第22章二次函数第5课时 二次函数y=ax2+bx+c的图象和性质-人教版九年级数学上册讲义
人教版九年级上册数学 22.1.2 二次函数 y=ax2的图象和性质课件
a<0
1 -5-4-3-2-1 -1o1 2 3 4 5 x -2 -3 -4 -5 -6 -7 -8 -9 1 -10 y x2
y
2
y 2 x 2
y x2
总结性质
1.形如二次函数 y=ax2 的图象都是顶点为
( 0 , 0) ______ 的抛物线,反之,顶点在(0,0)
2 y = ax 的抛物线的形式是_________.
体验画图
抛物线的定义:
实际上,二次函数的图象是抛物线,
它们开口向上或向下,一般地,二次
函数 y ax bx c 的图象叫做抛
2 2
物线 y ax bx c .
体验画图
3. 拓展与延伸: 3 个点, (1)画二次函数的图象一般需要___
哪些点比较关键? 抛物线
yx
2
轴 对称图形,对称 是__
y 10 9 8 7 6 5 4 3 2 1 -5-4-3-2-1 O1 2 3 4 5 x
a>0
体验画图
(3)以上都是当a >0时,二次函数 y ax 的图象,
2
那么当 a<0时,试在同一直角坐标系画出二次函数:
1 2 y x ,y x ,y 2 x 2 的图象. 2
2
关于 y 轴对称 原点(0,0)
对称性
顶点
总结提高
2. 二次项系数 a 对形如 y=ax2 的函数值 y 又有
何影响?对图象又有何影响?
y=ax2
开口
a>0 开口向上
a<0 开口向下
增减性 在对称轴左侧递减 在对称轴左侧递增 在对称轴右侧递增 在对称轴右侧递减
LOGO
人教版九年级上册 第22章 二次函数复习知识点总结和题型讲解
二次函数复习知识点一、二次函数概念:1.二次函数的概念:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数a≠0,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数y=ax2+bx+c的结构特征:⑴等号左边是函数,右边是关于自变量x的二次多项式。
(①含自变量的代数式是整式,②自变量的最高次数是2,③二次项系数不为0.)⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1. y=ax2的性质:2. y=ax2+k的性质:(k上加下减)3. y=a(x-h)2的性质:(h左加右减)4. y =a (x -h)2+k 的性质:5. y =ax2+bx+c 的性质:三、二次函数的图象与各项系数之间的关系1. 二次项系数a.(a 决定了抛物线开口的大小和方向)二次函数2y ax bx c =++中,a 作为二次项系数,显然a ≠0 ① 当0a >时,抛物线开口向上,当0a <时,抛物线开口向下;②a 的绝对值越大,开口越小,反之a 的绝对值越小,开口越大。
总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b (a 和b 共同决定抛物线对称轴的位置).抛物线c bx ax y ++=2的对称轴是直线abx 2-=,故:①0=b 时,对称轴为y 轴;② (即a 、b 同号)时,对称轴在y 轴左侧;③ (即a 、b 异号)时,对称轴在y 轴右侧.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”3. 常数项c(c 决定了抛物线与y 轴交点的位置)⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 四、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿x 轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)五、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 六、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.七、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.八、二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠),适用条件:已知抛物线上三点的坐标,一般选用一般式;2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠),适用条件:已知图像上点两坐标,且其中一点为抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 交点式(两根式):12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标), 适用条件:已知图像上三点坐标,其中两点为抛物线与x 轴的两个交点(1x ,0),(2x ,0),一般选用交点式;九、二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当abx 2-=时,a b ac y 442-=最值。
人教版数学九年级上册第22章《二次函数》全章导学案
22.1.4 二次函数y ax2bx c 的图象学习目标:1. 能经过配方把二次函数y ax 2bx c 化成 y a( x h)2 + k 的形式,进而确立张口方向、对称轴和极点坐标。
2.熟记二次函数y ax 2bx c 的极点坐标公式;3.会画二次函数一般式学习要点:掌握二次函数y ax 2bx c 的图象.y ax2bx c 的图象和性质.学习难点:运用二次函数y ax2bx c 的图象和性质解决实质问题 .学习方法:问题式五步教课法 .学习过程一、出示目标二、预习检测1. 抛物线y2;对称轴是直2 x 31的极点坐标是线;当 x =时 y 有最值是;当 x时,y 随x的增大而增大;当x时, y 随x的增大而减小。
2.二次函数分析式 y a(x h)2 +k 中,很简单确立抛物线的极点坐标为,所以这类形式被称作二次函数的极点式。
三、怀疑互动:(1)你能直接出函数y x22 x 2的像的称和点坐?(2)你有法解决( 1)?解:y x22x 2 的点坐是,称是.(3)像我能够把一个一般形式的二次函数用的方法化点式进而直接获得它的像性 .(4)用配方法把以下二次函数化成点式:① y x 22x 2② y 1 x22x 5③2y ax2bx c(5):二次函数的一般形式y ax 2bx c 能够用配方法化成点式:,所以抛物y ax2bx c 的点坐是;称是,(6)用点坐和称公式也能够直接求出抛物的点坐和称,种方法叫做公式法。
