高中数学竞赛_排列组合与概率【讲义】

合集下载

高中数学第四册排列组合讲义.

高中数学第四册排列组合讲义.

A B P Q • • • •高中數學第四冊排列組合講義1.A , B 兩隊比籃球賽,每局不得成和局,規定A 隊勝三局為贏;A 隊勝三場前B 勝二局算B 隊贏,試問此比賽之所有可能情形有 種?又其中A , B 輸贏如何?2.有A , B , C , D , …等身高不等的8人排成一橫列,欲使任一較矮者不夾排在二較高者之間之排法共有 種?3.五種不同的顏色塗右圖,相鄰著異色,共有 種不同的塗法。

4.))()((v u z y x g f e d c b a +++++++++的展開式中共有 項。

5.540之正因數共有 個,其一切正因數和為 ,乘積為 。

6.x | 36000,(x , 63)=3,25| x 之自然數x 共有 個。

7.不同的渡船3艘,每艘可載5人,今有7人同時過渡,有 種安全的渡法。

8.如右圖,從A 到B 之走法中,不許走←方向的走法共有 種。

9.下列各街巷,從A 走到B 之捷徑走法各有幾?10. 如右圖自A 到B ,但限定只能走↑→↓三種方向,而且道路不重複走。

試問以下情形各有幾種走法? (1)由A 到B 有 種走法。

(2)由A 不經過P 到B 有 種走法。

(3)由A 不經過Q 到B 有 種走法。

(4)由A 不經過P 且不經過Q 到B 有 種走法。

(5)由A 經過P 但不經過Q 到B 有 種走法。

11. 考慮正五邊形及其所有對角線所成的圖形,此圖形中各線段圍成之各種三角形相似者列為一類,共有m 類,全等者列為一類,共有n 類,求m= 及n= 。

總共有 個三角形。

12. 在平面上任意畫不完全重合之n 個相異圓至多有 個交點。

13. 排容原理:1到100之自然數中,是2或3或5的倍數共有 個。

14. 千元鈔2張,五百元鈔3張,百元鈔4張,每次至少取一張,(1)共有 種取法。

(2)可以配出 種不同的款項。

15. 今有五個不同的門,甲、乙兩人由不同的門進入,不同的門出來,(1)自己可由相同的門進出有 種方法。

高三数学总复习 数学竞赛教案讲义排列组合与概率 新人教A版

高三数学总复习 数学竞赛教案讲义排列组合与概率 新人教A版

课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。

2、了解我国书法发展的历史。

3、掌握基本笔画的书写特点。

重点:基本笔画的书写。

难点:运笔的技法。

教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。

2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。

二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。

换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。

三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。

2、教师边书写边讲解。

3、学生练习,教师指导。

(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。

在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。

5、学生练习,教师指导。

(发现问题及时指正)四、作业:完成一张基本笔画的练习。

板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。

这是书写的起步,让学生了解书写工具及保养的基本常识。

基本笔画书写是整个字书写的基础,必须认真书写。

课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。

课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。

2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。

重点:正确书写6个字。

难点:注意字的结构和笔画的书写。

教学过程:一、小结课堂内容,评价上次作业。

二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。

2、书写方法是:写一个字看一眼黑板。

(老师读,学生读,加深理解。

高中数学竞赛_排列组合与概率【讲义】

高中数学竞赛_排列组合与概率【讲义】

第十三章 排列组合与概率一、基础知识1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。

2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。

3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m nA 表示,mn A =n(n-1)…(n-m+1)=)!(!m n n -,其中m,n ∈N,m ≤n,注:一般地0nA =1,0!=1,nn A =n!。

4.N 个不同元素的圆周排列数为nA nn =(n-1)!。

5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。

从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用mn C 表示:.)!(!!!)1()1(m n m n m m n n n C m n -=+--=6.组合数的基本性质:(1)m n nmnC C -=;(2)11--+=n n m n m n C C C ;(3)k n k n C C kn =--11;(4)n nk k n n nnnC C C C 2010==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)kn m n m k k n C C C --=。

高二数学排列、组合与概率综合提高知识精讲

高二数学排列、组合与概率综合提高知识精讲

高二数学排列、组合与概率综合提高【本讲主要内容】排列、组合与概率综合提高分步与分步计数原理、排列与组合的概念、排列数与组合数公式、组合数的性质、事件的定义、概率的性质、随机事件的概率、等可能事件的概率计算、互斥事件有一个发生的概率、对立事件的概率、相互独立事件同时发生的概率、n 次独立重复实验恰好有k 次发生的概率。

【知识掌握】【知识点精析】1. 分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有N =m 1+m 2+…+m n 种不同的方法。

2. 分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有N =m 1×m 2×…×m n 种不同的方法。

3. 排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....。

4. 排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 个元素的排列数,用符号m n A 表示。

5. 排列数公式:A n n n n m n m =---+()()()121 (,,m n N m n *∈≤)。

6. 阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘。

规定0!1=。

7. 排列数的另一个计算公式:m n A =!()!n n m -。

8. 组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。

9. 组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n个不同元素中取出m 个元素的组合数...。

高二数学排列组合概率PPT课件

高二数学排列组合概率PPT课件

轮船2
第1页/共64页
问题2 某人从甲地出发,经过乙地到达丙地,从甲 地到乙地有3条路可走,从乙地到丙地有2条路可走。那 么,从甲地到丙地共有多少种不同的走法?
B
a


A

C
b
显然,从甲地经过乙地到丙地的不同走法,正好是完成两个 步骤的方法种数的乘积,即3×2=6(种)
第2页/共64页
由问题1可得 分类计数原理: 若完成一件事有n类办法,在第一类办法中有k1种
N=3×2=6
第6页/共64页
单击鼠标继续
1.在读书活动中,指定不同的政治书3本、文艺书5本、 科技书7本,某同学任意选读其中1本,共有多少种不同 的选法?
2.某班有男三好学生5人,女三好学生4人,从中任选1 人去领奖,共有多少种不同的选法?从中任选男女三好 学生各1人去参加座谈会,共有多少种不同的选法?
第8页/共64页
扩展:快速调整魔方
问题1 北京、上海、广州3个民航站之间的直达航线, 需要准备多少种不同的飞机票?
这个问题,就是从3个民航站中,每次取出2个,按 照起点在前、终点在后的顺序排列,求一共有多少种不 同排法的问题。
起点站 北京 上海 广州
终点站
上海 广州
北京 广州
北京 上海
飞机票
北京→上海 北京→广州
N k1 k2 ... kn 种不同的方法。
第3页/共64页
例题解析
例1 书架上层放有5本不同的语文书,中层放有6本不 同的数学书,下层放有4本不同的外语书。求:
(1)从中任取1本,有多少种不同取法? (2)从中任取语文、数学和外语书各1本,有多少种 不同的取法?
解 (1)从书架上任取1本书,有三类办法:第一类办法是从上层取

第十三章排列组合与概率(高中数学竞赛标准教材)

第十三章排列组合与概率(高中数学竞赛标准教材)

第十三章排列组合与概率(高中数学竞赛标准教材)第十三章排列组合与概率一、基础知识.加法原理:做一件事有n类办法,在第1类办法中有1种不同的方法,在第2类办法中有2种不同的方法,……,在第n类办法中有n种不同的方法,那么完成这件事一共有N=1+2+…+n种不同的方法。

.乘法原理:做一件事,完成它需要分n个步骤,第1步有1种不同的方法,第2步有2种不同的方法,……,第n步有n种不同的方法,那么完成这件事共有N=1×2×…×n种不同的方法。

