时钟及追及问题

合集下载

时钟追及问题全部公式

时钟追及问题全部公式

时钟追及问题全部公式1. 基本公式- 分针速度:分针60分钟转一圈,一圈为360^∘,所以分针每分钟走360÷60 = 6^∘。

- 时针速度:时针12小时转一圈,12×60 = 720分钟转360^∘,所以时针每分钟走360÷720 = 0.5^∘。

- 两针速度差:6 - 0.5=5.5^∘2. 时钟追及问题的通用公式- 追及时间=路程差÷速度差。

在时钟问题中,路程差通常是两针之间的角度差。

3. 题目解析- 例1:3点多少分时,时针与分针重合?- 分析:3点时,时针与分针的角度差为90^∘(因为时针指向3,分针指向12,每一大格为30^∘,3点时分针和时针间隔3大格)。

- 设x分钟后时针与分针重合,根据追及时间=路程差÷速度差,这里路程差为90^∘,速度差为5.5^∘每分钟。

- 则x=(90)/(5.5)=(180)/(11)≈16.36分钟,所以3点(180)/(11)分时针与分针重合。

- 例2:2点多少分时,时针与分针成100^∘角?- 分析:2点时,时针与分针的角度差为60^∘。

有两种情况,一种是分针还没有追上时针且与时针成100^∘角,此时路程差为100 - 60 = 40^∘;另一种是分针超过时针后与时针成100^∘角,此时路程差为60+100 = 160^∘。

- 当路程差为40^∘时,设x分钟后时针与分针成100^∘角(第一种情况),根据追及时间=路程差÷速度差,x=(40)/(5.5)=(80)/(11)≈7.27分钟。

- 当路程差为160^∘时,设y分钟后时针与分针成100^∘角(第二种情况),y=(160)/(5.5)=(320)/(11)≈29.09分钟。

五年级钟表问题之相遇与追及奥数拓展

五年级钟表问题之相遇与追及奥数拓展

钟表问题之相遇与追及奥数拓展知识点1.钟表问题时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

2.我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

3.时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

①对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

②分针速度:每分钟走1小格,每分钟走6度③时针速度:每分钟走 1/12 小格,每分钟走0.5度4.注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

简单的分类:①环形时钟的时针和分针的追及和相遇的问题,具体体现的就是路程转换为角度问题。

②时间标准问题和闹钟问题,这类问题是因为问题闹钟的原因导致时钟比标准钟快或者慢,引发的时间问题。

解决这类问题需要的就是十字交叉法。

典型例题例1、三点钟到四点钟之间,分针与时针在什么时候重合?【练习1】有一座时钟现在显示10时整。

那么,经过多少分钟,分针与时针第一次重合;再经过几分钟分针与时针第二次重合?(答案写成假分数的格式)【练习2】钟表的时针与分针在4点几分第一次重合?(答案写成假分数的形式)【练习3】现在是3点,几分钟之后时针与分针第一次重合?(答案写成假分数的形式)例2、七点钟到八点钟之间,分针与时针在什么时候成直线?【练习4】4点钟到5点钟之间,分针与时针在什么时候成直线?A、4点600/11分B、4点600/13分C、4点45分D、4点47分【练习5】1点钟到2点钟之间,分针与时针在什么时候成直线?A、1点420/11分B、1点420/13分C、1点35分D、1点37分【练习6】8点钟到9点钟之间,分针与时针在什么时候成直线?A、8点120/13分B、8点120/11分C、8点13分D、8点10分例3、一点钟到两点钟之间,分针与时针在什么时候成直角?【练习7】2点钟到3点钟之间,分针与时针在2点____分时第一次成直角?(答案写成假分数的形式)【练习8】5点钟到6点钟之间,分针与时针在什么时候成直角?A、5点120/11分B、5点480/11分C、两个都对D、两个都不对【练习9】8点钟到9点钟之间(不包含9点钟),分针与时针在8点______分成直角?(答案写成假分数的形式)例4、一只闹钟每小时慢4分钟,标准钟三点半时,此钟与标准钟对准,现在标准时间是十点半。

必备小升初数学知识点之时钟问题钟面追及

必备小升初数学知识点之时钟问题钟面追及

必备小升初数学知识点之时钟问题-钟面追及数学是一个重要的基础课程,下面为大家分享数学知识点之时钟问题钟面追及,希望能够对大家有帮助!时钟问题-钟面追及基本思路:封闭曲线上的追及问题。

关键问题:①确定分针与时针的初始位置;②确定分针与时针的路程差;基本方法:①分格方法:时钟的钟面圆周被均匀分成60小格,每小格我们称为1分格。

分针每小时走60分格,即一周;而时针只走5分格,故分针每分钟走1分格,时针每分钟走1/12分格。

②度数方法:从角度观点看,钟面圆周一周是360deg;,分针每分钟转360/60度,即6deg;,时针每分钟转360/12*60度,即1/2度。

经典例题:例1、钟面上3时多少分时,分针与时针恰好重合?分析:正3时时,分针在12的位置上,时针在3的位置上,两针相隔90deg;。

当两针第一次重合,就是3时过多少分。

在正3时到两针重合的这段时间内,分针要比时针多行走90deg;。

而可知每分钟分针比时针多行走6-0.5=5.5(度)。

相应的所用的时间就很容易计算出来了。

解:360÷12×3=90(度)90÷(6-0.5)=90÷5.5asymp;16.36(分)答:两针重合时约为3时16.36分。

例2、在钟面上5时多少分时,分针与时针在一条直线上,而指向相反?分析:在正5时时,时针与分针相隔150deg;。

然后随时间的消逝,分针先是追上时针,在此时间内,分针需比时针多行走150deg;,然后超越时针180deg;就成一条直线且指向相反了。

解:360÷12×5=150(度)(150+180)÷(6;—;0.5)=60(分)5时60分即6时正。

答:分针与时针在同一条直线上且指向相反时应是5时60分,即6时正。

例3、钟面上12时30分时,时针在分针后面多少度?分析:要避免粗心的考虑:时针在分针后面180deg;。

正12时时,分针与时针重合,相当于在同一起跑线上。

相遇、追及、时钟问题

相遇、追及、时钟问题

1、 甲乙两车从相距500千米的两地同时出发相向而行,4小时后还相距全程的15 ,已知甲车每小时行55千米,乙车每小时行多少千米?2、 两列火车相向而行,甲车每小时行72千米,乙车每小时行90千米,两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾,经过他的车窗共用了10秒,求乙车的车长。