用公式法写出以下抛物的张口方向、称及点坐。
① y 2x 23x 4② y2x 2x 2③ yx 24x四、达用描点法画出 y 1 x2 2 x 1的像 .(1)点坐2;(2)列表:点坐填在;(列表一般以称中心,称取.)x⋯⋯y1 x2 2x 1 ⋯2(3)描点,并 :6 y5 4 3 21 x7654321O1 2 312 3 4(4) 察:① 象有最点,即x =,y 有最是;② x,y 随 x 的增大而增大;xy 随x 的增大而减小。
人教版九年级上册第22章二次函数图像与性质知识点题型总结
二次函数图像及性质【二次函数的定义】一般地,形如y = ax2+bx + c Wc为常数,“工0)的函数称为兀的二次函数,其中兀为自变量,为因变量,J b、c分别为二次函数的二次项、一次项和常数项系数.注意:和一元二次方程类似,二次项系数“工0,而b、c可以为零.二次函数的自变量的取值范朗是全体实数.【二次函数的图象】1.二次函数图象与系数的关系(1)“决左抛物线的开口方向当“>0时,抛物线开口向上;当“<0时,抛物线开口向下.反之亦然.同决过抛物线的开口大小:同越大,抛物线开口越小;同越小,抛物线开口越大.温馨提示:几条抛物线的解析式中,若问相等,则其形状相同,即若"相等,则开口及形状相同,若a互为相反数,则形状相同、开口相反.(2)〃和"共同决左抛物线对称轴的位置(抛物线的对称轴:S2a当b=o时,抛物线的对称轴为y轴;当方同号时,对称轴在轴的左侧;当〃异号时,对称轴在y轴的右侧・(3)“的大小决泄抛物线与y轴交点的位置(抛物线与y轴的交点坐标为(o,C)当c=o时,抛物线与y轴的交点为原点:当c>o时,交点在轴的正半轴:当c<0时,交点在y轴的负半轴.2•二次函数图象的画法五点绘图法:利用配方法将二次函数y = ax2 +bx + c化为顶点式y = a(x-h)2 +k,确泄其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y轴的交点(0, c)、以及(0, c)关于对称轴对称的点(2力,c)、与x轴的交点(占,0) , (x2 , 0)(若与x 轴没有交点,则取两组关于对称轴对称的点)・画草图时应抓住以下几点:开口方向,对称轴,顶点,与X轴的交点,与y轴的交点.3•点的坐标设法(1)一次函数y = ax + h图像上的任意点可设为(“与+“)•其中再=0时.该点为直线与y轴交点.(2)二次函数y = ax2+bx + c(心0)图像上的任意一点可设为(石,妙?+站+可.再=0时,该点为抛物线与y轴交点,当x=-A时,该点为抛物线顶点.2a⑶ 点(召,yj关于(兀2,x2)的对称点为(2兀-若,2比-)・4•二次函数的图象信息(1)根据抛物线的开口方向判断a的正负性.(2)根据抛物线的对称轴判断-仝的大小.2a(3)根据抛物线与y轴的交点,判断。
九年级数学上第22章二次函数22.1二次函数的图象和性质5二次函数y=a2k的图象和性质课人教
课后训练 1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月11日星期五2022/3/112022/3/112022/3/11
2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/112022/3/112022/3/113/11/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/112022/3/11March 11, 2022 4、享受阅读快乐,提高生活质量。2022/3/112022/3/112022/3/112022/3/11
7.(2020·甘孜州)如图,二次函数y=a(x+1)2+k的图象与x轴 交于A(-3,0),B两点,下列说法错·误·的是( D )
A.a<0 B.图象的对称轴为直线x=-1 C.点B的坐标为(1,0) D.当x<0时,y随x的增大而增大
*8.(2020·杭州)设函数y=a(x-h)2+k(a,h,k是实数,a≠0), 当x=1时,y=1;当x=8时,y=8,( C )
解:①当 MA=MB 时,M(0,0); ②当 AB=AM 时,M(0,-3); ③当 AB=BM 时,M(0,3+3 2)或 M(0,3-3 2). 所以点 M 的坐标为(0,0),(0,-3),(0,3+3 2)或(0,3-3 2).
14.(2020·金华)如图,在平面直角坐标系中,已知二次函数 y= -12(x-m)2+4 图象的顶点为 A,与 y 轴交于点 B,异于顶点 A 的点 C(1,n)在该函数图象上.
(1)求抛物线对应的函数解析式; 解:由题意可知 h=1,则 y=a(x-1)2+k. 将点(3,0),(0,3)的坐标分别代入上式, 得4aa++kk==30,,解得ak==-4. 1, 故抛物线对应的函数解析式为 y=-(x-1)2+4.
2 二次函数的图象与性质2.二次函数y=ax2+bx+c的图象与性质第5课时PPT课件(华师大版)
例 3 [教材补充例题]
2
(1)已知 0≤x≤1,那么函数 y=-2x +8x-6 的
最大值是 ( B )
B.0
A.-6
C.2
D.4
2
(2)函数 y=x +2x-3(-2≤x≤2)的最大值和最小值分别是 ( C )
A.4 和-3
B.-3 和-4
C.5 和-4
D.-1 和-4
第5课时
二次函数最值的应用
第26章
26.2
二次函数
二次函数的图象与性质
2.二次函数y=ax2+bx+c的图象与性质
第26章
第5课时
二次函数
二次函数最值的应用
目标突破
总结反思
第5课时
二次函数最值的应用
目标突破
目标一 能用二次函数模型解决几何图形中的最值
例 1 [教材补充例题] 如图 26-2-4,在△ABC 中,∠B=90°,AB=12
第5课时
二次函数最值的应用
2
2
则 y=(x-40)[90-3(x-50)]=-3x +360x-9600=-3(x-60) +1200.
∵a=-3<0,∴抛物线开口向下,y 有最大值,最大值为 1200,∴销售该
苹果每天能获得的最大利润是 1200 元.
上面的解答过程正确吗?如果不正确,错在哪里?并写出正确的
cm,BC=24 cm,动点 P 从点 A 开始沿边 AB 向点 B 以 2 cm/s 的速度移动(不
与点 B 重合),动点 Q 从点 B 开始沿边 BC 向点 C 以 4 cm/s 的速度移动(不
与点 C 重合),点 P,Q 分别从点 A,B 同时出发.
