高中数学 1.1 1排列组合教案 选修选修2-3

合集下载

(新课程)高中数学《1.2.1排列》教案1 新人教A版选修2-3

(新课程)高中数学《1.2.1排列》教案1 新人教A版选修2-3

1.2.1排列第一课时一、复习引入: 1分类加法计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法种数的问题,区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,每一种方法只属于某一类,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对的是“分步”问题,各个步骤中的方法相互依存,某一步骤中的每一种方法都只能做完这件事的一个步骤,只有各个步骤都完成才算做完这件事 应用两种原理解题:1.分清要完成的事情是什么;2.是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;3.有无特殊条件的限制二、讲解新课:1问题:问题1.从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?分析:这个问题就是从甲、乙、丙3名同学中每次选取2名同学,按照参加上午的活动在前,参加下午活动在后的顺序排列,一共有多少种不同的排法的问题,共有6种不同的排法:甲乙 甲丙 乙甲 乙丙 丙甲 丙乙,其中被取的对象叫做元素解决这一问题可分两个步骤:第 1 步,确定参加上午活动的同学,从 3 人中任选 1 人,有 3 种方法;第 2 步,确定参加下午活动的同学,当参加上午活动的同学确定后,参加下午活动的同学只能从余下的 2 人中去选,于是有 2 种方法.根据分步乘法计数原理,在 3 名同学中选出 2 名,按照参加上午活动在前,参加下午活动在后的顺序排列的不同方法共有 3×2=6 种,如图 1.2一1 所示.把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素 a , b ,。

高中数学:1.2.1排列(三)教案(北师大选修2-3)

高中数学:1.2.1排列(三)教案(北师大选修2-3)

“教材剖析与导入设计”第一章计数原理1.2摆列本节教材剖析( 1)三维目标:知识与技术:认识摆列数的意义,掌握摆列数公式及推导方法,从中领会“化归”的数学思想,并能运用摆列数公式进行计算。

过程与方法:能运用所学的摆列知识,正确地解决的实质问题感情、态度与价值观:能运用所学的摆列知识,正确地解决的实质问题.(2)教课要点 : 摆列、摆列数的观点(3)教课难点 : 摆列数公式的推导(4)教课建议 : 分类计数原理是对达成一件事的全部方法的一个区分,依分类计数原理解题,第一明确要做的这件事是什么,其次分类时要依据问题的特色确立分类的标准,最后在确立的标准下进行分类. 分类要注意不重复、不遗漏,保证每类方法都能达成这件事. 分步计数原理是指达成一件事的任何方法要依照必定的标准分红几个步骤,一定且只要连续达成这几个步骤后才算达成这件事,每步中的任何一种方法都不可以达成这件事. 分类计数原理和分步计数原理的地位是有区其他,分类计数原理更拥有一般性,解决复杂问题时常常需要先分类,每类中再分红几步. 在摆列、组合教课的开端阶段,不可以嫌罗嗦,教师必定要先做出楷模并要修业生严格按原理去剖析问题.只有这样才能使学生认识深刻、理解到位、思路清楚,才会做到分类有据、分步有方,为摆列、组合的学习确立坚固的基础分类计数原理和分步计数原理既是推导摆列数公式、组合数公式的基础,也是解决摆列、组合问题的主要依照,而且还常需要直接运用它们去解决问题,这两个原理贯串摆列、组合学习过程的一直. 搞好摆列、组合问题的教课从这两个原理下手带有根天性.摆列与组合都是研究从一些不一样元素中任取元素,或排成一排或并成一组,并求有多少种不一样方法的问题. 摆列与组合的差别在于问题能否与次序相关. 与次序相关的是摆列问题,与次序没关是组合问题,次序对摆列、组合问题的求解特别重要. 摆列与组合的差别,从定义上来说是简单的,但在详细求解过程中学生常常感觉疑惑,分不清究竟与次序有没关系.新课导入设计导入一 :复习导入1 分类加法计数原理:做一件事情,达成它能够有n 类方法,在第一类方法中有m1种不一样的方法,在第二类方法中有m2种不一样的方法,,在n 类方法中有m n种不一样的方法那么第达成这件事共有N m1m2L m n种不一样的方法2. 分步乘法计数原理:做一件事情,达成它需要分红n 个步骤,做第一步有m1种不一样的方法,做第二步有m2种不一样的方法,,做n 步有m n种不一样的方法,那么达成这件事第有 N m 1 m2L m n种不一样的方法分类加法计数原理和分步乘法计数原理,回答的都是相关做一件事的不一样方法种数的问题,差别在于 :分类加法计数原理针对的是“分类”问题 ,此中各样方法相互独立,每一种方法只属于某一类,用此中任何一种方法都能够做完这件事;分步乘法计数原理针对的是“分步”问题,各个步骤中的方法相互依存,某一步骤中的每一种方法都只能做完这件事的一个步骤 ,只有各个步骤都达成才当作完这件事应用两种原理解题 :1.分清要达成的事情是什么; 2.是分类达成仍是分步达成,“类”间相互独立,“步”间相互联系; 3.有无特别条件的限制。

人教高中数学 选修2-3 第一章 1.2.1排列(优质公开课教案)

人教高中数学 选修2-3 第一章 1.2.1排列(优质公开课教案)

人教高中数学选修2-3 第一章1.2.1排列(优质公开课教案)1.2.1排列上课班别:高二授课教师:教材:人教版选修2—3教学目标:1、知识与技能:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。

2、过程与方法:能运用所学的排列知识,正确地解决的实际问题3、情感、态度与价值观:能运用所学的排列知识,正确地解决的实际问题.教学重点:排列数公式的理解与运用;排列应用题常用的方法有直接法,间接法教学难点:排列数公式的推导授课类型:新授课课时安排:1课时教具:多媒体内容分析:分类计数原理是对完成一件事的所有方法的一个划分,依分类计数原理解题,首先明确要做的这法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系.教学过程: 一、复习引入:1分类加法计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有nm 种不同的方法那么完成这件事共有 12n N m m m =+++种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法二、讲解新课:问题1.从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?图 1.2一1把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素 a , b ,。

中任取 2 个,然后按照一定的顺序排成一列,一共有多少种不同的排列方法?所有不同的排列是ab,ac,ba,bc,ca, cb,共有 3×2=6 种.问题2.从1,2,3,4这 4 个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?第 1 步,确定百位上的数字,在 1 , 2 , 3 , 4 这 4 个数字中任取 1 个,有 4 种方法;第 2 步,确定十位上的数字,当百位上的数字确定后,十位上的数字只能从余下的 3 个数字中去取,有 3 种方法;第 3 步,确定个位上的数字,当百位、十位上的数字确定后,个位的数字只能从余下的 2 个数字中去取,有 2 种方法.根据分步乘法计数原理,从 1 , 2 , 3 , 4 这4 个不同的数字中,每次取出 3 个数字,按“百”“十”“个”位的顺序排成一列,共有4×3×2=24种不同的排法,因而共可得到24个不同的三位数,如图1. 2一2 所示.由此可写出所有的三位数:123,124, 132, 134, 142, 143,213,214, 231, 234, 241, 243,312,314, 321, 324, 341, 342,412,413, 421, 423, 431, 432 。

高中数学:1.2.1排列(一)教案(北师大选修2-3)

高中数学:1.2.1排列(一)教案(北师大选修2-3)

摆列教课目的:掌握解摆列问题的常用方法 教课要点:掌握解摆列问题的常用方法教课过程一、复习引入:1.摆列的观点:从 n 个不一样元素中,任取 m ( m n )个元素(这里的被取元素各不同样)依据必定的... 次序 排成一列,叫做从 n 个不一样元素中拿出 m 个元素的一个摆列 .. .... 说明:(1)摆列的定义包含两个方面:①拿出元素,②按必定的次序摆列;(2)两个摆列同样的条件:①元素完整同样,②元素的摆列次序也同样2.摆列数的定义:从 n 个不一样元素中, 任取 m ( mn )个元素的全部摆列的个数叫做从n 个元素中拿出 m元素的摆列数,用符号 A n m表示注意差别摆列和摆列数的不一样: “一个摆列”是指:从 n 个不一样元素中,任取 m 个元素按 照必定的次序 排成一列,不是数; “摆列数”是指从 n 个不一样元素中,任取 m ( m n )个元..... 素的全部摆列的个数,是一个数 因此符号 A n m 只表示摆列数,而不表示详细的摆列3.摆列数公式及其推导:A n mn(n 1)(n 2) L (n m 1) ( m, nN , m n )全摆列数:n( n 1)( n 2) L 2 1 n ! (叫做 n 的阶乘)nAn二、解说新课:解摆列问题问题时,当问题分红互斥各种时,依据加法原理,可用分类法;当问题考虑先后序次时,依据乘法原理,可用地点法;这两种方法又称作直接法.当问题的反面简单明 了时,可经过求差清除采纳间接法求解;此外,摆列中“相邻”问题能够用“捆绑法”;“分离”问题可能用“插空法”等.解摆列问题和组合问题,必定要防备“重复”与“遗漏” .互斥分类——分类法 先后有序——地点法 反面了然——清除法 相邻摆列——捆绑法 分别摆列——插空法例 1 求不一样的排法种数:( 1) 6 男 2 女排成一排, 2 女相邻; ( 2) 6 男 2 女排成一排, 2 女不可以相邻; ( 3) 4 男 4 女排成一排,同性者相邻;( 4) 4 男 4 女排成一排,同性者不可以相邻.例 2 在 3000 与 8000 之间,数字不重复的奇数有多少个?剖析切合条件的奇数有两类.一类是以1、 9 为尾数的,共有21种选法,首数可从3、 4、P5、 6、7 中任取一个,有P51 种选法,中间两位数从其余的8 个数字中选用2个有 P82 种选法,1123、 5、 7 为尾数的共有P3112个.依据乘法原理知共有 P2 P5P8个;一类是以P4P8解切合条件的奇数共有112+P3112个.P2P5 P8P4 P8=1232答在 3000 与 8000 之间,数字不重复的奇数有1232个.例 3某小组 6 个人排队照相纪念.(1)若分红两排照相,前排 2 人,后排 4 人,有多少种不一样的排法?(2)若分红两排照相,前排 2 人,后排 4 人,但此中甲一定在前排,乙一定在后排,有多少种排法?(3)若排成一排照相,甲、乙两人一定在一同,有多少种不一样的排法?(4)若排成一排照相,此中甲必在乙的右侧,有多少种不一样的排法?(5)若排成一排照相,此中有 3 名男生 3 名女生,且男生不可以相邻有多少种排法?(6)若排成一排照相,且甲不站排头乙不站排尾,有多少种不一样的排法?剖析(1)分两排照相实质上与排成一排照同样样,只可是把第3~ 6 个位子当作是第二排而已,因此其实是 6 个元素的全摆列问题.(2)先确立甲的排法,有 P21种;再确立乙的排法,有 P41种;最后确立其余人的排法,有 P44种.因为这是分步问题,因此用乘法原理,有P21· P41·P44种不一样排法.(3) 采纳“捆绑法” ,即先把甲、乙两人当作一个人,这样有55种不一样排法.而后甲、乙两人P之间再排队,有P22种排法.因为是分步问题,应该用乘法原理,因此有P55· P22种排法.(4)甲在乙的右侧与甲在乙的左侧的排法各占一半,有P66种排法.(5) 采纳“插入法”,把 3 个女生的位子拉开,在两头和她们之间放进 4 张椅子,如 ____女 ____女 ____女 ____ ,再把 3 个男生放到这 4 个位子上,就保证任何两个男生都不会相邻了.这样3333男生有P4种排法,女生有P3种排法.因为是分步问题,应该用乘法原理,因此共有P4· P3种排法.(6)切合条件的排法可分两类:一类是乙站排头,其余 5 人随意排有 P55种排法;一类是乙不站排头;因为甲不可以站排头,因此排头只有从除甲、乙之外的 4 人中任选1人有 P41 种排法,排尾从除乙之外的 4 人中选一人有P1种排法,中间 4 个地点无穷制有P4种排法,因为是分步问44题,应用乘法原理,因此共有114种排法.P P P444解(1)P 66=720( 种 )(2)P 21· P41· P44=2× 4× 24=192( 种 )(3)P 55· P22=120× 2=240( 种 )(4)P 66=360( 种 )(5)P 43· P33=24× 6=144( 种 )(6)P 55+P41P41P44=120+4×4× 24=504( 种 )或法二: ( 裁减法 )P 66-2P 55+P44=720-240+24=504( 种 )讲堂小节:本节课学习了摆列、摆列数的观点,摆列数公式的推导讲堂练习:课后作业:。