.排列与排列数:从n个不同元素中,任取个元素,按照一定顺序排成一列,叫做从n个不同元素中取出个元素的一个排列,从n个不同元素中取出个元素的所有排列个数,叫做从n个不同元素中取出个元素的排列数,用表示,=n…=,其中,n∈N,≤n,注:一般地=1,0!=1,=n!。

.N个不同元素的圆周排列数为=!。

.组合与组合数:一般地,从n个不同元素中,任取个元素并成一组,叫做从n个不同元素中取出个元素的一个组合,即从n个不同元素中不计顺序地取出个构成原集合的一个子集。

从n个不同元素中取出个元素的所有组合的个数,叫做从n个不同元素中取出个元素的组合数,用表示:.组合数的基本性质:;;;;;。

.定理1:不定方程x1+x2+…+xn=r的正整数解的个数为。

[证明]将r个相同的小球装入n个不同的盒子的装法构成的集合为A,不定方程x1+x2+…+xn=r的正整数解构成的集合为B,A的每个装法对应B的唯一一个解,因而构成映射,不同的装法对应的解也不同,因此为单射。

反之B中每一个解,将xi作为第i个盒子中球的个数,i=1,2,…,n,便得到A的一个装法,因此为满射,所以是一一映射,将r个小球从左到右排成一列,每种装法相当于从r-1个空格中选n-1个,将球分n份,共有种。

故定理得证。

推论1不定方程x1+x2+…+xn=r的非负整数解的个数为推论2从n个不同元素中任取个允许元素重复出现的组合叫做n个不同元素的可重组合,其组合数为.二项式定理:若n∈N+,则n=.其中第r+1项Tr+1=叫二项式系数。

高中数学竞赛(排列组合概率)

高中数学竞赛(排列组合概率)

概率、统计【知识精要】1. 排列、组合问题的基本原理:加法(分类)和乘法(分步)原理。

解决此类问题常见要点:(1)不重复,不遗漏;(2)正面考虑比较麻烦时,考虑间接法;(2)特殊位置、元素优先考虑;(3)转化思想,对于陌生问题,尽量转化为熟悉模型。

2.隔板法模型:将m 个名额分给k 个人()m k ≥,每人至少一个的方法是11k m C --;引申1:方程12k x x x m ++⋅⋅⋅+=(1,,)i i x x Z m Z +≥∈∈的解有11k m C --组;引申2:方程12k x x x m ++⋅⋅⋅+=(0,,)i i x x Z m Z +≥∈∈的解有11k m k C -+-组。

【例题精讲】+【习题精练】例1:3个人传球,由甲发球,5次传球之后,仍回到甲手中,有多少种传球方法? 解:将问题转化为右图填图问题。

中间可能有甲或无甲,则有1122222210C C A A +=种不同的传球方法。

练习1:(2000全国高中数学联赛)如果:(1)a ,b ,c ,d 都属于{1,2,3,4};(2)a ≠b ,b ≠c ,c ≠d ,d ≠a ;(3)a 是a ,b ,c ,d 中的最小值,那么,可以组成的不同的四位数abcd 的个数是_________.例2:使直线1ax by +=和圆2250x y +=只有整数公共点的有序实数对(,)a b 的个数为:( ) A 、72 B 、74 C 、78 D 、82 解:第一象限圆上有(7,1),(5,5),(1,7)三个整点,故平面上有12个整点,分割线或切线,共2121278C +=条,但该直线不过原点,减去6条,共有72条,选A 。

练习2:(05年江苏高中数学竞赛)由三个数字 1、2、3 组成的 5 位数中, 1、2、3 都至少出现 1 次, 这样的5位数共有 .例3:(2005全国高考试题改编)过三棱柱任意两个顶点的直线共15条,任选两条为异面直线的概率是: 。

排列组合概率专题讲解

排列组合概率专题讲解

专题五:排列、组合、二项式定理、概率与统计【考点分析】1.突出运算能力的考查。

高考中无论是排列、组合、二项式定理和概率题目,均是用数值给出的选择支或要求用数值作答,这就要求平时要重视用有关公式进行具体的计算。

2.有关排列、组合的综合应用问题。

这种问题重点考查逻辑思维能力,它一般有一至两3.个附加条件,此附加条件有鲜明的特色,是解题的关键所在;而且此类问题一般都有多种解法,平时注意训练一题多解;它一般以一道选择题或填空题的形式出现,属于中等偏难(理科)的题目。

4.有关二项式定理的通项式和二项式系数性质的问题。

这种问题重点考查运算能力,特别是有关指数运算法则的运用,同时还要注意理解其基本概念,它一般以一道选择题或填空题的形式出现,属于基础题。

5.有关概率的实际应用问题。

这种问题既考察逻辑思维能力,又考查运算能力;它要求对四个概率公式的实质深刻理解并准确运用;文科仅要求计算概率,理科则要求计算分布列和期望;它一般以一小一大(既一道选择题或填空题、一道解答题)的形式出现,属于中等偏难的题目。

6.有关统计的实际应用问题。

这种问题主要考查对一些基本概念、基本方法的理解和掌握,它一般以一道选择题或填空题的形式出现,属于基础题。

【疑难点拨】1.知识体系:2.知识重点:(1)分类计数原理与分步计数原理。

它是本章知识的灵魂和核心,贯穿于本章的始终。

(2)排列、组合的定义,排列数公式、组合数公式的定义以及推导过程。

排列数公式的推导过程就是位置分析法的应用,而组合数公式的推导过程则对应着先选(元素)后排(顺序)这一通法。

(3)二项式定理及其推导过程、二项展开式系数的性质及其推导过程。

二项式定理的推导过程体现了二项式定理的实质,反映了两个基本计数原理及组合思想的具体应用,二项展开式系数性质的推导过程就对应着解决此类问题的通法——赋值法(令x=±1)的应用。

(4)等可能事件的定义及其概率公式,互斥事件的定义及其概率的加法公式,相互独立事件的定义及其概率的乘法公式,独立重复试验的定义及其概率公式。

排列组合专题讲义

排列组合专题讲义
例 9、 4 名学生分 6 本相同的书,每人至少 1 本,有多少种不同分法?
变式一 有 10 个三好学生名额,分配到 6 个班,每班至少 1 个名额,共有多少种不同的分 配方案?
变式二 20 个相同的球分给 3 个人,允许有人可以不取,但必须分完,有多少种分法?
6
思维的发掘
能力的飞跃
高中数学讲义
十 分组分配问题
课后作业
1、7 名师生站成一排照相留念,其中老师 1 人,男生 4 人,女生 2 人,在下列情况下,各 有不同站法多少种? (1)两名女生必须相邻而站; (2)4 名男生互不相邻; (3)若 4 名男生身高都不等,按从高到低的顺序站; (4)老师不站中间,女生不站两端. 2、2 位男生和 3 位女生共 5 位同学站成一排,若男生甲不站两端,3 位女生中有且只有两 位女生相邻,则不同排法的种数是___。
6 、上午 4 节课,一个教师要上 3 个班级的课,每个班 1 节课,都安排在上午,若不能 3 节连上,这个教师的课有_ __种不同的排法.
7、从 5 名学生中任选 4 名分别参加数学、物理、化学、生物四科竞赛,且每科竞赛只有 1 人参加,若甲不参加生物竞赛,则不同的选择方案共有__ _种.
8、 某条道路一排共 10 盏路灯,为节约用电,晚上只打开其中的 3 盏灯.若要求任何连 续三盏路灯中至少一盏是亮的且首尾两盏灯均不打开.则这样的亮灯方法有_ __种.
5
高中数学讲义
变式五 某校开设 A 类选修课 3 门,B 类选择课 4 门,一位同学从中共选 3 门.若要求两类 课程中各至少选一门,则不同的选法共有 A. 30 种 B. 35 种 C. 42 种 D. 48 种
变式六 在某种信息传输过程中,用 4 个数字的一个排列(数字允许重复)表示一个信息, 不同排列表示不同信息,若所用数字只有 0 和 1,则与信息 0110 至多有两个对应位置上的 数字相同的信息个数为 A.10 B.11 C.12 D.15

