2016年广东省高考物理三模试卷
2016年广东省七校联考高考物理三模试卷
2016年广东省七校联考高考物理三模试卷一、选择题1.(6分)牛顿在发现万有引力定律的过程中没有被用到的规律和结论是()A.牛顿第二定律B.牛顿第三定律C.开普勒的研究成果D.卡文迪许通过扭秤实验得出的引力常数2.(6分)将一带电量为+Q的点电荷固定在空间中的某一位置处,有两个质量相等的带电小球A、B分别在Q下方不同高度的水平面内做匀速圆周运动,且运动轨迹处在以Q为球心的同一球面上,如图所示.若A、B所带电量很少,两者间的作用力忽略不计,取无穷远处电势为零,则下列说法中正确的是()A.小球A、B所带电荷量相等B.小球A、B运动轨迹上的各点场强相同C.小球A、B运动轨迹上的各点电势相等D.库仑力刚好提供小球做匀速圆周运动所需的向心力3.(6分)如图所示,物块A放在木板B上,A、B的质量均为m,A、B之间的动摩擦因数为μ,B与地面之间的动摩擦因数为.若将水平力作用在A上,使A刚好要相对B滑动,此时A的加速度为a1;若将水平力作用在B上,使B刚好要相对A滑动,此时B的加速度为a2,则a1与a2的比为()A.1:1 B.2:3 C.1:3 D.3:24.(6分)如图所示,变压器输入有效值恒定的电压,副线圈匝数可调,输出电压通过输电线送给用户(电灯等用电器),R表示输电线的电阻,则()A.用电器增加时,变压器输出电压增大B.要提高用户的电压,滑动触头P应向上滑C.用电器增加时,输电线的热损耗减少D.用电器增加时,变压器的输入功率减小5.(6分)设宇宙中某一小行星自转较快,但仍可近似看作质量分布均匀的球体,半径为R,宇航员用弹簧测力计称量一个相对自己静止的小物体的重量,第一次在极点处,弹簧测力计的读数为F1=F0;第二次在赤道处,弹簧测力计的读数为F2=.假设第三次在赤道平面内深度为的隧道底部,示数为F3;第四次在距星表高度为R处绕行星做匀速圆周运动的人造卫星中,示数为F4,已知均匀球壳对壳内物体的引力为零,则以下判断正确的是()A.F3=,F4=B.F3=,F4=0C.F3=,F4=0 D.F3=4F0,F4=6.(6分)一水平传送带以v0的速度顺时针传送,其右端与一倾角为θ的光滑斜面平滑相连,一个可视为质点的物块轻放在传送带最左端,已知物块的质量为m,若物块经传送带与斜面的连接处无能量损失,则()A.物块在第一次冲上斜面前,一定一直做加速运动B.物块不可能从传送带的左端滑落C.物块不可能回到出发点D.滑块的最大机械能不可能大于mv027.(6分)如图所示,斜面体B静置于水平桌面上,斜面上各处粗糙程度相同.一质量为M的木块A从斜面底端开始以初速度v0上滑,然后又返回出发点,此时速度为v,且v<v0,在上述过程中斜面体一直静止不动,以下说法正确的是()A.物体上升的最大高度是B.桌面对B始终有水平向左的静摩擦力C.由于物体间的摩擦放出的热量是D.A上滑时比下滑时桌面对B的支持力大8.(6分)一半径为R的圆柱形区域内存在垂直于端面的匀强磁场,磁感应强度大小为B,其边缘放置一特殊材料制成的圆柱面光屏.一粒子源处在光屏狭缝S 处,能向磁场内各个方向发射相同速率的同种粒子,粒子的比荷为,不计重力及粒子间的相互作用.以下判断正确的是()A.若荧光屏上各个部位均有光点,粒子的速率应满足v<B.若仅光屏上有粒子打上,粒子的速率应满足v=C.若仅光屏上有粒子打上,粒子的速率应满足v=D.若仅光屏上有粒子打上,粒子的速率应满足v=三、非选择题:包括必考题和选考题两部分,第22题~第32题为必考题,每个试题考生都必须作答.第33题~第40题为选考题,考生根据要求作答.(一)必考题(11题,共129分)9.(6分)(1)利用图示装置可以做力学中的许多实验.以下说法正确的是.A.利用此装置做“研究匀变速直线运动”的实验时,必须设法消除小车和木板间的摩擦阻力的影响B.利用此装置探究“加速度与质量的关系”,通过增减小车上的砝码改变质量时,不需要重新调节木板的倾斜度C.利用此装置探究“加速度与质量的关系”并用图象法处理数据时,如果画出的a﹣m关系图象不是直线,就可确定加速度与质量成反比D.利用此装置探究“功与速度变化的关系”实验时,应将木板带打点计时器的一端适当垫高,这样做的目的是利用小车重力沿斜面的分力补偿小车运动中所受阻力的影响(2)小华在利用此装置“探究加速度a与力F的关系”时,因为不断增加所挂钩码的个数,导致钩码的质量远远大于小车的质量,则小车加速度a的值随钩码个数的增加将趋近于的值.10.(9分)某物理学习小组的同学在研究性学习过程中,用伏安法研究某电子元件R1(6V,2.5W)的伏安特性曲线,要求多次测量并尽可能减小实验误差,备有下列器材A.直流电源(6V,内阻不计)B.电流表G(满偏电流3mA,内阻10Ω)C.电流表A(0~0.6A,内阻未知)D.滑动变阻器R(0~20Ω,5A)E.滑动变阻器R′(0~200Ω,1A)F.定值电阻R0(阻值为1990Ω)G.开关与导线若干(1)根据题目提供的实验器材,请你设计测量电子元件R1伏安特性曲线的电路原理图(R1可用“”表示)(请画在图1方框内).(2)在实验中,为了操作方便且能够准确地进行测量,滑动变阻器应选用(填写器材前面的字母序号).(3)将上述电子元件R1和另一个电子元件R2接入如图所示的电路2中,他们的伏安特性曲线分别如图3中oa、ob所示,电源的电动势E=7.0V,内阻忽略不计,调节滑动变阻器R3,使电子元件R1和R2消耗的电功率恰好相等,则此时电子元件R1的阻值为Ω,R3接入电路的阻值为Ω(结果保留两位有效数字).11.(12分)如图,一根轻绳绕过光滑的轻质定滑轮,两端分别连接物块A和B,B的下面通过轻绳连接物块C,A锁定在地面上.已知B和C的质量均为m,A 的质量为m,B和C之间的轻绳长度为L,初始时C离地的高度也为L.现解除对A的锁定,物块开始运动.设物块可视为质点,落地后不反弹.重力加速度大小为g.求:(1)A刚上升时的加速度大小a;(2)A上升过程的最大速度大小v m;(3)A离地的最大高度H.12.(20分)如图所示,一光滑金属直角形导轨aob竖直放置,ob边水平.导轨单位长度的电阻为ρ,电阻可忽略不计的金属杆cd搭在导轨上,接触点为M、N.t=0时,MO=NO=L,B为一匀强磁场,方向垂直纸面向外.(磁场范围足够大,杆与导轨始终接触良好,不计接触电阻)(1)若使金属杆cd以速率v1匀速运动,且速度始终垂直于杆向下,求金属杆所受到的安培力随时间变化的表达式;(2)在(1)问的基础上,已知杆的质量为m,重力加速度g,求t时刻外力F 的瞬时功率;(3)若保证金属杆接触点M不动,N以速度v2向右匀速运动,求电路中电流随时间的表达式.[物理--选修3-3](15分)13.(5分)下列说法正确的是()A.布朗运动就是液体分子的无规则运动B.空气的相对湿度定义为空气中所含水蒸气压强与同温度水的饱和蒸汽压的比值C.尽管技术不断进步,热机的效率仍不能达到100%,制冷机却可以使温度降至热力学零度D.将一个分子从无穷远处无限靠近另一个分子,则这两个分子间分子力先增大后减小最后再增大,分子势能是先减小再增大E.一定质量的理想气体,在体积不变时,分子每秒平均碰撞次数随着温度降低而减小14.(10分)如图,一个质量为m的T型活塞在气缸内封闭一定量的理想气体,活塞体积可忽略不计,距气缸底部h o处连接一U形细管(管内气体的体积忽略不计).初始时,封闭气体温度为T0,活塞距离气缸底部为1.5h0,两边水银柱存在高度差.已知水银密度为ρ,大气压强为P0,气缸横截面积为S,活塞竖直部分高为1.2h0,重力加速度为g,求:(i)通过制冷装置缓慢降低气体温度,当温度为多少时两边水银面恰好相平;(ii)从开始至两水银面恰好相平的过程中,若气体放出的热量为Q,求气体内能的变化.[物理--选修3-5](15分)15.以下有关近代物理内容的若干叙述,正确的是()A.紫外线照射到金属锌板表面时能发生光电效应,则当增大紫外线的照射强度时,从锌板表面逸出的光电子的最大初动能也随之增大B.波尔认为,原子中电子轨道是量子化的,能量也是量子化的C.β射线是原子核外电子高速运动形成的D.光子不仅具有能量,也具有动量E.根据波尔能级理论,氢原子辐射出一个光子后,将由高能级向较低能级跃迁,核外电子的动能增加16.如图所示,水平地面上静止放置一辆小车A,质量m A=4kg,上表面光滑,小车与地面间的摩擦力极小,可以忽略不计,可视为质点的物块B置于A的最右端,B的质量m B=2kg,现对A施加一个水平向右的恒力F=10N,A运动一段时间后,小车左端固定的挡板与B发生碰撞,碰撞时间极短,碰后A、B粘合在一起,共同在F的作用下继续运动,碰撞后经时间t=0.6s,二者的速度达到v t=2m/s,求(1)A开始运动时加速度a的大小;(2)A、B碰撞后瞬间的共同速度v的大小;(3)A的上表面长度l.2016年广东省七校联考高考物理三模试卷参考答案与试题解析一、选择题1.(6分)牛顿在发现万有引力定律的过程中没有被用到的规律和结论是()A.牛顿第二定律B.牛顿第三定律C.开普勒的研究成果D.