高中数学第一章《组合》教案2新人教A版选修2-3

高中数学第一章《组合》教案2新人教A版选修2-3

1.2.2组合 (第二课时)教学目标:1掌握组合数的两个性质;2.进一步熟练组合数的计算公式,能够运用公式解决一些简单的应用问题 教学重点:掌握组合数的两个性质 教学过程 一、复习引入:1 组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同2.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号mn C 表示. 3.组合数公式的推导:(1)一般地,求从n 个不同元素中取出m 个元素的排列数mn A ,可以分如下两步:① 先求从n 个不同元素中取出m 个元素的组合数m n C ;② 求每一个组合中m 个元素全排列数m m A ,根据分步计数原理得:m n A =m n C mmA ⋅. (2)组合数的公式:(1)(2)(1)!m mn nm m A n n n n m C A m ---+==L 或)!(!!m n m n C m n-=),,(n m N m n ≤∈*且 二、讲解新课:1 组合数的性质1:mn nm n C C -=. 一般地,从n 个不同元素中取出m 个元素后,剩下n m -个元素.因为从n 个不同元素中取出m 个元素的每一个组合,与剩下的n - m 个元素的每一个组合一一对应....,所以从n 个不同元素中取出m 个元素的组合数,等于从这n 个元素中取出n - m 个元素的组合数,即:m n nm n C C -=.在这里,主要体现:“取法”与“剩法”是“一一对应”的思想 证明:∵)!(!!)]!([)!(!m n m n m n n m n n C mn n -=---=-又 )!(!!m n m n C m n -=,∴m n n m n C C -=说明:①规定:10=n C ;②等式特点:等式两边下标同,上标之和等于下标; ③y n x n C C =y x =⇒或n y x =+.2.组合数的性质2:m n C 1+=m n C +1-m nC . 一般地,从121,,,+n a a a Λ这n +1个不同元素中取出m 个元素的组合数是m n C 1+,这些组合可以分为两类:一类含有元素1a ,一类不含有1a .含有1a 的组合是从132,,,+n a a a Λ这n 个元素中取出m -1个元素与1a 组成的,共有1-m n C 个;不含有1a 的组合是从132,,,+n a a a Λ这n 个元素中取出m 个元素组成的,共有mnC 个.根据分类计数原理,可以得到组合数的另一个性质.在这里,主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想.证明:)]!1([)!1(!)!(!!1---+-=+-m n m n m n m n C C m n m n )!1(!!)1(!+-++-=m n m m n m n n )!1(!!)1(+-++-=m n m n m m n )!1(!)!1(+-+=m n m n m n C 1+=∴m n C 1+=m n C +1-m nC . 3.例子1.(1)计算:69584737C C C C +++; (2)求证:n m C 2+=n m C +12-n m C +2-n m C .解:(1)原式4565664889991010210C C C C C C C =++=+===;证明:(2)右边1121112()()n n n n n n n m m m m m m m C C C C C C C ----+++=+++=+==左边2.解方程:(1)3213113-+=x x C C ;(2)解方程:333222101+-+-+=+x x x x x A C C . 解:(1)由原方程得123x x +=-或12313x x ++-=,∴4x =或5x =,又由111312313x x x N *⎧≤+≤⎪≤-≤⎨⎪∈⎩得28x ≤≤且x N *∈,∴原方程的解为4x =或5x =上述求解过程中的不等式组可以不解,直接把4x =和5x =代入检验,这样运算量小得多.(2)原方程可化为2333110x x x C A -++=,即5333110x x C A ++=,∴(3)!(3)!5!(2)!10!x x x x ++=-⋅, ∴11120(2)!10(1)(2)!x x x x =-⋅-⋅-, ∴2120x x --=,解得4x =或3x =-,经检验:4x =是原方程的解3. 有同样大小的4个红球,6个白球。

新人教B版高中数学(选修2-3)1.2.1《排列》word教案

新人教B版高中数学(选修2-3)1.2.1《排列》word教案

1.2.1 排列课标要求:知识与技能:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。

过程与方法:能运用所学的排列知识,正确地解决的实际问题情感、态度与价值观:能运用所学的排列知识,正确地解决的实际问题.教学重点:排列、排列数的概念教学难点:排列数公式的推导授课类型:新授课课时安排:2课时教 具:多媒体、实物投影仪内容分析:分类计数原理是对完成一件事的所有方法的一个划分,依分类计数原理解题,首先明确要做的这件事是什么,其次分类时要根据问题的特点确定分类的标准,最后在确定的标准下进行分类.分类要注意不重复、不遗漏,保证每类办法都能完成这件事.分步计数原理是指完成一件事的任何方法要按照一定的标准分成几个步骤,必须且只需连续完成这几个步骤后才算完成这件事,每步中的任何一种方法都不能完成这件事.分类计数原理和分步计数原理的地位是有区别的,分类计数原理更具有一般性,解决复杂问题时往往需要先分类,每类中再分成几步.在排列、组合教学的起始阶段,不能嫌罗嗦,教师一定要先做出表率并要求学生严格按原理去分析问题. 只有这样才能使学生认识深刻、理解到位、思路清晰,才会做到分类有据、分步有方,为排列、组合的学习奠定坚实的基础分类计数原理和分步计数原理既是推导排列数公式、组合数公式的基础,也是解决排列、组合问题的主要依据,并且还常需要直接运用它们去解决问题,这两个原理贯穿排列、组合学习过程的始终.搞好排列、组合问题的教学从这两个原理入手带有根本性.排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系. 教学过程:一、复习引入: 1分类加法计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法种数的问题,区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,每一种方法只属于某一类,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对的是“分步”问题,各个步骤中的方法相互依存,某一步骤中的每一种方法都只能做完这件事的一个步骤,只有各个步骤都完成才算做完这件事应用两种原理解题:1.分清要完成的事情是什么;2.是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;3.有无特殊条件的限制二、讲解新课:1问题:问题1.从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?分析:这个问题就是从甲、乙、丙3名同学中每次选取2名同学,按照参加上午的活动在前,参加下午活动在后的顺序排列,一共有多少种不同的排法的问题,共有6种不同的排法:甲乙甲丙乙甲乙丙丙甲丙乙,其中被取的对象叫做元素解决这一问题可分两个步骤:第 1 步,确定参加上午活动的同学,从 3 人中任选 1 人,有 3 种方法;第 2 步,确定参加下午活动的同学,当参加上午活动的同学确定后,参加下午活动的同学只能从余下的 2 人中去选,于是有 2 种方法.根据分步乘法计数原理,在 3 名同学中选出 2 名,按照参加上午活动在前,参加下午活动在后的顺序排列的不同方法共有 3×2=6 种,如图 1.2一1 所示.图 1.2一1把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素 a , b ,。

人教版高中数学选修2-3第一章1.1分类加法计数原理与分步乘法计数原理

人教版高中数学选修2-3第一章1.1分类加法计数原理与分步乘法计数原理

导入新课想一想先看下面的问题从我们班推选出两名同学担任班长,有多少种不同的选法?把我们的同学排成一排,共有多少种不同的排法?要解决这些问题,就要运用有关排列、组合知识.排列组合是一种重要的数学计数方法. 是研究按某一规则做某事时,一共有多少种不同的做法.在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理. 这节课,我们从具体例子出发来学习这两个原理.1.1分类加法计数原理与分步乘法计数原理教学目标知识目标(1)理解分类加法计数原理与分步乘法计数原理;(2)会利用两个原理分析和解决一些简单的应用问题.能力目标培养学生的归纳概括能力.情感目标(1)了解学习本章的意义,激发学生的兴趣;(2)引导学生形成“自主学习”与“合作学习”等良好的学习方式.教学重难点重点分类加法计数原理与分步乘法计数原理的应用理解.难点分类加法计数原理与分步乘法计数原理的理解.1、分类加法计数原理从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?解答由题意画图如下:解:从甲地到乙地有2类方法,第一类方法:乘火车,有3种方法;第二类方法:乘汽车,有2种方法. 所以从甲地到乙地共有3+2=5种方法.观察有什么特征知识要点分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有 n种不同的方法. 那么完成这件事共有N=m+n种不同的方法.A 大学B大学生物学化学医学物理学工程学数学会计学信息技术学法学例题1在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:如果这名同学只能选一个专业,那么它共有多少种选择呢?分析由于这名同学在A,B两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项的专业,因此符合分类加法计数原理的条件.继续解答解:这名同学可以选择两所大学中的一所,在A 所大学中有5种专业选择方法,在B所大学中有4种专业选择方法,又由于没有一个强项专业是两所大学共有的,因此更具分类加法计数原理,这名同学可能的专业选择共有5+4=9(种)探究如果完成一件事有三种不同方案,在第1类方案中有m1种方法,在第2类方案中有m2种方法,在第3类方案中有m3种方法那么完成这件事共有多少种不同的方法?如果完成一件事有n种不同方案,在每一类中都有若干种不同方法,那么如何计数呢?N=m1+m2+m32、分步乘法计数原理用前6个大写英文字母和1~9九个阿拉伯数字,以A1,A2,…,B1,B2,…的方式给教室里的座位编号,总共能变出多少个不同的号码?解答由题意画图如下: 字母 数字 得到的号码 1 2 3 4 5 6 7 8 9A A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9注意上图是解决计数问题常用的“树形图”.你能用树形图列出所有可能的号码吗?解:由于前6个英文字母中的任意一个都能与9个数字中的任意一个组成一个号码,而且它们各不相同,因此共有6×9=54个不同的号码.观察有什么特征知识要点分步乘法计数原理完成一件事需要两个步骤,做第1步有m 种不同的方法,做第2步有 n种不同的方法. 那么完成这件事共有N=m×n种不同的方法.例题2书架的第一层放有4本不同的计算机书,第二层放有5本不同的文艺书,从书架的第1、2层各取1本书,有多少种不同的取法?分析读题意可知,这是一个分步乘法计数题.继续解答解:从书架的第1,2,各取1本书,可以分成两个步骤完成:第一步,从第一层取1本计算机书,有4种方法;第二步,从第二层取1本文艺书,有5种方法;根据分步乘法计数原理,不同取法的种数是 N=4×5=20探究如果完成一件事需要三个步骤,做第1步有m1种方法,做第2步有m2种方法,做第3步有m3种方法那么完成这件事共有多少种不同的方法?如果完成一件事有n种不同方案,在每一类中都有若干种不同方法,那么如何计数呢?N=m1×m2×m3例题3一名同学有7枚明朝不同古币和10枚清朝不同古币(1)从中任取一枚,有多少种不同取法?(2)从中任取明清古币各一枚,有多少种不同取法?分析由于这名同学有明朝清朝两种不同的古币,(1)中要从中任取一枚,符合分类计数原理,(2)中要从明清中各取一枚,符合分步计数原理.继续解答解:(1)该题应用分类计数原理,分两类:第一类,取明朝古币有7种;第二类,取清朝古币有10种. 所以共有7+10=17种不同取法.(2)该题应用分步计数原理,分两步:第一步,取明朝古币有7种;第二步,取清朝古币有10种. 共有7×10=70种不同取法.课堂小结1.分类加法计数原理和分步乘法计数原理:①是排列组合问题的最基本的原理;②是推导排列数、组合数公式的理论依据;③是求解排列、组合问题的基本思想.2.理解分类加法计数原理与分步乘法计数原理,并加区别:①分类加法计数原理针对的是“分类”问题,其中各种方法相对独立,用其中任何一种方法都可以完成这件事;②分步乘法计数原理针对的是“分步”问题,各个步骤中的方法相互依存,只有各个步骤都完成后才算做完这件事.3.运用分类加法计数原理与分步乘法计数原理的注意点:①分类加法计数原理:首先确定分类标准,其次满足:完成这件事的任何一种方法必属于某一类,并且分别属于不同的两类的方法都是不同的方法,即"不重不漏".②分步乘法计数原理:首先确定分步标准,其次满足:必须并且只需连续完成这n个步骤,这件事才算完成.高考链接A 1(2008年福建卷7)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数_____ .A. 14B. 24C. 28D. 48先分类,再分步!2(2007年全国Ⅱ卷文科第10题)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有_____.A .10种B .20种C. 25种 D . 32种D 学生选小组N= 523. (2007年四川文科第9题)用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有______.BA.48个B.36个C.24个D.18个分析:先分类,再分步,据题意,当个位数是2时,万位数是3,4,5,其他随意,共有3×3×2×1=18种;当个位数是4时,万位数是2,3,5,其他随意,共有3×3×2×1=18种所以共有36种.课堂练习1.填空(1)从甲地到乙地有2种走法,从乙地到丙地有4种走法,从甲地不经过乙地到丙地有3种走法,则从甲地到丙地的不同的走法共有 ______种.(2)甲、乙、丙3个班各有三好学生3,5,2名,现准备推选两名来自不同班的三好学生去参加校三好学生代表大会,共有______种不同的推选方法.11 312.选择(1)一件工作可以用2种方法完成,有5人会用第1种方法完成,另有4人会用第2种方法完成,从中选出1人来完成这件工作,不同选法的种数是( )A.9B.2C.20D.6(2)从A 村去B 村的道路有3条,从B 村去C 村的道路有2条,从A 村经B 村去C 村,不同的路线有 ( )条.A.3B.4C.5D.6 √ √3.解答题(1)由数字l,2,3,4,5可以组成多少个允许重复数字的三位数.解:由于此三位数的数字允许重复,分三步:百、十、个位数各有5种取法,所以可以组成5×5×5=125个三位数.(2)电子元件很容易实现电路的通与断、电位的高与底等两种状态,而这也是最容易控制的两种状态. 因此计算机内部就采用了每一位只有0或1两种数字的计数法,即二进制,为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用一个或多个字节来表示,其中字节是计算机中数据存储的最小计量单位,每个字节由8个二进制位构成,问:①一个字节(8位)最多可以表示多少个不同的字符?②计算机汉字国标码(GB 码)包含了6763个汉字,一个汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用多少个字节表示? 第1位 第2位 第3位 第8位 …… 2种 2种 2种 2种分析:如00000000,10000000,11111111.解:①由图可知组成一个字节为分步计数所以最多可以表示8个2256()②一个字节有256种表示方法,而汉字有6763个,所以每个汉字至少要用2个字节来表示.习题解答A组1. “一件事情”是“买一台某型号的电视机”不同的选法有4+7=11(种).2. “一件事情”是“从甲地经乙地或经丙地到丁地去”. 所以是“先分类,再分步”,不同的路线共有2×3+4×2=14(条).3. 对于第一问,“一件事情”是“构成一个分数”由于1,5,9,13是奇数,4,8,12,16是偶数,所以以1,5,9,13中任意一个为分子,都可以与4,8,12,16中的任意一个构成分数. 因此可以分两步来构成分数:第一步,选分子,有4种选法;第二步,选分母,也有4种选法.共有不同的分数4×4=16(个).对于第二问,分四类:分子为1时,分母可以从4,8,12,16中任选一个,有4个,分子为5时,分母从8,12,16中选一个,有3个;分子为9时,分母从12,16中选一个,有2个;分子为13时,分母只能是16,有1个.所以共有真分数4+3+2+1=10(个).4.”一件事情”是“接通线路”。