高考数学排列组合与概率统计讲义

高考数学排列组合与概率统计讲义

高考数学知识归纳分析第一讲 排列组合与概率分析 [排列组合] 一、基本知识点1.加法原理:做一件事有n 类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,……,在第n 类办法中有mn 种不同的方法,那么完成这件事一共有N=m1+m2+........….+mn ...种不同的方法。

2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m1种不同的方法,第2步有m2种不同的方法,……,第n 步有mn 种不同的方法,那么完成这件事共有N=m1×m2×…×mn 种不同的方法。

3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,m n A =n(n-1)…(n-m+1)=)!(!m n n -,其中m,n ∈N,m ≤n,注:一般地0n A =1,0!=1,n n A =n!。

4.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。

从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用mn C 表示:.)!(!!!)1()1(m n m n m m n n n C mn -=+--=6.组合数的基本性质:(1)m n n mnCC -=;(2)11--+=n n m nm n CC C;(3)kn k n C C k n =--11;(4)nnk kn n nnnC C C C 2010==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)kn m n m k k n C C C --=。

高中数学排列组合模型讲义

高中数学排列组合模型讲义

高中数学排列组合模型讲义定义:从n 个不同的元素中取出m(n m ≤)个元素,按照一定的顺序排成一列。

记作:Km HY2.构成:{⎧⎪⎨⎪⎩原始的元素:n 个取出的元素:m 个【元素】 【位置】m 个元素按照一定的顺序排列【分步】 本质:【顺序】从n 个不同的元素中取出的m 个元素进行排列时顺序是固定的 【集合】有限集合K={}n a a a ......,21{},,|),......,,(.....21j i x x k x x x x K K K K j i i m m ≠≠∈=**=(1)(2)......(1)m mn k n n n n m A =*--*-+=【元素个数】⎪⎩⎪⎨⎧=⊇≥=n A card BA mn mB card )()(【数】m 个不同的元素【个数】从n 个不同的元素中取出m(n m ≤)个元素的所有不同元素的个数,叫做从n 个不同元素中取出m 个元素的排列数【K 集合中的两个元素】1.相邻 2.不相邻3.在特定的位置 4.不在特定的位置 【三个元素】1.相邻 2.不相邻3.在特定的位置4.不在特定的位置【四个元素】从a,b,c,d 四个元素中取出三个元素的排列共有34A 个,abc 是其中一个排列 【m 个元素】1.取出的m 个元素可以重复 2.取出的m 个元素不可以重复 【位置与元素】1.特定的元素排在特定的位置 2.特定的元素不排在特定的位置 3.分类【元素的个数】{【有限】有穷数列【无限】无穷数列【顺序】{组合数列【m 】{时,全排列时,选排列n m n m =<4.条件1.【定义】从n 个不同的元素中取出m(n m ≤)个元素,按照一定的顺序排成一列2.【位置】元素相同,位置也相同,则是同一个排列;元素完全不同,或元素不完全相同,或元素相同,位置不同都不是同一个排列 5.性质【个数】)!(!m n n A mn -=【m=n 】!n A nn =11--=m n m n nA A排列模型一、 直线排列:元素不完全相同的直线排列⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⊃⊃⎢⎣⎡⊃⎢⎣⎡+-+-⊃→置特定元素必不在特定位特定元素必在特定位置元素顺序不固定元素顺序固定必不相邻模型)!元素顺序不固定()!元素顺序固定(必相邻模型排列数不重复排列m m m m n m m n m !11 模型个人,每个人至少一件映射个数为排列数为重复排列k n m ⊃→→ 元素不完全相同的直线排列走楼梯法排列数⊃→!!!!!321k m m m m n二、 环状排列⎢⎢⎢⎢⎢⎣⎡⎢⎢⎢⎣⎡⊃→长方形排列正多边形排列项圈排列排列数为无编号直线排列有编号 直线排列一、 不同元素的排列问题 (一) 不重复排列 1、 必相邻模型:站法?必须站在一起,有几种名女生站成一排,女生名男生和例、有)数为(元素进行排列,总排列对个元素顺序不固定个元素排列元素看成一个元素,解析:用捆绑法把)元素顺序不固定:()、()总排列数为(个元素顺序一定个元素排列一个元素,然后对元素捆绑在一起,看成解析:把)元素顺序固定:(、元素必相邻的排列数:个不同元素中,34!!11!!12!11!1)1(m m n m m m n m m m n m m n m m n m m n m m n +-∴+-+-+-∴+-+-2、 不相邻模型:有几种站法?女生和女生都不相邻,不相邻,有几种站法?名女生站成一排,女生名男生和例、有方法并按顺序排列,共有种个元素,个空来放个空,从中取出个元素全排列,则有解析:对元素顺序不固定:)、(顺序固定,即有个元素,个空来放个空,从中取出个元素全排列,则有解析:对元素顺序固定:、数:个元素必不相邻的排列个不同元素中,45121)1(m m m n m n m m m m n m n m m n +--+--3、特定元素必在特定位置站法?在两端,有几种不同的必须站中间,乙必须站个人站成一排,其中甲例、排列。