卡文迪许通过扭秤实验得出的引力常数【解答】解:牛顿发现万有引力定律过程如下:根据开普勒行星运动第一和第二定律,假设行星绕太阳做匀速圆周运动,太阳对行星的引力就是行星做匀速圆周运动的向心力.F=m天文观测可以得到公转周期行星T,则v=带入上式整理后得到F=不同行星的公转周期不同,F与r关系的表达式中不应出现T,所以要消去T.为此把开普勒第三定律变形为T2=代入F=从这个式子可以看到,等号右边处了m,r其他都是常量,对任何行星是相同的,可以说引力F与成正比,即太阳对行星的引力与行星的质量成正比,与他们之间的距离的二次方成反比.就太阳对行星的引力来说,行星是受力星体,因而可以说上述引力与受力行星的质量成正比.根据牛顿第三定律,太阳吸引行星,行星也吸引太阳,就行星吸引太阳的引力F'来说,太阳是受力星体.F'的大小与太阳质量M成正比,与行星,太阳距离的二次方成反比.F'正比于由于F正比于,F'正比于,而F与F'的大小相等,所以我们可以概括的说,太阳与行星间引力的大小与太阳的质量和行星的质量的乘积成正比,与两者的距离的二次方成反比,即F正比于写成等式就是F=G,G是比例系数与太阳行星都没有关系;从上述推导过程可以看出,用到的规律有:向心力公式;开普勒三大定律;牛顿第二定律;牛顿第三定律;由于向心力公式是牛顿第二定律在圆周运动中的具体表现形式,故牛顿第二定律也运用到;本题选没有被用到的规律和结论,故选D.2.(6分)将一带电量为+Q的点电荷固定在空间中的某一位置处,有两个质量相等的带电小球A、B分别在Q下方不同高度的水平面内做匀速圆周运动,且运动轨迹处在以Q为球心的同一球面上,如图所示.若A、B所带电量很少,两者间的作用力忽略不计,取无穷远处电势为零,则下列说法中正确的是()A.小球A、B所带电荷量相等B.小球A、B运动轨迹上的各点场强相同C.小球A、B运动轨迹上的各点电势相等D.库仑力刚好提供小球做匀速圆周运动所需的向心力【解答】解:A、AB两个小球都做匀速圆周运动,合外力提供向心力,小球受到重力和库仑力,合力提供向心力,设小球与Q的连线与竖直方向的夹角为θ,则有:,由于θ不等,则库仑力不等,而AB小球到Q的距离相等,所以小球A、B所带电荷量不相等,故A错误;B、小球A、B运动轨迹上的各点到Q点的距离相等,场强大小相等,但是方向不同,所以电场强度不相同,故B错误;C、以Q为球心的同一球面是等势面,则小球A、B运动轨迹上的各点电势相等,故C正确;D、小球受到重力和库仑力,合力提供向心力,故D错误.故选:C3.(6分)如图所示,物块A放在木板B上,A、B的质量均为m,A、B之间的动摩擦因数为μ,B与地面之间的动摩擦因数为.若将水平力作用在A上,使A刚好要相对B滑动,此时A的加速度为a1;若将水平力作用在B上,使B刚好要相对A滑动,此时B的加速度为a2,则a1与a2的比为()A.1:1 B.2:3 C.1:3 D.3:2【解答】解:当水平力作用在A上,使A刚好要相对B滑动,临界情况是A、B 的加速度相等,隔离对B分析,B的加速度为:=,当水平力作用在B上,使B刚好要相对A滑动,此时A、B间的摩擦力刚好达到最大,A、B的加速度相等,有:,可得:a1:a2=1:3.故选:C.4.(6分)如图所示,变压器输入有效值恒定的电压,副线圈匝数可调,输出电压通过输电线送给用户(电灯等用电器),R表示输电线的电阻,则()A.用电器增加时,变压器输出电压增大B.要提高用户的电压,滑动触头P应向上滑C.用电器增加时,输电线的热损耗减少D.用电器增加时,变压器的输入功率减小【解答】解:A、由于变压器原、副线圈的匝数不变,而且输入电压不变,因此增加负载不会影响输出电压,故A错误;B、根据变压器原理可知输出电压U2=U1,当滑动触头P应向上滑时,n2增大,所以输出电压增大,用户两端电压增大,故B正确;C、由于用电器是并联的,因此用电器增加时总电阻变小,输出电压不变,总电流增大,故输电线上热损耗增大,故C错误;D、用电器增加时总电阻变小,总电流增大,输出功率增大,所以输入功率增大,故D错误.故选:B5.(6分)设宇宙中某一小行星自转较快,但仍可近似看作质量分布均匀的球体,半径为R,宇航员用弹簧测力计称量一个相对自己静止的小物体的重量,第一次在极点处,弹簧测力计的读数为F1=F0;第二次在赤道处,弹簧测力计的读数为F2=.假设第三次在赤道平面内深度为的隧道底部,示数为F3;第四次在距星表高度为R处绕行星做匀速圆周运动的人造卫星中,示数为F4,已知均匀球壳对壳内物体的引力为零,则以下判断正确的是()A.F3=,F4=B.F3=,F4=0C.F3=,F4=0 D.F3=4F0,F4=【解答】解:设该行星的质量为M,则质量为m的物体在极点处受到的万有引力:=F0由于球体的体积公式为:V=由于在赤道处,弹簧测力计的读数为F2=.则:所以半径以内的部分的质量为:=物体在处受到的万有引力:=物体需要的向心力:所以在赤道平面内深度为的隧道底部,示数为:F3=第四次在距星表高度为R处绕行星做匀速圆周运动的人造卫星中时,物体受到的万有引力恰好提供向心力,所以弹簧秤的示数为0.所以选项B正确,选项ACD错误.故选:B6.(6分)一水平传送带以v0的速度顺时针传送,其右端与一倾角为θ的光滑斜面平滑相连,一个可视为质点的物块轻放在传送带最左端,已知物块的质量为m,若物块经传送带与斜面的连接处无能量损失,则()A.物块在第一次冲上斜面前,一定一直做加速运动B.物块不可能从传送带的左端滑落C.物块不可能回到出发点D.滑块的最大机械能不可能大于mv02【解答】解:A、设传送带的长度为L,物块运动的过程中,物块匀加速运动的位移:x=,若x≥L则物块在第一次冲上斜面前,一定一直做加速运动;若x <L,则物块先加速后匀速.故A错误;B、C、若物块在传送带上一直做加速运动,则返回的过程中物块一直做减速运动,由于两个运动的加速度的大小是相等的,可知物块将能够恰好返回出发点,但不可能从传送带的左端滑落.故B正确,C错误;D、物块在传送带上运动的过程中,传送带的摩擦力对物块做功,所以物块的速度不可能大于v0,所以滑块的最大机械能不可能大于mv02,滑块在斜面上运动的过程中只有重力做功,机械能不增加.故D正确.故选:BD7.(6分)如图所示,斜面体B静置于水平桌面上,斜面上各处粗糙程度相同.一质量为M的木块A从斜面底端开始以初速度v0上滑,然后又返回出发点,此时速度为v,且v<v0,在上述过程中斜面体一直静止不动,以下说法正确的是()A.物体上升的最大高度是B.桌面对B始终有水平向左的静摩擦力C.由于物体间的摩擦放出的热量是D.A上滑时比下滑时桌面对B的支持力大【解答】解:A、设物体上升的最大高度为h,此时对应的斜面长为L,斜面倾角为θ,根据动能定理得:上升过程中:,下滑过程中:,解得:h=,故A正确;B、对斜面体B进行受力分析,物体A向上滑动时,B受力如图甲所示,物体A 向下滑动时,斜面体受力如图乙所示;物体B静止,处于平衡条件,由平衡条件得:f=f1cosθ+Nsinθ,f′=Nsinθ﹣f2cosθ,物体A向上滑行时桌面对B的摩擦力大,物体A下滑时,桌面对B的摩擦力小,不论大小如何,桌面对B始终有水平向左的静摩擦力,故B正确;C、整个过程中,根据能量守恒定律得:产生的热量Q=,故C错误;D、物体B处于平衡状态,由平衡条件得:F N1=G+Ncoθ﹣f1sinθ,F N2=G+Ncosθ+f2sinθ,F N2>F N1,故D错误.故选:AB8.(6分)一半径为R的圆柱形区域内存在垂直于端面的匀强磁场,磁感应强度大小为B,其边缘放置一特殊材料制成的圆柱面光屏.一粒子源处在光屏狭缝S 处,能向磁场内各个方向发射相同速率的同种粒子,粒子的比荷为,不计重力及粒子间的相互作用.以下判断正确的是()A.若荧光屏上各个部位均有光点,粒子的速率应满足v<B.若仅光屏上有粒子打上,粒子的速率应满足v=C.若仅光屏上有粒子打上,粒子的速率应满足v=D.若仅光屏上有粒子打上,粒子的速率应满足v=【解答】解:A、若粒子的速度满足v<,则粒子做圆周运动的半径r<R,粒子若带正电,粒子将逆时针方向旋转,那么圆柱右边侧面光屏部分基本无粒子打中,所以选项A错误.BD、若粒子的速度满足v=,则粒子做圆周运动的半径r=,那么如图所示,直径2r扫过的圆心角为60°,圆柱光屏有被打中,所以选项B错误、选项D正确.C、若粒子的速度满足v=,则粒子做圆周运动的半径r=,那么如图所示,直径2r扫过的圆心角为120°,圆柱光屏有被打中,所以选项C正确.故选:CD三、非选择题:包括必考题和选考题两部分,第22题~第32题为必考题,每个试题考生都必须作答.第33题~第40题为选考题,考生根据要求作答.(一)必考题(11题,共129分)9.(6分)(1)利用图示装置可以做力学中的许多实验.以下说法正确的是BD.A.利用此装置做“研究匀变速直线运动”的实验时,必须设法消除小车和木板间的摩擦阻力的影响B.利用此装置探究“加速度与质量的关系”,通过增减小车上的砝码改变质量时,不需要重新调节木板的倾斜度C.利用此装置探究“加速度与质量的关系”并用图象法处理数据时,如果画出的a﹣m关系图象不是直线,就可确定加速度与质量成反比D.利用此装置探究“功与速度变化的关系”实验时,应将木板带打点计时器的一端适当垫高,这样做的目的是利用小车重力沿斜面的分力补偿小车运动中所受阻力的影响(2)小华在利用此装置“探究加速度a与力F的关系”时,因为不断增加所挂钩码的个数,导致钩码的质量远远大于小车的质量,则小车加速度a的值随钩码个数的增加将趋近于g的值.