高中数学高二理科选修2-3排列组合导学案

高中数学高二理科选修2-3排列组合导学案

《排列(1)》导学案【学习目标】1. 理解排列、排列数的概念;2. 了解排列数公式的推导.【重点难点】1. 理解排列、排列数的概念;2. 了解排列数公式的推导.【学法指导】(预习教材P14~ P18,找出疑惑之处)复习1:交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有2个不重复的英文字母和4个不重复的阿拉伯数字,并且2个字母必须合成一组出现,4个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照?复习2:从甲,乙,丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另一名参加下午的活动,有多少种不同的选法?【教学过程】(一)导入探究任务一:排列问题1:上面复习1,复习2中的问题,用分步计数原理解决显得繁琐,能否对这一类计数问题给出一种简捷的方法呢?新知1:排列的定义一般地,从n个元素中取出m()个元素,按照一定的排成一排,叫做从个不同元素中取出个元素的一个排列.试试:写出从4个不同元素中任取2个元素的所有排列. 反思:排列问题有何特点?什么条件下是排列问题?探究任务二:排列数及其排列数公式新知2 排列数的定义从个元素中取出(nm≤)个元素的的个数,叫做从n个不同元素取出m元素的排列数,用符合表示.试试:从4个不同元素a,b, c,d中任取2个,然后按照一定的顺序排成一列,共有多少种不同的排列方法?问题:⑴从n个不同元素中取出2个元素的排列数是多少?⑵从n个不同元素中取出3个元素的排列数是少?⑶从n个不同元素中取出m(nm≤)个元素的排列数是多少?新知3 排列数公式从n个不同元素中取出m(nm≤)个元素的排列数=mnA新知4 全排列从n个不同元素中取出的一个排列,叫做n个元素的一个全排列,用公式表示为=nnA(二)深入学习例1计算:⑴410A;⑵218A; ⑶441010AA÷.变式:计算下列各式:⑴215A; ⑵66A⑶28382AA-; ⑷6688AA.例2若17161554mn A =⨯⨯⨯⨯⨯,则n = ,m = .变式:乘积(55)(56)(68)(69)n n n n ----用排列数符号表示 .(,n N ∈)例3 求证: 11--=m n m n nA A变式 求证: 7766778878A A A A =+-小结:排列数m n A 可以用阶乘表示为mn A =※ 动手试试 n 2 3 4 5 6 7n !练2. 从2,3,5,7,11这五个数字中,任取2个数字组成分数,不同值的分数共有多少个? .【当堂检测 】1. 计算:=+243545A A ;2.. 计算:=+++44342414A A A A ;3. 某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行 场比赛;4. 5人站成一排照相,共有 种不同的站法;5. 从1,2,3,4这4个数字中,每次取出3个排成一个3位数,共可得到 个不同的三位数.1. 求证:11211--++=-n n n n n n A n A A2. 一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假设每股道只能停放1列火车)?3.一部记录片在4个单位轮映,每一单位放映1场,有多少种轮映次序?【反思 】1. 排列数的定义2. 排列数公式及其全排列公式《排列(2)》导学案【学习目标 】1熟练掌握排列数公式; 2. 能运用排列数公式解决一些简单的应用问题. 【重点难点 】 1熟练掌握排列数公式; 2. 能运用排列数公式解决一些简单的应用问题. 【学法指导 】 (预习教材P 5~ P 10,找出疑惑之处) 复习1:.什么叫排列?排列的定义包括两个方面分别是 和 ;两个排列相同的条件是 相同, 也复习2:排列数公式:mn A = (,,m n N m n *∈≤)全排列数:nn A = = . 复习3 从5个不同元素中任取2个元素的排列数是 ,全部取出的排列数是【教学过程 】 (一)导入 探究任务一:排列数公式应用的条件 问题1:⑴ 从5本不同的书中选3本送给3名同学,每人各1本,共有多少种不同的送法?⑵ 从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法? 新知:排列数公式只能用在从n 个不同元素中取出m 个元素的的排列数,对元素可能相同的情况不能使用.探究任务二:解决排列问题的基本方法问题2:用0到9这10个数字,可以组成多少个没有重复数字的三位数?新知:解排列问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直接法.当问题的反面简单明了时,可通过求差采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等. (二)深入学习 例1 (1)6男2女排成一排,2女相邻,有多少种不同的站法? (2)6男2女排成一排,2女不能相邻,有多少种不同的站法? (3)4男4女排成一排,同性者相邻,有多少种不同的站法? (4)4男4女排成一排,同性者不能相邻,有多少种不同的站法?变式::某小组6个人排队照相留念.(1) 若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法? (2) 若排成一排照相,其中甲必在乙的右边,有多少种不同的排法? (3) 若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法? (4) 若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法? (5) 若分成两排照相,前排2人,后排4人,有多少种不同的排法?小结:对比较复杂的排列问题,应该仔细分析,选择正确的方法.例2 用0,1,2,3,4,5六个数字,能排成多少个满足条件的四位数.(1)没有重复数字的四位偶数?(2)比1325大的没有重复数字四位数?变式:用0,1,2,3,4,5,6七个数字,⑴能组成多少个没有重复数字的四位奇数?⑵能被5整除的没有重复数字四位数共有多少个?※动手试试练1.从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地上进行实验,有多少种不同的种植方法?练2.在3000至8000之间有多少个无重复数字的奇数?【当堂检测】1. 某农场为了考察3个水稻品种和5个小麦品种的质量,要在土质相同的土地上进行试验,应该安排的试验区共有块.2. 某人要将4封不同的信投入3个信箱中,不同的投寄方法有种.3. 用1,2,3,4,5,6可组成比500000大、且没有重复数字的自然数的个数是.4. 现有4个男生和2个女生排成一排,两端不能排女生,共有种不同的方法.5. 在5天内安排3次不同的考试,若每天至多安排一次考试,则不同的排法有种.1..一个学生有20本不同的书.所有这些书能够以多少种不同的方式排在一个单层的书架上?2.学校要安排一场文艺晚会的11个节目的演出顺序.除第一个节目和最后一个节目已确定外,4个音乐节目要求排在第2,5,7,10的位置,3个舞蹈节目要求排在第3,6,9的位置,2个曲艺节目要求排在第4,8的位置,求共有多少种不同的排法?【反思 】1. 正确选择是分类还是分步的方法,分类要做到“不重不漏”,分步要做到“步骤完整.2..正确分清是否为排列问题满足两个条件:从不同元素中取出元素,然后排顺序.《组合(1)》导学案【学习目标 】1. 正确理解组合与组合数的概念;2. 弄清组合与排列之间的关系;3. 会做组合数的简单运算;. 【重点难点 】1. 正确理解组合与组合数的概念;2. 弄清组合与排列之间的关系;3. 会做组合数的简单运算; 【学法指导】(预习教材P 21~ P 23,找出疑惑之处)复习1:什么叫排列?排列的定义包括两个方面,分别是 和 . 复习2:排列数的定义:从 个不同元素中,任取 个元素的 排列的个数叫做从n 个元素中取出m 元素的排列数,用符号 表示复习3:排列数公式:mn A = (,,m n N m n *∈≤)【教学过程 】 (一)导入探究任务一:组合的概念问题:从甲,乙,丙3名同学中选出2名去参加一项活动,有多少种不同的选法?新知:一般地,从 个 元素中取出 ()m n ≤个元素 一组,叫做从n 个不同元素中取出m 个元素的一个组合.试试:试写出集合{}a,b,c,d,e 的所有含有2个元素的子集.反思:组合与元素的顺序 关,两个相同的组合需要 个条件,是 ;排列与组合有何关系? 探究任务二.组合数的概念:从n 个 元素中取出m ()m n ≤个元素的 组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号 表示. 探究任务三 组合数公式 m n C = =我们规定:=0nC (二)深入学习例1 甲、乙、丙、丁4个人,(1)从中选3个人组成一组,有多少种不同的方法?列出所有可能情况; (2)从中选3个人排成一排,有多少种不同的方法?变式: 甲、乙、丙、丁4个足球队举行单循环赛: (1)列出所有各场比赛的双方; (2)列出所有冠亚军的可能情况.小结:排列不仅与元素有关,而且与元素的排列顺序有关,组合只与元素有关,与顺序无关,要正确区分排列与组合.例2 计算:(1)47C ; (2)710C变式:求证:11+⋅-+=m n m nC mn m C※ 动手试试 练1.计算:⑴ 26C ; ⑵ 38C ;⑶ 2637C C -; ⑷ 253823C C -.练2. 已知平面内A ,B ,C ,D 这4个点中任何3个点都不在一条直线上,写出由其中每3点为顶点的所有三角形.练3. 学校开设了6门任意选修课,要求每个学生从中选学3门,共有多少种选法?【当堂检测 】1. 若8名学生每2人互通一次电话,共通 次电话.2. 设集合{}A a,b,c,d,e ,B A =⊂,已知a B ∈,且B 中含有3个元素,则集合B 有个. 3. 计算:310C = .4. 从2,3,5,7四个数字中任取两个不同的数相乘,有m 个不同的积;任取两个不同的数相除,有n 个不同的商,则m :n = .5.写出从a,b,c,d,e 中每次取3个元素且包含字母a ,不包含字母b 的所有组合 1.计算:⑴ 215C ; ⑵ 2836C C ÷;2. 圆上有10个点:⑴ 过每2个点画一条弦,一共可以画多少条弦?⑵ 过每3点画一个圆内接三角形,一共有多少个圆内接三角形? 、【反思 】1. 正确理解组合和组合数的概念2.组合数公式:(1)(2)(1)!m m n nm m A n n n n m C A m ---+==或者:)!(!!m n m n C mn -=),,(n m N m n ≤∈*且《 组合(2)》导学案【学习目标 】1.2. 进一步熟练组合数的计算公式,能够运用公式解决一些简单的应用问题; 【重点难点 】1.2. 进一步熟练组合数的计算公式,能够运用公式解决一些简单的应用问题; 【学法指导 】(预习教材P 24~ P 25,找出疑惑之处)复习1:从 个 元素中取出 ()m n ≤个元素 一组,叫做从n 个不同元素中取出m 个元素的一个组合;从 个 元素中取出 ()m n ≤个元素的 组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号 表示.复习2: 组合数公式: m n C = =【教学过程 】 (一)导入探究任务一:组合数的性质问题1:高二(6)班有42个同学⑴ 从中选出1名同学参加学校篮球队有多少种选法? ⑵ 从中选出41名同学不参加学校篮球队有多少种选法? ⑶ 上面两个问题有何关系?新知1:组合数的性质1:mn n m n C C -=.一般地,从n 个不同元素中取出m 个元素后,剩下n m -个元素.因为从n 个不同元素中取出m 个元素的每一个组合,与剩下的n - m 个元素的每一个组合一一对应....,所以从n 个不同元素中取出m 个元素的组合数,等于从这n 个元素中取出n - m 个元素的组合数,即:mn n m n C C -=试试:计算:1820C反思:⑴若y x =,一定有yn x n C C =?⑵若yn x n C C =,一定有y x =吗?问题2 从121,,,+n a a a 这n +1个不同元素中取出m 个元素的组合数是 ,这些组合可以分为两类:一类含有元素1a ,一类是不含有1a .含有1a 的组合是从132,,,+n a a a 这 个元素中取出 个元素与1a 组成的,共有 个;不含有1a 的组合是从132,,,+n a a a 这 个元素中取出 个元素组成的,共有 个.从中你能得到什么结论?新知2 组合数性质2 m n C 1+=m n C +1-m n C(二)深入学习例1(1)计算:69584737C C C C +++;变式1:计算2222345100C C C C ++++例2 求证:n m C 2+=n m C +12-n m C +2-n m C变式2:证明:111m m m n n n C C C ++++=小结:组合数的两个性质对化简和计算组合数中用用处广泛,但在使用时要看清公式的形式.例3解不等式()321010n n-C n -<∈+C N .练3 :解不等式:46n nC C <※ 动手试试练1.若542216444x x C -C C C -=+,求x 的值练2. 解方程: (1)3213113-+=x x C C(2)333222101+-+-+=+x x x x x A C C【当堂检测 】1. 908910099C -C =2. 若231212n n-C C =,则n =3.有3张参观券,要在5人中确定3人去参观,不同方法的种数是 ;4. 若7781n n n C C C +=+,则n = ;5. 化简:9981m m m C -C C ++= .1. 计算:⑴ 197200C ; ⑵ 21-+•n n n n C C2. 壹圆,贰圆,伍圆,拾圆的人民币各1张,一共可以组成多少种币值?3. 若128n n C C =,求21n C 的值【反思 】1. 组合数的性质1:mn n m n C C -=2. 组合数性质2:m n C 1+=m n C +1-m n C《组合(3)》导学案 【学习目标 】 1. 进一步理解组合的意义,区分排列与组合;2. 进一步巩固组合、组合数的概念及其性质;3. 熟练运用排列与组合,解较简单的应用问题.【重点难点 】1. 进一步理解组合的意义,区分排列与组合;2. 进一步巩固组合、组合数的概念及其性质;3. 熟练运用排列与组合,解较简单的应用问题.【学法指导 】(预习教材P 27~ P 28,找出疑惑之处)复习1:⑴ 从 个 元素中取出 ()m n ≤个元素的 组合的个数,叫做从n 个不同元素中取出m 个元素的组合数...,用符号 表示;从 个 元素中取出 (n m ≤)个元素的 的个数,叫做从n 个不同元素取出m 元素的排列数,用符合 表示. ⑵ mn A =mn C = =m n A 与mn C 关系公式是 复习2:组合数的性质1: .组合数的性质2: .【教学过程 】 (一)导入探究任务一:排列组合的应用问题:一位教练的足球队共有17名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11人.问: ⑴ 这位教练从17位学员中可以形成多少种学员上场方案?⑵ 如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事?新知:排列组合在实际运用中,可以同时使用,但要分清他们的使用条件:排列与元素的顺序有关,而组合只要选出元素即可,不要考虑元素的顺序.试试:⑴平面内有10个点,以其中每2个点为端点的线段共有多少条? ⑵平面内有10个点,以其中每2个点为端点的有向线段多少条? 反思:排列组合在一个问题中能同时使用吗? (二)深入学习 例1 在100件产品中,有98件合格品,2件次品.从这100件产品中任意抽出3件.⑴ 有多少种不同的抽法?⑵ 抽出的3件中恰好有1件是次品的抽法有多少种?⑶ 抽出的3件中至少有1件是次品的抽法有多少种?变式:在200件产品中有2件次品,从中任取5件: ⑴ 其中恰有2件次品的抽法有多少种?⑵ 其中恰有1件次品的抽法有多少种?⑶ 其中没有次品的抽法有多少种? ⑷ 其中至少有1件次品的抽法有多少种?小结:对综合应用两个计数原理以及组合知识问题,思路是:先分类,后分步.例2 现有6本不同书,分别求下列分法种数:⑴分成三堆,一堆3本,一堆2本,一堆1本;⑵分给3个人,一人3本,一人2本,一人1本;⑶平均分成三堆.变式:6本不同的书全部送给5人,每人至少1本,有多少种不同的送书方法?例 3 现有五种不同颜色要对如图中的四个部分进行着色,要求有公共边的两块不能用一种颜色,问共有几种不同的着色方法?变式:某同学邀请10位同学中的6位参加一项活动,其中两位同学要么都请,要么都不请,共有多少种邀请方法?※动手试试练1. 甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表?练2. 高二(1)班共有35名同学,其中男生20名,女生15名,今从中取出3名同学参加活动, (1)其中某一女生必须在内,不同的取法有多少种?(2)其中某一女生不能在内, 不同的取法有多少种?(3)恰有2名女生在内,不同的取法有多少种?(4)至少有2名女生在内,不同的取法有多少种?(5)至多有2名女生在内,不同的取法有多少种?【当堂检测】1. 凸五边形对角线有条;2. 以正方体的顶点为顶点作三棱锥,可得不同的三棱锥有个;3.要从5件不同的礼物中选出3件送给3个同学,不同方法的种数是;4.有5名工人要在3天中各自选择1天休息,不同方法的种数是;5. 从1,3,5,7,9中任取3个数字,从2,4,6,8中任取2个数字,一共可以组成没有重复数字的五位数?1. 在一次考试的选做题部分,要求在第1题的4个小题中选做3个小题,在第2题的3个小题中选做2个小题,在第3题的2个小题中选做1个小题.有多少种不同的选法?路漫漫其修远兮,吾将上下而求索 - 百度文库2. 从5名男生和4名女生中选出4人去参加辩论比赛.⑴如果4人中男生和女生各选2名,有多少种选法?⑵如果男生中的甲和女生中的乙必须在内,有多少种选法?⑶如果男生中的甲和女生中的乙至少有1人在内,有多少种选法?⑷如果4人中必须既有男生又有女生,有多少种选法?【反思】1. 正确区分排列组合问题2. 对综合问题,要“先分类,后分步”,对特别元素,应优先考虑.1111。

