函数的表示法优质课件PPT

合集下载

函数的表示法课件ppt

函数的表示法课件ppt

•5, •15 < x≤20
•例6.某市“招手即停”公共汽车的票价按下列规则制定

•(1)5公里以内(含5公里),票价2元;
•(2)5公里以上,每增加5公里,票价增加1元(不足5
公里按5公里计算).
•y
•如果某条线路的总里程为20公里•5 ,请根据题意,写出票
价•解与:里设程票之价间为的y,函里数程解为析x式,,则并根•4画据出题函意数,的图象. • 自变量x的取值范围是(0,20]
函数的表示法课件ppt
•复习回顾
1.函数的定义
•设A,B是非空的数集,如果按某种确定的对应 关系f,使对于集合A中的任意一个数x,在集
合B中都有唯一确定的数f(x)与之对应,那么 就称f:A→B为从集合A到集合B的一个函数. • 记作:y=f(x),x∈A .
•2解.初析中法学过哪些函数的表示方法?
•不是
•(4)•集合A={x|x是新华中学的班级},
• •
•集合B={x|x是新华中学的学生} ,对应关系f:•每每一一个个学班生级都都对对应应他班的里班的级学;生;
•是
•结 •映射是有方向的,从A到B的对应关系是映射,从B到A的对应 论 •关系不一定是映射,如果是,那么两个映射往往是不一样的.
•针对练习4
•①
•针对练习4
•②
•3
•9
•-3
•2
•4
•-2
•1
•1
•-1
•针对练习4
•③
•3
•9
•-3
•4
•2 •-2
•1
•1 •-1
•针对练习4
•④
•1
•1
•2
•3
•2

4.函数的表示法PPT课件

4.函数的表示法PPT课件
4.1.2 函数的表示法
(1)南极臭氧层空泛 (图象法)
(2)恩格尔系数 (列表法) (3)炮弹发射 (公式法)
h=130t-5t2 (0≤t≤26)
某种笔记本的单价是5元,买x(x∈{1,2, 3,4,5﹜)土笔记本需要y元.你能用函数 的三种表示法表示函数y=f(x)吗?
列表法
笔记本数x 1
(3)小明从家到学校的平均速度是多少?
图4-5 (3)解 从纵坐标看出,小明家离学校2100 m;
从横坐标看出, 他在路上共花了30 min, 因此, 他从家到学校的平均速度是 2100 ÷ 30 = 70 (m/min).
随堂练习
在直角坐标系中,画出函数y=2x+1的图像. 解:(1)取值.根据函数表达式,取自变量的一些值, 得出函数的对应值,按这些对5﹜
三种表示方法的特点
图像法的特点:直观形象地表示出函数 的变化情况 ,有利于通过图形研究函 数的某些性质 列表法的特点:不通过计算就可以直接 看出与自变量的值相对应的函数值
公式法的特点:简明、全面地概括了变 量间的关系;可以通过用解析式求出任意 一个自变量所对应的函数值
(2)画点.根据自变量和函数的数值表,在直角坐标 系中描点. (3)连线.用平滑的曲线将这些点连接起来,即得函 数的图像,如图20-3-2.
下表是某校高一(1)班三位同学在高一学年度几次 数学测试的成绩及班级平均分表:
第一 次
王 伟 98
张 城 90
赵 磊 68
班平 均分
88.2
第二 次 87 76 65
例2 某天7时,小明从家骑自行车上学,途中因自行车 产生故障,修车耽误了一段时间后继续骑行,按时 赶到了学校. 图4-5反应了他骑车的整个过程,结合 图象,回答下列问题: (1)自行车产生故障是在什么时间?此时离家有多远? (2)修车花了多长时间?修好车后又花了多长时间到 达学校? (3)小明从家到学校的平均速度是多少?

