球面上,则该球的表面积为( ).A.16πB.20πC.24πD.25π2(22·23下·宁德·期中)正四面体ABCD的外接球的半径为2,过棱AB作该球的截面,则截面面积的最小值为()A.2π3B.4π3C.8π3D.3π3(23·24上·河北·开学考试)长方体的一个顶点上三条棱长是3,4,5,且它的八个顶点都在同一球面上,这个球的体积是()A.12523π B.1252π C.50π D.125π4(22·23下·临夏·期末)已知四棱锥P-ABCD的体积为83,侧棱PA⊥底面ABCD,且四边形ABCD是边长为2的正方形,则该四棱锥的外接球的表面积为()A.12πB.8πC.4πD.2π5(23·24上·广东·阶段练习)如图,在边长为2的正方形ABCD中,E,F分别是AB,BC的中点,将△AED,△BEF,△DCF分别沿DE,EF,DF折起,使得A,B,C三点重合于点A ,若三棱锥A -EFD的所有顶点均在球O的球面上,则球O的表面积为()A.2πB.3πC.6πD.8π6(23·24上·安徽·开学考试)在封闭的等边圆锥(轴截面为等边三角形)内放入一个球,若球的最大半径为1,则该圆锥的体积为()A.3πB.6πC.9πD.12π7(23·24上·莆田·阶段练习)三棱锥P-ABC中,△ABC是边长为23的正三角形,PA=4,PA⊥AB,D为BC中点且PD=5,则该三棱锥外接球的表面积为()A.16πB.32πC.48πD.64π8(22·23·九江·一模)三棱锥A-BCD中,△ABD与△BCD均为边长为2的等边三角形,若平面ABD ⊥平面BCD,则该三棱锥外接球的表面积为()A.8π3B.20π3C.8πD.20π二、填空题9(23·24·柳州·模拟预测)已知圆锥的底面直径为23,轴截面为正三角形,则该圆锥内半径最大的球的体积为.10(22·23·唐山·二模)已知某圆台的上、下底面的圆周在同一球的球面上,且圆台上底面半径为1,下底面半径为2,轴截面的面积为3,则该圆台的外接球的体积为.11(22·23·大同·模拟预测)四个面都为直角三角形的四面体称之为鳌臑.在鳌臑P-ABC中,PA⊥平面ABC,PA=4,AB=BC=2,鳌臑P-ABC的四个顶点都在同一个球面上,则该球的表面积是.12(23·24上·辽宁·阶段练习)已知圆锥的底面半径为2,侧面展开图的面积为8π,则该圆锥的内切球的体积为.13(23·24上·成都·阶段练习)已知三棱锥S-ABC底面ABC是边长为2的等边三角形,平面SAB⊥底面ABC,SA=SB=2,则三棱锥S-ABC的外接球的表面积为.14(23·24上·遂宁·阶段练习)已知正三棱柱ABC-A1B1C1的六个顶点在球O1上,又球O2与此三棱柱的5个面都相切,则球O1与球O2的表面积之比为.15(22·23下·赣州·阶段练习)已知圆锥的内切球半径为1,若圆锥的侧面展开图恰好为一个半圆,则该圆锥的体积为.。
立体几何中内切球和外接球问题

立体几何中内切球和外接球问题题目:探索立体几何中的内切球和外接球问题在立体几何中,内切球和外接球问题是一个引人深思的话题。
通过对这个主题的深入探讨,我们可以更好地理解立体几何的原理和性质。
本文将围绕内切球和外接球问题展开讨论,从基本概念到数学推导,深入剖析这一有趣而重要的话题。
1. 内切球和外接球的定义在立体几何中,内切球和外接球分别是指一个球体在一个立体图形内部与其接触,以及一个球体在一个立体图形外部与其接触。
这两个概念可以应用在各种几何图形中,如圆柱体、圆锥体甚至更为复杂的多面体。
内切球和外接球不仅在几何形状中具有重要意义,还在工程学、艺术设计等领域有着广泛的应用价值。
2. 内切球和外接球的性质内切球和外接球在几何中具有许多有趣的性质。
内切球和外接球的半径之比有一定的规律,可以通过数学推导得出。
内切球和外接球的位置关系也有一定的特点,可以通过几何推理进行证明。
这些性质的深入理解有助于我们更好地应用立体几何知识解决实际问题。
3. 内切球和外接球的数学推导从数学角度来看,内切球和外接球问题涉及到许多重要的数学定理和方法。
通过数学推导,我们可以得到内切球和外接球的半径之比、位置关系等具体数学表达式。
这些推导过程需要运用到圆、球体的性质,以及立体几何的相关知识,是一个不可或缺的数学推理过程。
4. 个人观点和理解在我看来,内切球和外接球问题是立体几何中的一个精彩而复杂的主题。
通过对这个问题的探讨,我深刻地感受到数学的美妙和奥妙。