高中数学竞赛校本教材——§16排列,组合

高中数学竞赛校本教材——§16排列,组合

高中数学竞赛校本教材§16排列,组合1.排列组合题的求解策略(1)排除:对有限条件的问题,先从总体考虑,再把不符合条件的所有情况排除,这是解决排列组合题的常用策略.(2)分类与分步有些问题的处理可分成若干类,用加法原理,要注意每两类的交集为空集,所有各类的并集是全集;有些问题的处理分成几个步骤,把各个步骤的方法数相乘,即得总的方法数,这是乘法原理.(3)对称思想:两类情形出现的机会均等,可用总数取半得每种情形的方法数.(4)插空:某些元素不能相邻或某些元素在特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后将有限制条件的元素按要求插入到排好的元素之间.(5)捆绑:把相邻的若干特殊元素“捆绑”为一个“大元素”,然后与其它“普通元素”全排列,然后再“松绑”,将这些特殊元素在这些位置上全排列.(6)隔板模型:对于将不可辨的球装入可辨的盒子中,求装的方法数,常用隔板模型.如将12个完全相同的球排成一列,在它们之间形成的11个缝隙中任意插入3块隔板,把球分成4堆,分别装入4个不同的盒子中的方法数应为311C ,这也就是方程12=+++d c b a 的正整数解的个数.2.圆排列(1)由},,,,{321n a a a a A =的n 个元素中,每次取出r 个元素排在一个圆环上,叫做一个圆排列(或叫环状排列).(2)圆排列有三个特点:(i )无头无尾;(ii )按照同一方向转换后仍是同一排列;(iii )两个圆排列只有在元素不同或者元素虽然相同,但元素之间的顺序不同,才是不同的圆排列.(3)定理:在},,,,{321n a a a a A =的n 个元素中,每次取出r 个不同的元素进行圆排列,圆排列数为rP r n . 3.可重排列允许元素重复出现的排列,叫做有重复的排列.在m 个不同的元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序那么第一、第二、…、第n 位是的选取元素的方法都是m 种,所以从m 个不同的元素中,每次取出n 个元素的可重复的排列数为nm . 4.不尽相异元素的全排列如果n 个元素中,有1p 个元素相同,又有2p 个元素相同,…,又有s p 个元素相同(n p p p s ≤+++ 21),这n 个元素全部取的排列叫做不尽相异的n 个元素的全排列,它的排列数是!!!!21s p p p n ⋅⋅⋅ 5.可重组合(1)从n 个元素,每次取出p 个元素,允许所取的元素重复出现p ,,2,1 次的组合叫从n 个元素取出p 个有重复的组合.(2)定理:从n 个元素每次取出p 个元素有重复的组合数为:r p n p n C H )1(-+=.例题讲解1.数1447,1005,1231有某些共同点,即每个数都是首位为1的四位数,且每个四位数中恰有两个数字相同,这样的四位数共有多少个?2.有多少个能被3整除而又含有数字6的五位数?3.有n2个人参加收发电报培训,每两人结为一对互发互收,有多少种不同的结对方式?4.将1 n个不同的小球放入n个不同的盒子中,要使每个盒子都不空,共有多少种放法?5.在正方体的8个顶点,12条棱的中点,6个面的中心及正方体的中心共27个点中,共线的三点组的个数是多少个?6.用8个数字1,1,7,7,8,8,9,9可以组成不同的四位数有多少个?7.用E D C B A ,,,,五种颜色给正方体的各个面涂色,并使相邻面必须涂不同的颜色,共有多少种不同的涂色方式?8.某种产品有4只次品和6只正品(每只产品可区分),每次取一只测试,直到4只次品全部测出为止.求最后一只次品在第五次测试时被发现的不同情形有多少种?9.在平面上给出5个点,连结这些点的直线互不平行,互不重合,也互不垂直,过每点向其余四点的连线作垂线,求这此垂线的交点最多能有多少个?10.位政治家举行圆桌会议,两位互为政敌的政治家不愿相邻,其入坐方法有多少种?11.某城市有6条南北走向的街道,5条东西走向的街道.如果有人从城南北角(图A点)走到东南角中B点最短的走法有多少种?12.用4个1号球,3个2号球,2个3号球摇出一个9位的奖号,共有多少种可能的号码?r ).13.将r个相同的小球,放入n个不同的盒子(n(1)有多少种不同的放法?(2)如果不允许空盒应有多少种不同的放法?14.8个女孩和25个男孩围成一圈,任意两个女孩之间至少站着两个男孩.(只要把圆旋转一下就重合的排列认为是相同的)课后练习1.8次射击,命中3次,其中愉有2次连续命中的情形共有( )种(A )15 (B )30 (C )48 (D )602.在某次乒乓球单打比赛中,原计划每两名选手恰比赛一场,但有3名选手各比赛了2场之后就退出了,这样,全部比赛只进行了50场。

高中数学排列组合题讲义和答案(分难易程度)

高中数学排列组合题讲义和答案(分难易程度)