【解答】解:(1)A、此装置可以用来研究匀变速直线运动,但不需要平衡摩擦力,故A错误.B、利用此装置探究“加速度与质量的关系”,因斜面倾斜是为了平衡摩擦力;故通过增减小车上的砝码改变质量时,不需要重新调节木板的倾斜度;故B正确;C、利用此装置探究“小车的加速度与质量的关系”,并用图象法处理数据时,如果画出的a﹣m关系图象不是直线,不能确定a与m成反比,应该作a﹣图线,看是否成正比,若成正比,说明a与M成反比.故C错误;D、探究“功与速度变化的关系”实验时,需要平衡摩擦力,方法是将木板带打点计时器的一端适当垫高,这样做的目的是利用小车重力沿斜面分力补偿小车运动中所受阻力的影响,从而小车受到的合力即为绳子的拉力,故D正确;故选:BD;(2)设小车质量为m,钩码质量为M,则对钩码有:Mg﹣F=Ma…①对小车有:F﹣μmg=ma…②联立①②解得:a=g将上式变形为:a=g,可见当M>>m时,加速度a趋近于g.故答案为:(1)BD;(2)g.10.(9分)某物理学习小组的同学在研究性学习过程中,用伏安法研究某电子元件R1(6V,2.5W)的伏安特性曲线,要求多次测量并尽可能减小实验误差,备有下列器材A.直流电源(6V,内阻不计)B.电流表G(满偏电流3mA,内阻10Ω)C.电流表A(0~0.6A,内阻未知)D.滑动变阻器R(0~20Ω,5A)E.滑动变阻器R′(0~200Ω,1A)F.定值电阻R0(阻值为1990Ω)G.开关与导线若干(1)根据题目提供的实验器材,请你设计测量电子元件R1伏安特性曲线的电路原理图(R1可用“”表示)(请画在图1方框内).(2)在实验中,为了操作方便且能够准确地进行测量,滑动变阻器应选用D (填写器材前面的字母序号).(3)将上述电子元件R1和另一个电子元件R2接入如图所示的电路2中,他们的伏安特性曲线分别如图3中oa、ob所示,电源的电动势E=7.0V,内阻忽略不计,调节滑动变阻器R3,使电子元件R1和R2消耗的电功率恰好相等,则此时电子元件R1的阻值为10Ω,R3接入电路的阻值为8.0Ω(结果保留两位有效数字).【解答】解:(1)描绘伏安特性曲线,电压与电流从零开始变化,滑动变阻器应采用分压接法;由题意可知,没有电压表,需要用已知内阻的电流表G与定值电阻R0串联测电压,电压表内阻为10+1990=2000Ω,电压表内阻远大于灯泡电阻,电流表应采用外接法,电路图如图所示:(2)滑动变阻器采用分压接法,所以在选择时选择总阻值较小的滑动变阻器D,便于调节.(3)电子元件R1和R2消耗的电功率恰好相等,说明它们的电压和电流相等,由图(3)乙可知,此时电阻两端的电压为U=2.5V,I=0.25A,根据欧姆定律得:R1===10Ω,根据串联电路特点,可知,此时流过R3的电流为:I′=I=0.25A,两端的电压为:U′=E﹣2U=7V﹣2.5×2V=2V,R3接入电路的阻值为:R3===8.0Ω.故答案为:(1)电路图如图所示;(2)D;(3)10,8.0.11.(12分)如图,一根轻绳绕过光滑的轻质定滑轮,两端分别连接物块A和B,B的下面通过轻绳连接物块C,A锁定在地面上.已知B和C的质量均为m,A 的质量为m,B和C之间的轻绳长度为L,初始时C离地的高度也为L.现解除对A的锁定,物块开始运动.设物块可视为质点,落地后不反弹.重力加速度大小为g.求:(1)A刚上升时的加速度大小a;(2)A上升过程的最大速度大小v m;(3)A离地的最大高度H.【解答】解:(1)解除对A的锁定后,A加速上升,B和C加速下降,加速度a 大小相等,设轻绳对A和B的拉力大小为T,由牛顿第二定律得对A:T﹣mg=ma ①对B、C:(m+m)g﹣T=(m+m)a ②由①②式得:a=③(2)当物块C刚着地时,A的速度最大.从A刚开始上升到C刚着地的过程,由机械能守恒定律得:2mgL﹣mgL=④由④式得:⑤(3)设C落地后A继续上升h时速度为零,此时B未触地A和B组成的系统满足:mgh﹣mgh=0﹣⑥由⑤⑥式得:h=⑦由于h=,B不会触地,所以A离地的最大高度:H=L+h=答:(1)A刚上升时的加速度大小是;(2)A上升过程的最大速度大小v m是;(3)A离地的最大高度H是.12.(20分)如图所示,一光滑金属直角形导轨aob竖直放置,ob边水平.导轨。
2016年高考全国三卷物理试题-学生用卷
2016年高考全国三卷物理试题副标题题号一二三四总分得分一、单选题(本大题共5小题,共30.0分)1.关于行星运动的规律,下列说法符合史实的是()A. 开普勒在牛顿定律的基础上,导出了行星运动的规律B. 开普勒在天文观测数据的基础上,总结出了行星运动的规律C. 开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D. 开普勒总结出了行星运动的规律,发现了万有引力定律2.关于静电场的等势面,下列说法正确的是()A. 两个电势不同的等势面可能相交B. 电场线与等势面处处相互垂直C. 同一等势面上各点电场强度一定相等D. 将一负的试探电荷从电势较高的等势面移至电势较低的等势面,电场力做正功3.一质点做速度逐渐增大的匀加速直线运动,在时间间隔t内位移为s,动能变为原来的9倍,该质点的加速度为()A. st2B. 3s2t2C. 4st2D. 8st24.如图,两个轻环a和b套在位于竖直面内的一段固定圆弧上:一细线穿过两轻环,其两端各系一质量为m的小球,在a和b之间的细线上悬挂一小物块。
平衡时,a、b间的距离恰好等于圆弧的半径。
不计所有摩擦,小物块的质量为()A. m2B. √32m C. m D. 2m5.平面OM和平面ON之间的夹角为30∘,其横截面(纸面)如图所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外.一带电粒子的质量为m,电荷量为q(q>0).粒子沿纸面以大小为v的速度从OM的某点向左上方射入磁场,速度与OM成30∘角.已知粒子在磁场中的运动轨迹与ON只有一个交点,并从OM上另一点射出磁场.不计重力.粒子离开磁场的射点到两平面交线O的距离为()A. mv2qB B. √3mvqBC. 2mvqBD. 4mvqB二、多选题(本大题共6小题,共31.0分)6.如图,理想变压器原、副线圈分别接有额定电压相同的灯泡a和b.当输入电压U为灯泡额定电压的10倍时,两灯泡均能正常发光.下列说法正确的是()A. 原、副线圈匝数之比为9:1B. 原、副线圈匝数之比为1:9C. 此时a和b的电功率之比为9:1D. 此时a和b的电功率之比为1:97.如图,一固定容器的内壁是半径为R的半球面;在半球面水平直径的一端有一质量为m的质点P.它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W.重力加速度大小为g.设质点P在最低点时,向心加速度的大小为a,容器对它的支持力大小为N,则()A. a=2(mgR−W)mR B. a=2mgR−WmRC. N=3mgR−2WR D. N=2(mgR−W)R8.如图,M为半圆形导线框,圆心为O M;N是圆心角为直角的扇形导线框,圆心为O N;两导线框在同一竖直面(纸面)内;两圆弧半径相等;过直线O M O N的水平面上方有一匀强磁场,磁场方向垂直于纸面.现使线框M、N在t=0时从图示位置开始,分别绕垂直于纸面、且过O M和O N的轴,以相同的周期T逆时针匀速转动,则()A. 两导线框中均会产生正弦交流电B. 两导线框中感应电流的周期都等于TC. 在t=T8时,两导线框中产生的感应电动势相等D. 两导线框的电阻相等时,两导线框中感应电流的有效值也相等9.关于气体的内能,下列说法正确的是()A. 质量和温度都相同的气体,内能一定相同B. 气体温度不变,整体运动速度越大,其内能越大C. 气体被压缩时,内能可能不变D. 一定量的某种理想气体的内能只与温度有关E. 一定量的某种理想气体在等压膨胀过程中,内能一定增加10.由波源S形成的简谐横波在均匀介质中向左、右传播。
【全国市级联考】广东省肇庆市2016届高三第三次统一检测理综物理试题(解析版)
一、选择题:本题共8小题,每小题6分。
在每小题给出的四个选项中,14~18题只有一项是符合题目要求的,第19~21题有多项符合题目要求。
全部选对的得6分,选对项不全的得3分,有选错的得0分14.如图,放在斜面上的物块,受到平行于光滑斜面向下的力F作用,沿斜面向下运动,斜面保持静止。
下列说法正确的是A.地面对斜面的弹力大于斜面和物块的重力之和B.地面对斜面的摩擦力方向水平向右C.若F反向,地面对斜面的摩擦力也反向D.若F增大,地面对斜面的摩擦力也增大【答案】B考点:物体的平衡15.图(甲)是线圈P绕垂直于磁场的轴在匀强磁场中匀速转动时所产生的正弦式交变电压的图象,把该电压加在如图(乙)所示的理想变压器的A、B端,已知电压表的示数为4.0V,图中的电压表和电流表均为理想电表,R=2Ω,其它电阻不计。