最新人教版选修2-3高二数学1.1 2 基本计数原理和排列组合教学设计

最新人教版选修2-3高二数学1.1 2 基本计数原理和排列组合教学设计

一本周教内容:选修2—3 基本计数原理和排列组合二教目标和要求1 掌握分类加法计数原理和分步乘法计数原理,并能用两个计数原理解决一些简单的问题。

2 理解排列和组合的概念,能利用计数原理推导排列数公式,组合数公式,并解决简单的实际问题。

3 让生体会思想与方法,培养生分析问题,解决问题的能力,激发生习的兴趣。

注意问题的转化,分类讨论,注重数形结合,会从不同的切入点解决问题。

三重点和难点重点:两个基本计数原理的内容;排列和组合的定义,排列数和组合数公式及其应用难点:两个计数原理的应用和应用排列组合数公式解决实际的问题四知识要点解析[]1 两个基本计数原理(1)分类加法计数原理:做一件事情,完成它有类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的办法……在第类办法中有m种不同的方法,那么完成这件事情共有N=m1+m2+…+m种不同的方法(2)分步乘法计数原理:做一件事情,完成它需要分成个步骤,做第一个步骤有m1种不同的方法,做第二个步骤有m2种不同的办法……做第个步骤有m种不同的方法,那么完成这件事情共有N=m1×m2×…×m种不同的方法说明:(1)两个基本计数原理是解决计数问题最基本的理论根据,它们分别给出了用两种不同方式(分类和分步)完成一件事情的方法总数的计算方法(2)考虑用哪个计数原理,关键是看完成一件事情是否能独立完成,决定是分类还是分步。

如果完成一件事情有类办法,每类办法都能独立完成,则用分类加法计数原理;如果完成一件事情,需要分成个步骤,各个步骤都是不可缺少的,需要依次完成所有步骤,才能完成这件事情,则用分步乘法计数原理(3)在解决具体问题,要弄清是“分步”,还是“分类”,还要弄清“分步”或者“分类”的标准是什么,注意分类,分步不能重复,不能遗漏2 排列问题(1)排列的定义:一般的,从个不同的元素中任取m (m ≤)个元素,按照一定的顺序排成一列,叫做从个不同元素中取出m 个元素的一个排列说明:①定义中包含两个基本内容:一是“取出元素”,二是“按一定顺序排列”②一个排列就是完成一件事情的一种方法③不同的排列就是完成一件事情的不同方法④两个排列相同,需要满足两个条件:一是元素相同,二是顺序相同⑤从个不同的元素全部取出的一个排列,叫做个不同元素的一个全排列,记作n n A(2)排列数的定义:从个不同的元素中任取m (m ≤)个元素的所有排列的个数,叫做从个不同元素中任取m 个元素的排列数。

2012-2013学年高中数学人教新课标选修2-3教案第一章《组合》1

2012-2013学年高中数学人教新课标选修2-3教案第一章《组合》1

1.2.2组合第一课时一、复习引入:1分类加法计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法3.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的...顺序..排成一列,叫做从n 个不同元素中取出m 个元素的一.个排列...4.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m n A 表示5.排列数公式:(1)(2)(1)m n A n n n n m =---+(,,m n N m n *∈≤)6阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=.7.排列数的另一个计算公式:m n A =!()!n n m - 8.提出问题:示例1:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?示例2:从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法?引导观察:示例1中不但要求选出2名同学,而且还要按照一定的顺序“排列”,而示例2只要求选出2名同学,是与顺序无关的引出课题:组合... 二、讲解新课:1组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同 例1.判断下列问题是组合还是排列(1)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票?有多少种不同的飞机票价?(2)高中部11个班进行篮球单循环比赛,需要进行多少场比赛?(3)从全班23人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?选出三人参加某项劳动,有多少种不同的选法?(4)10个人互相通信一次,共写了多少封信?(5)10个人互通电话一次,共多少个电话?问题:(1)1、2、3和3、1、2是相同的组合吗?(2)什么样的两个组合就叫相同的组合2.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号m n C 表示. 例2.用计算器计算710C .解:由计算器可得例3.计算:(1)47C ; (2)710C ;(1)解: 4776544!C ⨯⨯⨯==35; (2)解法1:710109876547!C ⨯⨯⨯⨯⨯⨯==120. 解法2:71010!10987!3!3!C ⨯⨯===120.。

(新课程)高中数学《1.2.1排列》教案设计-新人教A版选修2-3

(新课程)高中数学《1.2.1排列》教案设计-新人教A版选修2-3

1.2.1排列教学目标:知识与技能:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。

过程与方法:能运用所学的排列知识,正确地解决的实际问题情感、态度与价值观:能运用所学的排列知识,正确地解决的实际问题.教学重点:排列、排列数的概念教学难点:排列数公式的推导授课类型:新授课 课时安排:2课时 教 具:多媒体、实物投影仪内容分析:分类计数原理是对完成一件事的所有方法的一个划分,依分类计数原理解题,首先明确要做的这件事是什么,其次分类时要根据问题的特点确定分类的标准,最后在确定的标准下进行分类.分类要注意不重复、不遗漏,保证每类办法都能完成这件事.分步计数原理是指完成一件事的任何方法要按照一定的标准分成几个步骤,必须且只需连续完成这几个步骤后才算完成这件事,每步中的任何一种方法都不能完成这件事.分类计数原理和分步计数原理的地位是有区别的,分类计数原理更具有一般性,解决复杂问题时往往需要先分类,每类中再分成几步.在排列、组合教学的起始阶段,不能嫌罗嗦,教师一定要先做出表率并要求学生严格按原理去分析问题. 只有这样才能使学生认识深刻、理解到位、思路清晰,才会做到分类有据、分步有方,为排列、组合的学习奠定坚实的基础分类计数原理和分步计数原理既是推导排列数公式、组合数公式的基础,也是解决排列、组合问题的主要依据,并且还常需要直接运用它们去解决问题,这两个原理贯穿排列、组合学习过程的始终.搞好排列、组合问题的教学从这两个原理入手带有根本性.排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系. 教学过程:一、复习引入:1分类加法计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法种数的问题,区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,每一种方法只属于某一类,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对的是“分步”问题,各个步骤中的方法相互依存,某一步骤中的每一种方法都只能做完这件事的一个步骤,只有各个步骤都完成才算做完这件事应用两种原理解题:1.分清要完成的事情是什么;2.是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;3.有无特殊条件的限制二、讲解新课:1问题:问题1.从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?分析:这个问题就是从甲、乙、丙3名同学中每次选取2名同学,按照参加上午的活动在前,参加下午活动在后的顺序排列,一共有多少种不同的排法的问题,共有6种不同的排法:甲乙甲丙乙甲乙丙丙甲丙乙,其中被取的对象叫做元素解决这一问题可分两个步骤:第 1 步,确定参加上午活动的同学,从 3 人中任选 1 人,有 3 种方法;第 2 步,确定参加下午活动的同学,当参加上午活动的同学确定后,参加下午活动的同学只能从余下的 2 人中去选,于是有 2 种方法.根据分步乘法计数原理,在 3 名同学中选出 2 名,按照参加上午活动在前,参加下午活动在后的顺序排列的不同方法共有 3×2=6 种,如图 1.2一1 所示.图 1.2一1把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素 a , b ,。

高中数学 1.2.1排列(二) 教案 北师大选修2-3

高中数学 1.2.1排列(二) 教案 北师大选修2-3

1.2排列(第一课时)教学目标:理解排列、排列数的概念,了解排列数公式的推导 教学重点:理解排列、排列数的概念,了解排列数公式的推导 教学过程一、复习引入: 1、分类计数原理:(1)加法原理:如果完成一件工作有k 种途径,由第1种途径有n 1种方法可以完成,由第2种途径有n 2种方法可以完成,……由第k 种途径有n k 种方法可以完成。