2024(人教版)数学九年级上册 第22章 二次函数 教材解读课件
针内对容训分练析
本章学情分析:
“二次函数”这一章是在学习一次函数的基础上,具体研究的第二个函数模型,是应用研 究函数性质的一般方法去研究函数的第二次实践,对学生而言,即学习了新的函数模型,又增 强了对函数研究方法的掌握,为后续研究其他函数积累宝贵经验。二次函数的学习过程充满着 观察、分析、抽象、概括等方法,蕴含着从特殊到一般,数形结合、函数的思想,因此学习二 次函数是学生认识函数的又一次飞跃。
一是让学生体会生活中处处有数学,数学源于生活、又服务于生活的教学 理念,体会数学就在我们身边的道理;
二是从简单的实际问题入手,激发学生学习数学的兴趣。
针内对容训分练析
第二课时二次函数y=ax2的图象和性质内容解析 本节课类比一次函数的研究方法,先通过观察函数图象,认识函数特征,
从而得出函数的性质。对于二次函数y=ax2的研究分别从a>0,a<0两种情况 入手,在具体的研究过程中,始终是从特殊到一般,例如a>0时,a从具体的 数字1开始,再到12,2等;在每一次具体的函数研究过程中,都是从图象入 手.本节课从形状、开口方向、开口大小、对称性、顶点、增减性对二次函数y =ax2(a>0)的图象特征进行研究,从而得到二次函数y=ax2(a>0)的性 质.此外,a<0的情况又是类比a>0的学习方法开展研究,最终经历以上探究 过程,得出二次函数y=ax2的图象特征和性质.
以现实生活为背景,通过对投掷、跳水、跳远、拱桥、隧道等抛物线的探究, 建立合理的平面直角坐标系,利用待定系数法确定二次函数的表达式是解决此类问 题的关键.
通过探究矩形面积与矩形一边长两个变量之间的关系,让学生体会运用函数观 点解决实际问题的作用,初步体验建立函数模型的过程和方法.
针内对容训分练析
第九 十课时 实际问题与二次函数内容解析 利用二次函数解决销售利润问题的方法:(1)读懂题意;(2)借助销售问题中
人教版九年级上册数学课件 第二十二章 二次函数 二次函数的图象和性质 二次函数y=ax2的图象和性质
一般地,当a<0时,抛物线y=ax2的开口向下,对称轴是y轴,顶 点是原点,顶点是抛物线的最高点,a越小,抛物线的开口越小.
顶点都是原点(0,0), 顶点是抛物线的最 高点;
增减性相同: 当 x<0时,y随x增大 而增大;当x>0时, y随x增大而减小.
y O -3
3x
开口都向下; 对称轴都是y轴;
y = ax2(a<0)
(0,0) y轴
在x轴的下方(除顶点外) 向下
当x<0时,y随着x的增大而增大. 当x>0时,y随着x的增大而减小.
当x = 0时,最大值为0.
Thank you!
A.y1<y2<y3 C.y3<y2<y1
B.y1<y3<y2 D.y2<y1<y3
综合应用
3.已知y=(m+1)xm2+m是关于x的二次函数,且当x>0时,y随x 的增大而减小. (1)求m的值; (2)画出该函数的图象.
解:(1)∵y=(m+1)xm2+m是关于x的二次函数,∴m2+m=2且m +1≠0.则m=-2或m=1.又∵x>0时,y随x的增大而减小,∴m+ 1<0,m<-1,故m=-2 (2)画图略
单调性
当x<0 (在对称轴 的左侧)时,y随
着x的增大而减小.
y 9 6 3
-3 O 3 x
当x>0 (在对
称轴的右侧) 时,y随着x的
猎豹图书
增大而增大.
例1 在同一直角坐标系中,画出函数 y 1 x2 ,y =2x2的图象.
2
解:分别列表,再画出它们的图象,如图.
x ··· -4 -3 -2 -1 0 1 2 3 4 ···
函数 y=1 x2,y=2x2 的图象与函数y=x2 的图象相比,有什么共同点
人教版九年级上册数学 第二十二章 二次函数 二次函数的图象和性质 二次函数
探究新知
【思考】函数①②③有什么共同点?
y=6x2①
y=20x2+40x+20③
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式, 分别说出哪些是常数、自变量和函数.
函数解析式
自变量
函数
这些函数有什 么共同点?
y=6x2
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
自变量的最高次数是3
(否) 自变量的最
高次数是1
探究新知 素养考点 2 利用二次函数的定义求字母的值
例2 关于x的函数 y =(m + 1)xm2 -m 是二次函数,
求m的值.
解: 由二次函数的定义得m2-m=2,m+1≠0. 解得 m=2. 因此当m=2时,函数为二次函数.
注意 二次函数的二次项系数不能为零.
y=6x2①.
探究新知
问题2 多边形的对角线总条数d与边数n有什么关系?
如果多边形有n条边,那么它有 n 个顶点,从一个顶 点出发,可以作 (n-3) 条对角线.
M
N
②式表示了多边形的对角线总条数d与边数n之间的 关系,对于n的每一个值,d都有一个对应值,即d是n的函数.
探究新知
问题3 某工厂一种产品现在的年产量是20件,计划今后两年
函数关系式;
y=πx2 (x>0)
②王先生存入银行2万元,先存一个一年定期,一年后银行
将本息自动转存为又一个一年定期,设一年定期的存款年
利率为x,两年后王先生共得本息和y万元,写出y与x之间
的函数关系式;
③一个圆柱的高等于底面半径,写出它的表面积S与半径r 之间的关系式. y=2(1+x)2 (x>0)
人教版九年级数学上册22.2:二次函数y=ax2+bx+c的图像与性质课件 (共46张PPT)
例1:指出抛物线:y x2 5x 4
的开口方向,求出它的对称轴、顶点坐 标、与y轴的交点坐标、与x轴的交点坐 标。并画出草图。
对于y=ax2+bx+c我们可以确定它的开口 方向,求出它的对称轴、顶点坐标、与y 轴的交点坐标、与x轴的交点坐标(有交 点时),这样就可以画出它的大致图象。
方法归纳
② c=0 <=>图象过原点;
③ c<0 <=>图象与y轴交点在x轴下方。
⑷顶点坐标是( b , 4ac b2 )。
2a
4a
(5)二次函数有最大或最小值由a决定。
当x=- —2ba 时,y有最大(最小)
值 y= 4ac-b2
______________________
4a
例2、已知函数y = ax2 +bx +c的图象如 下图所示,x= 1 为该图象的对称轴,根
的平方
整理:前三项化为平方形 式,后两项合并同类项
a x
b
2
4ac
b2
.