选修2-3第一章第二节和第三节 排列组合一、排列.1. 排列定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.2. 排列数:从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号表示.3. 排列数公式:注意: 规定0! = 1规定 二、组合.2. 组合定义:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.2. 组合数公式:3. 两个公式:① ②①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有一类是不含红球的选法有)②根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n个元素中再取m-1个元素,所以有C ,如果不取这一元素,则需从剩余n个元素中取出m 个元素,所以共有C 种,依分类原理有.三、排列与组合的联系与区别.联系:都是从n 个不同元素中取出m 个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.四、几个常用组合数公式m n A ),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--=Λ!)!1(!n n n n -+=⋅111--++=⋅+=m nm n m n m m m n m n mA A C A A A 11--=m n m n nA A 10==n n n C C )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n-=+--==Λ;m n n m n C C -=m n m n m n C C C 11+-=+1m n 111m n C C C --=⋅m n C 1-m n m n m n m n m n C C C 11+-=+n n nn n n C C C 2210=+++Λλ五、排列、组合综合.1. I. 排列、组合问题几大解题方法及题型:①直接法. ②排除法.③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”.④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.⑥平均法:若把kn 个不同元素平均分成k 组,每组n 个,共有.⑦隔板法:常用于解正整数解组数的问题.II. 排列组合常见解题策略:①特殊元素优先安排策略;②合理分类与准确分步策略;③排列、组合混合问题先选后排的策略(线组合再排列);④间接法;⑤相邻问题插空处理策略;⑥不相邻问题插空处理策略;⑦ “小集团”排列问题中先整体后局部的策略;2. 组合问题中分组问题和分配问题.①均匀不编号分组:将n 个不同元素分成不编号的m 组,假定其中r 组元素个数相等,不管是否分尽,其分法种数为(其中A 为非均匀不编号分组中分法数).如果再有K 组均匀分组应再除以. ②非均匀编号分组: n 个不同元素分组,各组元素数目均不相等,且考虑各组间的顺序,其分法种数为 ③均匀编号分组:n 个不同元素分成m 组,其中r 组元素个数相同且考虑各组间的顺序,其分法种数为. 例题(简单)例1. 5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则11111121153142011112++--++++++-+=+==++=+++=+++k n k n k n k n m n m m n m m m m m m n n n n n n n n C n C k nC kC C C C C C C C C C C C ΛΛΛkk n nn n k n kn A C C C Λ)1(-⋅rr A A /k kA m mA A ⋅m mrr A A A ⋅/不同的报名方法共有( )A.10种B.20种C.25种D.32种例2.用数字1,2,3,4,5可以组成的无重复数字的四位偶数的个数为( ) A.8 B.24 C.48 D.120例3. 6名同学排成1排照相,要求同学甲既不站在最左边又不站在最右边,共有种站法.例题(稍难)例1. 某学校为了迎接市春季运动会,从5名男生和4名女生组成的田径运动队中选出4人参加比赛,要求男、女生都有,则男生甲与女生乙至少有1人入选的方法种数为()A.85 B.86 C.91 D.90例2. 在30瓶饮料中,有3瓶已过了保质期.从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期饮料的概率为 .例3. 将7个相同的小球放入4个不同的盒子中.(1)不出现空盒子时放入方式共有种.(2)可出现空盒时的放入方法共有种.例题(难)例1. 从0,1,2,3,4,5,这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A.300 B.216 C.180 D.162例2. 用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有个.例题(很难)例1. 国家教育部为了发展贫困地区的教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教.现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有种不同的分派方法. 例2. 将6本不同的书分给甲、乙、丙、丁4个人,每人至少1本的不同分法共有种.例3. 将6名教师分到3所学校任教,一所1名,一所2名,一所3名,则有种不同的分法.例4. 有甲、乙、丙3项任务,任务甲需要2人承担,任务乙、丙各需要1人承担,从10人中选派4人承担这3项任务,不同的选法共有种. 例5. 4个不同的小球放入编号为1,2,3,4的4个盒子中,恰好有1个空盒子的放法有种.例6. 如图所示的花圃中的5个区域中种入4种不同颜色的花,要求相邻区域不同色,有________种不同的种法.同步基础排列1.用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有( )A.48个B.36个C.24个D.18个2.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( )A.1440种 B.960种 C.720种 D.480种3.一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有( )A.24种 B.36种 C.48种 D.72种4.某次文艺汇演,要将A、B、C、D、E、F这六个不同节目编排成节目单,如下表:如果A、B排序方式有( )A.192种B.144种C.96种D.72种5.某中学一天的课表有6节课,其中上午4节,下午2节,要排语文、数学、英语、信息技术、体育、地理6节课,要求上午第一节课不排体育,数学必须排在上午,则不同排法共有( )A.600种B.480种C.408种D.384种6.5人排成一排照相,要求甲不排在两端,不同的排法共有________种.(用数字作答)7.有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标的数字之和等于10,则不同的排法共有________种(用数字作答).8.由0,1,2,3,4,5六个数字可以组成________个数字不重复含2,3且2,3相邻的四位数.9.用数字0、1、2、3、4、5组成没有重复数字的四位数,(1)可组成多少个不同的四位数?(2)可组成多少个四位偶数?(3)将(1)中的四位数按从小到大的顺序排成一数列,问第85项是什么?10.用0、1、2、3、4、5这六个数字组成无重复数字的六位数,其中个位数字小于十位数字的六位数的个数是多少个?组合1.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为( )A.50B.45 C.40 D.352.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有( )A.70种 B.80种 C.100种 D.140种3.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A.14 B.24 C.28 D.484.将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( )A.10种 B.20种 C.36种 D.52种5.某市拟从4个重点项目和6个一般项目中各选2个项目作为本年度启动的项目,则重点项目A和一般项目B至少有一个被选中的不同选法种数是( )A.15 B.45 C.60 D.756.从0,1,2,3,4,5中任取3个数字,组成没有重复数字的三位数,其中能被5整除的三位数共有________个.(用数字作答)7.从甲、乙等10名同学中挑选4名参加某校公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有________种.8.某校要求每位学生从7门课程中选修4门,其中甲、乙两门课程不能都选,则不同的选课方案有________种.(以数字作答)9.有5个男生和3个女生,从中选取5人担任5门不同学科的科代表,求分别符合下列条件的选法数:(1)有女生但人数必须少于男生.(2)某女生一定要担任语文科代表.(3)某男生必须包括在内,但不担任数学科代表.(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.10.一个口袋里有4个不同的红球,6个不同的白球(球的大小均一样)(1)从中任取3个球,恰好为同色球的不同取法有多少种?(2)取得一个红球记为2分,一个白球记为1分.从口袋中取出五个球,使总分不小于7分的不同取法共有多少种?过关训练1.从5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A不参加物理、化学竞赛,则不同的参赛方案种数为( )A.24 B.48 C.120 D.72 2.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为( )A.33 B.34 C.35 D.36 3.从5名志愿者中选派4人在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有一人参加,星期六有两人参加,星期日有一人参加,则不同的选派方法共有( )A.120种 B.96种 C.60种 D.48种4.甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )A.150种B.180种C.300种D.345种5.某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有( )A.16种 B.36种 C.42种 D.60种6.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植.不同的种植方法共有________种.7.安排3名支教教师去4所学校任教,每校至多2人,则不同的分配方案共有________种.8.某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有________种.(用数字作答)9.某小组学生举行毕业联欢会,人员到齐后大家彼此握手,其中有2名学生各握了3次手后提前离开,其他学生都彼此握了手.若知握手的总次数为83次,试问该小组共有多少名学生?10.在一张节目表上原有6个节目,如果保持这些节目的相对顺序不变,再添加进去三个节目,求共有多少种安排方法?自我超越1. 12名同学合影,站成了前排4人,后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同的调整方法的种数是( )A. 168B. 20 160C. 840D. 5602. 将4名司机和8名售票员分配到四辆公共汽车上,每辆车上分别有1名司机和2名售票员,则可能的分配方案种数是( )A. C28C26C24A44A44B. A28A26A24A44C. C28C26C24A44D. C28C26C243. 五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有( )A. C14C44种 B. C14A44种 C. C44种 D. A44种4. 从45名男生和15名女生中按分层抽样的方法,选出8人参加国庆活动.若此8人站在同一排,则不同的排法种数为( )A. C645C215B. C645C215A88C. C545C315D. C545C315A885. 某校在高二年级开设选修课,其中数学选修课开三个班.选课结束后,有四名学生要求改修数学,但每班至多可再接收两名学生,那么不同的分配方案有( )A. 72种B. 54种C. 36种D. 18种6. 从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有________种(用数字作答).7. 3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是________.8. (创新题)在一次文艺演出中,需要给舞台上方安装一排完全相同的彩灯15只,以不同的点亮方式增加舞台效果,设计要求如下:恰好有6只是关的,且相邻的灯不能同时被关掉,两端的灯必须点亮,则不同的点亮方式为________种.9. 甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是________(用数字作答).10. 将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).11. 现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是( )A. 54B. 90C. 126D. 15212.甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是()A.136B.19C.536D.1613. 两人进行乒乓球比赛,先赢三局着获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有()A. 10种B.15种C. 20种D. 30种超级挑战1. 把1个圆分成4个扇形,依次记为D1,D2,D3,D4,每个扇形都可以用3种不同颜色中任何1种涂色,要求相邻的扇形颜色不同,则共有 种不同涂色方法.2. 某城市在中心广场建造一个花圃,花圃分为6个部分,如图,现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同颜样色的花,不同的栽种方法有3. 集合A ∪B ∪C={a 1,a 2,a 3,a 4,a 5},且A ∩B={ a 1,a 2},求,A ,B ,C 的所有可能组合的个数.4. 如图,ABCD 为海上的四个小岛,要建三座桥将这四个小岛连接起来,则不同的剑桥方案共有( ).A .8种 B.12种 C .16种 D .20种5. 甲、乙、丙、丁四个做互相传球练习,第一次传给除甲外其他三人中的一人,第二次由拿球者再传给其他三人中的一人,这样共传了4次,则第四次仍传回到甲的概率是( ).A.277B. 275C. 87D. 6421 6. 一楼梯共12级,每步可以向上跨1级或2级,共有 种上楼梯方法.。