函数的表示方法ppt

函数的表示方法ppt
例如,在物理学中,通过绘制物体的运动轨迹图,可以直观地了解物体的运动规律;在工程中,通过绘 制电路图,可以直观地了解电路的工作原理和连接方式。
03 表格法
定义
01
表格法是一种通过表格的形式来表示函数的方法。
02
它通过列出自变量和因变量的对应关系来描述函数。
03
表格中的每一行表示自变量的一种取值,每一列表 示因变量对应的取值。
THANKS FOR WATCHING
感谢您的观看
举例
例如,函数 (f(x) = x^2 + 2x + 1) 可以 表示为如下表格
| --- | --- |
| x | f(x) |
举例
| -2 | 1 |
| -1 | 0 |
|0|1|
举例
|1|4|
|2|9|
VS
应用场景
01
表格法适用于表示简单函数或离散函数的值。
02
在实际应用中,表格法常用于描述一些具有离散性质
举例
例如,对于函数 (f(x) = x^2),其图象是一个开口向上的抛物线, 位于x轴上方。
当x的值从负无穷增大到正无穷时,y的值也随之增大,表示 函数随着x的增大而增大。
应用场景
图象法在数学、物理、工程等多个领域都有广泛的应用。
在解决实际问题时,图象法可以帮助我们直观地理解函数的性质和变化规律,从而更好地解决相关问题。
应用场景
• 解析法适用于需要精确描述函数关系的情况,如科 学计算、工程设计和数学研究等领域。由于解析法 具有精确性和可操作性,因此在实际应用中得到了 广泛的应用。
02 图象法
定义
函数图象法是一种通过绘制函数的图 形来表示函数的方法。

函数的概念与表示法课件(共19张PPT)

函数的概念与表示法课件(共19张PPT)

( x 1) 1 x 的定义域为_____ (2)函数 y ( x 1)
解题回顾:求函数f(x)的定义域,只需使解析式有 意义,列不等式组求解.
抽象函数定义域问题:
抽象函数 :没有给出具体解析式的函数 2. (1)已知函数 y
1 y f ( x 1) 的定义域为______ 2
探究提高: 分段函数是一类重要的函数模型.解决分段函数问题,
关键要抓住在不同的段内研究问题.
如本例,需分x>0时,f(x)=x的解的个数
和x≤0时,f(x)=x的解的个数.
“分段函数分段考察”
五 抽象函数
定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),
f(1)=2,则f(-3)等于( C ) A.2 B.3 C.6
推广,函数是一种特殊的映射,要注意构成函数 的两个集合A、B必须是非空数集.
典型例题:
一:函数的基本概念:
1.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面 的4个图形中,能表示集合M到集合N的函数关系的有 ( )
A.①②③④
B.①②③
C.②③
D.②
解析:由函数的定义,要求函数在定义域上都有图 象,并且一个x对应着一个y,据此排除①④,选C.
A
B
x
f ( x)
(2)函数的定义域、值域: 在函数 y f ( x ), x A 中,x叫做自变量,x的取 值范围A叫做函数的定义域;与x的值相对应的y值 叫做函数值,函数值的集合f ( x) x A 叫做函数的 值域。 (3)函数的三要素:定义域、值域和对应法则 . (4)相等函数:如果两个函数的定义域和对应法则完 全一致,则这两个函数相等,这是判断两函数相等的 依据.

函数的表示法上课课件.ppt

函数的表示法上课课件.ppt

优秀课件
4
用图象法可将y=f(x)表示为下图: y 25
20
15 10 5
0
1 2 3 4 优秀课件 5
x5
比较函数的三种表示方法,它们各自 的优点是什么?所有的函数都能用解析法 表示吗?
优秀课件
6
解析法有两个优点:1、简明;2、给自变量 可求函数值。
图象法的优点:直观形象,反映变化趋势。
列表法的优点:不需要计算就可以直接看出 与自变量的值所对应的函数值。
定义域的并集,值域也是各个部分
值域的并集。
优秀课件
9
问题探究
1.国内跨省市之间邮寄信函,每封 信函的质量和对应的邮资如下表:
信函质量(m)/g 0 m 20 20 m 40 40 m 60 60 m 80 80 m 100
邮资(M)/元 0.80 1.60 2.40 3.20 4.00

f (1) 4
2 1 4

1 2
f

f


f
(
7 4
)

f (1) 1 2
(2)∵f(a)=3,
∴当a≤-1时,a+2=3,∴a=1>-1(舍去),
当综-上1<知a<,当2时f(a,)=23a时=3,,∴aa==323
∈(-1,2),当a≥2时,
或a= 6 .
1 2a2=3,∴a=
(3)A={x|x是育才中学的班级},B={x|x是育才中
学的学生},对应关系f:每一个班级对应班里的
学生}
优秀课件
15
考点二 求函数解析式
(1)如果
f
(
1 x
)