化简:去掉中括号
2a 4a
函数y=ax²+bx+c的对称轴、 顶点坐标是什么?
y ax2 bx c的对称轴是:x b 2a
顶点坐标是:( b , 4ac b2 ) 2a 4a
1. 说出下列函数的开口方向、对称轴、顶 点坐标:
D. 4ac-b2 >0-1 o 1 x 4a
5.若把抛物线y = x2 - 2x+1向右平移2个单位,再向
下平移3个单位,得抛物线y=x2+bx+c,则( B )
A.b=2 c= 6
B.b=-6 , c=6
C.b=-8 c= 6
D.b=-8 , c=18
人教版九年级数学上册第22章:二次函数y=ax2的图象和性质
第二十二章 二次函数
22.1.2 二次函数y=ax²的图象和性质
学习目标
1.知道二次函数的图象是一条抛物线. 2.会画二次函数y=ax2的图象.(难点) 3.掌握二次函数y=ax2的性质,并会灵活应用.(重点)
复习引入
1.一次函数的图象是一条 直线 . 2.通常怎样画一个函数的图象?
1.函数y=2x2的图象的开口 向上 ,
对称轴 y轴 ,顶点是 (0,0) ;
在对称轴的左侧,y随x的增大而 减小 , 在对称轴的右侧, y随x的增大而 增大 .
随堂即练
y
O
x
2.函数y=-3x2的图象的开口 向下, 对称轴 y轴 ,顶点是 (0,0) ; 在对称轴的左侧, y随x的增大而 增大 , 在对称轴的右侧, y随x的增大而 减小 .
新课讲解
(2)解:∵点B的坐标为(2,0), ∴当x=2时,y=2×22=8. ∴点C的坐标为(2,8),BC=8. ∵抛物线和长方形都是轴对称图形,且y轴为它
们的对称轴, ∴OA=OB, ∴在长方形ABCD内,左边阴影部分面积等于右边
空白部分面积,∴S阴影部分面积之和=2×8=16.
方法归纳
二次函数y=ax2的图象关于y轴对称,因此左右两部 分折叠可以重合,在二次函数比较大小中,我们根据图象 中点具有的对称性转变到同一变化区域中(全部为升或 全部为降),根据图象中函数值高低去比较;对于求不规 则的图形面积,采用等面积割补法,将不规则图形转化为 规则图形以方便求解.
Байду номын сангаас
观察思考
新课讲解
x … -3 -2 -1 0 1 2 3 …
y=x2 … 9 4 1 0 1 4 9 …
人教版数学九年级上册说课稿22.1.4《二次函数y=ax2+bx+c的图象和性质》
人教版数学九年级上册说课稿22.1.4《二次函数y=ax2+bx+c的图象和性质》一. 教材分析人教版数学九年级上册第22章是关于二次函数的学习,而22.1.4《二次函数y=ax^2+bx+c的图象和性质》是这一章的重要内容。
这部分教材主要通过分析二次函数的图象和性质,使学生能够理解和掌握二次函数的基本特征,以及如何运用这些特征解决实际问题。
教材通过详细的理论推导和丰富的例题,引导学生掌握二次函数的顶点坐标、开口方向、对称轴等关键性质,并能够运用这些性质对二次函数进行分析和判断。
二. 学情分析在九年级的学生已经具备了一定的函数基础,他们已经学习了线性函数和一些非线性函数的知识,对函数的概念和性质有一定的理解。
但是,对于二次函数的图象和性质,他们可能还存在一些困惑和误解。
因此,在教学过程中,我需要关注学生的认知基础,通过复习和引导,帮助他们巩固已有的知识,并建立起二次函数图象和性质的知识体系。
三. 说教学目标1.知识与技能:学生能够理解二次函数的图象和性质,并能够运用这些性质解决实际问题。
2.过程与方法:学生通过观察、分析、归纳等方法,探索二次函数的图象和性质,培养他们的抽象思维和解决问题的能力。
3.情感态度与价值观:学生通过学习二次函数的图象和性质,增强对数学的兴趣和自信心,培养他们的探索精神和合作意识。
四. 说教学重难点1.教学重点:学生能够理解和掌握二次函数的图象和性质,并能够运用这些性质解决实际问题。
2.教学难点:学生对于二次函数的顶点坐标、开口方向、对称轴等性质的理解和运用。
五. 说教学方法与手段在教学过程中,我将采用问题驱动的教学方法,通过引导学生观察、分析、归纳等方法,探索二次函数的图象和性质。
同时,我将利用多媒体教学手段,展示二次函数的图象和性质,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过复习一次函数和二次函数的知识,引导学生进入对二次函数图象和性质的学习。
2.探究:学生分组讨论,观察和分析二次函数的图象,归纳出二次函数的顶点坐标、开口方向、对称轴等性质。
湘教版九年级下册数学精品课件 第1章 二次函数 第5课时 二次函数y=ax2+bx+c的图象与性质
大而减小;当 x > 6 时,函数
值随 x 的增大而增大.
O
(6,3)
5 10 x
归纳总结 二次函数 y = ax2+bx+c的图象和性质
抛物线 y = ax2+bx+c 的顶点坐标是:
b 4ac b2
( ,
).
2a 4a
对称轴是:直线 x b . 2a
二次函数 y = ax2+bx+c的图象和性质
y
x b 2a
O (1)
如果 a>0,当 x< b 时,y 随x
的增大而减小;当
2a
x>
b
时,
2a
y 随 x 的增大而增大;当 x = b
x
2a
时,函数达到最小值,最小值
为 4ac b2 .
4a
二次函数 y = ax2+bx+c的图象和性质
y x b
2a
O (2)
如果 a < 0,当 x< b 时,y 随 x
(2) y 5x2 80x 319; 直线 x = 8
(3)
y
2
x
1 2
x
2
;
直线 x = 1.25
(4) y x 12 x.
直线 x = 0.5
3, 5
8, 1
5 4
,
9 8
1 2
,
9 4
2. 把抛物线 y=x2+bx+c 的图象向右平移 3 个单位长
度,再向下平移 2 个单位长度,所得图象的解析式为
那么现在你会画这个二次函2 数的图象吗?2
根据顶点式 y 1 (x 6)2 3 确定对称轴,顶点坐标.