3、 甲乙两车同时从A 地开往B地,甲车到达 B 地后立即返回,在离B 地45千米处与乙车相遇,甲乙两车的速度比是3:2,相遇时甲车行了多少千米?4、 一列火车通过440的桥,需要40秒,以同样的速度,穿越310米的隧道需要30秒,这列火车的速度和车身长各是多少?5、 一条船顺水航行每小时行20千米,逆水航行每小时行15千米,已知这条船在该航道的甲、乙两港间往返一次要用21小时,甲乙两港间的距离是多少?6、 一只小船第一次顺水航行42千米,逆水航行8千米,共用去11小时;第二次用同样的时间顺水航行24千米,逆水航行14千米;求小船在静水中的速度和水速。

7、 两地相距460千米,甲列车开出2小时后,乙列车和甲列车相向开出,经过4小时与甲列车相遇。

已知甲列车每小时比乙列车多行10千米,甲列车每小时行多少千米?8、 甲每小时走8千米,乙每小时走10千米。

两人同时从同地同向而行,走了15分钟乙忘带东西返回原地,取了东西再追甲;再过几小时乙可以追上甲?9、一条环形跑道长400米,甲每分钟行550米,乙每分钟行250米。

甲、乙两人同时同地反向出发,多少分钟后他们再相遇?甲、乙两人同时同地同向出发,多少分钟后他们再相遇?若起跑时,乙在甲前面100米处,此时甲、乙两人同时同向出发,多少分钟后他们第二次相遇?10、在一次环城自行车比赛中,速度最快的运动员在出发后35分钟第一次遇见最慢的运动员,已知最快的运动员的速度是最慢运动员速度的1.2倍,环城一周是7千米。

求两个运动员的速度。

11、现在是5时整,在过多少分钟,时针与分针第一次重合?12、4时与5时之间,什么时刻时钟的两针成一条直线?13、在7时和8时之间,时针与分针在什么时刻相互垂直?14、现在是11时整,再过多久,钟面上的时针与分针第一次的夹角是90度?15、钟面上的3时过多少分时,时针和分针离3的距离相等,并且在3的两边?。

小学数学思维方法:时钟问题

小学数学思维方法:时钟问题

时钟问题【知识要点】时钟问题可以看做是一个特殊的圆形轨道上2人追及问题,不过这里的两个“人”分别是时钟的分针和时针。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

1.常见钟表(机械)的构成:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度 2.在计算中采用两种速度:(1)速度用每分钟多少度表示,分针的速度是每分钟走6度,时针的速度是每分钟走0.5度。

(2)速度用每分钟多少小格表示,分针的速度是每分钟走1格,时针的速度是每分钟走112小格。

标准的时钟,每隔56511分钟,时针与分针重合一次.【典型例题】一、时针与分针的追及与相遇问题例1.现在是10点,再过多长时间,时针与分针将第一次在一条直线上?解:时针的速度是 360÷12÷60=0.5(度/分),分针的速度是 360÷60=6(度/分)即 分针与时针的速度差是 6-0.5=5.5(度/分),10点时,分针与时针的夹角是60度,第一次在一条直线时,分针与时针的夹角是180度,即 分针与时针从60度到180度经过的时间为所求。

119215.0-660-180=÷)()(例2.有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?解:在lO点时,时针所在位置为刻度10,分针所在位置为刻度12;当两针重合时,分针必须追上50个小刻度,设分针速度为“1”,有时针速度为“112”,于是需要时间:1650(1)541211÷-=.所以,再过65411分钟,时针与分针将第一次重合.第二次重合时显然为12点整,所以再经过65(1210)6054651111-⨯-=分钟,时针与分针第二次重合.例 3.某人下午六时多外出买东西,出门时看手表,发现表的时针和分针的夹角为1100,七时前回家时又看手表,发现时针和分针的夹角仍是1100.那么此人外出多少分钟?解:如下示意图,开始分针在时针左边1100位置,后来追至时针右边1100位置.于是,分针追上了1100+1100=2200,对应2206格.所需时间为2201(1)40612÷-=分钟.所以此人外出40分钟.说明:通过上面的例子,看到有时是将格数除以1(1)12+,有时是将格数除以1(1)12-,这是因为有时格数是时针、分针共同走过的,对应速度和;有时格数是分针追上时针的,对应速度差.对于这个问题,大家还可以将题改为:“在9点多钟出去,9点多钟回来,两次的夹角都是1100”,答案还是40分钟.二、时间标准及闹钟问题例4.某科学家设计了只怪钟,这只怪钟每昼夜10时,每时100分(如右图所示)。

钟表快慢问题经典例题

钟表快慢问题经典例题

钟表快慢问题经典例题模块一、时针与分针的追及与相遇问题【例1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)÷3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)÷3600X(3600+30)÷3600个小时,则手表每小时比标准时间慢1—【(3600-30)÷3600X(3600+30)÷3600】=1—14399÷14400=1÷14400个小时,也就是1÷14400X3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。

有一天晚上10点整,小强对准了闹钟,他想第二天早晨6∶00起床,他应该将闹钟的铃定在几点几分?【解析】6:24【巩固】小翔家有一个闹钟,每时比标准时间慢3分。

有一天晚上8:30,小翔对准了闹钟,他想第二天早晨6∶30起床,于是他就将闹钟的铃定在了6∶30。

这个闹钟响铃的时间是标准时间的几点几分?【解析】7点【巩固】当时钟表示1点45分时,时针和分针所成的钝角是多少度?【解析】142.5度【例2】有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?【解析】分针每小时走一圈12格,时针走1格,分针每小时比时针多走12-1=11格,每分钟多走11/60格。

10时整的时候,时针与分针相距10格,第一次重合,分针要在相同的时间里比时针多走10格,所用时间是:10÷11/60=54又6/11(分钟)第二次重合,分针要比时针多走12格,所用时间是:12÷11/60=65又5/11(分钟)【巩固】钟表的时针与分针在4点多少分第一次重合?【解析】此题属于追及问题,追及路程是20格,速度差是12/60-1/60 ,所以追及时间是:20/(12/60-1/60 )(分)。

五年级数学时钟相遇与追及问题(含答案)

五年级数学时钟相遇与追及问题(含答案)

五年级数学时钟相遇与追及问题(含答案)时钟问题是关于时针和分针的追及或相遇问题,可以看作是一个特殊的圆形轨道问题。

时钟问题包括时钟的快慢、周期和时针与分针所成的角度等。

不同于其他行程问题,时钟问题的速度和总路程的度量方式是指针“每分钟走多少角度”或“每分钟走多少小格”,其中分针速度为每分钟走1小格或6度,时针速度为每分钟走1/12小格或0.5度。