下列说法中正确的是A.电流表的示数为0.8AB.当t=0.2s和0.4s时,穿过线圈P的磁通量最小C.线圈P的转速为300r/minD.变压器原线圈Ⅰ和副线圈Ⅱ的匝数比为2∶5A【答案】考点:变压器;交流电16.如图所示,平行板电容器与电动势为E的直流电源(内阻不计)连接,下极板接地,静电计所带电荷量很少,可被忽略.一带负电油滴被固定于电容器中的P点.现将平行板电容器的下极板竖直向下移动一小段距离,则ArrayA.静电计指针张角变小B.平行板电容器的电容将变大C.带电油滴的电势能将增大D.若先将电容器上极板与电源正极的导线断开,再将下极板向下移动一小段距离,则带电油滴所受电场力不变【答案】D考点:电容器;场强与电势17.横截面为直角三角形的两个相同斜面紧靠在一起,固定在水平面上,如图所示。
它们的竖直边长都是底边长的一半,现有三个小球从左边斜面的顶点以不同的初速度向右平抛,最后落在斜面上,其落点分别是a 、b 、c 。
若不计空气阻力,则下列判断正确的是A .三小球比较,落在c 点的小球飞行过程速度变化最大B .三小球比较,落在c 点的小球飞行过程速度变化最快C .三小球比较,落在a 点的小球飞行时间最短D .无论小球抛出时初速度多大,落到斜面上的瞬时速度都不可能与斜面垂直 【答案】D 【解析】试题分析:根据212h gt =得t a 点的小球下落的高度最大,则飞行时间最长,由速度变化量△v=gt ,可知落在a 点的小球飞行过程速度变化最大,故A 、C 错误.三个小球均做平抛运动,加速度都是g ,相同,则速度变化快慢一样,故B 错误.三个小球均做平抛运动,轨迹是抛物线,落在a 点的小球瞬时速度不可能与斜面垂直.对于落在b 、c 两点的小球:竖直速度是gt ,水平速度是v ,由题意有:斜面的夹角是arctan0.5,要合速度垂直斜面,把两个速度合成后,需要vgt,即v=0.5gt ,那么在经过t时间的时候,竖直位移为0.5gt2,水平位移为vt=(0.5gt)•t=0.5gt2即若要满足这个关系,需要水平位移和竖直位移都是一样的,显然在图中b、c是不可能完成的,因为在b、c上水平位移必定大于竖直位移,所以落到两个斜面上的瞬时速度都不可能与斜面垂直,故D正确.故选D。
广州市2016届高三调研考试物理试卷及答案
2016年广州市普通高中毕业班模拟考试理科综合物理能力测试2016.01注意事项:1. 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应位置填涂考生号。
2. 回答第I 卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 回答第II 卷时,将答案写在答题卡上。
写在本试卷上无效。
4. 考试结束后,将本试卷和答题卡一并交回。
可能用到的相对原子质量:H-1 C-12 O-16 Na-23 Mg-24 S-32 Cr-52 Fe-56 Br-80第Ⅰ卷一、选择题:本题共13小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
二、选择题:本题共8小题,每小题6分。
在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
14.历史上,伽利略在斜面实验中分别从倾角不同、阻力很小的斜面上静止释放小球,他通过实验观察和逻辑推理,得到的正确结论有A .倾角一定时,小球在斜面上的位移与时间的平方成正比B .倾角一定时,小球在斜面上的速度与时间的平方成正比C .斜面长度一定时,小球从顶端滚到底端时的速度与倾角无关D .斜面长度一定时,小球从顶端滚到底端所需的时间与倾角无关15.正、负点电荷周围的电场线分布如图,P 、Q 为其中两点,则带正电的试探电荷A .由P 静止释放后会运动到QB .从P 移动到Q ,电场力做正功C .在P 的电势能小于在Q 的电势能D .在P 所受电场力小于在Q 所受电场力16.如图为洛伦兹力演示仪的结构图。
励磁线圈产生的匀强磁场方向垂直纸面向外,电子束由电子枪产生,其速度方向与磁场方向垂直。
电子速度大小可通过电子枪的加速电压来控制,磁场强弱可通过励磁线圈的电流来调节。
2016年广州从化中学三模理综物理试题和答案
14.了解科学家发现物理规律的过程,学会像科学家那样观察和思考,不断提升自己的科学素养,往往比掌握知识本身更重要。
以下符合物理发展史实的是A.伽利略将斜面实验的结论合理外推,间接证明了自由落体运动是匀变速直线运动B.楞次发现磁场产生电流的条件和规律,即电磁感应现象C.牛顿最早用扭秤实验测出万有引力常数D.安培总结出了真空中两个静止点电荷之间的相互作用规律15.如图所示,在垂直纸面向里的匀强磁场的边界上,有两个电荷量绝对值相同、质量相同的正、负粒子(不计重力),从O点以相同的速度先后射入磁场中,入射方向与边界成θ角,则正、负粒子在磁场中A.运动轨迹的半径不相等B.运动时间相同C.重新回到边界时速度相同D.重新回到边界时与O点的距离不相等16.如图所示,T1、T2是监测交流高压输电参数的互感器,其中a、b是交流电压表或交流电流表.若已知高压输电线间的电压为220KV,T1的原、线圈匝数比为1:100,交流电压表的示数为100V,交流电流表的示数为1A,则A.b是交流电流表B.T2的原、副线圈匝数比为100:1C.高压线路输送的电流为1AD.高压线路输送的电功率为2.2×107W17.图甲是滑道压力测试的示意图,光滑圆弧轨道与光滑斜面相切,圆弧轨道底部P处安装一个压力传感器,其示数F表示该处所受压力的大小,某滑块从斜面上不同高度h处由静止下滑,表示压力F和高度h关系的F—h图象如图乙所示,则光滑圆弧轨道的半径R的大小是A.5 mB.2 mC.0.8 mA M O NB xϕD .2.5 m18.据新华社北京3月21日电,记者21日从中国载人航天工程办公室了解到,已在轨工作1630天的天宫一号目标飞行器在完成与三艘神舟飞船交会对接和各项试验任务后,由于超期服役两年半时间,其功能已于近日失效,正式终止了数据服务.根据预测,天宫一号的飞行轨道将在今后数月内逐步降低,并最终再入大气层烧毁.若天宫一号服役期间的轨道可视为圆且距地面h (h ≈343km ),运行周期为T ,地球的半径为R ,下列关于天宫一号的说法正确的是A .因为天宫一号的轨道距地面很近,其线速度小于同步卫星的线速度B .女航天员王亚平曾在天宫一号中漂浮着进行太空授课,那时她不受地球的引力作用C .天宫一号再入外层稀薄大气一小段时间内,克服气体阻力做的功小于引力势能的减小量D .由题中信息可知地球的质量为2324R GT π 19.空间存在着平行于x 轴方向的静电场,A 、M 、O 、N 、B 为x 轴上的点,OA <OB ,OM =ON ,AB 间的电势ϕ随x 的分布为如右图.一个带电粒子在电场中仅在电场力作用下从M 点由静止开始沿x 轴向右运动,则下列判断中正确的是A .粒子一定带负电B .粒子从M 向O 运动过程所受电场力均匀增大C .粒子一定能通过N 点D .AO 间的电场强度大于OB 间的电场强度 20.质量相等的甲、乙两物体从离地面相同高度处同时由静止开始下落,运动中两物体所受阻力的特点不同,其v-t 图象如图.则下列判断正确的是A .t 0时刻甲物体的加速度大于乙物体的加速度B .t 0时刻甲、乙两物体所受阻力相同C .0~t 0时间内,甲、乙两物体重力势能的变化量相同D .0~t 0时间内,甲物体克服阻力做的功比乙的少21.有绝缘层包裹的一段导线绕成两个半径分别为R 和r 的两个圆形回路,如图所示,且扭在一起的两个圆的半径远大于导线自身半径,两个圆形区域内存在有垂直平面向里的磁场,磁感应强度大小随时间按B=kt (k >0,为常数)的规律变化.单位长度的电阻为a ,且R r >,则A .小圆环中电流的方向为逆时针B .大圆环中电流的方向为逆时针C .回路中感应电流大小为()2k R r a- D .回路中感应电流大小为22()2(R r)k R r a+-22.(6分) 利用如图所示装置 “验证机械能守恒定律”.把装有遮光条的滑块放在水平气垫导轨上的A 处,光电门安装在B 处,滑块用细绳通过定滑轮与钩码相连。
广东省2016届高三3月适应性考试理综物理试题解析(解析版)
2016届3月广东高考全国卷适应性考试物理试题二、选择题(本大题共8小题,每小题6分。
在每小题给出的四个选项中. 14~18题只有一项符合题目要求.19~21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
) 14. 下列叙述中,符合物理学史实的是( )A.楞次总结出了电磁感应定律B.法拉第最先发现电流的磁效应C.库仑最早测出了元电荷e 的数值D.伽利略推翻了力是维持物体运动的原因的观点 【答案】D 【解析】试题分析:法拉第总结出了电磁感应定律,选项A 错误;奥斯特最先发现电流的磁效应,选项B 错误;密利根最早测出了元电荷e 的数值,选项C 错误;伽利略推翻了力是维持物体运动的原因的观点,选项D 正确;故选D. 考点:物理学史15. 甲、乙两卫星绕地球做圆周运动,甲的轨道半径比乙的小。
下列说法正确的是( ) A.甲的加速度比乙的大 B.甲的向心力比乙的大 C.甲的周期比乙的大 D.甲的动能比乙的大 【答案】A 【解析】试题分析:根据2=MmF Gma r=向可知,因为甲的轨道半径比乙的小,则甲的加速度比乙的大,选项A 正确;因为卫星的质量不确定,则无法比较两卫星的动能和向心力,选项BD 错误;根据2224Mm G m r r T π=,解得2T π=C 错误;故选A.考点:万有引力定律的应用16. 真空中有两根足够长直导线ab 、cd 平行放置,通有恒定电流I 1、I 2,导线ab 的电流方向如图。