九年级数学上册第22章《二次函数y=ax^2的图象和性质》名师教案(人教版)
22.1.2 二次函数2ax y =的图象和性质一、教学目标 (一)学习目标1.会用描点法画出形如y=ax 2的二次函数图象,了解抛物线的有关概念; 2.通过观察图象,能说出二次函数y=ax 2的图象特征和性质;3.在类比探究二次函数 y=ax 2的图象和性质的过程中,进一步体会研究函数图象和性质的基本方法和数形结合的思想. (二)学习重点会画二次函数y=ax²的图象,理解其图象特征和性质. (三)学习难点用描点法画二次函数y=ax 2的图象以及探索二次函数性质,体会数与形的相互联系. 二、教学设计 (一)课前设计 1.预习任务(1)二次函数y=ax 2 ,当a>0时,图象特征和性质是: ①图象是一条抛物线,开口向上;②原点(0,0)是图象的顶点,也是最低点,当x=0时,函数y 有最小值0;③图象是轴对称图形,对称轴是y 轴(直线x=0);在对称轴的左侧(即x<0时),抛物线从左到右下降,y 随x 的增大而减小;在对称轴右侧(即x>0时),抛物线从左到右上升,y 随x 的增大而增大.(2)二次函数y=ax 2 ,当a<0时,图象特征和性质是: ①图象是一条抛物线,开口向下;②原点(0,0)是图象的顶点,也是最高点,当x=0时,函数y 有最大值0;③图象是轴对称图形,对称轴是y 轴(直线x=0);在对称轴的左侧(即x<0时),抛物线从左到右上升,y 随x 的增大而增大;在对称轴右侧(即x>0时),抛物线从左到右下降,y 随x 的增大而减小. 2.预习自测1.二次函数26x y =的图象开口向________,对称轴是________,顶点坐标________,当x_______时,y 随x 的增大而增大,当x_______时,y 随x 的增大而减小, 当x=______时,y 有最______值,为 .【知识点】二次函数2ax y =的图象和性质【解题过程】由二次函数2y ax =的图象和性质可得.【思路点拨】牢记二次函数2ax y =的图象和性质是解题的关键 【答案】上,y 轴,(0,0),>0,<0,0,小,02.函数22x y -=的图象开口方向________,对称轴是_______,顶点坐标__________, 在y 轴的左侧,y 随x 的增大而______,在y 轴的右侧,y 随x 的增大而______. 当x=_______时,函数有最______值,为 . 【知识点】二次函数2ax y =的图象和性质【解题过程】由二次函数2y ax =的图象和性质可得.【思路点拨】牢记二次函数2ax y =的图象和性质是解题的关键 【答案】下,y 轴,(0,0),增大,减小,0,大,03.函数231x y =与13y x =-2的图象之间的关系是____________.【知识点】二次函数2ax y =的图象和性质与【解题过程】因函数231x y =与231x y -=的二次项系数互为相反数,其图象的形状相同,只是开口方向相反,所有它们的图象关于x 轴对称.【思路点拨】由二次函数2ax y =与2ax y -=的图象关于x 轴对称可得 【答案】关于x 轴对称 4.已知函数72-=m mxy 的图象是抛物线,且开口向下,则m 的值为_______.【知识点】二次函数2ax y =的图象和性质【解题过程】由272m -=得3m =±,又开口向下,故3m =-【思路点拨】牢记二次函数的概念和2ax y =的图象和性质是解题的关键 【答案】3m =- (二)课堂设计 1.知识回顾(1)二次函数的定义:一般地,形如c bx ax y ++=2(a≠0)的函数叫做x 的二次函数. (2)一次函数y=kx+b (k≠0)的图象与性质:图象是一条直线;当k>0时,直线通过一、三象限,y 随x 的增大而增大;当k<0时,直线通过二、四象限,y 随x 的增大而减小.(3)研究函数时,了解函数性质的主要工具是:函数的图象.(4)画函数图象的主要步骤:①列表.②描点.③连线.2.问题探究探究一画出二次函数2y=的图象重点、难点知识★▲ax●活动①合作探究1.实践操作:用描点法画2xy=的图象。
人教版九年级数学上册课件 第二十二章 二次函数 二次函数的图象和性质 二次函数y=ax2的图象和性质
14.已知y=(m+1)xm2+m是关于x的二次函数,且当x>0时,y随x的 增大而减小.
(1)求m的值; (2)画出该函数的图象.
解:(1)∵y=(m+1)xm2+m是关于x的二次函数,∴m2+m=2且m+ 1≠0.则m=-2或m=1.又∵x>0时,y随x的增大而减小,∴m+1<0,m <-1,故m=-2
解:(1)直线AB的解析式为y=-x+2,抛物线 的解析式为y=x2
(2)令直线 AB 与 y 轴相交于点 E,在 y=-x+2 中,当 x=0 时,y=2,
∴点
E
y=-x+2, 的 坐 标 为 (0 , 2) , ∴ OE = 2. 联 立 y=x2,
解
得
x1=1, y1=1,
x2=-2, y2=4,
_增__大____,当x>0时,y随x的增大而__减__小___. 练习2:已知二次函数y=x2,当x>0时,y随x的增大而_增__大____.(填“增
大”或“减小”)
1.已知二次函数y=x2,则其图象经过下列点中的( A ) A.(-2,4) B.(-2,-4) C.(2,-4) D.(4,2)
A.y1<y2<y3 B.y1<y3<y2 C.y3<y2<y1 D.y2<y1<y3
12.如图,正方形的边长为4,以正方形中心为原点建立平面直角坐标 系,作出函数y=2x2与y=-2x2的图象,则阴影部分的面积是____8____.
13.如图是下列二次函数的图象:①y=ax2;②y=bx2;③y=cx2;④y =dx2.比较a,b,c,d的大小,用“>”连接为___a_>__b_>__d_>__c____.
∴点
C
的坐标为(-2,4),∵S△BOC=12
OE·(xB-xC)=12
22.1.4二次函数y=ax2+bx+c的图象和性质课件 2024-2025学年人教版数学九上
大而增大,则实数a的取值范围是( B )
A.a>1
B.-1<a≤1
C.a>0
D.-1<a<2
知识讲解
知识点1 二次函数y=ax2+bx+c的图象和性质
【例 2】已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象
面积.