函数的概念及表示法PPT课件

函数的概念及表示法PPT课件

4
5
6
y(元)
巩固知识 典型例题
例4 文具店内出售某种铅笔,每支售价为0.12元,应付款额是购买铅 笔数的函数,当购买6支以内(含6支)的铅笔时,请用三种方法表示 这个函数.
解 (2)以上表中的x值为横坐标,对应的y值为纵坐标,在直角 坐标系中依次作出点(1 , 0.12)、(2 , 0.24)、(3 , 0.36)、 (4,0.48)、(5,0.6)、(6,0.72),则函数的图像法表示如图所示.
巩固知识 典型例题
例2 设 f x 2x 1 ,求 f 0 , f 2 , f 5 , f b .
3
分析 本题是求自变量x=x0时对应的函数值,方法是将x0代入 到函数表达式中求值.
解 f 0 20 1
3
f 5 2 5 1
3
, f 2 2 2 1
3
, f b 2b 1
3
, .
巩固知识 典型例题
动 脑思考 探索新 知
作函数图像的一般方法——描点法
.
巩固知识 典型例题
例4 文具店内出售某种铅笔,每支售价为0.12元,应付款额是购买铅 笔数的函数,当购买6支以内(含6支)的铅笔时,请用三种方法表示 这个函数.
解 (3)关系式y=0.12 x就是函数的解析式, 故函数的解析法表示为 y=0. .12 x, x ∈{1,2,3,4,5,6}
总结演示
判断下列对应能否表示y是x的函数
(1)能(2)不能(3) 能 (4)不能
应用知识 强化练习
教材练习3.1.1
1.求下列函数的定义域:
(1) f x 2 ;(2) f x x2 6x 5 .
x4
2.已知 f x 3x 2 ,求 f 0 , f 1 , f a .

(新)人教版高中数学必修一1.2.2《函数的表示法》课件(共23张PPT)

(新)人教版高中数学必修一1.2.2《函数的表示法》课件(共23张PPT)

的一种“程序”或“方法”.因此要把“2x + 1”及“ x + 1”看成一个整体来求解.
1 1 (2)设f( +1)= 2-1,则f(x)=________. x x (3)若对任意x∈R,都有f(x)-2f(-x)=9x+2,则f(x)= ________.
[答案]
(1)D (2)x2-2x(x≠1)
6.(2012· 全国高考数学文科试题江西卷)设函数f(x)= x2+1 x≤1 2 ,则f(f(3))=( x>1 x 1 A.5 2 C. 3 B.3 13 D. 9 )
[答案] D
7.已知函数f(x)=
2 x -4,0≤x≤2, 2x,x>2,
,则f(2)=
2.作图时忘记去掉不在函数定义域内的点 [例5] 数的值域. [错解]
x,-1≤x≤1, 由题意,得y= -x,x<-1或x>1.
x|1-x2| 画出函数y= 2 的图象,并根据图象指出函 1-x
[例 5]
(1)已知 f(x)=x2,求 f(2x+1);
(2)已知 f( x+1)=x+2 x,求 f(x). 1 (3)设函数 f(x)满足 f(x)+2f(x )=x (x≠0),求 f(x). [分析] 我们前面指出,对应法则“f”实际上是对“x”计算
5.(山东冠县武的高2012~2013月考试题)已知函数f(x)
x+1x≥0 = fx+2x<0
则f(-3)的值为( B.-1 D.2
)
A.5 C.-7
[答案] D
如图,在边长为4的正方形ABCD的边上有一点P,沿折 线BCDA由点B(起点)向点A(终点)运动,设点P运动的路程为 x,△APB的面积为y. (1)求y关于x的函数关系式y=f(x); (2)画出y=f(x)的图象; (3)若△APB的面积不小于2,求x的取值范围.