数学不仅是一门实用的科学,更是一个充满乐趣和挑战的学科。
通过不断地学习和探索,我们可以更好地理解立体几何的原理和应用,为我们的工程、设计和科学研究提供有力的支持。
内切球和外接球问题是立体几何中的一个重要而有趣的话题。
通过深入探讨这个主题,我们可以更好地理解立体几何的原理和应用,为我们的学习和工作带来更多的乐趣和启发。
希望本文的内容能够对您有所帮助,也希望您能够对立体几何有着更深入的理解和探索。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学课题研究几何体与球切、接的问题纵观近几年高考对于组合体的考查,与球相关的外接与内切问题是高考命题的热点之一.高考命题小题综合化倾向尤为明显,要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识学生掌握较为薄弱、认识较为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理. 下面结合近几年高考题对球与几何体的切接问题作深入的探究,以便更好地把握高考命题的趋势和高考的命题思路,力争在这部分内容不失分.从近几年全国高考命题来看,这部分内容以选择题、填空题为主,大题很少见. 首先明确定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。
定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.1 球与柱体的切接规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题.1.1 球与正方体如图所示,正方体1111ABCD A B C D -,设正方体的棱长为a ,,,,E F H G 为棱的中点,O 为球的球心.常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFGH 和其内切圆,则2a OJ r ==;二是与正方体各棱相切的球,截面图为正方形EFGH 和其外接圆,则GO R a ==;三是球为正方体的外接球,截面图为长方形11ACA C 和其外接圆,则12A O R a '==.通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题.(1)正方体的内切球,如图1. 位置关系:正方体的六个面都与一个球都相切,正方体中心与球心重合; 数据关系:设正方体的棱长为a ,球的半径为r ,这时有2r a =.(2)正方体的外接球,如图2. 位置关系:正方体的八个顶点在同一个球面上;正方体中心与球心重合; 数据关系:设正方体的棱长为a ,球的半径为r ,这时有23r a =.(3)正方体的棱切球,如图3. 位置关系:正方体的十二条棱与球面相切,正方体中心与球心重合; 数据关系:设正方体的棱长为a ,球的半径为r ,这时有22r a =.例 1 棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为( )A .22B .1C .212+D 2思路分析:由题意推出,球为正方体的外接球.平面11AA DD 截面所得圆面的半径122AD R ==得知直线EF 被球O 截得的线段就是球的截面圆的直径.【解析】由题意可知,球为正方体的外接球.平面11AA DD 截面所得圆面的半径122AD R ==11EF AA DD ⊂面,∴直线EF 被球O 截得的线段为球的截面圆的直径22R = 点评:本题考查球与正方体“接”的问题,利用球的截面性质,转化成为求球的截面圆直径.1.2 球与长方体例 2自半径为R 的球面上一点M ,引球的三条两两垂直的弦MC MB MA ,,,求222MC MB MA ++的值. 思路分析:此题欲计算所求值,应首先把它们放在一个封闭的图形内进行计算,所以应引导学生构造熟悉的几何体并与球有密切的关系,便于将球的条件与之相联.【解析】以MC MB MA ,,为从一个顶点出发的三条棱,将三棱锥ABC M -补成一个长方体,则另外四个顶点必在球面上,故长方体是球的内接长方体,则长方体的对角线长是球的直径. ∴222MC MB MA ++=224)2(R R =.点评:此题突出构造法的使用,以及渗透利用分割补形的方法解决立体几何中体积计算..例 3已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ).A.16πB.20πC.24πD.32π思路分析:正四棱柱也是长方体.由长方体的体积16及高4可以求出长方体的底面边长为2,可得长方体的长、宽、高分别为2,2,4,长方体内接于球,它的体对角线正好为球的直径.【解析】正四棱柱也是长方体。