但是对于一些“怪钟”或“坏了的钟”,它们的速度可能与常规时钟不同,需要进行独立分析。

时钟问题可以视为行程问题,其中分针快,时针慢,因此分针与时针的问题就是追及问题。

解决时钟的快慢问题时,可以使用十字交叉法。

例如,在标准时钟中,时针与分针从一次重合到下一次重合所需时间为65.5分。

例1中,当时钟表示1点45分时,时针和分针所成的钝角为142.5度。

例2中,时针、分钟和秒针转动的圈数之和为1466圈,求这段时间有多少秒。

解答中,它们的速度比为1:12:720,因此秒针转了1440圈,即秒。

在一段时间里,时针、分钟、秒针正好走了3665小格,那么这段时间有多少秒?解析:它们的速度比为1:12:720,所以秒针转了3665÷(720+12+1)×720=3600小格,即3600秒。

答案:3600秒。

有一座时钟现在显示10时整。

那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?解析:在10点时,时针所在位置为刻度10,分针所在位置为刻度12;当两针重合时,分针必须追上50个小刻度,设分针速度为“l”,有时针速度为“l/12”,再过54/11分钟,时针与分针将第一次重合。

第二次重合时显然为12点整,所以再经过65分钟,时针与分针第二次重合。

标准的时钟,每隔65分钟,时针与分针重合一次。

答案:54分钟。

钟表的时针与分针在4点多少分第一次重合?解析:此题属于追及问题,追及路程是20格,速度差是1/11.如果设分针的速度为单位“l”,那么时针的速度为“l/12”。

小学奥数模块教程时钟问题(五年级提尖寒假)

小学奥数模块教程时钟问题(五年级提尖寒假)

时钟问题本章知识1、简单的钟面角度问题2、钟表中的相遇与追及问题3、坏钟问题前铺知识1、相遇问题2、追及问题课前加油站1、请默写出直线相遇与追及问题的两个公式。

2、甲、乙两人同时同地同向在400米长的环形跑道上跑步,甲的速度为6米/秒,乙的速度为4米/秒。

(1)开始后多长时间,甲乙第一次处于跑道的某直径的两端?(2)开始后多长时间,甲第一次超过乙?(3)开始后多长时间,甲乙第一次处于起点所在的直径对称的位置?要研究时钟某个时刻时针与分针成什么角度,我们首先要知道时针与分针行走的速度。

它们的速度有两种表达形式:以小格/分钟为单位或以角度/分钟为单位。

格 度 时钟一圈 60格360度时针速度 121格/分钟 21度/分钟 分针速度 1格/分钟6度/分钟时针速度:分针速度=1:12。

牢记它有助于我们记忆时针和分针的速度。

1、已知:钟表上60小格,一圈是360度,则分针1小时转多少度?时针1小时转多少度?分针速度是时针速度的多少倍?【演练】分针1分转多少度?时针1分转多少度?时针速度是分针速度的几分之几?2、3:00时,分针落后时针 度,15分钟内,分针走 度,时针走 度,因此3:15时,时针与分针的夹角是 度。

模块1简单的钟面角度问题【演练】在下表中仿照第二行的例子填入适当的算式。

X :Y (X 点Y 分) X 点时两针的角度 Y 分时时针走的度数 Y 分时分针走的度数 X 点Y 分时两针的度数 4:16 4×30=120 16×6=96 16×0.5=8 120-96+8=32 8:12 3:40 9:10【演练】当时钟表示1点45分时,时针和分针所成的钝角是多少度?【演练】在16点16分这个时刻,钟表盘面上时针和分针的夹角是多少度?3、小明家的时钟正对着衣柜上的镜子,某天早上起床时,小明看到镜子中的时钟两针指向5点20分的位置,那么现在真正的时钟显示的时间是?题型一 重合问题公式:分针到时针相差的格数÷(1-121)=重合分钟数分针到时针相差的度数÷(6-0.5)=重合分钟数1、现在是2点,从现在开始,分针与时针什么时刻第一次重合在一起?第二次呢?模块2钟表中的相遇与追及问题【演练】现在是7点40分,从现在开始过多长时间时针与分针第一次重合?【演练】有一座时钟现在显示10时整。

时钟问题、牛吃草问题、同余问题、加法原理、追及问题

时钟问题、牛吃草问题、同余问题、加法原理、追及问题

时钟问题、牛吃草问题、同余问题、加法原理、追及问题例1、在7时与8时之间,时针与分针在什么时候重合?例2、6时整,分针与时针刚好在一条直线上,至少再经过多少分钟两针刚好垂直?例3、有一片匀速生长的草场,它的草量可供12头牛吃25天或供24头牛吃10天,那么,它可供14头牛吃几天?例4、一个水池有一根进水管不断地进水,另有若干根相同的抽水管。

若用24根抽水管抽水,6小时即可把池水抽干;若用21根抽水管抽水,8小时可把池水抽干。

用几根抽水管18小时可把池水抽干。

例5、一个正整数除300,262,205得到的余数都相同,这个正整数是多少?同步训练1、敏敏家有一个闹钟,每小时比标准时间快2分,星期天,敏敏想让闹钟10点半提醒妈妈做饭,现在是早上8点整,敏敏应将闹钟的铃定在几时几分上?2、现在是下午4时整,再过几分钟时针与分针第一次重合?3、从上午10时开始到下午1时,时针和分针重合几次?4、手表比闹钟每小时快60秒,闹钟每小时比标准时间慢60秒,8时整将手表对准,12时整时手表显示的时间是几时几分?5、时针在3时与4时之间何时成直角?6、有一钟表,每小时慢3分,早上7点整,把表对准了标准时间,当中午12点整的时候,标准时间为几时几分?7、牧场上长满了草,每天牧草都匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。

那么可供25头牛吃几天?8、一只船舱发现漏水时,已经进了一些水。

水匀速进入船舱内,如果10个人舀水,3小时舀完;如果5个人舀水,8小时舀完。

如果要求2,那么要安排多少人舀水?9、有一个不等于1的正整数,它除967,1000,2001得到相同的余数,这个数是多少?10、在1与3000之间同时被3、5、7除都余2的数有多少个?11、求分子小于6,分母小于60的最简真分数的个数。

12、有10个装有大量金币的口袋,其中9个口袋装的是真金币,1个口袋装的是假金币,已知一个真金币重20克,一个假金币重19克,如果只称一次就可以找出哪个口袋装的是假金币,应如何称?13、甲、乙两船从A港到B港,甲每小时行30千米,乙每小时行45千米,甲比乙早出发4小时,两船人同时到达B港。