那么,完成这件工作共有n 1+n 2+……+n k 种不同的方法。

2,乘法原理:如果完成一件工作可分为K 个步骤,完成第1步有n 1种不同的方法,完成第2步有n 2种不同的方法,……,完成第K 步有n K 种不同的方法。

那么,完成这件工作共有n 1×n 2×……×n k 种不同方法二、讲解新课: 1.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的...顺序..排成一列,叫做从n 个不同元素中取出m 个元素的一个排...列. 说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列; (2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同 2.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m元素的排列数,用符号m n A 表示注意区别排列和排列数的不同:“一个排列”是指:从n 个不同元素中,任取m 个元素按照一定的顺序.....排成一列,不是数;“排列数”是指从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数,是一个数所以符号m n A 只表示排列数,而不表示具体的排列3.排列数公式及其推导:求m n A 以按依次填m 个空位来考虑(1)(2)(1)m n A n n n n m =---+ ,排列数公式:(1)(2)(1)m n A n n n n m =---+ =!()!n n m -(,,m n N m n *∈≤)说明:(1)公式特征:第一个因数是n ,后面每一个因数比它前面一个 少1,最后一个因数是1n m -+,共有m 个因数;(2)全排列:当n m =时即n 个不同元素全部取出的一个排列全排列数:(1)(2)21!nn A n n n n =--⋅= (叫做n 的阶乘)4.例子:例1.计算:(1)316A ; (2)66A ; (3)46A . 解:(1)316A =161514⨯⨯=3360 ; (2)66A =6!=720 ; (3)46A =6543⨯⨯⨯=360例2.(1)若17161554m n A =⨯⨯⨯⨯⨯ ,则n = ,m = .(2)若,n N ∈则(55)(56)(68)(69)n n n n ---- 用排列数符号表示 . 解:(1)n = 17 ,m = 14 .(2)若,n N ∈则(55)(56)(68)(69)n n n n ---- = 1569n A -.例3.(1)从2,3,5,7,11这五个数字中,任取2个数字组成分数,不同值的分数共有多少个? (2)5人站成一排照相,共有多少种不同的站法?(3)某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行多少场比赛?解:(1)255420A =⨯=; (2)5554321120A =⨯⨯⨯⨯=; (3)2141413182A =⨯=课堂小节:本节课学习了排列、排列数的概念,排列数公式的推导 课堂练习: 课后作业:1.2.1排列(第二课时)教学目标:掌握解排列问题的常用方法 教学重点:掌握解排列问题的常用方法 教学过程一、复习引入: 1.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的...顺序..排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.... 说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列; (2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同2.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m元素的排列数,用符号m n A 表示注意区别排列和排列数的不同:“一个排列”是指:从n 个不同元素中,任取m 个元素按照一定的顺序.....排成一列,不是数;“排列数”是指从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数,是一个数所以符号m n A 只表示排列数,而不表示具体的排列3.排列数公式及其推导:(1)(2)(1)m n A n n n n m =---+ (,,m n N m n *∈≤)全排列数:(1)(2)21!nn A n n n n =--⋅= (叫做n 的阶乘)二、讲解新课:解排列问题问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直接法.当问题的反面简单明了时,可通过求差排除采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等.解排列问题和组合问题,一定要防止“重复”与“遗漏”. 互斥分类——分类法 先后有序——位置法 反面明了——排除法 相邻排列——捆绑法 分离排列——插空法 例1求不同的排法种数:(1)6男2女排成一排,2女相邻; (2)6男2女排成一排,2女不能相邻; (3)4男4女排成一排,同性者相邻; (4)4男4女排成一排,同性者不能相邻.例2在3000与8000之间,数字不重复的奇数有多少个?分析 符合条件的奇数有两类.一类是以1、9为尾数的,共有P 21种选法,首数可从3、4、5、6、7中任取一个,有P 51种选法,中间两位数从其余的8个数字中选取2个有P 82种选法,根据乘法原理知共有P 21P 51P 82个;一类是以3、5、7为尾数的共有P 31P 41P 82个. 解 符合条件的奇数共有P 21P 51P 82+P 31P 41P 82=1232个.答 在3000与8000之间,数字不重复的奇数有1232个. 例3 某小组6个人排队照相留念.(1)若分成两排照相,前排2人,后排4人,有多少种不同的排法?(2)若分成两排照相,前排2人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种排法?(3)若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法? (4)若排成一排照相,其中甲必在乙的右边,有多少种不同的排法?(5)若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法? (6)若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法?分析 (1)分两排照相实际上与排成一排照相一样,只不过把第3~6个位子看成是第二排而已,所以实际上是6个元素的全排列问题.(2)先确定甲的排法,有P21种;再确定乙的排法,有P41种;最后确定其他人的排法,有P44种.因为这是分步问题,所以用乘法原理,有P21·P41·P44种不同排法.(3)采用“捆绑法”,即先把甲、乙两人看成一个人,这样有P55种不同排法.然后甲、乙两人之间再排队,有P22种排法.因为是分步问题,应当用乘法原理,所以有P55·P22种排法.(4)甲在乙的右边与甲在乙的左边的排法各占一半,有P66种排法.(5)采用“插入法”,把3个女生的位子拉开,在两端和她们之间放进4张椅子,如____女____女____女____,再把3个男生放到这4个位子上,就保证任何两个男生都不会相邻了.这样男生有P43种排法,女生有P33种排法.因为是分步问题,应当用乘法原理,所以共有P43·P33种排法.(6)符合条件的排法可分两类:一类是乙站排头,其余5人任意排有P55种排法;一类是乙不站排头;由于甲不能站排头,所以排头只有从除甲、乙以外的4人中任选1人有P41种排法,排尾从除乙以外的4人中选一人有P41种排法,中间4个位置无限制有P44种排法,因为是分步问题,应用乘法原理,所以共有P41P41P44种排法.解 (1)P66=720(种)(2)P21·P41·P44=2×4×24=192(种)(3)P55·P22=120×2=240(种)(4)P66=360(种)(5)P43·P33=24×6=144(种)(6)P55+P41P41P44=120+4×4×24=504(种)或法二:(淘汰法)P66-2P55+P44=720-240+24=504(种)课堂小节:本节课学习了排列、排列数的概念,排列数公式的推导课堂练习:课后作业:。

人教B版数学选修2-3《1.1基本计数原理》说课稿

人教B版数学选修2-3《1.1基本计数原理》说课稿

人教B版数学选修2-3《1.1基本计数原理》说课稿各位老师,大家好,我今天说课的课题是《基本计数原理》,我将从教材、学情、教学策略、教学过程、板书设计、教学反思等几个方面对本节课进行说明。

一、教材分析本节课是人教B版的数学教材选修2-3第一章第一节第一课,本节课所讲授的两个基本计数原理,即分类加法原理与分步乘法原理,是本章继续学习排列、组合的基础,学生能否理解并能应用两个基本原理,是学好本章知识的一个关键,本节课建议安排两课时,本节为第一课时,根据其在教材中的地位,结合课标的要求,设置了如下的教学目标:1、知识目标理解分类加法计数原理和分步乘法计数原理,并能应用两个基本原理分析、解决一些简单的应用问题。

2、能力目标在概念形成的过程中培养学生的总结与概括能力,在解决实际问题过程中锻炼学生逻辑思维能力。

3、情感目标让学生体验知识从生活中来又应用到生活中去得过程,培养学生用数学的眼光观察世界和用数学的思想思考世界的习惯。

教学重点是两个基本计数原理的内容。

难点是如何正确是用两个基本计数原理来解决实际问题。

二、学情分析高二学段的高中生已经具备较好的计算能力和基本的逻辑思维能力,但是对于实际问题的生活背景了解不多,对问题中创设的实际背景和如何完成一件事的含义的理解将成为学生运用两个基本计数原理解决问题是的瓶颈,所以找到如何完成一项实际任务的方法,是应用过程中难点。

三、教学策略本课由于内容比较简单学生通过预习多都能够看懂,在实际授课时,我将使用更能贴近学生生活的实例,以激发学生的求知欲和学习热情。

采用教师启发、学生小组合作学习方式进行教学,利用多媒体课件展示引例的问题环境,引导学生思维,具体的分析比较进而归纳出两个基本计数原理,遵循从特殊到一般的思维过程,在学生现有的认知基础上,促使其获取知识,让学生始终保持高水平的思维活动水平,增强学习效果。

四、教学过程1、设置情景,引入新课使用多媒体课件展示郑板桥《咏雪》让学生齐读古诗并请学生对古诗进行自由鉴赏。

高中数学选修2-3精品教案2:1.2.1 排列(1)教学设计

高中数学选修2-3精品教案2:1.2.1 排列(1)教学设计

排列(第1课时)教学目标 :1.理解排列、排列数概念,能正确写出符合条件的排列。

2.了解排列数公式的推导过程。

3.能较熟练运用排列数公式进行计算与证明.教学重点:理解排列、排列数概念及它们的区别,计算排列数。

教学难点:排列数公式的推导。

学法指导:要求学生结合生活中的实例,弄清排列的特点,感受排列的应用.课前温故知新:一、复习:两个计数原理问题(1):两个计数原理分别是什么?问题(2):两个计数原理各有什么特点?区别在哪?课前预习导学:二、问题情境观察与思考1. 高二(1)班准备从甲、乙、丙三名学生中选出2人分别担任班长和副班长,有多少种不同结果?2. 甲、乙、丙三名学生站队照相,有多少种不同的站法?问题(3):上述两个问题有何共同特征?请一一列举(用树形图表示)课堂学习研讨:三、建构数学问题(4):排列定义是什么?排列:从个不同元素中,任取()个元素(这里的被取元素各不相同)按照一.定的顺序....排成一列,叫做从个不同元素中取出个元素的一个排列..... 问题(5):排列概念应注意些什么?按一定的顺序排列(与位置有关)问题(6):分别列出“观察与思考”中两个问题的所有排列.问题(7):排列数定义是什么?排列数公式是怎样得来的?“排列”与“排列数”有何区别?排列数:从个不同元素中,任取()个元素的所有排列的个数叫做从个n m m n ≤n m n m m n ≤n元素中取出元素的排列数,用符号表示 “一个排列”是指:从n 个不同元素中,任取m 个元素按照一定的顺序.....排成一列,是一件事;“排列数”是指从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数,是一个数.符号m n A 只表示排列数,而不表示具体的排列.问题(8):说说排列数公式的特征,并加强记忆.(1)(2)(1)m n A n n n n m =---+公式特征:第一个因数是n ,后面每一个因数比它前面一个少1,最后一个因数是1n m -+,共有m 个因数.四、数学应用例1:(1)写出从d c b a ,,,这四个字母中,每次取出2个字母的所有排列;(2)写出从d c b a ,,,这四个字母中,每次取出3个字母的所有排列;思考:(1)你能写出从d c b a ,,,这四个字母中,每次取出1个字母的所有排列吗?(2) 你能写出从d c b a ,,,这四个字母中,每次取出4个字母的所有排列吗?例2:计算:(1)35A ;(2)55A ;(3)410A ;(4)435A .答案(1)60 (2)1 (3)5040 (4)1256640课堂巩固训练:1.由1,2,3可以组成没有重复数字的三位数的个数为6个2.若33210n n A A =,则n 等于83.求证:11-++=m n m n m n mA A A证明∵1m m n n A A +-=()()(1)!!1!!n n n m n m +-+-- =()!!n n m -·()(1)11n n m +-+-=()!!n n m -·()1m n m +- =m ·()!1!n n m +-=m 1m n A -, m mn A∴:1m m n n A A +-=m 1m nA -. 4.解不等式:2996.x x A A -> 解:原不等式即9!69!(9)!(92)!x x ⨯>--+,其中2≤x ≤9,且x ∈N *. 即(11-x )(10-x )>6,2211040x x -+>.∴(x -8)(x -13)>0.∴x <8或x >13,但2≤x ≤9,x ∈N *.∴2≤x <8,x ∈N *.故x =2,3,4,5,6,7.5.求和:.111212322++++n A A A 答案:1nn +1n n + [课后拓展延伸]1. 求和:(1)!.!33!22!11n n ⨯++⨯+⨯+⨯(2).)!1(!43!32!21+++++n n 课堂小结:1.排列的定义:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....2.排列数公式:(1)(1)(2)(1)m n A n n n n m =---+ (2))!(!m n n A m n -= 板书设计:(略)教学反思:。

最新人教版高中数学选修2-3《组合》示范教案(第1课时)

最新人教版高中数学选修2-3《组合》示范教案(第1课时)