高中数学完整讲义排列与组合排列组合问题的常见模型

高中数学完整讲义排列与组合排列组合问题的常见模型

1.基本计数原理 ⑴加法原理分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++L 种不同的方法.又称加法原理.⑵乘法原理分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =⨯⨯⨯L 种不同的方法.又称乘法原理.⑶加法原理与乘法原理的综合运用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素)排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示.排列数公式:A (1)(2)(1)m n n n n n m =---+L ,m n +∈N ,,并且m n ≤.全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=.⑵组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合.组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示.组合数公式:(1)(2)(1)!C !!()!m nn n n n m n m m n m ---+==-L ,,m n +∈N ,并且m n ≤. 组合数的两个性质:性质1:C C m n m n n -=;性质2:11C C C m m m n n n -+=+.(规定0C 1n =)⑶排列组合综合问题知识内容排列组合问题的常见模型1解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法: 1.特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.3.排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法.4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列.5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空.6.插板法:n 个相同元素,分成()m m n ≤组,每组至少一个的分组问题——把n 个元素排成一排,从1n -个空中选1m -个空,各插一个隔板,有11m n C --.7.分组、分配法:分组问题(分成几堆,无序).有等分、不等分、部分等分之别.一般地平均分成n 堆(组),必须除以n !,如果有m 堆(组)元素个数相等,必须除以m !8.错位法:编号为1至n 的n 个小球放入编号为1到n 的n 个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当2n =,3,4,5时的错位数各为1,2,9,44.关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题.1.排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径: ①元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素; ②位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数. 求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,避免“选取”时重复和遗漏;最后列出式子计算作答.2.具体的解题策略有:①对特殊元素进行优先安排;②理解题意后进行合理和准确分类,分类后要验证是否不重不漏; ③对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复;④对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法; ⑤顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理; ⑥对于正面考虑太复杂的问题,可以考虑反面. ⑦对于一些排列数与组合数的问题,需要构造模型.排队问题【例1】 三个女生和五个男生排成一排⑴ 如果女生必须全排在一起,可有多少种不同的排法 ⑵ 如果女生必须全分开,可有多少种不同的排法 ⑶ 如果两端都不能排女生,可有多少种不同的排法典例分析【例2】6个人站成一排:⑴其中甲、乙两人必须相邻有多少种不同的排法⑵其中甲、乙两人不相邻有多少种不同的排法⑶其中甲、乙两人不站排头和排尾有多少种不同的排法⑷其中甲不站排头,且乙不站排尾有多少种不同的排法【例3】7名同学排队照相.⑴若分成两排照,前排3人,后排4人,有多少种不同的排法⑵若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法⑶若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法⑷若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不同的排法【例4】6个队员排成一排,⑴共有多少种不同的排法⑵若甲必须站在排头,有多少种不同的排法⑶若甲不能站排头,也不能站排尾,问有多少种不同的排法【例5】 ABCDE 五个字母排成一排,若ABC 的位置关系必须按A 在前、B 居中、C 在后的原则,共有_______种排法(用数字作答).【例6】 用1到8组成没有重复数字的八位数,要求1与2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有_ __个(用数字作答).【例7】 记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( ) A .1440种 B .960种C .720种D .480种【例8】 12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( )A .2283C AB .2686C AC .2286C AD .2285C A【例9】 记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( )A .1440种B .960种C .720种D .480种【例10】 在数字123,,与符号+-,五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是( )A .6B .12C .18D .24【例11】 计划展出10幅不同的画,其中1幅水彩、4幅油画、5幅国画,排成一列陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有_____种.【例12】 6人站一排,甲不站在排头,乙不站在排尾,共有_________种不同的排法(用数字作答).【例13】 一条长椅上有7个座位,4人坐,要求3个空位中,有2个空位相邻,另一个空位与2个相邻位不相邻,共有几种坐法【例14】 3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A .360B .288C .216D .96【例15】 古代“五行”学说认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有 种(结果用数值表示).【例16】 在1234567,,,,,,的任一排列1234567,,,,,,a a a a a a a 中,使相邻两数都互质的排列方式共有( )种.A .288B .576C .864D .1152【例17】 从集合{}P Q R S ,,,与{}0123456789,,,,,,,,,中各任取2个元素排成一排(字母和数字均不能重复).每排中字母Q 和数字0至多只能出现一个的不同排法种数是_________.(用数字作答)【例18】 从集合{}O P Q R S ,,,,与{0123456789},,,,,,,,,中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O Q ,和数字0至多只能出现一个的不同排法种数是_________.(用数字作答)【例19】 6个人坐在一排10个座位上,问⑴ 空位不相邻的坐法有多少种⑵ 4个空位只有3个相邻的坐法有多少种 ⑶ 4个空位至多有2个相邻的坐法有多少种【例20】 3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A .360B .288C .216D .96【例21】 12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,其他人的相对顺序不变,则不同调整的方法的总数有( )A .2283C A B .2686C A C .2286C A D .2285C A【例22】 两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是_______.【例23】 2007年12月中旬,我国南方一些地区遭遇历史罕见的雪灾,电煤库存吃紧.为了支援南方地区抗灾救灾,国家统一部署,加紧从北方采煤区调运电煤.某铁路货运站对6列电煤货运列车进行编组调度,决定将这6列列车编成两组,每组3列,且甲与乙两列列车不在同一小组.如果甲所在小组3列列车先开出,那么这6列列车先后不同的发车顺序共有( )A .36种B .108种C .216种D .432种数字问题 【例24】 给定数字0、1、2、3、5、9,每个数字最多用一次,⑴可能组成多少个四位数⑵可能组成多少个四位奇数 ⑶可能组成多少个四位偶数⑷可能组成多少个自然数【例25】 用0到9这10个数字,可组成多少个没有重复数字的四位偶数【例26】 在1,3,5,7,9中任取3个数字,在0,2,4,6,8中任取两个数字,可组成多少个不同的五位偶数.【例27】 用12345,,,,排成一个数字不重复的五位数12345a a a a a ,,,,,满足12233445a a a a a a a a <><>,,,的五位数有多少个【例28】 用0129L ,,,,这十个数字组成无重复数字的四位数,若千位数字与个位数字之差的绝对值是2,则这样的四位数共有多少个【例29】 用数字0123456,,,,,,组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有______个(用数学作答).【例30】 有4张分别标有数字1234,,,的红色卡片和4张分别标有数字1234,,,的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法数一共有 种. 432;【例31】 有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有..中间行的两张卡片上的数字之和为5,则不同的排法共有( ) A .1344种B .1248种C .1056种D .960种【例32】 有4张分别标有数字1234,,,的红色卡片和4张分别标有数字1234,,,的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有____种(用数字作答).【例33】用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是__________(用数字作答).【例34】用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有()A.48个 B.36个 C.24个 D.18个,,,,,这6个数中,取出两个,使其和为偶数,则共可得到个这样的【例35】从1238910不同偶数【例36】求无重复数字的六位数中,能被3整除的数有______个.,,,,,,组成没有重复数字的四位数,其中个位、十位和百位上的数字【例37】用数字0123456之和为偶数的四位数共有个(用数学作答).,,,,,这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的【例38】从012345个数为()A.300 B.216 C.180 D.162【例39】 从012345,,,,,这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为( )A .300B .216C .180D .162【例40】 从1到9的九个数字中取三个偶数四个奇数,试问:⑴能组成多少个没有重复数字的七位数其中任意两偶数都不相邻的七位数有几个 ⑵上述七位数中三个偶数排在一起的有几个⑶⑴中的七位数中,偶数排在一起、奇数也排在一起的有几个⑷⑴其中任意两偶数都不相邻的七位数有几个【例41】 用0到9这九个数字.可组成多少个没有重复数字的四位偶数【例42】 有4张分别标有数字1234,,,的红色卡片和4张分别标有数字1234,,,的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有______种(用数字作答).【例43】 在由数字12345,,,,组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( )个A .56个B .57个C .58个D .60个【例44】 由0,1,2,3,4这五个数字组成的无重复数字的四位偶数,按从小到大的顺序排成一个数列{}n a ,则19a =_____.A .2014B .2034C .1432D .1430【例45】 从数字0、1、3、5、7中取出不同的三个作系数,可组成多少个不同的一元二次方程20ax bx c ++=,其中有实数根的有几个【例46】 从{}32101234,,,,,,,---中任选三个不同元素作为二次函数2y ax bx c =++的系数,问能组成多少条图像为经过原点且顶点在第一象限或第三象限的抛物线。