时钟问题详细讲解

时钟问题详细讲解

时钟问题详细讲解我只是在论坛看到相关内容,并加以整理:一、重合问题1、钟表指针重叠问题中午12点,时针与分针完全重合,那么到下次12点时,时针与分针重合多少次?(2006国家考题)A、10B、11C、12D、13 答案B2、中午12点,秒针与分针完全重合,那么到下午1点时,两针重合多少次?A、60B、59C、61D、62 答案B讲讲第2题,如果第2题弄懂了第1题也就懂了!给大家介绍我认为网友比较经典的解法:考友1.其实这个题目就是追击问题,我们现在以钟表上的每一刻度为一个单位,这时秒针的速度就是是分针速度的60倍,秒针和分针一起从12点的刻度开始走,多久分针追上时针呢?我们列个方程就可以了,设分针的速度为1格/秒,那么秒针的速度就是60格/秒,设追上的时候路程是S,时间是t,方程为(1+60)t=S 即61t=S,中午12点到下午1点,秒针一共走了3600格,即S的范围是0<S<3600,那么t的范围就是0<t<3600/61,即0<t<59.02,因为t只能取整数,所以t为1~59,也就是他们相遇59次。

第1题跟这个思路是一样的,大家可以算算!给大家一个公式吧61T=S (S为题目中最小的单位在题目所要求的时间内所走的格数,确定S后算出T的最大值就知道相遇多少次了)如第1题,题目中最小单位为分针,题目所要求的时间为12小时,也就是说分针走了720格T(max)=720/61.8,取整数就是11。

1、钟表指针重叠问题中午12点,时针与分针完全重合,那么到下次12点时,时针与分针重合多少次?A、10B、11C、12D、13考友2.这道题我是这么解,大家比较一下:解:可以看做追及问题,时针的速度是:1/12格/分分针的速度是:1格/分.追上一次的时间=路程差/速度差=60/(1-1/12)=720/11分从12点到12点的总时间是720 分钟,所以重合次数n=总时间/追上一次的时间=720/720/11 次二、关于成角度的问题,我推荐个公式及变式给你:设X时时,夹角为30X ,Y分时,分针追时针5.5,设夹角为A.(请大家掌握)钟面分12大格60小格每一大格为360除以12等于30度,每过一分钟分针走6度,时针走0.5度,能追5.5度。

时间问题

时间问题

解题方法一、追及计算法追及计算法,就是将钟表问题看做是行程问题里面的相遇追及问题,将时针和分针作为运动的物体,将时间差作为路程差,从而得到追及的时间。

这类“相遇追及问题”的特殊之处在于:(1)钟面被分成12个大格,每个大格又分为5个小格,即整个钟面共有60个小格;(2)分针每分钟走1个小格,时针每分钟走1/12小格;分针每小时走60个小格,即12个大格,时针每小时走5个小格,即1个大格;(3)钟面一圈为360°,时针每小时走30°,分钟每小时走360°,时针每分钟走0.5°,分针每分钟走6°;(4)分钟与时针的速度比是已知的,分针的速度是时针的12倍,时针的速度是分针的1/12,分针和时针的速度差是11/12小格,也就是6-0.5=5.5度。

钟表问题的基本公式:相差的小格数÷(分针速度-时针速度)=运动所需时间或者相差的角度数÷(分针速度-时针速度)=运动所需时间。

【注】不论是从“格”的角度,还是从“角度”的角度分析,分钟和时针的速度差都包含有11,这个约数,所以在精确计算的时候,正确选项往往会是含有11作为分母的分数。

********************************************************************* *********【真题示例1】张某下午六时多外出买菜,出门时看手表,发现表的时针和分针的夹角为110°,七时前回家时又看手表,发现时针和分针的夹角仍是110°,那么张某外出买菜用了多少分钟?A.20分钟 B.30分钟C.40分钟 D.50分钟【思路点拨】由于张某在下午六点多出门,在七时前回家,则刚开始分针与时针形成110°的夹角时,时针在前,分针在后,回家时分针与时针仍形成110°的夹角,则此时应为时针在后,分针在前。

【答案】C【解析一】本题考查的是钟表问题。

时钟问题详细讲解

时钟问题详细讲解
时间是t,方程为(1+60)t=S 即61t=S,中午12点到下午1点,秒针一共走了3600格,即S的围是0<S<3600,那么t的围就是0<t<3600/61,
即0<t<59.02,因为t只能取整数,所以t为1~59,也就是他们相遇59次。
第1题跟这个思路是一样的,大家可以算算!
给大家一个公式吧61T=S(S为题目中最小的单位在题目所要求的时间所走的格数,确定S后算出T的最大值就知道相遇多少次了)
钟面分12大格60小,能追5.5度。
1.【30X-5.5Y】或是360-【30X-5.5Y】 【】表示绝对值的意义(求角度公式)
变式与应用
2.【30X-5.5Y】=A或是360-【30X-5.5Y】=A (已知角度或时针或分针求其中一个的公式。
例2从5时整开始,经过多长时间后,时针与分针第一次成了直线?
思路剖析
时针与分针直线也就是说两针的夹角为180°。从5时整开始时,时针在一个小时之从5运转到6,分针从12开始在一个小时之会旋转360°,必然在此期间有一个时刻时针与分针成了直线,从图2中易知此时刻必然落在11与12之间。此题是已知两针夹角求时间的问题,与例1正好是个相反的过程。我们仍可按照例1得出的规律求解。当两针成直线时,时间为5点几分,那么a=5,由于分针位置在11至12之间,则b>55,那么b÷5>11,a<b÷5,应采用24小时计时法。只须解一个方程,便可求解此题。
解:可以看做追及问题,时针的速度是:1/12格/分 分针的速度是:1格/分.
追上一次的时间=路程差/速度差=60/(1-1/12)=720/11分
从12点到12点的总时间是720 分钟,所以重合次数n=总时间/追上一次的时间=720/720/11 次

小学重点内容总结提点——相遇问题、追及问题与时钟问题(教师版)(例题练习无答案)

小学重点内容总结提点——相遇问题、追及问题与时钟问题(教师版)(例题练习无答案)

⼩学重点内容总结提点——相遇问题、追及问题与时钟问题(教师版)(例题练习⽆答案)相遇问题、追及问题与时钟问题⼀、路程问题看了这次课程的题⽬,我们知道今天要讲的是⾏程问题。