1.2.2组合整体设计教材分析排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关的是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系.指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.学生易于辨别组合、全排列问题,而排列问题就是先组合后全排列.在求解排列、组合问题时,可引导学生找出两定义的关系后,按以下两步思考:首先要考虑如何选出符合题意要求的元素来,选出元素后再去考虑是否要对元素进行排队,即第一步仅从组合的角度考虑,第二步则考虑元素是否需全排列,如果不需要,是组合问题;否则是排列问题.排列、组合问题大都来源于同学们生活和学习中所熟悉的情景,解题思路通常是依据具体做事的过程,用数学的原理和语言加以表述.也可以说解排列、组合题就是从生活经验、知识经验、具体情景出发,正确领会问题的实质,抽象出“按部就班”的处理问题的过程.据笔者观察,有些同学之所以在学习中感到抽象,不知如何思考,并不是因为数学知识跟不上,而是因为平时做事、考虑问题就缺乏条理性,或解题思路是自己主观想象的做法(很可能是有悖于常理或常规的做法).要解决这个问题,需要师生一道在分析问题时要根据实际情况,怎么做事就怎么分析,若能借助适当的工具,模拟做事的过程,则更能说明问题.久而久之,学生的逻辑思维能力将会大大提高.课时分配3课时第一课时教学目标知识与技能理解组合的意义,能写出一些简单问题的所有组合.明确组合与排列的联系与区别,能判断一个问题是排列问题还是组合问题.过程与方法通过具体实例,体会组合数的意义,总结排列数A m n与组合数C m n之间的联系,掌握组合数公式,能运用组合数公式进行计算.情感、态度与价值观能运用组合要领分析简单的实际问题,提高分析问题的能力.重点难点教学重点:组合的概念和组合数公式.教学难点:组合的概念和组合数公式.教学过程引入新课提出问题1:回顾分类加法计数原理和分步乘法计数原理,排列的概念和排列数公式.活动设计:教师提问.活动成果:1.分类加法计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法那么完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理:做一件事情,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事有N=m1×m2×…×m n种不同的方法.3.排列的概念:从n个不同元素中,任取m(m≤n)个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.4.排列数的定义:从n个不同元素中,任取m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号A m n表示.5.排列数公式:A m n=n(n-1)(n-2)…(n-m+1)(m,n∈N ,m≤n).6.阶乘:n!表示正整数1到n的连乘积,叫做n的阶乘.规定0!=1.7.排列数的另一个计算公式:A m n=n!(n-m)!.设计意图:检查学生的掌握情况,为新知识的学习奠定基础.提出问题2:分析下列两个问题是不是排列问题,为什么?问题(1):从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?问题(2):从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法?活动设计:学生自己分析,教师提问.活动成果:问题(1)中不但要求选出2名同学,而且还要按照一定的顺序“排列”,而问题(2)只要求选出2名同学,是与顺序无关的,不是排列.我们把这样的问题称为组合问题.设计意图:引导学生通过具体实例找出排列与组合问题的不同,引出组合的概念.探索新知提出问题1:结合上述问题(2),试总结组合和组合数的概念.活动设计:学生小组讨论,总结概念.活动成果:1.组合的概念:一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n 个不同元素中取出m个元素的一个组合.2.组合数的概念:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号C m n表示.设计意图:培养学生的类比和概括能力.理解新知提出问题1:判断下列问题是组合问题还是排列问题?(1)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票?(2)高中部11个班进行篮球单循环比赛,需要进行多少场比赛?(3)从全班23人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?(4)10个人互相通信一次,共写了多少封信?(5)10个人互通电话一次,共打了多少个电话?活动设计:小组交流,共同分析.活动成果:(1)(3)(4)是排列;(2)(5)是组合.设计意图:通过具体实例比较排列和组合,加深对组合的理解.提出问题2:试找出排列和组合的区别和联系.活动设计:小组交流,教师提问,学生补充.活动成果:1.区别:(1)排列有顺序,组合无顺序.(2)相同的组合只需选出的元素相同,相同的排列则需选出的元素相同,并且选出元素的顺序相同.2.联系:(1)都是从n 个不同的元素中选出m(m≤n)个元素;(2)排列可以看成先组合再全排列.设计意图:加深对排列组合的理解,为推导组合数公式奠定基础.提出问题2:你能类比排列数的推导过程和排列与组合的联系推导出从4个不同元素a ,b ,c ,d 中取出3个元素的组合数C 34是多少吗?活动设计:小组交流,共同推导.活动成果:由于排列是先组合再排列,而从4个不同元素中取出3个元素的排列数A 34可以求得,故我们可以考察一下C 34和A 34的关系,如下:组合 排列abc→abc ,bac ,cab ,acb ,bca ,cbaabd→abd ,bad ,dab ,adb ,bda ,dbaacd→acd ,cad ,dac ,adc ,cda ,dcabcd→bcd ,cbd ,dbc ,bdc ,cdb ,dcb由此可知,每一个组合都对应着6个不同的排列,因此,求从4个不同元素中取出3个元素的排列数A 34,可以分如下两步:①考虑从4个不同元素中取出3个元素的组合,共有C 34个;②对每一个组合的3个不同元素进行全排列,各有A 33种方法.由分步乘法计数原理得:A 34=C 34·A 33,所以,C 34=A 34A 33. 设计意图:从具体实例出发,探索组合数的求法.提出问题3:你能想出求C m n 的方法吗?活动设计:小组交流,共同推导.活动成果:一般地,求从n 个不同元素中取出m 个元素的组合数C m n ,可以分如下两步:①先求从n 个不同元素中取出m 个元素的排列数A m n ;②求每一个组合中m 个元素的全排列数A m m ,根据分步乘法计数原理得:A m n =C m n ·A m m .得到组合数的公式:C m n =A m n A m m =n(n -1)(n -2)…(n -m +1)m !或C m n =n !m !(n -m)!(n ,m ∈N ,且m≤n). 规定:C 0n =1.设计意图:引导学生逐步利用分步乘法计数原理推导出组合数公式.运用新知类型一:组合数公式的应用1计算:(1)C 47; (2)C 710.解:(1)C 47=7×6×5×44!=35; (2)解法1:C 710=10×9×8×7×6×5×47!=120.解法2:C 710=10!7!3!=10×9×83!=120. 【巩固练习】求证:C m n =m +1n -m ·C m +1n. 证明:∵C m n =n !m !(n -m)!, m +1n -m ·C m +1n =m +1n -m ·n !(m +1)!(n -m -1)!=m +1(m +1)!·n !(n -m)(n -m -1)!=n !m !(n -m)!, ∴C m n =m +1n -m ·C m +1n. 【变练演编】设x ∈N *,求C x -12x -3+C 2x -3x +1的值.解:由题意可得:⎩⎪⎨⎪⎧2x -3≥x -1,x +1≥2x -3,解得2≤x≤4, ∵x ∈N *,∴x =2或x =3或x =4.当x =2时原式的值为4;当x =3时原式的值为7;当x =4时原式的值为11.∴所求的值为4或7或11.类型二:简单的组合问题例2一位教练的足球队共有17名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11人.问:(1)这位教练从这17名学员中可以形成多少种学员上场方案?(2)如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事情?思路分析:对于(1),根据题意,17名学员没有角色差异,地位完全一样,因此这是一个从17个不同元素中选出11个元素的组合问题;对于(2),守门员的位置是特殊的,其余上场学员的地位没有差异,因此这是一个分步完成的组合问题.解:(1)由于上场学员没有角色差异,所以可以形成的学员上场方案种数为C 1117=12 376.(2)教练员可以分两步完成这件事情:第1步,从17名学员中选出11人组成上场小组,共有C 1117种选法;第2步,从选出的11人中选出1名守门员,共有C 111种选法.所以教练员做这件事情的方式种数为C 1117×C 111=136 136.【巩固练习】(1)平面内有10个点,以其中每2个点为端点的线段共有多少条?(2)平面内有10个点,以其中每2个点为端点的有向线段共有多少条?解:(1)以平面内10个点中每2个点为端点的线段的条数,就是从10个不同的元素中取出2个元素的组合数,即线段条数为C 210=10×91×2=45.(2)由于有向线段的两个端点中一个是起点、另一个是终点,以平面内10个点中每2个点为端点的有向线段的条数,就是从10个不同元素中取出2个元素的排列数,即有向线段条数为A 210=10×9=90. 【变练演编】(1)凸五边形有多少条对角线?(2)凸n(n>3)边形有多少条对角线?解答:(1)凸五边形的五个顶点中,任意两个顶点的连线是凸五边形的一条对角线或是一条边,所以,凸五边形的对角线条数为C 25-5=5.(2)凸n 边形的n 个顶点中,任意两个顶点的连线是凸n 边形的一条对角线或是一条边,所以,凸n 边形的对角线条数为C 2n -n =n(n -3)2. 【达标检测】1.判断下列问题哪个是排列问题,哪个是组合问题:(1)从4个风景点中选出2个安排游览,有多少种不同的方法?(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?2.7名同学进行乒乓球擂台赛,决出新的擂主,则共需进行的比赛场数为( )A .42B .21C .7D .63.如果把两条异面直线看作“一对”,则在五棱锥的棱所在的直线中,异面直线有( )A .15对B .25对C .30对D .20对 答案:1.(1)是组合问题 (2)是排列问题 2.B 3.A课堂小结1.知识收获:组合概念、组合数公式.2.方法收获:化归.3.思维收获:分类讨论、化归思想.补充练习【基础练习】1.A ,B ,C ,D ,E 5个足球队进行单循环比赛,(1)共需比赛多少场?(2)若各队的得分互不相同,则冠、亚军的可能情况共有多少种?2.空间有10个点,其中任何4点不共面,(1)过每3个点作一个平面,一共可作多少个平面?(2)以每4个点为顶点作一个四面体,一共可作多少个四面体?3.壹圆、贰圆、伍圆、拾圆的人民币各一张,一共可以组成多少种币值?4.写出从a ,b ,c ,d ,e 这5个元素中每次取出4个的所有不同的组合.答案:1.(1)10 (2)20 2.(1)C 310=120 (2)C 410=210 3.C 14+C 24+C 34+C 44=24-1=15.4.a ,b ,c ,d a ,b ,c ,e a ,b ,d ,e a ,c ,d ,e b ,c ,d ,e.【拓展练习】5.第19届世界杯足球赛于2010年夏季在南非举办,共32支球队有幸参加,他们先分成8个小组进行循环赛,决出16强(每队均与本组其他队赛一场,各组一、二名晋级16强),这16支球队按确定的程序进行淘汰赛,最后决出冠亚军,此外还要决出第三名、第四名,问这次世界杯总共将进行多少场比赛?解:可分为如下几类比赛:(1)小组循环赛:每组有C 24=6场,8个小组共有48场;(2)八分之一淘汰赛:8个小组的第一、二名组成16强,根据赛制规则,每两个队比赛一场,可以决出8强,共有8场;(3)四分之一淘汰赛:根据赛制规则,8强中每两个队比赛一次,可以决出4强,共有4场;(4)半决赛:根据赛制规则,4强每两个队比赛一场,可以决出2强,共有2场;(5)决赛:2强比赛1场确定冠亚军,4强中的另两支队比赛1场决出第三、四名,共有2场.综上,共有8C24+8+4+2+2=64场比赛.设计说明本节课是组合的第一课时,主要目标是学习组合的概念,探究组合数公式,并利用组合数公式解决简单的计数问题.主要特点是:类比排列数公式的推导方法,抓住排列和组合的区别和联系,利用排列数公式推导出组合数公式.本节课的设计充分体现教师所提问题的主导作用和学生根据问题自主探究的主体地位,学生在与教师和与同学的思维碰撞中自主学习、自主探究.备课资料在判断一个问题是排列还是组合问题时,主要看元素的组成有没有顺序性,有顺序的是排列,无顺序的是组合.有大小形状相同的3个红色小球和5个白色小球,排成一排,共有多少种不同的排列方法?误解:因为是8个小球的全排列,所以共有A88种方法.错因分析:误解中没有考虑3个红色小球是完全相同的,5个白色小球也是完全相同的,同色球之间互换位置是同一种排法.正解:8个小球排好后对应着8个位置,题中的排法相当于在8个位置中选出3个位置给红球,剩下的位置给白球,由于这3个红球完全相同,所以没有顺序,是组合问题.这样共有:C38=56种排法.(设计者:殷贺)。