高中数学排列组合讲解

高中数学排列组合讲解

高中数学排列组合讲解一、教学任务及对象1、教学任务本节课的教学任务是向高中学生讲解数学中的排列组合知识。

排列组合是数学中的重要组成部分,也是高中阶段数学学习的重点和难点。

通过本节课的学习,学生应能理解排列组合的基本概念,掌握排列组合的计算方法,并能够运用这些方法解决实际问题。

2、教学对象本节课的教学对象是高中学生,他们已经具备了一定的数学基础,掌握了基本的数学运算和逻辑思维能力。

然而,由于排列组合的概念较为抽象,学生在学习过程中可能会遇到一定的困难。

因此,作为教师,我们需要关注学生的学习情况,针对不同学生的特点和需求,采用适当的教学策略,帮助他们理解和掌握这一部分内容。

此外,考虑到高中生的认知水平和思维能力,我们将注重培养学生的逻辑推理、问题解决和团队合作能力,使他们在学习排列组合的过程中,提高自身的数学素养。

二、教学目标1、知识与技能(1)理解排列组合的基本概念,掌握排列、组合的定义及其区别;(2)掌握排列组合的计算公式,并能运用这些公式解决实际问题;(3)掌握排列组合在实际问题中的应用,例如:分配问题、分组问题等;(4)培养学生的逻辑推理能力和数学运算能力,提高他们解决排列组合问题的效率。

2、过程与方法(1)通过实例引入排列组合的概念,让学生在实际问题中发现排列组合的规律;(2)采用启发式教学,引导学生主动探究排列组合的计算方法,培养他们的自主学习能力;(3)组织小组讨论和合作学习,让学生在交流中碰撞思维火花,提高解决问题的能力;(4)设计丰富的课堂练习,巩固所学知识,并及时给予学生反馈,帮助他们查漏补缺;(5)运用信息技术手段,如多媒体教学、网络资源等,丰富教学形式,提高教学效果。

3、情感,态度与价值观(1)培养学生对数学学习的兴趣和热情,使他们认识到排列组合在现实生活中的重要作用;(2)引导学生树立正确的价值观,认识到数学知识对社会发展的贡献,增强社会责任感;(3)培养学生严谨、勤奋的学术态度,让他们在解决问题的过程中,体验数学的严密性和美感;(4)鼓励学生面对困难时保持积极的心态,培养他们克服困难的勇气和毅力;(5)通过小组合作学习,培养学生团结协作的精神,提高他们的团队意识和沟通能力。

高中数学排列组合和概率人教版全部教案

高中数学排列组合和概率人教版全部教案

高中数学排列组合和概率人教版教案(一)【教学目标】知识与技能:理解排列组合的基本概念,掌握排列数公式和组合数公式,能够应用排列组合知识解决实际问题。

过程与方法:通过探究排列组合问题,培养学生的逻辑思维能力和解决问题的能力。

情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作精神。

【教学重点】排列数公式和组合数公式的理解与应用。

【教学难点】排列组合问题的解决方法。

【教学过程】一、导入教师通过引入生活中的实际问题,如“如何安排一场比赛的活动顺序?”、“如何从若干个人中选取一部分人组成一个小组?”等,引导学生思考排列组合的问题。

二、新课导入1. 排列的概念:教师介绍排列的定义,即从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列的过程。

2. 排列数公式:教师引导学生探究排列数公式的推导过程,得出排列数公式:$A_n^m = \frac{n!}{(n-m)!}$。

3. 组合的概念:教师介绍组合的定义,即从n个不同元素中取出m(m≤n)个元素,但不考虑元素的顺序。

4. 组合数公式:教师引导学生探究组合数公式的推导过程,得出组合数公式:$C_n^m = \frac{n!}{m!(n-m)!}$。

三、案例分析教师给出几个排列组合的案例,引导学生运用所学的排列组合知识解决问题。

四、课堂练习教师布置一些排列组合的练习题,让学生独立完成,巩固所学知识。

【教学评价】通过课堂表现、练习题和课后作业等方式评价学生在排列组合知识方面的掌握情况。

高中数学排列组合和概率人教版教案(二)【教学目标】知识与技能:理解排列组合的实际应用,能够运用排列组合知识解决生活中的问题。

过程与方法:通过探究生活中的排列组合问题,培养学生的实践能力和解决问题的能力。

情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作精神。

【教学重点】排列组合在实际生活中的应用。

【教学难点】如何将实际问题转化为排列组合问题。

【教学过程】一、导入教师通过引入生活中的实际问题,如“如何安排一场比赛的活动顺序?”、“如何从若干个人中选取一部分人组成一个小组?”等,引导学生思考排列组合的问题。

高中数学排列组合和概率人教版全部教案

高中数学排列组合和概率人教版全部教案

高中数学排列组合和概率人教版教案(一)教学内容:排列的概念及排列数的计算公式。

教学目标:1. 理解排列的概念,掌握排列数的计算公式。

2. 能够运用排列数公式解决实际问题。

教学重点:1. 排列的概念。

2. 排列数的计算公式。

教学难点:1. 排列数的计算公式的应用。

教学过程:一、导入(5分钟)1. 引入排列的概念,引导学生思考在日常生活中遇到的排列问题。

2. 引导学生总结排列的特点和意义。

二、新课讲解(15分钟)1. 讲解排列数的计算公式。

2. 通过例题讲解排列数的计算过程。

三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固排列数的计算方法。

2. 讲解练习题的解题思路和技巧。

四、拓展与应用(10分钟)1. 引导学生思考如何运用排列数公式解决实际问题。

2. 举例讲解排列数在实际问题中的应用。

五、课堂小结(5分钟)1. 回顾本节课所学内容,总结排列的概念和排列数的计算公式。

2. 强调排列数的计算公式的应用。

教学评价:1. 课后作业:布置有关排列数的计算和应用的题目,检验学生掌握情况。

2. 课堂练习:观察学生在课堂练习中的表现,了解学生对排列数的计算公式的掌握程度。

高中数学排列组合和概率人教版教案(二)教学内容:组合的概念及组合数的计算公式。

教学目标:1. 理解组合的概念,掌握组合数的计算公式。

2. 能够运用组合数公式解决实际问题。

教学重点:1. 组合的概念。

2. 组合数的计算公式。

教学难点:1. 组合数的计算公式的应用。

教学过程:一、导入(5分钟)1. 引入组合的概念,引导学生思考在日常生活中遇到的组合问题。

2. 引导学生总结组合的特点和意义。

二、新课讲解(15分钟)1. 讲解组合数的计算公式。

2. 通过例题讲解组合数的计算过程。

三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固组合数的计算方法。

2. 讲解练习题的解题思路和技巧。

四、拓展与应用(10分钟)1. 引导学生思考如何运用组合数公式解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三章 排列组合与概率一、基础知识1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。

2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。

3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,mn A =n(n-1)…(n-m+1)=)!(!m n n -,其中m,n ∈N,m ≤n,注:一般地0n A =1,0!=1,n n A =n!。

4.N 个不同元素的圆周排列数为nA nn =(n-1)!。

5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。

从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用mn C 表示:.)!(!!!)1()1(m n m n m m n n n C m n -=+--=6.组合数的基本性质:(1)m n n mnC C -=;(2)11--+=n n m n m n C C C ;(3)knk n C C kn =--11;(4)n nk kn n nn n C C C C 2010==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)k n m n m k k n C C C --=。

7.定理1:不定方程x 1+x 2+…+x n =r 的正整数解的个数为11--n r C 。

[证明]将r 个相同的小球装入n 个不同的盒子的装法构成的集合为A ,不定方程x 1+x 2+…+x n =r 的正整数解构成的集合为B ,A 的每个装法对应B 的唯一一个解,因而构成映射,不同的装法对应的解也不同,因此为单射。