在⾏程问题中有⼀个基本公式,哪位同学能上来写⼀下?很好,那么还有两个变式公式我们也写⼀下。

通过上⾯3个公式,我们也知道,这三个量中,我们只要知道任意两个,就能求出最后的⼀个量来。

特别强调⼀下,有⼀个量叫做平均速度,它等于什么?平均速度=总路程÷总时间。

那么在相遇问题中,路程、时间和速度这三个量⼜有什么样的关系呢?相遇总路程=速度和×相遇时间速度和=甲速度+⼄速度追及问题中呢?追及总路程=速度差×追及时间速度差=⼤速度-⼩速度例题1:⼀辆公共汽车和⼀辆⼩轿车同时从相距299 千⽶的两地相向⽽⾏,公共汽车每⼩时⾏40 千⽶,⼩轿车每⼩时⾏60 千⽶.⼏⼩时后两车相距69 千⽶?例2:甲、⼄两车同时从东西两站相对开出,第⼀次离东站80千⽶处相遇,各车到站后⽴即返回,⼜在离西站50千⽶处第⼆次相遇.东西两站相距多少千⽶?例3:王明回家,距家门300⽶,妹妹和⼩狗⼀齐向他奔来,王明和妹妹的速度都是每分钟50⽶,⼩狗的速度是每分钟200⽶,⼩狗遇到王明后⽤同样的速度不停往返于王明与妹妹之间.当王明与妹妹相遇时,⼩狗⼀共跑了多少⽶?例4:哥哥和弟弟在同⼀所学校读书.哥哥每分钟⾛65⽶,弟弟每分钟⾛40⽶,有⼀天弟弟先⾛ 5 分钟后,哥哥才从家出发,当弟弟到达学校时哥哥正好追上弟弟也到达学校,问他们家离学校有多远?例5:甲⼄两架飞机从同⼀个机场起飞,同⼀⽅向飞⾏,甲速度是每⼩时300 公⾥,⼄速度是每⼩时340 公⾥,飞⾏4 ⼩时后,甲提速,2 ⼩时后追上⼄,问甲提速后的速度是多少?例6:军事演习中,我军舰追敌军舰,追到A岛时,敌舰已在10分钟前逃离,敌舰每分钟⾏驶1000⽶,我舰每分钟⾏驶1470⽶,在距离敌舰600⽶处可开炮射击,问我舰从A岛出发经过多少分钟可射击敌舰?例7:客、货车同时从甲、⼄两地相对开出,相遇时客、货两车所⾏路程的⽐是5:4,相遇后货车每⼩时⽐相遇前每⼩时多⾛27千⽶。

钟表上的追及问题

钟表上的追及问题

20!=08Y7664X000,请问X-Y=多谢回复!解:5*10*15*20*2=30000 => X=0此数能被99整除=>2+43+29+02+8Y+76+64是99的倍数=>Y=1钟表上的追及问题一个n(n≥2)位正整数M中的相邻的一个、两个、...(n-1)个数码组成的数叫的片段数(新课标提倡,数学走进生活,教科书中出现了与日常生活密切相关的钟表问题。

例如:在3点和4点之间的哪个时刻,钟表的时针与分针:(1)重合;(2)成平角;(3)成直角。

许多同学面对此题,束手无策,不知如何解决。

实际上,因为分针旋转的速度快,时针旋转的速度慢,而旋转的方向却是一致的。

因此上面这类问题也可看做追及问题。

通常有以下两种解法:一. 格数法钟表面的外周长被分为60个“分格”,时针1小时走5个分格,所以时针一分钟转112分格,分针一分钟转1个分格。

因此可以利用时针与分针旋转的“分格”数来解决这个问题。

解析(1)设3点x分时,时针与分针重合,则分针走x个分格,时针走x12个分格。

因为在3点这一时刻,时针在分针前15分格处,所以当分针与时针在3点与4点之间重合时,分针比时针多走15个分格,于是得方程xx-=1215,解得x=16411。

所以3点16411分时,时针与分针重合。

(2)设3点x分时,时针与分针成平角。

因为在3点这一时刻,时针在分针前15分格处,而在3点到4点之间,时针与分针成一平角时,分针在时针前30分格处,此时分针比时针多走了45分格,于是得方程xx-=1245,解得x=491 11。

所以3点49111分时,时针与分针成平角。

(3)设3点x分时,时针与分针成直角。

此时分针在时针前15分格处,所以在3点到4点之间,时针与分针成直角时,分针比时针多走了30分格,于是得方程xx-=1230,解得x=32811。

所以3点32811分时,时针与分针成直角。

二. 度数法对钟表而言,时针12小时旋转一圈,分针1小时旋转一圈,转过的角度都是360°,所以时针1分钟转过的角度是°,分针1分钟转过的角度是6°。

钟面追及问题典型例题

钟面追及问题典型例题

钟面追及问题典型例题
"钟面追及问题"通常是关于两个时钟或钟表同时开始,然后相遇或重叠的问题。

这类问题涉及时间、速度和距离的关系,可以通过解方程或其他数学方法来解决。

下面是一个典型例题和答案:
例题:
小明和小红同时从同一地点出发,小明骑自行车以每小时20公里的速度向东行驶,小红骑摩托车以每小时30公里的速度向西行驶。

如果两人相遇在3小时后,相遇的地点距离出发地各多远?
答案:
设两人相遇的地点距离出发地各为x公里。

小明行驶的距离为20公里/小时× 3小时= 60公里(向东行驶,速度取正值)。

小红行驶的距离为30公里/小时× 3小时= 90公里(向西行驶,速度取负值)。

由于小明和小红在相遇时距离出发地距离之和等于相遇地点距离出发地的距离,因此可以得到方程:
60公里+ (-90公里) = x
解方程得到:x = -30公里
答案是:两人相遇的地点距离出发地30公里向西。

这里距离取负值是因为小红的行驶方向是向西,所以相遇点在出发地的西边。

[整理]时钟及追及问题

[整理]时钟及追及问题

在一点到二点之间,分针什么时候与时针构成直角?解:当时针分针重合,即分针追上时针时,需要时间30/(11/2)=60/11,此后,当路程差为90度时,构成直角,90/(11/2)=180/11;当路程差为270度时,构成直角,270/(11/2)=540/11.因此,共需要60/11+180/11=240/11分钟,或60/11+540/11=600/11分钟。

2.现在是10点整,请问再过多长时间,时针与分针将第一次在一条直线上?解:分针一分钟走6度,时针一分钟走1/2度,则分针时针的速度差为11/2,10点时分针时针路程差为60度,当分针时针第一次在一条直线上时分针时针的路程差为180度。

即在运动过程中,时针分针的路程差又增加120度,因此,用时120/(11/2)=240/113.在钟面上,如果知道X时Y分,输入一个公式就能得出此时时针与分针夹角的度数。