在两导线所在的平面内,一带电粒子由P 运动到Q ,轨迹如图中PNQ 所示,NQ 为直线,重力忽略不计。
下列说法正确的是( )A.该粒子带正电B.粒子从P到Q的过程中动能增加C.导线cd中通有从c到d方向的电流D.导线cd电流I2小于导线ab电流I1【答案】C【解析】考点:洛伦兹力;左手定则。
17. 如图所示,一质量为m1的光滑匀质球,夹在竖直墙面和倾角为θ的斜块之间,斜块质量为m2,斜块底面与水平地面间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,两者始终保持静止。
广东省中山市华侨中学2016届高三‘三模’物理试题(含答案)
2016届中山市华侨中学高三“三模”物理试题分值:110分时间:90分钟一、单项选择题.本题共6小题,每小题3分,共计18分.每小题只有一个选项符合题意.1.鱼在水中沿直线水平向左加速游动过程中,水对鱼的作用力方向合理的是()A B C D2.嫦娥二号卫星由地面发射后,进入地月转移轨道,经多次变轨最终进入距离月球表面100公里,周期为118分钟的工作轨道,开始对月球进行探测,则下列说法错误的是....( )A.卫星在轨道Ⅲ上的运动速度比月球的第一宇宙速度小B.卫星在轨道Ⅲ上运动周期比在轨道Ⅰ上小C.卫星在轨道Ⅲ上经过P点的速度比在轨道Ⅰ上经过P点时大D.卫星在轨道Ⅰ上经过P点的加速度等于在轨道Ⅱ上经过P点的加速度3..如图所示,左侧是倾角为60°的斜面、右侧是圆弧面的物体固定在水平地面上,圆弧面底端切线水平,一根两端分别用轻绳系有质量为m1、m2的小球跨过其顶点上的小滑轮。
当它们处于平衡状态时,连结m2 小球的轻绳与水平线的夹角为60°,不计一切摩擦,两小球可视为质点。
两小球的质量之比m l : m2等于()A. 1 : lB. 2 : 3C. 3 : 2D. 3 : 44.如图所示,从地面上同一位置抛出两小球A、B,分别落在地面上的M、N点,两球运动的最大高度相同。
空气阻力不计,则()A.B的加速度比A的大 B.B的飞行时间比A的长C.B在最高点的速度比A在最高点的大D.B在落地时的速度比A在落地时的小5.如图所示为杂技“顶竿”表演,一人站在地上,肩上扛一质量M=5 kg的竖直竹竿,竿上有一质量m=50 kg的人(可以看成质点),当此人沿着竖直竿以加速度“2 m/s2 ”加速下滑时,竹竿对肩的压力大小为(重力加速度g=10 m/s2)()A. 650 NB.550 NC.500 ND.450N6.质量相等的物体A、B通过一轻质弹簧相连,开始时B放在地面上,A、B均处于静止状态,此时弹簧压缩量△x1。
2016广东省佛山市高三教学质量检测理综物理试题一(WORD版)
佛山市2016届高三教学质量检测(一)理综物理试题二、选择题:本题共8小题,每小题6分,在每小题给出的四个选项中,第14-18题中只有一项符合题目要求,第19-21题有多项符合题目要求•全部选对的得6分,选对但不全的得3分.有选错的得0分.14. 下列说法中,符合物理学史实的是A. 密立根由带电油滴在电场中所受电场力与重力间的关系,通过计算发现了电子•卡文迪许通过扭秤装置将微小形变放大,测定了静电力恒量k 的值C .牛顿根据牛顿第一定律及开普勒有关大体运动的三个定律发现了万有引力定律D奥斯特通过实验发现在磁场中转动的金属圆盘可以对外输出电流15. 如图所示,匀强电场中有a、b、c、d四点.四点刚好构成一个矩形,已知/ acd=30°,电场方向与矩形所在平面平行.已知a、d和c点的龟势分别为(4 一、、3 )V、V和(4+ .. 3 )V .贝UA .电场线与ac直线平行B .电场方向与ac直线垂直C. b点电势为3VD. b、d位于同一等势面上16. 质量为用的小球用弹性轻绳系于O点(右上图),将其拿到与O同高的A点,弹性绳处于自然伸长状态,此时长为I o.将小球由A点无初速度释放,当小球到达O的正下方B点时,绳长为I小球速度为v,方向水平.则下列说法正确的是2vB .小球在B点时所受合外力大小为m —lC、小球从A至B重力所做的功为-mv22D、小球从A到B损失的机械能为-mv2217. 平直公路上的一辆汽车,在恒定功率牵引下由静止出发,末汽车的速率A .大于7.5m/sB .等于7.5m/s C.大于15m/s18. 图甲是由两圆杆构成的“V”形槽,它与水平面成倾角二放置.现将一质量为m的圆柱体滑块由斜槽顶端释放,滑块恰好匀速滑下.沿斜面看,其截面如图乙所示.已知滑块与两圆杆的动摩擦因数为丄,重力加速度为g, : = 120 °,则第16题A •弹性绳的劲度系「醫民200s的时间内行驶了1500m,则200sD .等于15m/sA . J二ta n 71B .左边圆杆对滑块的支持力为 mgcos rC. 左边圆杆对滑块的摩擦力为 mgsi nvD 、 若增大二,圆杆对滑块的支持力将增大19. 如图,上下有界的匀强磁场,磁场方向水平垂直纸面向里.将 线框从某高度无初速释放,落入该磁场中.I 、d 分别为磁场与线框的宽度•若下落过程中,线框平面始终位于纸平而内,下 边框始终与磁场上下边界平行则线框下落过程中A 、 进入磁场时,线框中感应的电流为逆时针方向B 、 可能经历一个所受安培力减小的过程C 、 当I >d ,线框可能进出磁场时都做匀速运动D .当1 = d ,可能某过程中重力势能全部转化为线框的焦耳热 20、地球同步卫星轨道半径为 R o ,周期为T o ,飞船在圆轨道绕月一周时间为T 、路程为S 由以上数据可知21•如图,截面为等腰直角三角形的圆锥形陀螺,其上表面半径为 r ,转动角速度为■.欲让旋转 的陀螺从光滑桌面上水平飞出(运动中陀螺转动轴总保持竖直) ,且飞出过程中恰不与桌子相碰.设陀螺底端顶点离开桌面的瞬间,其水平速度为V 。
广东省中山市2016年高三5月高考模拟考试物理试题
中山市2016届高三理科综合高考模拟试题(物理)第一卷一、选择题(本大题共8小题,每小题6分。
在每小题给出的四个选项中,第14—18题只有一项符合题目要求,第19~21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分.有选错的得0分) 。
14.图中为一理想变压器,原副线圈的总匝数比为1:2,其原线圈与一电压有效值恒为220V 的交流电源相连,P为滑动头.现令P从均匀密绕的副线圈最底端开始,沿副线圈缓慢匀速上滑,直至220V 60w的白炽灯L两端的电压等于其额定电压为止,在滑动过程中灯丝温度逐渐升高.U2表AB端的总电压,U L表示灯泡两端的电压,用I2表示流过灯泡的电流,(这里的电流、电压均指有效值).下列4个图中,不能够正确反映相应物理量的变化趋势的是( )15. 如图是法拉第研究电磁感应用过的线圈。
为了透彻研究电磁感应现象,法拉第做了许多实验,并概括了可以产生感应电流的五种类型:变化的电流、变化的磁场、运动的恒定电流、运动的磁铁、在磁场中运动的导体。
假设用条形磁铁在右图线圈中抽插的方法来产生感应电流,并将一零刻度位于表盘中央的灵敏电流计接在线圈两端构成闭合回路,下列说法正确的是:A. 其它条件相同,线圈环越大,感应电流越大B. 其它条件相同,线圈环越小,电磁感应现象越明显C. 如果采用磁铁不动,线圈移动的方法,不能产生感应电流D. 线圈套住条形磁体,二者同方向运动,一定不能产生感应电流16.平抛运动可以分解为水平和竖直方向的两个直线运动,在同一坐标系中作出这两个分运动的v-t图线,如图所示,若平抛运动的时间大于2t1,则下列说法中正确的是()A. 图线2表示水平分运动的v-t图线B. t1时刻的速度方向与初速度方向夹角为30°C. t1时刻的位移方向与初速度方向夹角的正切为D. 2t 1时刻的位移方向与初速度方向夹角为45°17.如图所示,质量为M 、半径为R 的半球形物体A 放在水平地面上,通过最高点处的钉子用水平细线拉住一质量为m 、半径为r 的光滑球B ,则( )。
2016年全国大联考高考物理三模试卷含参考答案(新课标ⅰ卷)