由长方体的体积16及高4可以求出长方体的底面边长为2,因此,长方体的长、宽、高分别为2,2,4,因为长方体内接于球,所以它的体对角线正好为球的直径.长方体体对角线长为26,故球的表面积为24π.故选C.点评:本题考查球与长方体“接”的问题,利用长方体的性质,转化成为求其体对角线.2 球与锥体的切接规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题.2.1正四面体与球的切接问题(1) 正四面体的内切球,如图4. 位置关系:正四面体的四个面都与一个球相切,正四面体的中心与球心重合;数据关系:设正四面体的棱长为a ,高为h ;球的半径为R ,这时有643R h a ==;(可以利用体积桥证明)(2) 正四面体的外接球,如图5. 位置关系:正四面体的四个顶点都在一个球面上,正四面体的中心与球心重合; 数据关系:设正四面体的棱长为a ,高为h ;球的半径为R ,这时有436R h a ==;(可用正四面体高h 减去内切球的半径得到)(3) 正四面体的棱切球,如图6. 位置关系:正四面体的六条棱与球面相切,正四面体的中心与球心重合;数据关系:设正四面体的棱长为a ,高为h ;球的半径为R ,这时有6432,.3R h a h a ===例 4设正四面体中,第一个球是它的内切球,第二个球是它的外接球,求这两个球的表面积之比及体积之比.思路分析:此题求解的第一个关键是搞清两个球的半径与正四面体的关系,第二个关键是两个球的半径之间的关系,依靠体积分割的方法来解决的.【解析】如图,正四面体ABCD 的中心为O ,BCD ∆的中心为1O ,则第一个球半径为正四面体的中心到各面的距离,第二个球的半径为正四面体中心到顶点的距离.设R OA r OO ==,1,正四面体的一个面的面积为S .依题意得)(31r R S V BCD A +=-, 又S r V V BCD O BCD A ⋅⨯==--3144 r r R 4=+∴即r R 3=.所以914422==R r ππ外接球的表面积内切球的表面积.271343433==R r ππ外接球的体积内切球的体积.点评:正四面体与球的接切问题,可通过线面关系证出,内切球和外接球的两个球心是重合的,为正四面体高的四等分点,即定有内切球的半径h r 41=(h 为正四面体的高),且外接球的半径r R 3=. 2.2其它棱锥与球的切接问题球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的各个顶点在球面上,根据截面图的特点,可以构造直角三角形进行求解.二是球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和为正三棱锥的体积.球与一些特殊的棱锥进行组合,一定要抓住棱锥的几何性质,可综合利用截面法、补形法等进行求解.例如,四个面都是直角三角形的三棱锥,可利用直角三角形斜边中点几何特征,巧定球心位置.例5正三棱锥的高为1,底面边长为62,正三棱锥内有一个球与其四个面相切.求球的表面积与体积. 思路分析:此题求解的关键是搞清球的半径与正三棱锥的高及底面边长的关系,由等体积法可得:ABC O PBC O PAC O PAB O ABC P V V V V V -----+++=,得到2633232-=+=R . 【解析】如图,球O 是正三棱锥ABC P -的内切球,O 到正三棱锥四个面的距离都是球的半径R .是正三棱锥的高,即1=PH .是BC 边中点,H 在AE 上,ABC ∆的边长为62,∴26263=⨯=HE . ∴3=PE 可以得到2321=⋅===∆∆∆PE BC S S S PBC PAC PAB . 36)62(432==∆ABC S 由等体积法,ABC O PBC O PAC O PAB O ABC P V V V V V -----+++= ∴R R ⨯⨯+⨯⨯⨯=⨯⨯36313233113631得:2633232-=+=R , ∴πππ)625(8)26(4422-=-==R S 球. ∴33)26(3434-==ππR V 球. 