高中数学必修一第一章函数的表示法课件PPT

高中数学必修一第一章函数的表示法课件PPT

解析答案
(2)f(x+1)=x2+4x+1;
解 设x+1=t,则x=t-1, f(t)=(t-1)2+4(t-1)+1, 即f(t)=t2+2t-2. ∴所求函数解析式为f(x)=x2+2x-2.
解析答案
(3)2f(1x)+f(x)=x(x≠0). 解 ∵f(x)+2f(1x)=x,将原式中的 x 与1x互换, 得 f(1x)+2f(x)=1x. 于是得关于 f(x)的方程组ff1xx++22ff1xx==x1x,, 解得 f(x)=32x-3x(x≠0).
反思与感悟
解析答案
跟踪训练3 画出y=2x2-4x-3,x∈(0,3]的图象,并求出y的最大值, 最小值. 解 y=2x2-4x-3(0<x≤3)的图象如右: 由图易知,当x=3时,ymax=2×32-4×3-3=3. 由y=2x2-4x-3=2(x-1)2-5, ∴当x=1时,y有最小值-5.
给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出
水;③4点到6点不进水不出水.则正确论断的个数是( )
A.0
B.1
C.2 D.3
解析答案
类型三 函数表示法的选择 例3 下表是某校高一(1)班三名同学在高一学年度六次数学测试的成绩
及班级平均分表.
测试序号
姓名
第1次 第2次 第3次 第4次 第5次 第6次
答案
1 23 45
3.已知正方形的边长为x,它的外接圆的半径为y,则y关于x的解析式 为( A )
A.y=
2 2x
B.y=
2 4x
C.y=
2 8x
D.y=
2 16x
答案
1 23 45
4.某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路, 设在途中花的时间为t,离开家里的路程为d,下面图形中,能反映该 同学的行程的是( C )

函数的表示法(公开课) ppt课件

函数的表示法(公开课)  ppt课件

例4、某质点在30s内运动速度v是时间t的函数,它的图像如图, 用解析法表示出这个函数,并求出9s时质点的速度.
v/(cm/s)
解: 解析式为 t+10, (0 ≤ t<5), v (t)= 3t, (5 ≤ t<10), 30, ( 10 ≤t <20), -3t+90,(20 ≤ t≤30).
设 v=kt+b
代入(0,10),(5,15)得 b=10 5k+b=15 b=10 k=1
30 25 20 15
v/(cm/s)
v=t+10
代入(20,30),(30,0)得 20k+b=30
10
5
0 5 10 15 20 25 30
k=-3 b=90 ppt课件
t/s
30k+b=0
v= - 3t+90
∵9 ∈[5,10)
t∈[0,5),
30 25 20
t∈[5,10),
t∈[10,20), 15 t∈[20,30]. 10
5
0
∴当t=9s时,质点的速度 v(9)=3×9=27(cm/s).
5 10 15 20 25 30
t/s
求分段函数的值时, 首先应确定自变量在定义域中所在的范围 ; 15 ppt课件 再按相应的对应法则求值
对它应有以下两点基本认识: (1)分段函数是一个函数,不要把它误认为是几个函数; (2)分段函数的定义域是各段定义域的并集, 值域是各段值域的并集。
函数图象既可以是连续的曲线,也可以是直线、 线段、折线、离散的点等等。
ppt课件 13
例4、某质点在30s内运动速度v是时间t的函数,它的图像如图, 用解析法表示出这个函数,并求出9s时质点的速度.