2016年全国大联考高考物理三模试卷(新课标Ⅰ卷)一.选择题:本题共8小题,每小题6分.在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.1.(6分)下列说法正确的是()A.牛顿运用万有引力定律,巧妙地计算出地球的质量B.笛卡儿认为运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动C.元电荷e的数值最早是由物理学家库仑测得的D.法拉第根据电流的磁效应现象得出了法拉第电磁感应定律2.(6分)某质点在0~12s内运动的v﹣t图象如图所示.其中前4s内的图象是一段圆弧,关于质点的运动,下列说法正确的是()A.质点在第一个4 s内的平均速度和在第二个4 s内的平均速度大小相等B.t=12 s时,质点的位移最大C.质点在t=6 s时的加速度与t=10 s时的加速度大小相等,方向相反D.质点在这12 s内的平均速度约为3 m/s3.(6分)如图所示,物块A和足够长的木板B叠放在水平地面上,木板B和物块A的质量均为m,物块与木板B间的动摩擦因数为μ,木板与水平地面间动摩擦因数为,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g.当t=0时,用水平力F作用在木板B上,A、B恰能一起从静止开始向右做匀加速直线运动.t=t0时,水平力变成2F,则t=2t0时()A.物块A的速度为3μgt0B.木板B的位移为μgt02C.整个过程因摩擦增加的内能为t02D.木板B的加速度为μg4.(6分)图1是滑道压力测试的示意图,光滑圆弧轨道与光滑斜面相切,圆弧轨道底部P处安装一个压力传感器,其示数F表示该处所受压力的大小,某滑块从斜面上不同高度h处由静止下滑,表示压力F和高度h关系的F﹣h图象如图2所示,则光滑圆弧轨道的半径R的大小是()A.5 m B.2 m C.0.8 m D.2.5 m5.(6分)发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后变轨,使其沿椭圆轨道2运行,最后再次变轨,将卫星送入同步圆轨道3,轨道1、2相切于Q点,轨道2、3相切于P点,如图所示.设卫星在轨道1上运行时,速度为v1,卫星在轨道2上运行时,经过Q点的速度为v2,经过P点的速度为v3,卫星在轨道3上运行时,速度为v4,则这四个速度的大小关系是()A.v1>v2>v3>v4B.v1=v2>v3=v4 C.v2>v1>v4>v3D.v2>v1>v3>v46.(6分)在光滑的水平面上,有两个带异种电荷的小球A和B,它们在相互之间的静电力作用下绕两者连线上某一定点O做匀速圆周运动,如图所示.已知小球A的质量为m A,电荷量是q A,小球B的质量为m B,电荷量是q B,且m A>m B,q B>q A,A、B两球的距离为L,静电力常量为k.则下列判断正确的是()A.小球A做圆周运动的半径r A=B.小球B做圆周运动的半径r B=C.小球A做圆周运动的周期T A=2πD.小球B做圆周运动的线速度v B=7.(6分)在如图所示电路中,电压表、电流表均为理想电表,电源内阻不可忽略.开关S闭合后,在滑动变阻器R1的滑片P向右端滑动的过程中()A.电压表与电流表的示数都增大B.电压表的示数减小,电流表的示数增大C.电阻R2消耗的电功率增大D.电源内阻消耗的功率减小8.(6分)如图是用电流传感器(电流传感器相当于电流表,其电阻可以忽略不计)研究自感现象的实验电路,电源的电动势为E,内阻为r,自感线圈L的自感系数足够大,在t=0时刻闭合开关S,经过一段时间后,在t=t1时刻断开开关S.在下列所示的图象中,可能正确表示电流传感器记录的电流随时间变化情况是()A.B.C.D.三、非选择题:包括必考题和选考题两部分.第9题~第12题为题,每个考题考生都必须作答,第13~18为选考题,考生格局要求作答.9.(6分)某同学做“研究匀变速直线运动”的实验.(1)做本实验时(填“需要”或“不需要”)平衡摩擦力.(2)已知打点计时器所用交流电的频率为50Hz.如图所示是“测定匀变速直线运动的加速度”的实验中电磁打点计时器打出的纸带,图中0、1、2、3、4、5、6是按时间先后顺序标出的计数点,用刻度尺测得:x1=2.70cm,x2=3.20cm,x3=3.68cm,x4=4.18cm,x5=4.69cm,x6=5.17cm.那么:(计算结果保留三位有效数字)①在计时器打出点2时,小车的速度大小为v2=m/s.②小车的加速度的大小为a=m/s2.10.(9分)某学习小组探究电学元件的伏安特性曲线.(1)甲同学要描绘一个标有“3.6V,1.2W”的小灯泡的伏安特性曲线,除了导线和开关外,还有下列器材可供选择:电压表V(量程5V,内阻约为5kΩ)直流电源E(电动势4.5V,内阻不计)电流表A1(量程350mA,内阻约为1Ω)电流表A2(量程150mA,内阻约为2Ω)滑动变阻器R1(阻值0~200Ω)滑动变阻器R2(阻值0~10Ω)实验中电流表应选,滑动变阻器应选;(填写器材代号)以下的四个电路中应选用进行实验.(2)根据所选电路图,请在图1中用笔画线代替导线,把实验仪器连接成完整的实验电路.(3)利用实验得到了8组数据,在如图2所示的I﹣U坐标系中,通过描点连线得到了小灯泡的伏安特性曲线.将同种规格的两个这样的小灯泡并联后再与R=10Ω的定值电阻串联,接在电动势为8V、内阻不计的电源上,如图3所示.闭合开关S后,电流表的示数为A,两个小灯泡的总功率为W.11.(14分)在第二象限内有水平向右的匀强电场,在第一象限内存在一个垂直于xOy平面但方向未知的圆形匀强磁场,圆形磁场与x轴相切于B点,与y轴相切于A点.第四象限内存在匀强磁场,方向如图所示,第一、四象限内匀强磁场的磁感应强度大小相等.现有一个质量为m、电荷量为q的带电粒子在该平面内从x轴上的P点,以垂直于x轴的初速度v0进入匀强电场,恰好经过y轴上的A 点且与y轴成45°角射出电场,再经过一段时间又恰好经过x轴上的B点进入下面的磁场.已知OP之间的距离为d,不计粒子的重力,求:(1)A点的坐标;(2)第一象限圆形匀强磁场的磁感应强度B0的大小及方向;(3)带电粒子自进入电场至在磁场中第二次经过x轴的时间.12.(18分)如图所示,AB是倾角为θ=45°的倾斜轨道,BC是一个水平轨道(物体经过B处时无机械能损失),AO是一竖直线,O、B、C在同一水平面上.竖直平面内的光滑圆形轨道最低点与水平面相切于C点,已知:A、O两点间的距离为h=1m,B、C两点间的距离d=2m,圆形轨道的半径R=1m.一质量为m=2kg 的小物体(可视为质点),从与O点水平距离x0=3.6m的P点水平抛出,恰好从A 点以平行斜面的速度进入倾斜轨道,最后进入圆形轨道.小物体与倾斜轨道AB、水平轨道BC之间的动摩擦因数都是μ=0.5,重力加速度g=10m/s2.(1)求小物体从P点抛出时的速度v0和P点的高度H;(2)求小物体运动到圆形轨道最点D时,对圆形轨道的压力大小;(3)若小物体从Q点水平抛出,恰好从A点以平行斜面的速度进入倾斜轨道,最后进入圆形轨道,且小物体不能脱离轨道,求Q、O两点的水平距离x的取值范围.(二)选考题,请考生任选一模块作答[物理--选修3-3](15分)13.(5分)下列说法正确的是()A.对于一定质量的理想气体,体积不变时,温度越高,气体的压强就越大B.空调机既能致热又能致冷,说明热传递不存在方向性C.把一枚针放在水面上,它会浮在水面上,这是水表面存在表面张力的缘故D.分子间的引力和斥力是不能同时存在的,有引力就不会有斥力E.单晶体的各向异性是由晶体微观结构决定的14.(10分)如图所示,一定质量的理想气体从状态A变化到状态B,再由状态B变化到状态C.已知状态C的温度为300K.①求气体在状态A的温度;②由状态B变化到状态C的过程中,气体是吸热还是放热?简要说明理由.[物理--选修3-4](15分)15.下列说法正确的是()A.做简谐运动的质点,其振动能量与振幅无关B.机械波的频率等于振源的振动频率C.真空中的光速在不同的惯性参考系中都是相同的,与光源的运动和观察者的运动无关D.在三个周期内,沿着波的传播方向,振动在介质中传播三个波长的距离E.在“用单摆测定重力加速度”的实验中,为使实验结果较为准确,应选用10 cm 长的细线和小铁球16.如图所示,一个半径为R的半圆透明球体放置在水平面上,一束光从A点垂直直径射入球体.已知OA=R,该球体对光的折射率为.则:①画出光通过半圆透明球体的光路图;②若光在真空中的传播速度为c,请推导出光在半圆透明球体内传播所需时间t 的表达式(用c,R表示).[物理--选修3-5](15分)17.下列说法正确的是()A.根据玻尔理论,氢原子在辐射光子的同时,轨道也在连续地减小B.一个氘核()与一个氚核()聚变生成一个氦核()的同时,放出一个中子C.太阳辐射的能量主要来自太阳内部的核聚变D.结合能越小表示原子核中的核子结合得越牢固E.普朗克曾经大胆假设:振动着的带电微粒的能量只能是某一最小能量值ε的整数倍,这个不可再分的最小能量值ε叫做能量子18.如图所示,在光滑的水平面上静止着一个质量为4m的木板B,B的左端静止着一个质量为2m的物块A,已知A、B之间的动摩擦因数为μ,现有质量为m 的小球以水平速度v0.飞来与A物块碰撞后立即以大小为的速率弹回,在整个过程中物块A始终未滑离木板B,且物块A可视为质点,求:①相对B静止后的速度;②木板B至少多长?2016年全国大联考高考物理三模试卷(新课标Ⅰ卷)参考答案与试题解析一.选择题:本题共8小题,每小题6分.在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.1.(6分)下列说法正确的是()A.牛顿运用万有引力定律,巧妙地计算出地球的质量B.笛卡儿认为运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动C.元电荷e的数值最早是由物理学家库仑测得的D.