点评:球心是决定球的位置关键点,本题利用球心到正三棱锥四个面的距离相等且为球半径R 来求出R ,以球心的位置特点来抓球的基本量,这是解决球有关问题常用的方法.例63,则其外接球的表面积是.思路分析:此题用一般解法,需要作出棱锥的高,然后再设出球心,利用直角三角形计算球的半径.而作为填空题,我们更想使用较为便捷的方法.三条侧棱两两垂直,使我们很快联想到长方体的一个角,马上构造长方体,由侧棱长均相等,所以可构造正方体模型.【解析】此题用一般解法,需要作出棱锥的高,然后再设出球心,利用直角三角形计算球的半径.而作为填空题,我们更想使用较为便捷的方法,所以三条侧棱两两垂直,使我们很快联想到长方体的一个角,马上构造长方体,且侧棱长均相等,所以可构造正方体模型,如图1,则AC=BC=CD 3=接球的直径即为正方体的体对角线,故所求表面积是9π.(如图1)点评:此题突出构造法的使用,以及渗透利用分割补形的方法解决立体几何中计算问题,这是解决几何体与球切接问题常用的方法.例7 已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 是球O 的直径,且2SC =;则此棱锥的体积为( )思路分析:ABC ∆的外接圆是球面的一个小圆,由已知可得其半径,从而得到点O 到面ABC 的距离.由SC 为球O 的直径⇒点S 到面ABC 的距离即可求得棱锥的体积.【解析】ABC ∆的外接圆半径为r 3=,点O 到面ABC的距离d 3==SC 为球O 的直径⇒点S 到面ABC的距离2d =此棱锥的体积为112336ABC V S d ∆=⨯==选A . 点评:本题难度不大,主要是利用转化与化归思想,将棱锥高应用球的几何性质计算得到.3 球与球相切问题对于球与球的相切组合成复杂的几何体问题,要根据丰富的空间想象力,通过准确确定各个小球的球心的位置,或者巧借截面图等方法,将空间问题转化平面问题求解.例8已知有半径分别为2、3的球各两个,且这四个球彼此相外切,现有一个球与此四个球都相外切,则此球的半径为.思路分析:结合图形,分析四个球的球心A 、B 、C 、D 的位置,知AD=AC=BD=BC=5,AB=6,CD=4.设AB 中点为E 、CD 中点为F ,连结EF.在△ABF 中可得BF=EBF 中可得EF=由于对称性可得第五个球的球心O 在EF 上,连结OA 、OD.设第五个球的半径为r ,根据OE+OF=EF 建立r 的方图1图2程.【解析】如图:设四个球的球心分别为A、B、C、D,则AD=AC=BD=BC=5,AB=6,CD=4.设AB中点为E、CD中点为F,连结EF.在△ABF中求得,在△EBF中求得EF=由于对称性可得第五个球的球心O在EF上,连结OA、OD.设第五个球的半径为r,则OA=r+3,OD=r+2,于是OE+OF=EF⇒211+6036=0r r-解得6=11r或6-(舍掉),故答案为611.C点评:本题通过分析球心的位置,根据它们构成的几何体特征,转化成平面几何中三角形边角关系,利用方程思想得解.例9把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离.思路分析:关键在于能根据要求构造出相应的几何体,由于四个球半径相等,故四个球一定组成正四面体的四个顶点且正四面体的棱长为两球半径之和2.【解析】四球心组成棱长为2的正四面体的四个顶点,则正四面体的高362)332(222=⋅-=h.而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为3622+.点评:本题难度不大,主要是利用转化与化归思想,将棱锥高应用球的几何性质计算得到.4 球与几何体的各条棱相切问题球与几何体的各条棱相切问题,关键要抓住棱与球相切的几何性质,达到明确球心的位置为目的,然后通过构造直角三角形进行转换和求解.如与正四面体各棱都相切的球的半径为相对棱的一半:24r a '=. 例10把一个皮球放入如图10所示的由8根长均为20 cm 的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点,则皮球的半径为()A .l03cmB .10 cmC .102cmD .30cm思路分析:根据题意球心O 在图中AP 上,过O 作BP 的垂线ON 垂足为N ,ON=R ,OM=R ,由各个棱都为20,得到AM=10,BP=20,BM=10,AB=102,设BPA α∠=,在Rt ∆BPM 中,由222BP BM PM =+,得103PM =.