函数的表示法 市赛获奖-完整版课件

函数的表示法 市赛获奖-完整版课件

a1 a2 a3 a4
b1 b2 b3 b4

a1 a2 a3 a4
b1 b2 b3 b4

a1 a2 a3 a4
b1 b2 b3 b4

a1
b1
b2
a2
b3
b4

a1
b1
a2
b2

a1
a2
b1
a3 a4
b2⑥(2)从Fra bibliotek合A={a,b}到集合B={x,y}的映射有__个
(3)函数 f : {1,2,3} {1,2,3}满足 f [ f ( x )] f ( x ), 则 这样的函数个数共有 ____ A. 1个 B . 4个 C . 8个 D .10 个 (4)为了确保信息安全,信 息需加密传输,发送 方由明文 密文 (加密 ),接受方由密文 明文 (解密 ),已知加密规则为:明 文 a , b, c , d对应密文 a 2b,2b c ,2c 3d ,4d .例如,明文 1,2,3,4对应密文 5,7,18 ,16 ,当接受方收到密文 14 ,9,23 ,28时,则解密 得到的明文为 _____
(3)集合A={x|x是三角形},B={x|x是圆},对应关系f:每一个三角形都对应它的内 切圆。
(4)集合A={x|x是新华中学的班级},集合B={x|x是新华中学的学生},对应关系f: 每一个班级都对应班里的学生。
(5)A=B=N*,f : x|x3|
例2.(1)各图表示的对应,构成映射的个数是_____
(1) 函数是一种特殊的映射,但映射不一定是函数,函数推广为映射,只是把函数 中的两个非空数集推广为两个任意的非空集合。
(2)对于映射
,通常把集合A中的元素叫做原象,而把集合B中与A的元素
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、学习了用函数知识解决实际问题。
需要注意的问题
分段函数是一个函数 解析法必需注明定义域
2021/02/01
12
习题1.2: 7,8
2021/02/01
13
Thank you
感谢聆听 批评指导
汇报人:XXX 汇报日期:20XX年XX月XX日
感谢您的观看!本教学内容具有更强的时代性和丰富性,更适合学习需要和特点。为了 方便学习和使用,本文档的下载后可以随意修改,调整和打印。欢迎下载!
2021/02/01
14
2021/02/01
6
练习1: P26 1 2
2021/02/01
7
例5:画出函数y=|x|的图象。
解:由绝对值的概念,我们有
x ,x≥0,
Y=
-x ,x<0.
y
所以,函数y=|x|的
5
图象如右图所示
4
3
2
1
-3 -2 -1 0 1 2 3 x
2021/02/01
8
例6: 某市“招手即停”公共汽车的票价按下列规则制定
(1)5公里以内(含5公里),票价2元。
(2) 5公里以上,每增加5公里,票价增加1元(不
足5公里的按5公里计算)。
如果某条路线的总里程为20公里,请根据题意,写出票价与里程 之间的函数解析式,并画出函数的图象。
解:设票价为y,里程为x,由题意可知,y 自变量的取值范围是(0,20】由 5
“招手即停”的票价制定规则,可得 4 函数的解析式:
解: 这个函数的定义域是数集{1,2,3,4,5}.
用解析法可将函数y=f(x)表示为
Y=5x, x∈{1,2,3,4,5}
y 25
用列表法可将函数y=f(x)表示为
20
笔记本数x 1 2 3 4 5 15 钱数y 5 10 15 20 25 10
5
用图像法可将函数y=f(x)表示为右图
0
1 2 3 4 5x
数图象表示两个
变量之间的关系。
4.5
优点:能直观形 4.0
象地表示出函数 3.5
的变化情况。
3.0
2.5
2.0
1.5
1.0
0.5
2021/02/01
1950 1955 1960 1970 1975 1980 1985
时间/年5
例3 某种笔记本的单价是5元,买x(x∈ {1,2,3,4,5})个笔记本需要y元.试用 函数的三种表示法表示函数y=f(x).
1.2.2 函数表示法
2021/02/01
1
函数表示法:
函数表示法 分段函数
解析法 图像法 列表法
2021/02/01
例3 例4 例5 例6
2
1.解析法:把两个 变量的函数关系 用一个等式来表 示,这个等式叫 函数的解析表达 式,简称解析式。
例优如点::s=一60是t2,简明、 全面的概括了变 A量=间r2的, 关系,二 S是=2可以rl 通过解析 y式=a求x2+出bx任+c意(a一0)个 自变量的值所对 y应= 的x函2数(值x。≥2)
3
2, 0<x≤5,
2
3, 5<x≤10,
Y= 4, 10<x≤15,
1
2021/02/01
5, 15<x≤20,
0
5 10 15 20 9x
练习2 P26 3
2021/02/01
10
分段函数
1、在定义域的不同部分上, 有不同的解析式。
2、图象不是连, 5<x≤10, Y= 4, 10<x≤15,
y
5, 15<x≤20,
5
4 3 2
1
Y=
y 5
x ,x≥0, -x ,x<0.
4 3 2
1
0 5 2021/02/01 10 15 20 x
-3 -2 -1
01 2
3 x 11
本节课小结:
1、函数的表示方法:列表法、图象法、解析法
2、函数的图象不仅可以是一段光滑的曲线还
可以是一些孤立的点还可以是若干条线段、
2021/02/01
3
2.列表法:列出表格来表示两个变 量的函数关系。
优点是:不必计算就知道自变量取 某些值时函数的对应值。
国民生产总值
单位:亿元
年份
1990
生产总值 18544.7
2021/02/01
1991 21665.8
1992 1993
26651. 34476.
4
7
4
3.图象法:用函 出生率/
相关文档
最新文档