法拉第根据电流的磁效应现象得出了法拉第电磁感应定律【解答】解:A、牛顿运用万有引力定律,卡文迪许巧妙地计算出地球的质量,故A错误.B、笛卡儿研究了力和运动的关系,认为运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动,故B正确.C、元电荷e的数值最早是由物理学家密立根测得的,故C错误.D、法拉第根据变化的磁场分析得出了法拉第电磁感应定律,故D错误.故选:B2.(6分)某质点在0~12s内运动的v﹣t图象如图所示.其中前4s内的图象是一段圆弧,关于质点的运动,下列说法正确的是()A.质点在第一个4 s内的平均速度和在第二个4 s内的平均速度大小相等B.t=12 s时,质点的位移最大C.质点在t=6 s时的加速度与t=10 s时的加速度大小相等,方向相反D.质点在这12 s内的平均速度约为3 m/s【解答】解:A、若质点在第一个4s内做匀加速直线运动,质点的位移大于匀加速直线运动的位移,则平均速度大于匀加速直线运动的平均速度,即大于=2m/s.在第二个4 s内的平均速度大小是=2m/s.故A错误.B、根据“面积”表示位移,可知,t=8 s时,质点的位移最大.故B错误.C、4﹣12s内,质点做匀变速直线运动,加速度一定,则质点在t=6 s时的加速度与t=10 s时的加速度大小相等,方向相同,故C错误.D、质点在这12 s内等于0﹣4s内的位移,为x=m=4π,平均速度为==π≈3m/s.故D正确.故选:D3.(6分)如图所示,物块A和足够长的木板B叠放在水平地面上,木板B和物块A的质量均为m,物块与木板B间的动摩擦因数为μ,木板与水平地面间动摩擦因数为,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g.当t=0时,用水平力F作用在木板B上,A、B恰能一起从静止开始向右做匀加速直线运动.t=t0时,水平力变成2F,则t=2t0时()A.物块A的速度为3μgt0B.木板B的位移为μgt02C.整个过程因摩擦增加的内能为t02D.木板B的加速度为μg【解答】解:A、在t=0至t=t0时间内,A、B恰能一起从静止开始向右做匀加速直线运动,AB间的静摩擦力恰好达到最大值,以A为研究对象,根据牛顿第二定律得:μmg=ma,得:a=μg以整体为研究对象,则得:F=2m•a=2μmgt=t0时整体的速度为:v0=at0=μgt0,故A错误.BCD、当水平力变成2F时,A相对于B向左运动,A的加速度为:a A==μg B的加速度为:a B===μgt=2t0时,物块A的速度为:v A=v0+a A t0=μgt0+μgt0=2μgt0.木板B的位移为:x B=+(v0t0+a B t02)=μgt02.t=2t0时A、B间的相对位移为△x=(v0t0+a B t02)﹣(v0t0+a A t02)=μgt02,因摩擦增加的内能为Q=μmg•△x=μ2m g2t02,故BC错误,D正确.故选:D4.(6分)图1是滑道压力测试的示意图,光滑圆弧轨道与光滑斜面相切,圆弧轨道底部P处安装一个压力传感器,其示数F表示该处所受压力的大小,某滑块从斜面上不同高度h处由静止下滑,表示压力F和高度h关系的F﹣h图象如图2所示,则光滑圆弧轨道的半径R的大小是()A.5 m B.2 m C.0.8 m D.2.5 m【解答】解:滑块下滑的过程,根据机械能守恒定律得:mgh=在P点,以滑块为研究对象,根据牛顿第二定律有:F′﹣mg=m则有:F′=mg+m=mg+由牛顿第三定律知:F=F′=mg+由数学知识可知,F﹣h图象的斜率k=,而斜率k==0.8,则有=0.8;当h=0时,有F=2N,由F=mg+得:mg=2N联立可得:R=5m故选:A5.(6分)发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后变轨,使其沿椭圆轨道2运行,最后再次变轨,将卫星送入同步圆轨道3,轨道1、2相切于Q点,轨道2、3相切于P点,如图所示.设卫星在轨道1上运行时,速度为v1,卫星在轨道2上运行时,经过Q点的速度为v2,经过P点的速度为v3,卫星在轨道3上运行时,速度为v4,则这四个速度的大小关系是()A.v1>v2>v3>v4B.v1=v2>v3=v4 C.v2>v1>v4>v3D.v2>v1>v3>v4【解答】解:人造卫星绕地球做匀速圆周运动,根据人造卫星的万有引力等于向心力,根据万有引力提供向心力得:v=,轨道3半径比轨道1半径大,所以卫星在轨道3上的速度小于卫星在轨道1上的速度,即v1>v4,从轨道1到轨道2,卫星在A点是做逐渐远离圆心的运动,要实现这个运动必须使卫星所需向心力大于万有引力,所以应给卫星加速,增加所需的向心力.所以在轨道2上Q点的速度大于轨道1上Q点的速度,即v2>v1,同理v4>v3,所以v2>v1>v4>v3,故C正确.故选:C6.(6分)在光滑的水平面上,有两个带异种电荷的小球A和B,它们在相互之间的静电力作用下绕两者连线上某一定点O做匀速圆周运动,如图所示.已知小球A的质量为m A,电荷量是q A,小球B的质量为m B,电荷量是q B,且m A>m B,q B>q A,A、B两球的距离为L,静电力常量为k.则下列判断正确的是()A.小球A做圆周运动的半径r A=B.小球B做圆周运动的半径r B=C.小球A做圆周运动的周期T A=2πD.小球B做圆周运动的线速度v B=【解答】解:A、两球靠库仑引力提供向心力,角速度相等,有:,,则m A r A=m B r B,又r A+r B=L,解得,,故A错误,B正确.C、根据=得,T A=,故C正确.D、小球B做圆周运动的线速度=,故D正确.故选:BCD.7.(6分)在如图所示电路中,电压表、电流表均为理想电表,电源内阻不可忽略.开关S闭合后,在滑动变阻器R1的滑片P向右端滑动的过程中()A.电压表与电流表的示数都增大B.电压表的示数减小,电流表的示数增大C.电阻R2消耗的电功率增大D.电源内阻消耗的功率减小【解答】解:AB、当滑片P右移时,滑动变阻器接入电路的电阻增大,则外电路总电阻增大,电路中总电流减小,电源的内电压减小,由闭合电路欧姆定律可知,路端电压增大,故电压表示数增大;由欧姆定律可知,R3上的分压减小,而路端电压增大,故并联部分的电压增大,则电流表示数增大,故A正确、B错误;C、滑动变阻器接入电路的电阻增大,R1与R2的并联电阻增大,并联电路的电压随之增大,因此电阻R2消耗的电功率增大.故C正确.D、总电流减小,由P=I2r知,电源内阻消耗的功率减小,故D正确.故选:ACD8.(6分)如图是用电流传感器(电流传感器相当于电流表,其电阻可以忽略不计)研究自感现象的实验电路,电源的电动势为E,内阻为r,自感线圈L的自感系数足够大,在t=0时刻闭合开关S,经过一段时间后,在t=t1时刻断开开关S.在下列所示的图象中,可能正确表示电流传感器记录的电流随时间变化情况是()A.B.C.D.【解答】解:当刚刚闭合开关时,L会阻碍电流的增大,所以流过L的电流只能逐渐增大.流过L的电流增大,则流过干路的电流增大,则电源的内电阻消耗的电压增大,路端电压减小,所以流过R的电流会逐渐减小,一直到电路稳定.故选项A是错误的;当断开电键,原来通过D的电流消失;由于电感阻碍自身电流变化,产生的感应电流流过电阻,其方向与规定图示流过电阻的方向相反,I慢慢减小最后为0.故选项C是错误的;若自感线圈L直流电阻值大于灯泡D的阻值,则稳定上通过线圈L的电流小于通过灯泡D的电流,所以B选项是可能的;若自感线圈L直流电阻值小于灯泡D的阻值,则稳定上通过线圈L的电流大于通过灯泡D的电流,所以D选项是可能的.故AC错误,BD正确.故选:BD三、非选择题:包括必考题和选考题两部分.第9题~第12题为题,每个考题考生都必须作答,第13~18为选考题,考生格局要求作答.9.(6分)某同学做“研究匀变速直线运动”的实验.(1)做本实验时不需要(填“需要”或“不需要”)平衡摩擦力.(2)已知打点计时器所用交流电的频率为50Hz.如图所示是“测定匀变速直线运动的加速度”的实验中电磁打点计时器打出的纸带,图中0、1、2、3、4、5、6是按时间先后顺序标出的计数点,用刻度尺测得:x1=2.70cm,x2=3.20cm,x3=3.68cm,x4=4.18cm,x5=4.69cm,x6=5.17cm.那么:(计算结果保留三位有效数字)①在计时器打出点2时,小车的速度大小为v2=0.860m/s.②小车的加速度的大小为a= 3.10m/s2.【解答】解:(1)做“研究匀变速直线运动”的实验,过程中是否有摩擦力,对实验没有影响.(2)①由于每2个点取一个计数点的纸带,所以相邻的计数点间的时间间隔:T=0.04s,根据匀变速直线运动中时间中点的速度等于该过程中的平均速度,可以求出打纸带上2点时小车的瞬时速度大小.v2===0.860m/s②根据匀变速直线运动的推论公式△x=aT2可以求出加速度的大小,得:s4﹣s1=3a1T2s5﹣s2=3a2T2s6﹣s3=3a3T2为了更加准确的求解加速度,我们对三个加速度取平均值,得:a=(a1+a2+a3)==≈3.10m/s2.故答案为:(1)不需要;(2)①0.860;②3.10.10.(9分)某学习小组探究电学元件的伏安特性曲线.