(2)∵该抛物线的对称轴为直线x=
4
=4,
1
A.(-3,-6)
B.(1,-4)
C.(1,-6)
D.(-3,-4)
再将抛物线y=2(x-1)2-5向下平移1个单位所得抛物线的解析式为
y=2(x-1)2-5-1=2(x-1)2-6,
此时二次函数图象的顶点为(1,-6).
知识讲解
知识点3 抛物线y=ax2+bx+c与系数的关系
项目
a
b
字母的符号
图象的特征
确的结论的序号是________;
解析:由抛物线开口向上,得a>0;
由抛物线y轴的交点在负半轴上,得c<0;
由抛物线的顶点在第四象限,得
b
2a
>0,又a>0,所以b<0;
知识讲解
知识点3 抛物线y=ax2+bx+c与系数的关系
【例 4】如图,二次函数y=ax2+bx+c的图象开口向上,图象经过
2
2
b
c
b
b
b
c
2
2
2
y ax bx c a x x a x x
a
第22章二次函数全章知识点归纳总结人教版九年级数学上册
初三上学期二次函数全章知识点归纳总结【例1】下列函数是二次函数的有()①y=(x+1)2﹣x2;②y=﹣3x2+5;③y=x3﹣2x;④y=x2−1x+3.A.1个B.2个C.3个D.4个【变式11】下列函数中,是二次函数的有()①y=√x2+2;②y=﹣x2﹣3x;③y=x(x2+x+1);④y=11+x2;⑤y=﹣x+x2.A.1个B.2个C.3个D.4个【例2】若y=(a+1)x|a+3|﹣x+3是关于x的二次函数,则a的值是()A.1B.﹣5C.﹣1D.﹣5或﹣1【变式21】函数y=(a﹣5)x a2+4a+5+2x﹣1,当a=时,它是一次函数;当a=时,它是二次函数.【例3】关于函数y=(500﹣10x)(40+x),下列说法不正确的是()A.y是x的二次函数B.二次项系数是﹣10C.一次项是100D.常数项是20000【例4】下列具有二次函数关系的是()A.正方形的周长y与边长x B.速度一定时,路程s与时间tC.正方形的面积y与边长x D.三角形的高一定时,面积y与底边长x【例5】某种商品的价格是2元,准备进行两次降价.如果每次降价的百分率都是x,经过两次降价后的价格y(单位:元)随每次降价的百分率x的变化而变化,则y关于x的函数解析式是()A.y=2(x+1)2B.y=2(1﹣x)2C.y=(x+1)2D.y=(x﹣1)2【变式51】据省统计局公布的数据,合肥市2021年第一季度GDP总值约为2.4千亿元人民币,若我市第三季度GDP总值为y千亿元人民币,平均每个季度GDP增长的百分率为x,则y关于x的函数表达式是()A.y=2.4(1+2x)B.y=2.4(1﹣x)2C.y=2.4(1+x)2D.y=2.4+2.4(1+x)+2.4(1+x)【例1】用配方法将下列函数化成y=a(x+h)2+k的形式,并指出抛物线的开口方向,对称轴和顶点坐标.(1)y=12x2﹣2x+3;(2)y=(1﹣x)(1+2x).【变式11】把下列二次函数化成顶点式,即y=a(x+m)2+k的形式,并写出他们顶点坐标及最大值或最小值.(1)y=﹣2x﹣3+12x2(2)y=﹣2x2﹣5x+7【变式12】用配方法可以解一元二次方程,还可以用它来解决很多问题例如:因为5a2≥0,所以5a2+1≥1,即:当a=0时,5a2+1有最小值1.同样,因为﹣5(a2+1)≤0,所以﹣5(a2+1)+6≤6有最大值1,即当a=1时,﹣5(a2+1)+6有最大值6.(1)当x=时,代数式﹣3(x﹣2)2+4有最(填写大或小)值为.(2)当x=时,代数式﹣x2+4x+4有最(填写大或小)值为.(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是14m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 【例2】已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:x … 0 1 2 3 4 … y…52125…(1)求该二次函数的表达式; (2)当x =6时,求y 的值;(3)在所给坐标系中画出该二次函数的图象.【变式21】如图,已知二次函数y =−12x 2+bx +c 的图象经过A (2,0)、B (0,﹣6)两点. (1)求这个二次函数的解析式;(2)求该二次函数图象的顶点坐标、对称轴以及二次函数图象与x 轴的另一个交点; (3)在右图的直角坐标系内描点画出该二次函数的图象及对称轴. 【知识点3 二次函数的图象与各系数之间的关系】在y 轴的右侧则0<ab ,概括的说就是“左同右异” ③常数项c :总结起来,c 决定了抛物线与y 轴交点的位置. 【知识点4 二次函数图象的平移变换】 (1)平移步骤:变式21例2①将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ①保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【例4】把抛物线y =ax 2+bx +c 的图象先向右平移2个单位,再向上平移2个单位,所得的图象的解析式是y =(x ﹣3)2+5,则a +b +c = .【变式41】要得到函数y =﹣(x ﹣2)2+3的图象,可以将函数y =﹣(x ﹣3)2的图象( ) A .向右平移1个单位,再向上平移3个单位 B .向右平移1个单位,再向下平移3个单位 C .向左平移1个单位,再向上平移3个单位 D .向左平移1个单位,再向下平移3个单位 【知识点5 二次函数图象的对称变换】 (1)关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;(2)关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;(3)关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; (4)关于顶点对称(即:抛物线绕顶点旋转180°)()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.向上 向下【例1】已知二次函数y =x 2﹣2x ﹣3的自变量x 1,x 2,x 3对应的函数值分别为y 1,y 2,y 3.当﹣1<x 1<0,1<x 2<2,x 3>3时,y 1,y 2,y 3三者之间的大小关系是( ) A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3【例2】在二次函数y =﹣x 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:则m 、n 的大小关系为x … ﹣1 1 3 4 … y … ﹣6m n﹣6…A .m <nB .m >nC .m =nD .