人教课标版高中数学选修2-3:《组合(第1课时)》教案-新版

人教课标版高中数学选修2-3:《组合(第1课时)》教案-新版

1.2.2 组合一、教学目标 【核心素养】通过学习组合与组合数公式,更进一步的提高了学生的数学运算能力和逻辑推理能力. 【学习目标】(1)判断具体问题是组合还是排列 (2)组合数公式的推导 (3)组合数公式的应用 【学习重点】1明确组合与排列的联系与区别,能判断一个问题是排列问题还是组合问题. 2理解组合的概念,组合数公式,组合数公式的简单应用. 【学习难点】组合数公式的推导,组合数公式的简单应用.二、教学设计 (一)课前设计 1.预习任务任务1 阅读教材P21-P26,思考:组合的内容是什么?组合数有哪些应用? 任务2 默写组合数公式的具体内容 2.预习自测 1.组合的概念①从全班40人中选出5人组成班委会.②从全班40人中选出5人分别担任班委中的5个不同职务. 以上两个问题中哪个是排列?①与②有何不同特点?解:②是排列,①中选出的5人无需排列,②中选出的5人有顺序. 2.组合数公式与性质①计算组合数=37C ;②计算=+3626C C .解:35 35 (二)课堂设计1.知识回顾(1)分类加法计数原理;(2)分步乘法计数原理; (3)排列的概念; (4)排列数的定义. 2.问题探究问题探究一 排列与组合的区别和联系引导学生通过实例,辨析“有序(排列)”与“无序(组合)”. 引入:判断下列问题是组合还是排列①设集合A ={a ,b ,c ,d ,e},则集合A 的子集中含有3个元素的有多少个? ②某铁路线上有5个车站,则这条线上共需准备多少种车票?多少种票价?③2017年元旦期间,某班10名同学互送贺年卡,表示新年的祝福,贺年卡共有多少张? 答案:①因为本问题与元素顺序无关,故是组合问题.②因为甲站到乙站与乙站到甲站车票是不同的,故是排列问题,但票价与顺序无关,甲站到乙站与乙站到甲站是同一种票价,故是组合问题.③甲写给乙贺卡,与乙写给甲贺卡是不同的,所以与顺序有关,是排列问题. 说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同 问题探究二 组合数公式的推导引例:从4个不同元素,,,a b c d 中取出3个元素的组合数34C 是多少呢?启发:由于排列..是先组合再排列.......,而从4个不同元素中取出3个元素的排列数34A 可以求得,故我们可以考察一下34C 和34A 的关系,如下:组 合 排列dcbcdb bdc dbc cbd bcd bcddca cda adc dac cad acd acd dba bda adb dab bad abd abdcba bca acb cab bac abc abc ,,,,,,,,,,,,,,,,,,,,→→→→ 由此可知,每一个组合都对应着6个不同的排列,因此,求从4个不同元素中取出3个元素的排列数34A ,可以分如下两步:① 考虑从4个不同元素中取出3个元素的组合,共有34C 个;② 对每一个组合的3个不同元素进行全排列,各有33A 种方法.由分步计数原理得:34A =⋅34C 33A ,所以,333434A A C =.(2)推广:一般地,求从n 个不同元素中取出m 个元素的排列数mn A ,可以分如下两步:① 先求从n 个不同元素中取出m 个元素的组合数mn C ;② 求每一个组合中m 个元素全排列数m m A ,根据分步计数原理得:m n A =m n C m mA ⋅. (3)组合数的公式:(1)(2)(1)!m m n nm m A n n n n m C A m ---+==或)!(!!m n m n C m n -=),,(n m N m n ≤∈*且规定: 01n C =.例1.计算:(1)47C ;(2)710C ;【知识点:组合数公式】 详解:(1) 4776544!C ⨯⨯⨯==35; (2)解法1:710109876547!C ⨯⨯⨯⨯⨯⨯==120. 解法2:71010!10987!3!3!C ⨯⨯===120. 点拨:正确运用组合数公式.例2.求证:11+⋅-+=m n m n C mn m C . 【知识点:组合数公式】证明:∵)!(!!m n m n C m n -=111!(1)!(1)!m nm m n C n m n m m n m +++⋅=⋅--+--=1!(1)!()(1)!m n m n m n m +⋅+---=!!()!n m n m - ∴11+⋅-+=m nm n C m n m C点拨:做组合类证明题一定要准确使用组合数公式.例3.设,+∈N x 求321132-+--+x x x x CC的值【知识点:组合数公式】解:由题意可得:⎩⎨⎧-≥+-≥-321132x x x x ,解得24x ≤≤, ∵x N +∈, ∴2x =或3x =或4x =,当2x =时原式值为7;当3x =时原式值为7;当4x =时原式值为11.∴所求值为4或7或11.点拨:含参数的组合题,明确参数范围.问题探究三 组合数公式的应用 例4 一位教练的足球队共有 17 名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11人.问:(l)这位教练从这 17 名学员中可以形成多少种学员上场方案?(2)如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事情? 【知识点:排列组合,分步计数原理;数学思想:分类讨论】解:(1)由于上场学员没有角色差异,所以可以形成的学员上场方案有1117C = 12 376 (种) .(2)教练员可以分两步完成这件事情:第1步,从17名学员中选出 n 人组成上场小组,共有1117C 种选法; 第2步,从选出的 n 人中选出 1 名守门员,共有111C 种选法.所以教练员做这件事情的方法数有1111711C C ⨯=136136(种). 点拨:对于(1),根据题意,17名学员没有角色差异,地位完全一样,因此这是一个从 17 个不同元素中选出11个元素的组合问题;对于(2),守门员的位置是特殊的,其余上场学员的地位没有差异,因此这是一个分步完成的组合问题.例5.(1)平面内有10个点,以其中每2个点为端点的线段共有多少条?(2)平面内有10个点,以其中每2个点为端点的有向线段共有多少条? 【知识点:排列组合;数学思想:分类讨论】解:(1)以平面内10个点中每2个点为端点的线段的条数,就是从10个不同的元素中取出2个元素的组合数,即线段共有2101094512C⨯==⨯(条). (2)由于有向线段的两个端点中一个是起点、另一个是终点,以平面内10个点中每2个点为端点的有向线段的条数,就是从10个不同元素中取出2个元素的排列数,即有向线段共有21010990A =⨯=(条)点拨:与其他数学问题结合的组合问题,需要对空间点线和面的准确认识 3.课堂总结 【知识梳理】1. 区分排列与组合的关键是看结果是否与元素的顺序有关,若交换某两个元素的位置对结果产生影响,则是排列问题,否则是组合问题.也就是说排列问题与选取元素的顺序有关,组合问题与选取元素的顺序无关.2.写组合时,一般先将元素按一定的顺序排好,然后按照顺序用图示的方法逐个地将各个组合表示出来,如本题的作图法,这样做直观、明了、清楚,可防重复和遗漏. 【重难点突破】1.组合数公式的推导过程体现了众多数学思想方法的应用,教学的关键是引导学生研究组合与排列的关系,发现排列可以分为“先取元素,再作全排列”两个步骤,即A C A =m m m n n m,从而化解难点.2.通过对具体实例的对比分析,亲身经历组合概念的形成过程,明确排列与组合的关系;在用列举法列出组合、排列的过程中体会组合数与排列数、计数原理的关系,并参与体验组合数的应用,体会将实际问题化归为组合问题的方法. 4.随堂检测1.判断下列问题是排列问题还是组合问题:①把当日动物园的4张门票分给5个人,每人至多分一张,而且票必须分完,有多少种分配方法?②从2,3,5,7,11这5个质数中,每次取2个数分别作为分子和分母构成一个分数,共能构成多少个不同的分数?③从9名学生中选出4名参加一个联欢会,有多少种不同的选法? 【知识点:排列组合】解:(1)①是组合问题.由于4张票是相同的(都是当日动物园的门票),不同的分配方法取决于从5人中选择哪4人,这和顺序无关.②是排列问题,选出的2个数作分子或分母,结果是不同的. ③是组合问题,选出的4人无角色差异,不需要排列他们的顺序.2.若266x C C =,则x 的值为( )A .2B .4C .4或2D .3 【知识点:组合数公式】解:由组合数性质知x =2或x =6-2=4,故选C.3.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( )A .36种B .48种C .96种D .192种 【知识点:排列组合,分步计数原理】解:甲选修2门有24C =6种选法,乙、丙各有34C =4种选法.由分步乘法原理可知,共有6×4×4=96种选法4.某校一年级有5个班,二年级有8个班,三年级有3个班,分年级举行班与班之间的篮球单循环赛,总共需进行比赛的场数是( )A .222583C C C ++B .222323C C C C .222583A A A ++D .216C 【知识点:排列组合】 解:A (三)课后作业 基础型 自主突破1.①从甲、乙、丙3名同学中选出2名分别去参加两个乡镇的社会调查,有多少种不同的选法?②有4张电影票,要在7人中确定4个去观看,有多少种不同的选法?③某人射击8枪,击中4枪,且命中的4枪均为2枪连中,则不同的结果有多少种? 其中组合问题的个数是( )A .0个B .1个C .2个D .3个 【知识点:排列组合】解:选C.①与顺序有关,是排列问题;②③均与顺序无关,是组合问题.故选C.2.若266x C C =,则x 的值为( )A .2B .4C .4或2D .3 【知识点:组合数公式】解:由组合数性质知x =2或x =6-2=4,故选C.3.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有( )A .20条B .15条C .12条D .10条 【知识点:排列组合】 解:D4.按ABO 血型系统学说,每个人的血型为A 、B 、O 、AB 四种之一,依血型遗传学,当且仅当父母中至少有一人的血型是AB 型时,子女一定不是O 型,若某人的血型为O 型,则父母血型所有可能情况有______种. 【知识点:排列组合】 解:9能力型 师生共研5.集合M ={x |4n x C =,n ≥0且n ∈N },集合Q ={1,2,3,4},则下列结论正确的是( )A .M ∪Q ={0,1,2,3,4}B .Q ⊆MC .M ⊆QD .M ∩Q ={1,4} 【知识点:排列组合】解:D 由4n x C =知,n =0,1,2,3,4,又041C =,144C =,2443621C ⨯==⨯,31444C C ==,441C =.∴M ={1,4,6}.故M ∩Q ={1,4}.6.从6名男生和2名女生中选出3名志愿者,其中至少有1名女生的选法共有( ) A .36种 B .30种 C .42种 D .60种 【知识点:排列组合,分步计数原理】解:A 法1(直接法):选出的3名志愿者中含1名女生有1226C C 种选法,含2名女生有2226C C 种选法,∴共有12222626C C C C +=36种选法. 法2(间接法):若选出的3名全是男生,则有36C 种选法,∴至少有一名女生的选法数为38C -36C =36种.7.方程22171616x x x C C C +-=的解集是________. 【知识点:组合数公式】解:{5} 因为1171616x x x C C C -=+,所以1221616x x C C -+=,由组合数公式的性质,得x -1=2x +2或x -1+2x +2=16,得x 1=-3(舍去),x 2=5.8.从一组学生中选出4名学生当代表的选法种数为A ,从这组学生中选出2人担任正、副组长的选法种数为B ,若213B A =,则这组学生共有________人. 【知识点:排列组合】解:15 设有学生n 人,则24213n n A C =,解之得n =15.9.解不等式211123x x x x C C --++<【知识点:组合数公式】解:因为211123x x x x C C --++<,所以321123x x C C ++<,所以2(1)(1)3(1)32121x x x x x⨯+-⨯+⨯⨯⨯<,所以1332x -<,所以112x <,因为1312x x +⎧⎨+⎩≥,≥,所以x ≥2,所以2≤x <112,又x ∈N *,所以x =2,3,4,5. 所以不等式的解集为{2,3,4,5}.探究型 多维突破10.(1)6本不同的书分给甲、乙、丙3同学,每人各得2本,有多少种不同的分法? (2)从5个男生和4个女生中选出4名学生参加一次会议,要求至少有2名男生和1名女生参加,有多少种选法?【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:(1)解:90222426=⋅⋅C C C . (2)解:问题可以分成2类:第一类 2名男生和2名女生参加,有225460C C =中选法; 第二类 3名男生和1名女生参加,有315440C C =中选法依据分类计数原理,共有100种选法11.4名男生和6名女生组成至少有1个男生参加的三人社会实践活动小组,问组成方法共有多少种?【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:解法一:(直接法)小组构成有三种情形:3男,2男1女,1男2女,分别有34C ,1624C C ⋅,2614C C ⋅,所以,一共有34C +1624C C ⋅+2614C C ⋅=100种方法. 解法二:(间接法)10036310=-C C 自助餐1.一个口袋中装有大小相同的6个白球和4个黑球,从中取2个球,则这两个球同色的不同取法有( )A .27种B .24种C .21种D .18种 【知识点:排列组合,数学思想:分类讨论】解:C 分两类:一类是2个白球有26C =15种取法,另一类是2个黑球有24C =6种取法,所以共有15+6=21种取法.故选C.2.4位同学每人从甲、乙、丙三门课程中选修1门,则恰有2人选修课程甲的不同选法共有( )A .12种B .24种C .30种D .36种【知识点:排列组合,分步计数原理】解:B 依题意,满足题意的选法共有24C ×2×2=24(种). 3.计算:34567789C C C C +++=( ) A .120 B .150 C .180D .210 【知识点:组合数公式】解:D 根据公式111n n n m m m C C C ++++=知,原式=456889C C C ++=5699C C +=610C =410C =210.4.北京市某中学要把9台型号相同的电脑送给西部地区的三所希望小学,每所小学至少得到2台,共有________种不同送法. 【知识点:排列组合,分步计数原理】解:10 每校先各得一台,再将剩余6台分成3份,用插板法解,共有25C =10种5.将4个颜色互不相同的球全部收入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( )A .10种B .20种C .36种D .52种【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:A 根据2号盒子里放球的个数分类:第一类,2号盒子里放2个球,有24C 种放法,第二类,2号盒子里放3个球,有34C 种放法,剩下的小球放入1号盒中,共有不同放球方法2344C C +=10种. 6.某校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有( )A .30种B .35种C .42种D .48种【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:A 分两类,A 类选修课选1门,B 类选修课选2门,或者A 类选修课选2门,B 类选修课选1门,因此,共有12213434C C C C +=30 种选法.7.正六边形的中心和顶点共7个点,以其中三个点为顶点的三角形共有_______个. 【知识点:排列组合,分步计数原理】 解:328.有6名同学参加两项课外活动,每位同学必须参加一项活动且不能同时参加两项,每项活动最多安排4人,则不同的安排方法有__________种(用数字作答).【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:50 把6名同学分成两组,一组最多4人,有分法223362631252C C C C += (种),每一种分法对应着两种安排方案,因此共有不同的安排方案2×25=50(种).9.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有__________个 【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:当五位数的万位为4时,个位可以是0,2,此进满足条件的偶数共有3412A C =48(个);当五位数的万位为5时,个位可以是0,2,4,此时满足条件的偶数共有3413A C =72(个),所以比40 000大的偶数共有48+72=120(个)10.已知平面M 内有4个点,平面N 内有5个点,则这九个点最多能确定: (1)多少个平面?(2)多少个四面体?【知识点:空间点线面基本关系,排列组合,分步计数原理,数学思想:分类讨论,数形结合】 解:(1)可分三类.第一类:平面M 中取一点,N 中取两点,最多可确定1245C C 个; 第二类:平面M 中取两点,N 中取一点,最多可确定2145C C 个;第三类:平面M 和平面N ,共2个.故最多可确定平面12214545C C C C ++2=72(个).(2)法一(直接分类法):分三类.第一类:平面M 内取一个点,N 内取三个点,最多可确定1345C C 个. 第二类:平面M 内取两个点,N 内取两个点,最多可确定2245C C 个. 第三类:平面M 内取三个点,N 内取一个点,最多可确定3145C C 个. 故最多可确定平面1345C C +2245C C +3145C C =120(个). 法二(间接法):49C -45C -44C =120(个).11.为了提高学生参加体育锻炼的热情,宏达中学组织篮球比赛,共24个班参加,第一轮比赛是先分四组进行单循环赛,然后各组取前两名再进行第二轮单循环赛(在第一轮中相遇过的两个队不再进行比赛),问要进行多少场比赛?【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:第一轮每组6个队进行单循环赛,共有26C 场比赛,4个组共计426C 场.第二轮每组取前两名,共计8个组,应比赛28C 场,由于第一轮中在同一组的两队不再比赛,故应减少4场,因此第二轮应比赛28C -4场.综上,两轮比赛共进行426C +28C -4=84场.12.有6本不同的书按下列分配方式分配,问共有多少种不同的分配方式? (1)分成1本、2本、3本三组;(2)分给甲、乙、丙三人,其中一人1本,一人2本,一人3本; (3)分成每组都是2本的三组; (4)分给甲、乙、丙三人,每人2本.【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:(1)分三步:先选一本有16C 种选法;再从余下的5本中选2本有25C 种选法;对于余下的三本全选有35C 种选法,由分步乘法计数原理知有16C 25C 35C =60(种)选法.(2)由于甲、乙、丙是不同的三人,在(1)的基础上,还应考虑再分配的问题,因此共有16C 25C 33C 33A =360(种)选法.(3)先分三步,则应是222426C C C 种选法,但是这里面出现了重复,不妨记6本书分别为A 、B 、C 、D 、E 、F ,若第一步取了(AB ,CD ,EF),则222426C C C 种分法中还有(AB 、EF 、CD),(CD 、AB 、EF)、(CD 、EF 、AB)、(EF 、CD 、AB)、(EF 、AB 、CD)共有33A 种情况,而且这33A 种情况仅是AB 、CD 、EF 的顺序不同,因此,只算作一种情况,故分配方式有33222426A C C C =15(种). (4)在问题(3)的基础上再分配,故分配方式有33222426A C C C 33A =90(种).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年高中数学 1.1 1排列组合教案新人教A版选修选修2-3 教学目标1.知识目标(1)能够熟练判断所研究问题是否是排列或组合问题;(2)进一步熟悉排列数、组合数公式的计算技能;(3)熟练应用排列组合问题常见解题方法;(4)进一步增强分析、解决排列、组合应用题的能力。