在Rt ∆PAM 中, 由222PM AM AP =+,得102PA =.在Rt ∆ABP 中得,1022sin 202AB BP α===,在Rt ∆ONP 中得, sin ON R OP OPα==,从而22R OP =,2OP R =.在Rt ∆OAM 中, 由222OM AO AM =+,建立方程22(1022)100R R =-+即可得解.【解析】如图所示,由题意球心在AP 上,球心为O ,过O 作BP 的垂线ON 垂足为N ,ON=R ,OM=R ,因为各个棱都为20,所以AM=10,BP=20,BM=10,AB=102,设BPA α∠=,在Rt ∆BPM 中,222BP BM PM =+,所以103PM =.在Rt ∆PAM 中, 222PM AM AP =+,所以102PA =.在Rt ∆ABP 中, 1022sin 202AB BP α===,在Rt ∆ONP 中, sin ON R OP OPα==,所以22R OP =,所以2OP R =.在Rt ∆OAM 中, 222OM AO AM =+,所以,22(1022)100R R =-+,解得,10R =或30(舍),所以,10,R cm =故选B.点评:本题难度较大,主要是利用转化与化归思想,将问题转化成平面几何问题,应用三角形中的边角关系,建立R 的方程.5 球与旋转体切接问题首先画出球及其它旋转体的公共轴截面,然后寻找几何体与几何体几何元素之间的关系.例11求球与它的外切圆柱、外切等边圆锥的体积之比.思路分析:首先画出球及它的外切圆柱、等边圆锥,它们公共的轴截面,然后寻找几何体与几何体之间元素的关系.【解析】如图,等边SAB ∆为圆锥的轴截面,此截面截圆柱得正方形11CDD C ,截球面得球的大圆圆1O . 设球的半径R OO =1,则它的外切圆柱的高为R 2,底面半径为R ;R O O OB 330cot 1=︒⋅=, R R OB SO 33360tan =⋅=︒⋅=,∴334R V π=球,3222R R R V ππ=⋅=柱, 3233)3(31R R R V ππ=⋅⋅=锥, ∴964∶∶∶∶锥柱球=V V V .点评:本题充分利用轴截面,将问题转化成平面几何问题,应用三角形中的边角关系,建立与球半径R 的联系.例12在棱长为1的正方体内有两个球相外切且又分别与正方体内切.(1)求两球半径之和;(2)球的半径为多少时,两球体积之和最小.思路分析:此题的关键在于作截面,一个球在正方体内,学生一般知道作对角面,而两个球的球心连线也应在正方体的体对角线上,故仍需作正方体的对角面 ,得如图的截面图,在图中,观察R 与r 和棱长间的关系即可.【解析】如图,球心1O 和2O 在AC 上,过1O ,2O 分别作BC AD ,的垂线交于F E ,. 则由3,1==AC AB 得R CO r AO 3,321==.3)(3=+++∴R r R r , 233133-=+=+∴r R .(1)设两球体积之和为V ,则))((34)(342233r Rr R R r r R V +-+=+=ππ =[]=-+rR r R 3)(233342π⎥⎦⎤⎢⎣⎡--)233(3)233(233342R R π =⎥⎦⎤⎢⎣⎡-+--22)233(2)33(3323334R R π 当433-=R 时,V 有最小值.∴当433-==r R 时,体积之和有最小值. 点评:本题充分利用轴截面,将问题转化成平面几何问题,应用三角形中的边角关系,建立与球半径,r R 的联系,将球的体积之和用r 或R 表示,应用二次函数的图象和性质确定其最小值.本题综合性较强,是函数与立体几何相结合的典例.综合上面的五种类型,解决与球的外切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作;把一个多面体的几个顶点放在球面上即为球的内接问题.解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.发挥好空间想象力,借助于数形结合进行转化,问题即可得解.如果是一些特殊的几何体,如正方体、正四面体等可以借助结论直接求解,此时结论的记忆必须准确.高考题往往与三视图相结合,题目的难易不一,在复习中切忌好高骛远,应重视各种题型的备考演练,重视高考信息的搜集,不断充实题目的类型,升华解题的境界.。