无法确定0a >0a <【变式21】二次函数y=ax2+bx+c(a≠0)中x,y的部分对应值如下表:x…﹣2﹣1012…y…0﹣4﹣6﹣6﹣4…则该二次函数图象的对称轴为()A.y轴B.直线x=12C.直线x=1D.直线x=32【知识点1 二次函数图象与x轴的交点情况决定一元二次方程根的情况】二次函数的图象【例1】抛物线y=(x﹣x1)(x﹣x2)+mx+n与x轴只有一个交点(x1,0).下列式子中正确的是()A.x1﹣x2=m B.x2﹣x1=m C.m(x1﹣x2)=n D.m(x1+x2)=n【变式11】抛物线y=x2+2x﹣3与坐标轴的交点个数有()A.0个B.1个C.2个D.3个【例2】二次函数与一元二次方程有着紧密的联系,一元二次方程问题有时可以转化为二次函数问题.请你根据这句话所提供的思想方法解决如下问题:若s,t(s<t)是关于x的方程1+(x﹣m)(x﹣n)=0的两根,且m<n,则m,n,s,t的大小关系是()A.s<m<n<t B.m<s<n<t C.m<s<t<n D.s<m<t<n【知识点1 解二次函数的实际应用问题的一般步骤】审:审清题意,弄清题中涉及哪些量,已知量有几个,已知量与变量之间的基本关系是什么,找出等量关系(即函数关系);设:设出两个变量,注意分清自变量和因变量,同时还要注意所设变量的单位要准确;列:列函数解析式,抓住题中含有等量关系的语句,将此语句抽象为含变量的等式,这就是二次函数;解:按题目要求结合二次函数的性质解答相应的问题;检:检验所得的解,是否符合实际,即是否为所提问题的答案;答:写出答案.【例1】为优化迪荡湖公园的灯光布局,需要在一处岸堤(岸堤足够长)为一边,用总长为80m的灯带在湖中围成了如图所示的①②③三块灯光喷泉的矩形区域,且要求这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?【变式11】爱动脑筋的小明在学过用配方法解一元二次方程后,他发现二次三项式也可以配方,从而解决一些问题.例如:x2﹣6x+10=(x2﹣6x+9﹣9)+10=(x﹣3)2﹣9+10=(x﹣3)2+1≥1;因此x2﹣6x+10有最小值是1,只有当x=3时,才能得到这个式子的最小值1.同样﹣3x2﹣6x+5=﹣3(x2+2x+1﹣1)+5=﹣3(x+1)2+8,因此﹣3x2﹣6x+5有最大值是8,只有当x=﹣1时,才能得到这个式子的最小值8.(1)当x=时,代数式﹣2(x﹣3)2+5有最大值为.(2)当x=时,代数式2x2+4x+3有最小值为.(3)矩形自行车场地ABCD一边靠墙(墙长10m),在AB和BC边各开一个1米宽的小门(不用木板),现有能围成14m长的木板,当AD长为多少时,自行车场地的面积最大?最大面积是多少?【例2】如图,在矩形ABCD中,AB=12cm,BC=9cm.P、Q两点同时从点B、D出发,分别沿BA、DA 方向匀速运动(当P运动到A时,P、Q同时停止运动),已知P点的速度比Q点大1cm/s,设P点的运动时间为x秒,△P AQ的面积为ycm2,(1)经过3秒△P AQ的面积是矩形ABCD面积的1时,求P、Q两点的运动速度分别是多少?3(2)以(1)中求出的结论为条件,写出y与x的函数关系式,并求出自变量x的取值范围.【变式31】廊桥是我国古老的文化遗产,如图,是某座抛物线型的廊桥示意图.已知水面AB宽40米,抛物线最高点C到水面AB的距离为10米,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,求这两盏灯的水平距离EF.(结果保留根号)。
人教版 九年级数学讲义 二次函数的图像与性质(含解析)
第5讲二次函数的图象与性质知识定位讲解用时:2分钟A、适用范围:人教版初三,基础一般B、知识点概述:本讲义主要用于人教版初三新课,本节课我们主要学习二次函数的图象与性质,本节课的重点是掌握二次函数的平移法则,能够结合二次函数图象和性质判断a、b、c的之间的关系,而难点在于二次函数的图象和性质的综合考查,需要学生能够根据二次函数的图象与性质正确分析并解决问题。
希望同学们能够认真学习并掌握,为后面二次函数的应用打好基础。
知识梳理讲解用时:25分钟二次函数的图象(1)二次函数y=ax2(a≠0)的图象的画法:①列表:先取原点(0,0),然后以原点为中心对称地选取x值,求出函数值,列表;①描点:在平面直角坐标系中描出表中的各点;①连线:用平滑的曲线按顺序连接各点;①在画抛物线时,取的点越密集,描出的图象就越精确,但取点多计算量就大,故一般在顶点的两侧各取三四个点即可,连线成图象时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接起来,画抛物线y=ax2(a≠0)的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧。
x…-223--112-0121232…2y x= (4)491140141494…(2)二次函数y=ax2+bx+c(a≠0)的图象二次函数y=ax2+bx+c(a≠0)的图象看作由二次函数y=ax2的图象向右或向左平移|ab2|个单位,再向上或向下平移|abac442-|个单位得到的。
12341234xyxyOO1212----图1图2向上()或向下()平移个单位向上()或向下()平移个单位向左()或向右()平移个单位向左()或向右()平移个单位课堂精讲精练【例题1】抛物线212y x =向左平移8个单位,再向下平移9个单位,所得的抛物线的解析式是___________________。
【答案】218232y x x =++【解析】本题考查了二次函数平移规则,根据二次函数的平移法则,“上加下减,左加右减”,可知平移后的函数解析式为()21892y x =+-,整理即为218232y x x =++讲解用时:2分钟解题思路:牢记平移法则即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人 教 版 九 年 级 数 学 上 册 讲 义
第二十二章 二次函数
第5课时 二次函数y =ax2+bx +c 的图象和性质
教学目的
会用配方法将数字系数的二次函数的表达式化为y=a(x-h)²+k 的形式,并能由此得到二次函数y=ax ²+bx+c 的图象和性质. 教学重点 会用配方法将数字系数的二次函数的表达式化为y=a(x-h)²+k 的形式,并能由此得到二次函数
y=ax ²+bx+c 的图象和性质.