2.能力目标认清题目的本质,排除非数学因素的干扰,抓住问题的主要矛盾,注重不同题目之间解题方法的联系,化解矛盾,并要注重解题方法的归纳与总结,真正提高分析、解决问题的能力。

3.德育目标(1)用联系的观点看问题;(2)认识事物在一定条件下的相互转化;(3)解决问题能抓住问题的本质。

教学重点:排列数与组合数公式的应用教学难点:解题思路的分析教学策略:以学生自主探究为主,教师在必要时给予指导和提示,学生的学习活动采用自主探索和小组协作讨论相结合的方法。

媒体选用:学生在计算机网络教室通过专题学习网站,利用网络资源(如在线测度等)进行自主探索和研究。

教学过程一、知识要点精析(一)基本原理1.分类计数原理:做一件事,完成它可以有类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法,……,在第类办法中有种不同的办法,那么完成这件事共有:… 种不同的方法。

2.分步计数原理:做一件事,完成它需要分成个步骤,做第一步有种不同的方法,做第二步有种不同的方法,……,做第步有种不同的办法,那么完成这件事共有:… 种不同的方法。

3.两个原理的区别在于一个与分类有关,一个与分步有关即“联斥性”:(1)对于加法原理有以下三点:①“斥”——互斥独立事件;②模式:“做事”——“分类”——“加法”③关键:抓住分类的标准进行恰当地分类,要使分类既不遗漏也不重复。

(2)对于乘法原理有以下三点:①“联”——相依事件;②模式:“做事”——“分步”——“乘法”③关键:抓住特点进行分步,要正确设计分步的程序使每步之间既互相联系又彼此独立。

(二)排列1.排列定义:一般地说从个不同元素中,任取个元素,按照一定的顺序排成一列,叫做从个不同元素中,任取个元素的一个排列。

特别地当时,叫做个不同元素的一个全排列。

2.排列数定义:从个不同元素中取出个元素的所有排列的个数,叫做从个不同元素中取出个元素的排列数,用符号表示。

3.排列数公式:(1)… ,特别地(2)且规定(三)组合1.组合定义:一般地说从个不同元素中,任取个元素并成一组,叫做从个不同元素中取出个元素的一个组合。

2.组合数定义:从个不同元素中取出个元素的所有组合的个数,叫做从个不同元素中取出个元素的组合数,用符号表示。

3.组合数公式:(1)(2)4.组合数的两个性质:(1)规定(2)(四)排列与组合的应用1.排列的应用问题(1)无限制条件的简单排列应用问题,可直接用公式求解。

(2)有限制条件的排列问题,可根据具体的限制条件,用“直接法”或“间接法”求解。

2.组合的应用问题(1)无限制条件的简单组合应用问题,可直接用公式求解。

(2)有限制条件的组合问题,可根据具体的限制条件,用“直接法”或“间接法”求解。

3.排列、组合的综合问题排列组合的综合问题,主要是排列组合的混合题,解题的思路是先解决组合问题,然后再讨论排列问题。

在解决排列与组合的应用题时应注意以下几点:(1)限制条件的排列问题常见命题形式:“在”与“不在”“相邻”与“不相邻”在解决问题时要掌握基本的解题思想和方法:①“相邻”问题在解题时常用“捆绑法”,可以把两个或两个以上的元素当做一个元素来看,这是处理相邻最常用的方法。

②“不相邻”问题在解题时最常用的是“插空法”。

③“在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位置。

④元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后利用规定顺序的实情求出结果。

(2)限制条件的组合问题常见命题形式:“含”与“不含”“至少”与“至多”在解题时常用的方法有“直接法”或“间接法”。

(3)在处理排列组合综合题时,通过分析条件按元素的性质分类,做到不重复,不遗漏按事件的发生过程分类、分步,正确地交替使用两个原理,这是解决排列问题的最基本,也是最重要的思想方法。

4、解题步骤:(1)认真审题:看这个问题是否与顺序有关,先归结为排列问题或组合问题或二者的综合题,还应考虑以下几点:①在这个问题中个不同的元素指的是什么?② 个元素指的又是什么?②从个不同的元素中每次取出个元素的排列(或组合)对应的是什么事件;(2)列式并计算;(3)作答。

二、学习过程题型一:排列应用题9名同学站成一排:(分别用A,B,C等作代号)(1)如果A必站在中间,有多少种排法?(答案:)(2)如果A不能站在中间,有多少种排法?(答案:)(3)如果A必须站在排头,B必须站在排尾,有多少种排法?(答案:)(4)如果A不能在排头,B不能在排尾,有多少种排法?(答案:)(5)如果A,B必须排在两端,有多少种排法?(答案:)(6)如果A,B不能排在两端,有多少种排法?(答案:)(7)如果A,B必须在一起,有多少种排法?(答案:)(8)如果A,B必须不在一起,有多少种排法?(答案:)(9)如果A,B,C顺序固定,有多少种排法?(答案:)题型二:组合应用题若从这9名同学中选出3名出席一会议(10)若A,B两名必在其内,有多少种选法?(答案:)(11)若A,B两名都不在内,有多少种选法?(答案:)(12)若A,B两名有且只有一名在内,有多少种选法?(答案:)(13)若A,B两名中至少有一名在内,有多少种选法?(答案:或)(14)若A,B两名中至多有一名在内,有多少种选法?(答案:或)题型三:排列与组合综合应用题若9名同学中男生5名,女生4名(15)若选3名男生,2名女生排成一排,有多少种排法?(答案:)(16)若选3名男生2名女生排成一排且有一男生必须在排头,有多少种排法?(答案:)(17)若选3名男生2名女生排成一排且某一男生必须在排头,有多少种排法?(答案:)(18)若男女生相间,有多少种排法?(答案:)题型四:分组问题6本不同的书,按照以下要求处理,各有几种分法?(19)一堆一本,一堆两本,一堆三本(答案:)(20)甲得一本,乙得两本,丙得三本(答案:)(21)一人得一本,一人得两本,一人得三本(答案:)(22)平均分给甲、乙、丙三人(答案:)(23)平均分成三堆(答案:)(24)分成四堆,一堆三本,其余各一本(答案:)(25)分给三人每人至少一本。

(答案: + + )题型五:全能与专项车间有11名工人,其中5名男工是钳工,4名女工是车工,另外两名老师傅既能当车工又能当钳工现在要在这11名工人里选派4名钳工,4名车工修理一台机床,有多少种选派方法?题型六:染色问题(26)梯形的两条对角线把梯形分成四部分,用五种不同颜色给这四部分涂不同颜色,且相邻的区域不同色,问有()种不同的涂色方法?(答案:260)(27)某城市在中心广场建造一个花圃,花圃分为6个部分(如图)。

现在栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有种。

分析:先排1、2、3排法种排法;再排4,若4与2同色,5有种排法,6有1种排法;若4与2不同色,4只有1种排法;若5与2同色,6有种排法;若5与3同色,6有1种排法所以共有( + +1)=120种题型七:编号问题(28)四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的放法共有多少种?(答案:144)(29)将数字1,2,3,4填在标号为1,2,3,4的四个方格里,每格填上一个数字且每个方格的标号与所填的数字均不相同的填法有多少种?(答案:9)题型八:几何问题(30):(Ⅰ)四面体的一个顶点为A,从其它顶点和各棱的中点中取3个点,使它们和点A在同一个平面上,有多少种不同的取法?(Ⅱ)四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,有多少种不同的取法?解:(1)(直接法)如图,含顶点A的四面体的3个面上,除点A外都有5个点,从中取出3点必与点A共面共有种取法,含顶点A的三条棱上各有三个点,它们与所对的棱的中点共面,共有3种取法。

根据分类计数原理,与顶点A共面三点的取法有 +3=33(种)(2)(间接法)如图,从10个顶点中取4个点的取法有种,除去4点共面的取法种数可以得到结果。

从四面体同一个面上的6个点取出4点必定共面。

有 =60种,四面体的每一条棱上3点与相对棱中点共面,共有6种共面情况,从6条棱的中点中取4个点时有3种共面情形(对棱中点连线两两相交且互相平分)故4点不共面的取法为-(60+6+3)=141题型九:关于数的整除个数的性质:①被2整除的:个位数为偶数;②被3整除的:各个位数上的数字之和被3整除;③被6整除的:3的倍数且为偶数;④被4整除的:末两位数能被4整除;⑤被8整除的:末三位数能被8整除;⑥25的倍数:末两位数为25的倍数;⑦5的倍数:个位数是0,5;⑧9的倍数:各个位数上的数字之和为9的倍数。

(31):用0,1,2,3,4,5组成无重复数字的五位数,其中5的倍数有多少个?(答案:216)题型十:隔板法:(适用于“同元”问题)(32):把12本相同的笔记本全部分给7位同学,每人至少一本,有多少种分法?分析:把12本笔记本排成一行,在它们之间有11个空当(不含两端)插上6块板将本子分成7份,对应着7名同学,不同的插法就是不同的分法,故有种。

三、在线测试题1.以一个正方形的顶点为顶点的四面体共有( D )个(A)70(B)64(C)60(D)582.3名医生和6名护士被分配到3所所为学生体检,每校分配1名医生和2名护士,不同的分配方法共有( D )(A)90种(B)180种(C)270种(D)540种3.将组成篮球队的12个名额分配给7所学校,每校至少1个名额,则不同的名额分配方法共有( A )(A)(B)(C)(D)4.5本不同的书,全部分给四个学生,每个学生至少1本,不同分法的种数为( B )(A)480 (B)240 (C)120 (D)965.编号为1,2,3,4,5的五个人分别去坐在编号为1,2,3,4,5的座位上,至多有两个号码一致的坐法种数为( C )(A)90 (B)105 (C)109 (D)1006.如右图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现在4种颜色可供选择,则不同的着色方法共有( B )种(用数字作答)(A)48 (B)72 (C)120 (D)367.若把英语“error”中字母的拼写顺序写错了,则可能出现的错误的种数是( A )。

(A)19 (B)20 (C)119 (D)608.某赛季足球比赛的计分规则是:胜一场,得3分;平一场,得1分;负一场,得0分,一球队打完15场,积分33分,若不考虑顺序,该队胜、负、平的情况有( D )(A)6 种(B)5种(C)4种(D)3种四、课后练习1.10个不加区别的小球放入编号为1,2,3的三个盒子中,要求每个盒内的球数不小于盒子的编数,问有种不同的放法?2.坐在一排9个椅子上,相邻两人之间至少有2个空椅子,则不同的坐法的种数是3.如图A,B,C,D为海上的四个小岛,要建三座桥,将这四个岛连接起来,不同的建桥方案共有种。

相关文档
最新文档