反之B 中每一个解(x 1,x 2,…,x n ),将x i 作为第i 个盒子中球的个数,i=1,2,…,n ,便得到A 的一个装法,因此为满射,所以是一一映射,将r 个小球从左到右排成一列,每种装法相当于从r-1个空格中选n-1个,将球分n 份,共有11--n r C 种。

故定理得证。

推论1 不定方程x 1+x 2+…+x n =r 的非负整数解的个数为.1rr n C -+推论2 从n 个不同元素中任取m 个允许元素重复出现的组合叫做n 个不同元素的m 可重组合,其组合数为.1mm n C -+8.二项式定理:若n ∈N +,则(a+b)n=n n n r r n r n n n n n nn b C b a C b a C b a C aC +++++---222110.其中第r+1项T r+1=rn r rn r n C b aC ,-叫二项式系数。

9.随机事件:在一定条件下可能发生也可能不发生的事件叫随机事件。

在大量重复进行同一试验时,事件A 发生的频率nm总是接近于某个常数,在它附近摆动,这个常数叫做事件A 发生的概率,记作p(A),0≤p(A)≤1.10.等可能事件的概率,如果一次试验中共有n 种等可能出现的结果,其中事件A 包含的结果有m 种,那么事件A 的概率为p(A)=.nm 11.互斥事件:不可能同时发生的两个事件,叫做互斥事件,也叫不相容事件。

如果事件A 1,A 2,…,A n 彼此互斥,那么A 1,A 2,…,A n 中至少有一个发生的概率为 p(A 1+A 2+…+A n )= p(A 1)+p(A 2)+…+p(A n ).12.对立事件:事件A ,B 为互斥事件,且必有一个发生,则A ,B 叫对立事件,记A 的对立事件为A 。

由定义知p(A)+p(A )=1.13.相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件。

14.相互独立事件同时发生的概率:两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。

即p(A •B)=p(A)•p(B).若事件A 1,A 2,…,A n 相互独立,那么这n 个事件同时发生的概率为p(A 1•A 2• … •A n )=p(A 1)•p(A 2)• … •p(A n ).15.独立重复试验:若n 次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n 次试验是独立的.16.独立重复试验的概率:如果在一次试验中,某事件发生的概率为p,那么在n 次独立重复试验中,这个事件恰好发生k 次的概率为p n (k)=kn C •p k(1-p)n-k.17.离散型随机为量的分布列:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫随机变量,例如一次射击命中的环数ξ就是一个随机变量,ξ可以取的值有0,1,2,…,10。

如果随机变量的可能取值可以一一列出,这样的随机变量叫离散型随机变量。

一般地,设离散型随机变量ξ可能取的值为x 1,x 2,…,x i ,…,ξ取每一个值x i (i=1,2,…)的概率p(ξ=x i )=p i ,则称表为随机变量ξ的概率分布,简称ξ的分布列,称E ξ=x 1p 1+x 2p 2+…+x n p n +…为ξ的数学期望或平均值、均值、简称期望,称D ξ=(x 1-E ξ)2•p 1+(x 2-E ξ)2•p 2+…+(x n -E ξ)2p n +…为ξ的均方差,简称方差。

ξD 叫随机变量ξ的标准差。

18.二项分布:如果在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中,这个事件恰好发生k 次的概率为p(ξ=k)=k n k knq p C -, ξ的分布列为此时称ξ服从二项分布,记作ξ~B(n,p).若ξ~B(n,p),则E ξ=np,D ξ=npq,以上q=1-p.19.几何分布:在独立重复试验中,某事件第一次发生时所做试验的次数ξ也是一个随机变量,若在一次试验中该事件发生的概率为p ,则p(ξ=k)=q k-1p(k=1,2,…),ξ的分布服从几何分布,E ξ=p1,D ξ=2p q (q=1-p).二、方法与例题 1.乘法原理。

例1 有2n 个人参加收发电报培训,每两个人结为一对互发互收,有多少种不同的结对方式?[解] 将整个结对过程分n 步,第一步,考虑其中任意一个人的配对者,有2n-1种选则;这一对结好后,再从余下的2n-2人中任意确定一个。

第二步考虑他的配对者,有2n-3种选择,……这样一直进行下去,经n 步恰好结n 对,由乘法原理,不同的结对方式有 (2n-1)×(2n-3)×…×3×1=.)!(2)!2(n n n ⋅2.加法原理。

例2 图13-1所示中没有电流通过电流表,其原因仅因为电阻断路的可能性共有几种?[解] 断路共分4类:1)一个电阻断路,有1种可能,只能是R 4;2)有2个电阻断路,有24C -1=5种可能;3)3个电阻断路,有34C =4种;4)有4个电阻断路,有1种。

从而一共有1+5+4+1=11种可能。

3.插空法。

例3 10个节目中有6个演唱4个舞蹈,要求每两个舞蹈之间至少安排一个演唱,有多少种不同的安排节目演出顺序的方式?[解] 先将6个演唱节目任意排成一列有66A 种排法,再从演唱节目之间和前后一共7个位置中选出4个安排舞蹈有47A 种方法,故共有4766A A ⨯=604800种方式。

4.映射法。

例4 如果从1,2,…,14中,按从小到大的顺序取出a 1,a 2,a 3使同时满足:a 2-a 1≥3,a 3-a 2≥3,那么所有符合要求的不同取法有多少种? [解] 设S={1,2,…,14},'S ={1,2,…,10};T={(a 1,a 2,a 3)| a 1,a 2,a3∈S,a 2-a 1≥3,a 3-a 2≥3},'T ={('3'2'1,,a a a )∈'3'2'1'3'2'1,',,|'a a a S a a a S <<∈},若'),,('3'2'1T a a a ∈,令4,2,'33'22'11+=+==a a a a a a ,则(a 1,a 2,a 3)∈T,这样就建立了从'T 到T 的映射,它显然是单射,其次若(a 1,a 2,a 3)∈T,令4,2,'33'22'11-=-==a a a a a a ,则'),,('3'2'1T a a a ∈,从而此映射也是满射,因此是一一映射,所以|T|=310|'|C T ==120,所以不同取法有120种。

5.贡献法。

例5 已知集合A={1,2,3,…,10},求A 的所有非空子集的元素个数之和。

[解] 设所求的和为x ,因为A 的每个元素a ,含a 的A 的子集有29个,所以a 对x 的贡献为29,又|A|=10。

所以x=10×29.[另解] A 的k 元子集共有kC 10个,k=1,2,…,10,因此,A 的子集的元素个数之和为=+++=+++)(101029919091010210110C C C C C C 10×29。

6.容斥原理。

例6 由数字1,2,3组成n 位数(n ≥3),且在n 位数中,1,2,3每一个至少出现1次,问:这样的n 位数有多少个?[解] 用I 表示由1,2,3组成的n 位数集合,则|I|=3n,用A 1,A 2,A 3分别表示不含1,不含2,不含3的由1,2,3组成的n 位数的集合,则|A 1|=|A 2|=|A 3|=2n,|A 1 A 2|=|A 2 A 3|=|A 1 A 3|=1。

|A 1 A 2 A 3|=0。

所以由容斥原理|A 1 A 2 A 3|=||||||32131A A A A A Aji j i i i+-∑∑≠==3×2n-3.所以满足条件的n 位数有|I|-|A 1 A 2 A 3|=3n-3×2n+3个。

相关文档
最新文档