请问这个公式怎么得来?钟面上分12大格60小格。

每1大格均为360除以12等于30度。

每过一分钟分针走6度,时针走0.5度,能追5.5度。

公式可这样得来:X时时,夹角为30X度。

Y分,也就是分针追了时针5.5Y度。

可用:整点时的度数30X减去追了的度数5.5Y。

如果减得的差是负数,则取绝对值,也就是直接把负号去掉,因为度数为非负数。

因为时针与分针一般有两个夹角,一个小于180度,一个大于180度,(180度时只有一个夹角)因此公式可表示为:|30X-5.5Y|或360-|30X-5.5Y|度。

||为绝对值符号。

如1:40分,可代入得:30×1-5.5×40=-190则为190度,另一个小于180度的夹角为:170度。

如:2:10,可代入得:60-55=5度。

大于180度的角为:355度。

如:11:20,330-110=220度,小于180的角:360-220=140度。

4.时钟现在表示的时间是18点整,那么分针旋转1990圈后是()点钟?解;分针走一圈,时针走一小时=分针走24圈,时针走24小时,即此时时间还是18点=1990/24=82余22=时间为18点再过22小时,即16点。

五年级数学时钟相遇与追及问题(含答案)

五年级数学时钟相遇与追及问题(含答案)

五年级数学时钟相遇与追及问题(含答案)时钟追及与相遇问题知识框架时钟问题可以看做是⼀个特殊的圆形轨道上2⼈追及或相遇问题,不过这⾥的两个“⼈”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的⾓度等等。

时钟问题有别于其他⾏程问题是因为它的速度和总路程的度量⽅式不再是常规的⽶每秒或者千⽶每⼩时,⽽是2个指针“每分钟⾛多少⾓度”或者“每分钟⾛多少⼩格”。

对于正常的时钟,具体为:整个钟⾯为360度,上⾯有12个⼤格,每个⼤格为30度;60个⼩格,每个⼩格为6度。

分针速度:每分钟⾛1⼩格,每分钟⾛6度时针速度:每分钟⾛112⼩格,每分钟⾛0.5度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟⾛的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进⾏独⽴的分析。

要把时钟问题当做⾏程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会⼗字交叉法。

例如:时钟问题需要记住标准的钟,时针与分针从⼀次重合到下⼀次重合,所需时间为56511分。

例题精讲【例 1】当时钟表⽰1点45分时,时针和分针所成的钝⾓是多少度?【考点】⾏程问题之时钟问题【难度】☆☆【题型】解答【解析】142.5度【答案】142.5度【巩固】在16点16分这个时刻,钟表盘⾯上时针和分针的夹⾓是____度.【考点】⾏程问题之时钟问题【难度】☆☆【题型】填空【解析】16点的时候夹⾓为120度,每分钟,分针转6度,时针转0.5度,16:16的时候夹⾓为120-6×16+0.5×16=32度.【答案】32度【例 2】在⼀段时间⾥,时针、分钟、秒针转动的圈数之和恰好是1466圈,那么这段时间有秒。

【考点】⾏程问题之时钟问题【难度】☆☆【题型】解答【解析】解:它们的速度⽐为1:12:720,所以秒针转了1466÷(720+12+1)×720=1440圈.即1440×60=86400秒【答案】86400秒.【巩固】在⼀段时间⾥,时针、分钟、秒针正好⾛了3665⼩格,那么这段时间有秒。

六年级时钟问题经典例题

六年级时钟问题经典例题

六年级时钟问题经典例题以下是小编为大家整理的六年级时钟问题经典例题,欢迎借鉴与参考,希望对大家有所帮助。

例题1:钟面上从时针指向8开始,再经过多少分钟,时针正好与分针第一次重合?(精确到1分)解:1、此类题型可以把钟面看成一个环形跑道,那么本题就相当于行程问题中的追及问题,即分针与时针之间的路程差是240°。

2、分针每分钟比时针多转6°-0.5°=5.5°,所以需要240÷5.5≈44(分钟)。

也就是从8时开始,再经过44分钟,时针正好与分针第一次重合。

例题2:从早晨6点到傍晚6点,钟面上时针和分针一共重合了多少次?解:我们可以把钟面看成一个环形跑道,这样分针和时针的转动就可以转化成追及问题,从早晨6点到傍晚6点,一共经过了12小时,12个小时分针要跑12圈,时针只能跑1圈,分针比时针多跑12-1=11(圈),而分针每比时针多跑1圈,就会追上时针一次,也就是和时针重合1次,所以12小时内两针一共重合了11次。

例题3:一部记录中国军队时代变迁的纪录片时长有两个多小时,小明发现,纪录片播放结束时,手表上时针、分针的位置正好与开始时时针、分针的位置交换了一下,这部纪录片时长多少分钟?(精确到1分)解:1、解决本题的关键是认识到时针与分针合走的路程是1080°,进而转化成相遇问题来解决。

2、两个多小时,分针与时针位置正好交换,所以分针与时针所走的路程和正好是三圈,也就是分针和时针合走了360°×3=1080°,而分针和时针每分钟的合走6°+0.5°=6.5°,所以合走1080°需要1080÷6.5≈166(分钟),即这部纪录片时长166分钟。

奥数基础二:追及相遇和时钟问题

奥数基础二:追及相遇和时钟问题

奥数基础二:相遇、追及(行程)与时钟问题一、行程问题两人的行程问题,从方向看有两种情况:同向或反向。

方向相同,就是两人一前一后,快的从后面追上慢的,这种问题叫做追及问题。

追及实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程),这种情况,要用到两人的速度差。

方向相反的,就是两人面对面起来,直到相遇,所以叫作相遇问题。

这类题实质上是两人一起走了这段路程,要计算路程和,所以要用到速度和。

记住要点:方向相同,速度要相减,方面相反,速度要相加。

1、相遇问题一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。

3.5小时两车相遇。

甲、乙两个城市的路程是多少千米?两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。

甲、乙两车相遇时,各行了多少千米?A、B两地相距9000米,包子和菠萝从A、B两地同时出发相对而行,经过60分钟相遇。

已知包子每分钟走80米,菠萝分钟走多少米?甲、乙两辆汽车分别从A、B两地出发相对而行,甲车先行1小时,甲车每小时行48千米,乙车每小时行50千米,5小时相遇,求A、B两地间的距离.甲、乙两列火车从相距770千米的两地相向而行,甲车每小时行45千米,乙车每小时行41千米,乙车先出发2小时后,甲车才出发.甲车行几小时后与乙车相遇?2、追及问题甲、乙两架飞机同时从一个机场起飞,向同一方向飞行,甲机每小时行300千米,乙机每小时行340千米,飞行4小时后它们相隔多少千米?这时候甲机提高速度用2小时追上乙机,甲机每小时要飞行多少千米?甲、乙二人都要从北京去天津,甲行驶10千米后乙才开始出发,甲每小时行驶15千米,乙每小时行驶10千米,问:乙经过多长时间能追上甲?已知甲乙两船的船速分别是24千米/时和20千米/时,两船先后从汉口港开出,乙比甲早出1小时,甲要行多少千米才追上乙?两船同时到达目的地A,问两地距离?甲乙两人要从A地到B地办事。