教学内容
知识要点
1.二次函数y =ax 2+bx +c 的图象的画法
方 法:描点法.
步 骤:(1)把y =ax 2+bx +c 化成y =a (x -h )2+k 的形式;
(2)确定抛物线的开口方向、对称轴和顶点坐标;
(3)在对称轴的两侧,以顶点为中心,左右对称描点画图.
2.顶点坐标公式
抛物线y =ax 2+bx +c 的顶点坐标是 ,对称轴是直线 .
3.二次函数y =ax 2+bx +c 的最大(小)值
规 律:(1)自变量x 的取值范围是全体实数,当x =-b 2a 时,y 最值=4ac -b 24a ,当a >0时,在x =-b 2a
处取得最小值,当a <0时,在x =-b 2a
处取得最大值; (2)自变量x 的取值范围是x 1≤x ≤x 2.
①x1≤-b
2a≤x2,则当x=-
b
2a时,y最值=
4ac-b2
4a;
②当-b
2a>x2或-b
2a<x1时,函数的最值即为函数在x=x1,x=x2时的函数值,且较大的为最大值,较小的为最小值,最大值和最小值是同时存在的.
对应练习
1.二次函数y=﹣3x2+6x变形为y=a(x+m)2+n形式,正确的是()
A. y=﹣3(x+1)2﹣3
B. y=﹣3(x﹣1)2﹣3
C. y=﹣3(x+1)2+3
D. y=﹣3(x﹣1)2+3
2.抛物线y=x2﹣2x﹣3的对称轴是()
• A. x=1
• B. x=﹣1
• C. x=2
• D. x=﹣2
3.抛物线y=x2+2x-3的最小值是()
• A. 3
• B. -3
• C. 4
• D. -4
4.点P1(-1,y1),P2(3,y2),P3(5,y3)均在二次函数y=-x2+2x+c的图象上,则y1,y2,y3的大小关系是()• A. y3>y2>y1
• B. y3>y1=y2
• C. y1>y2>y3
• D. y1=y2>y3
5.在同一平面直角坐标系中,函数y=ax2﹣bx与y=bx+a的图象可能是()
• A. B. C. D.
6.函数y=﹣x2﹣4x﹣3图象顶点坐标是()
• A. (2,﹣1)
• B. (﹣2,1)
• C. (﹣2,﹣1)
• D. (2,1)
7点A(2,y1)、B(3,y2)是二次函数y=x2-2x+1的图象上两点,则y1与y2的大小关系为y1y2.8.若点(1,5),(5,5)是抛物线y=ax2+bx+c上的两个点,则此抛物线的对称轴是.
8.如果二次函数y=x2﹣8x+m﹣1的顶点在x轴上,那么m=.
9.若二次函数的图象与x轴的一个交点是(2,0),则与x轴的另一个交点坐标是.10.已知二次函数y=x2﹣4x+5.
(1)将y=x2﹣4x+5化成y=a(x﹣h)2+k的形式;
(2)指出该二次函数图象的对称轴和顶点坐标;
(3)当x取何值时,y随x的增大而增大?
11.已知二次函数y=x2﹣4x+3.
①求出这个二次函数图象的对称轴和顶点坐标;
••••
••••
•••
•
)A. y1>y2>y3
• B. y1>y3>y2
• C. y2>y1>y3
• D. y3>y1>y2
5.在同一平面直角坐标系中,一次函数y=kx﹣2k和二次函数y=﹣kx2+2x﹣4(k是常数且k≠0)的图象可能是()
• A. B. C. D.
6.点A(2,y1)、B(3,y2)是二次函数y=x2-2x+1的图象上两点,则y1与y2的大小关系为y1 y2.
7.若抛物线y=x2-kx+k-1的顶点在x轴上,则k=.
8.已知:二次函数y=x2﹣4x+3.
(1)将y=x2﹣4x+3化成y=a(x﹣h)2+k的形式;
(2)求出该二次函数图象的对称轴和顶点坐标;
(3)当x取何值时,y<0.
9.已知抛物线y=﹣x2+4x+5.
(1)用配方法将y=﹣x2+4x+5化成y=a(x﹣h)2+k的形式;
(2)指出抛物线的开口方向、对称轴和顶点坐标;
(3)若抛物线上有两点A(x1,y1),B(x2,y2),如果x1>x2>2,试比较y1与y2的大小.
练习参考答案
1. D
2. A
3. D
4. D
5. A
6. B
7.<
8.x=3
9.
10.解:(1)y=x2﹣4x+4﹣4+5=(x﹣2)2+1,即y=(x﹣2)2+1;
(2)根据(1)的函数解析式知,对称轴为直线x=2,顶点坐标为(2,1);
(3)根据(1)、(2)的结论画出二次函数的大致图象(如图所示),从图象中可知,当x≥2时,y随x的增大而增大.
11.解:①∵二次函数y=x2﹣4x+3=(x﹣2)2﹣1,
∴该函数图象的对称轴是直线x=2,顶点坐标为(2,﹣1);
②当x=0时,y=3,
当y=0时,0=x2﹣4x+3=(x﹣3)(x﹣1),得x1=3,x2=1,
即该函数图象与坐标轴的交点为(0,3),(1,0),(3,0);
③∵二次函数y=x2﹣4x+3的图象开口向上,与x轴的交点为(1,0),(3,0),
∴y>0时x的取值范围是x<1或x>3.
12.解:(1)y=-2x2+8x-6
=-2(x2-4x+3)
=-2(x2-4x+4-4+3.
=-2(x-2)2+2,
∴顶点坐标为(2,2),对称轴为直线x=2.
(2)令-2(x-2)2+2=0
解得:x1=3,x2=1.
∴A(3,0),B(1,0)
∴AB=3-1=2.
∴C(2,2),
∴S△ABC=×2×2=2.
作业参考答案
1. D
2. C
3. D
4. A
5. C
6.<
7. 2
8.解:(1)y=x2﹣4x+4﹣4+3,。