钟表问题

钟表问题

钟表问题什么是钟面行程问题?钟面行程问题是研究钟面上的时针和分针关系的问题,常见的有两种:⑴研究时针、分针成一定角度的问题,包括重合、成一条直线、成直角或成一定角度;⑵研究有关时间误差的问题.在钟面上每针都沿顺时针方向转动,但因速度不同总是分针追赶时针,或是分针超越时针的局面,因此常见的钟面问题往往转化为追及问题来解时钟问题—钟面追及基本思路:封闭曲线上的追及问题。

关键问题:①确定分针与时针的初始位置;②确定分针与时针的路程差;基本方法:①分格方法:时钟的钟面圆周被均匀分成60小格,每小格我们称为1分格。

分针每小时走60分格,即一周;而时针只走5分格,故分针每分钟走1分格,时针每分钟走1/12分格。

②度数方法:从角度观点看,钟面圆周一周是360°,分针每分钟转360/60度,即6°,时针每分钟转360/12*60度,即0.5度。

例一例二规律总结:角度计算公式练习:1、在10点与11点之间,钟面上时针和分针在什么时刻垂直?2、现在是2点15分,再过几分钟,时针和分针第一次重合?3、在7点与8点之间(包含7点与8点)的什么时刻,两针之间的夹角为120°?4、小明在7点与8点之间解了一道题,开始时分针与时针正好成一条直线,解完题时两针正好重合,小明解题的起始时间?小明解题共用了多少时间?5、在6点和7点之间,两针什么时刻重合?6、现在是2点15分,再过几分钟,时针和分针第一次重合?7、在10点与11点之间,两针在什么时刻成一条直线?8、从时针指向4开始,再经过多少分钟,时针正好和分针重合?课后作业1、4时与5时之间,什么时刻时钟的分针和时针成一直线?2、求以下时间时针与分针的夹角是多少度。

(1)4:10 (2)9:40 13:503、8时到9时之间,在什么时刻时针与分针的夹角是60度?4、、求7时与8时之间,时针与分针的夹角是多少度?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在一点到二点之间,分针什么时候与时针构成直角?解:当时针分针重合,即分针追上时针时,需要时间30/(11/2)=60/11,此后,当路程差为90度时,构成直角,90/(11/2)=180/11;当路程差为270度时,构成直角,270/(11/2)=540/11.因此,共需要60/11+180/11=240/11分钟,或60/11+540/11=600/11分钟。

2.现在是10点整,请问再过多长时间,时针与分针将第一次在一条直线上?解:分针一分钟走6度,时针一分钟走1/2度,则分针时针的速度差为11/2,10点时分针时针路程差为60度,当分针时针第一次在一条直线上时分针时针的路程差为180度。

即在运动过程中,时针分针的路程差又增加120度,因此,用时120/(11/2)=240/113.在钟面上,如果知道X时Y分,输入一个公式就能得出此时时针与分针夹角的度数。

请问这个公式怎么得来?钟面上分12大格60小格。

每1大格均为360除以12等于30度。

每过一分钟分针走6度,时针走0.5度,能追5.5度。

公式可这样得来:X时时,夹角为30X度。

Y分,也就是分针追了时针5.5Y度。

可用:整点时的度数30X减去追了的度数5.5Y。

如果减得的差是负数,则取绝对值,也就是直接把负号去掉,因为度数为非负数。

因为时针与分针一般有两个夹角,一个小于180度,一个大于180度,(180度时只有一个夹角)因此公式可表示为:|30X-5.5Y|或360-|30X-5.5Y|度。

||为绝对值符号。

如1:40分,可代入得:3 0×1-5.5×40=-190则为190度,另一个小于180度的夹角为:170度。

如:2:10,可代入得:60-55=5度。

大于180度的角为:355度。

如:11:20,330-110=220度,小于180的角:360-220=140度。

4.时钟现在表示的时间是18点整,那么分针旋转1990圈后是()点钟?解;分针走一圈,时针走一小时=分针走24圈,时针走24小时,即此时时间还是18点=1990/24=82余2 2=时间为18点再过22小时,即16点。

若选b的话,则可把16点理解为下午4点。

5.一个快钟每小时比标准时间快1分钟,一个慢钟每小时比标准时间慢3分钟。

如将两个钟同时调到标准时间,结果在24小时内,快钟显示10点整时,慢钟恰好显示9点整。

则此时的标准时间是几点?快钟和慢种之间除了一个是快1分钟/小时,一个是慢3分钟/小时.可以得到这样关系:快钟和慢种差比为1:3其他的条件就是他们都一起走没有别的不同步了,所以到了快种10点,慢钟9点时候,他们已经差了一个小时,其中按1:3来算快种快了15分,慢种慢了45分钟,由上面分析可以得到现在标准时间为:9:45。

解题关键:时钟问题属于行程问题中的追及问题。

钟面上按“时”分为12大格,按“分”分为60小格。

每小时,时针走1大格合5小格,分针走12大格合60小格,时针的转速是分针的,两针速度差是分针的速度的,分针每小时可追及。

1、二点到三点钟之间,分针与时针什么时候重合?分析:两点钟的时候,分针指向12,时针指向2,分针在时针后5×2=10(小格)。

而分针每分钟可追及1-=(小格),要两针重合,分针必须追上10小格,这样所需要时间应为(10÷)分钟。

解:(5×2)÷(1-)=10÷=10(分)答:2点10分时,两针重合。

2、在4点钟至5点钟之间,分针和时针在什么时候在同一条直线上?分析:分针与时针成一条直线时,两针之间相差30小格。

在4点钟的时候,分针指向12,时针指向4,分针在时针后5×4=20(小格)。

因分针比时针速度快,要成直线,分针必须追上时针(20小格)并超过时针(30小格)后,才能成一条直线。

因此,需追及(20+30)小格。

解:(5×4+30)÷(1-)=50÷=54(分)答:在4点54分时,分针和时针在同一条直线上。

3、在一点到二点之间,分针什么时候与时针构成直角?分析:分针与时针成直角,相差15小格(或在前或在后),一点时分针在时针后5×1=5小格,在成直角,分针必须追及并超过时针,才能构成直角。

所以分针需追及(5×1+15)小格或追及(5×1+45)小格。

解:(5×1+15)÷(1-)=20÷=21(分)或(5×1+45)÷(1-)=50÷=54(分)答:在1点21分和1点54分时,两针都成直角。

4、星期天,小明在室内阳光下看书,看书之前,小明看了一眼挂钟,发现时针与分针正好处在一条直线上。

看完书之后,巧得很,时针与分针又恰好在同一条直线上。

看书期间,小明听到挂钟一共敲过三下。

(每整点,是几点敲几下;半点敲一下)请你算一算小明从几点开始看书?看到几点结束的?分析:连半点敲声在内,一共敲了三下,说明小明看书的时间是在中午12点以后。

12点以后时针与分针:第一次成一条直线时刻是:(0+30)÷(1-)=30÷=32(分)即12点32分。

第二次成一条直线时刻是:(5×1+30)÷(1-)=35÷=38(分)即1点38分。

第三次成一条直线的时刻是:(5×2+30)÷(1-)=40÷=43(分)即2点43分。

如果从12点32分开始,到1点38分,只敲2下,到2点43分,就共敲5下(不合题意)如果从1点38分开始到2点43分,共敲3下。

因此,小明应从1点38分开始看书,到2点43分时结束的。

5、一只挂钟,每小时慢5分钟,标准时间中午12点时,把钟与标准时间对准。

现在是标准时间下午5点30分,问,再经过多长时间,该挂钟才能走到5点30分?分析:1、这钟每小时慢5分钟,也就是当标准钟走60分时,这挂钟只能走60-5=55(分),即速度是标准钟速度的=。

2、因每小时慢5分,标准钟从中午12点走到下午5点30分时,此挂钟共慢了5×(17-12)=27(分),也就是此挂钟要差27分才到5点30分。

3、此挂钟走到5点30分,按标准时间还要走27分,因它的速度是标准时钟速度的,实际走完这27分所要时间应是27÷。

解:5×(17-12)=27 (分)27÷=30(分)答:再经过30分钟,该挂钟才能走到5点30分。

两物体在同一直线上运动所涉及的追及、相遇、相撞的问题,通常归为追及问题。

公式追及:追及速度×追及时间=追及路程追及速度=较快速度-较慢速度(即速度差)相遇:相遇速度×相遇时间=相遇路程相遇速度=两人的速度和例题甲、乙同时起跑,绕300米的环行跑,甲每秒6米,乙每秒4米,问第二次追上乙时,甲跑了几圈??基本等量关系:追及时间* 速度差=追及距离本题速度差为:6-4=2甲第一次追上乙后,追及距离是环形报道的周长300米第一次追上后,两人又可以看作是同时同地起跑,因此第二次追及的问题,就转化为类是于求解第一次追及的问题。

甲第一次追上乙的时间是:300/2=150秒甲第一次追上乙跑了:6*150=900米这是乙跑了:4*150=600米这表明甲是在出发点上追上乙的,因此,第二次追上问题可以简化为把第一次追上时所跑的距离乘以二即可,得甲第二次追上乙共跑了:900+900=1800乙共跑了:600+600=1200亦即甲跑了1800/300=6圈乙跑了1200/300=4 圈一、填空题1.甲以每小时4千米的速度步行去学校,乙比甲晚4小时骑自行车从同一地点出发去追甲,乙每小时行12千米,乙2_小时可追上甲.2.小张从家到公园,原打算每分钟走50米,为了提早10分钟到,他把速度加快,每分钟走75米.小张家到公园有150米.3.父亲和儿子都在某厂工作,他们从家里出发步行到工厂,父亲用40分钟,儿子用30分钟.如果父亲比儿子早5分钟离家,问儿子用15分钟可赶上父亲?4.解放军某部小分队,以每小时6千米的速度到某地执行任务,途中休息30分后继续前进,在出发5.5小时后,通讯员骑摩托车以56千米的速度追赶他们._ _0.6_小可以追上他们?5.甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙.若乙比甲先跑2秒钟,则甲跑4秒钟能追上乙.问甲、乙两人每秒钟各跑6,4米.6.小明以每分钟50米的速度从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明,求小明骑自行车的速度是__ 125米/分.7.甲、乙两匹马在相距50米的地方同时出发,出发时甲马在前乙马在后.如果甲马每秒跑10米,乙马每秒跑12米,60秒两马相距70米?8.上午8时8分,小明骑自行车从家里出发.8分后,爸爸骑摩托车去追他,在离家4千米的地方追上了他,然后爸爸立刻回家,到家后又立刻回头去追小明,再追上他的时候,离家恰是8千米,这时是8时32分.9.从时针指向4点开始,再过21_分,时针正好与分钟重合?10.一队自行车运动员以每小时24千米的速度骑车从甲地到乙地,两小时后一辆摩托车以每小时56千米的速度也从甲地到乙地,在甲地到乙地距离的二分之一处追上了自行车运动员.问:甲乙两地相距168千米?二、解答题追及问题的解法解追及问题的常规方法是根据位移相等来列方程,匀变速直线运动位移公式是一个一元二次方程,所以解直线运动问题中常要用到二次三项式(y=a x2+bx+c)的性质和判别式(△=b2-4ac)。

另外,在有两个(或几个)物体运动时,常取其中一个物体为参照物,即让它变为“静止”的,只有另一个(或另几个)物体在运动。

这样,研究过程就简化了,所以追及问题也常变换参照物的方法来解。

这时先要确定其他物体相对参照物的初速度和相对它的加速度,才能确定其他物体的运动情况,对一些定性讨论的问题还常用图象法来进行分析。

11.一只狗追赶一只野兔,狗跳5次的时间兔子能跳6次,狗跳4次的距离与兔子7次的距离相等.兔子跳出550米后狗子才开始追赶.问狗跳了多远才能追上兔子?12.当甲在60米赛跑中冲过终点线时,比乙领先10米、比丙领先20,如果乙和丙按原来的速度继续冲向终点,那么当乙到达终点时将比乙领先多少米?13.一架敌机侵犯我领空,我机立即起飞迎击,在两机相距50千米时,敌机扭转机头以每分15千米的速度逃跑,我机以每分22千米的速度追击,当我机追至敌机1千米时与敌机激战,只用了半分就将敌机击落.敌机从扭头逃跑到被击落共用了多少分? 7分钟14.甲、乙两人环绕周长是400米的跑道跑步,如果两人从同一地点出发背向而行,那么经过2分钟相遇;如果两人从同一地点出发同向而行,那么经过20分钟两人相遇,已知甲的速度比乙快,求甲、乙两人跑步的速度各是多少? 105米/分 95米/分。

相关文档
最新文档