(1)甲同学要描绘一个标有“3.6V,1.2W”的小灯泡的伏安特性曲线,除了导线和开关外,还有下列器材可供选择:电压表V(量程5V,内阻约为5kΩ)直流电源E(电动势4.5V,内阻不计)电流表A1(量程350mA,内阻约为1Ω)电流表A2(量程150mA,内阻约为2Ω)滑动变阻器R1(阻值0~200Ω)滑动变阻器R2(阻值0~10Ω)实验中电流表应选A1,滑动变阻器应选R2;(填写器材代号)以下的四个电路中应选用A进行实验.(2)根据所选电路图,请在图1中用笔画线代替导线,把实验仪器连接成完整的实验电路.(3)利用实验得到了8组数据,在如图2所示的I﹣U坐标系中,通过描点连线得到了小灯泡的伏安特性曲线.将同种规格的两个这样的小灯泡并联后再与R=10Ω的定值电阻串联,接在电动势为8V、内阻不计的电源上,如图3所示.闭合开关S后,电流表的示数为0.6A,两个小灯泡的总功率为 1.2W.【解答】解:(1)由图示图象可知,电流的最大测量值小于0.5A,故能准确测量的只有A1;故电流表选择A1,滑动变阻器采用分压接法,为方便实验操作,滑动变阻器应选R2.由图示图象可知,电流与电压的测量值从零开始变化,滑动变阻器应采用分压接法,实验应采用图A所示电路图.(2)根据所选原理图可得出对应的实物图;如图所示;(3)由图3所示电路图可知,两灯泡并联,可以把电源与定值电阻等效为电源,设每只电灯加上的实际电压和实际电流分别为U和I.在这个闭合电路中,E=U+2IR0,代入数据并整理得,U=8﹣20I,在图a所示坐标系中作出U=8﹣20I的图象如图所示,由图象可知,两图象交点坐标值为:U=2V、I=0.3A,此时通过电流表的电流值I A=2I=0.6A,每只灯泡的实际功率P=UI=2×0.3=0.6W,两个小灯泡的总功率为1.2W;故答案为:(1)A1;R2;A;(2)如图所示;(3)0.6;1.2.11.(14分)在第二象限内有水平向右的匀强电场,在第一象限内存在一个垂直于xOy平面但方向未知的圆形匀强磁场,圆形磁场与x轴相切于B点,与y轴相切于A点.第四象限内存在匀强磁场,方向如图所示,第一、四象限内匀强磁场的磁感应强度大小相等.现有一个质量为m、电荷量为q的带电粒子在该平面内从x轴上的P点,以垂直于x轴的初速度v0进入匀强电场,恰好经过y轴上的A 点且与y轴成45°角射出电场,再经过一段时间又恰好经过x轴上的B点进入下面的磁场.已知OP之间的距离为d,不计粒子的重力,求:(1)A点的坐标;(2)第一象限圆形匀强磁场的磁感应强度B0的大小及方向;(3)带电粒子自进入电场至在磁场中第二次经过x轴的时间.【解答】解:(1)设A点的纵坐标为h,到达A点的水平分速度为v x,则由类平抛运动的规律可知竖直方向匀速直线运动,有:h=v0t水平方向匀加速直线运动平均速度为:=d=v x t根据速度的矢量合成有:tan45°=可得:h=2d(2)粒子在磁场中向下偏转,由左手定则可知,磁场的方向向外;粒子在磁场中的运动轨迹如图所示,设粒子在磁场中运动的半径为R,周期为T.则由几何关系可知:R=•2d=d带电粒子进入磁场时的速度大小为:v=v0则由牛顿第二定律得:qvB0=m联立解得:B0=(3)粒子在磁场中运动的周期为:T==设粒子在电场中的运动时间为t1,有:t1=设粒子在磁场中的运动时间为t2,由图可知,粒子在两处磁场中运动的时间为:t2=T+T=T=则总时间为:t=t1+t2=答:(1)A点的坐标为(0,2d );(2)第一象限圆形匀强磁场的磁感应强度B0的大小,方向垂直于纸面向外;(3)带电粒子自进入电场至在磁场中第二次经过x轴的时间是.12.(18分)如图所示,AB是倾角为θ=45°的倾斜轨道,BC是一个水平轨道(物体经过B处时无机械能损失),AO是一竖直线,O、B、C在同一水平面上.竖直平面内的光滑圆形轨道最低点与水平面相切于C点,已知:A、O两点间的距离为h=1m,B、C两点间的距离d=2m,圆形轨道的半径R=1m.一质量为m=2kg 的小物体(可视为质点),从与O点水平距离x0=3.6m的P点水平抛出,恰好从A 点以平行斜面的速度进入倾斜轨道,最后进入圆形轨道.小物体与倾斜轨道AB、水平轨道BC之间的动摩擦因数都是μ=0.5,重力加速度g=10m/s2.(1)求小物体从P点抛出时的速度v0和P点的高度H;(2)求小物体运动到圆形轨道最点D时,对圆形轨道的压力大小;(3)若小物体从Q点水平抛出,恰好从A点以平行斜面的速度进入倾斜轨道,最后进入圆形轨道,且小物体不能脱离轨道,求Q、O两点的水平距离x的取值范围.【解答】解:(1)小物体从P到A做平抛运动,由题知,物体经过A点时速度平行于斜面向下,设物体经过A点时竖直分速度大小为v y.则有v y=v0tan45°=v0;又v y=,得=v0;水平距离x0=v0t=v0联立解得v0=6m/s,H=2.8m(2)物体从P到D的过程,由动能定理得:mg(H﹣2R)﹣μmgcos45°•h﹣μmgd=﹣在D点,由牛顿第二定律得mg+N=m联立解得N=24N由牛顿第三定律知,物体对圆形轨道的压力大小为24N.(3)要保证小物体不脱离轨道,可分两种情况进行讨论:第一种情况,能通过最高点D.第二种情况,所能到达的最高点小于等于圆心的高度.第一种情况,小球能通过最高点D时设O、Q的水平距离为x1,恰好通过圆形轨道的最高点D.小物体从Q点水平抛出后,恰好从A点以平行于斜面的速度进入倾斜轨道时,根据第1问可得小物体到达A点的速度v′A=恰好通过圆形轨道的最高点D时,只有重力充当向心力,得mg=m由动能定理得﹣mg(2R﹣h)﹣μmgcosθ•﹣μmgd=﹣代入数据解得x1=2.5m小物体能通过最高点D,所以O、Q的水平距离x≥x1=2.5m第二种情况,所能到达的高度小于等于圆心的高度时,设O、Q的水平距离为x2,恰好到达圆心高度.小物体从Q点水平抛出后,恰好从A点以平行于斜面的速度进入倾斜轨道时,根据第1问可得小物体到达A点的速度v″A=恰好到达圆心的高度时,末速度为0由动能定理得﹣μmgcosθ•﹣μmgd=0﹣代入数据解得x2=1.5m。
2016年全国大联考高考物理三模试卷和答案(新课标ⅲ卷)
2016年全国大联考高考物理三模试卷(新课标Ⅲ卷)一、选择题:本题共8个小题,每小题6分.在每小题给出的四个选项中,第1~4题只有一项符合题目要求,第5~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.1.(6分)在研究物理学的过程中,往往要接触到研究物理的方法,下列说法正确的是()A.伽利略在证明自由落体运动是匀变速直线运动时,采用了等效替代法B.“如果电场线与等势面不垂直,那么电场强度沿着等势面方向就有一个分量,在等势面上移动电荷时静电力就要做功”,这里使用的是归纳法C.在不需要考虑物体本身的大小和形状时,用质点来代替物体的方法是微元法D.在探究加速度与力、质量的关系实验中使用了控制变量的思想方法2.(6分)如图1所示为一足够长的光滑斜面,一定质量的滑块从斜面的底端由静止开始在一沿斜面向上的外力作用下运动,经10s的时间撤走外力,利用速度传感器在计算机上描绘了滑块在0~30s内的速度﹣时间图象,如图2所示.则下列说法正确的是()A.滑块在0~10 s内的平均速度等于10~20 s内的平均速度B.滑块在0~30 s内的位移最大C.滑块在10~20 s内的加速度与20~30 s内的加速度等大反向D.滑块在10~20 s内的位移与20~30 s内的位移等大反向3.(6分)已知火星的质量比地球的小,火星的公转半径比地球的大.如果将火星和地球互换位置,则()A.火星的公转周期将小于365天B.在地球表面发射卫星的第一宇宙速度将大于7.9 km/sC.火星公转的半径的三次方与公转周期平方的比值与地球公转的半径的三次方与公转周期平方的比值仍然相等D.火星和地球受太阳的万有引力不变4.(6分)如图所示,一质量为m的物块静止在倾角为θ的斜面上.现物块受到与斜面成α角的力F作用,且仍处于静止状态.若增大力F,物块和斜面始终保持静止状态.则()A.物块受到斜面的摩擦力变小B.物块对斜面的压力变小C.斜面受地面的摩擦力大小不变D.斜面对地面的压力大小不变5.(6分)如图所示电场,实线表示电场线.一个初速度为v的带电粒子仅在电场力的作用下从a点运动到b点,虚线表示其运动的轨迹.则()A.粒子带正电B.粒子受到的电场力不断减小C.a点电势高于b点电势D.电场力一直做正功,动能增加6.(6分)如图所示,匀强磁场垂直于纸面向里,匀强电场竖直向上.质量为m、电荷量为q的小球以速率v在复合场区域做匀速圆周运动.已知匀强磁场的磁感应强度为B,重力加速度为g.则()A.小球带负电B.电场强度大小为C.小球做圆周运动的半径为D.小球做圆周运动的周期为7.(6分)一个理想变压器,开始时开关S接1,此时原、副线圈的匝数比为9:1.一个理想二极管和一个滑动变阻器串联接在副线圈上,此时滑动变阻器接入电路的阻值为10Ω,如图1所示.原线圈接入如图2所示的正弦式交流电.则下列判断正确的是()A.电压表的示数为4 VB.滑动变阻器消耗的功率为0.8 WC.若将开关S由1拨到2,同时滑动变阻器滑片向下滑动,电流表示数将变大D.若将二极管用导线短接,电流表示数加倍8.(6分)如图所示,用粗细均匀的铜导线制成半径为r的圆环,PQ为圆环的直径,其左右两侧存在垂直圆环所在平面的匀强磁场,磁感应强度大小均为B,但方向相反,圆环的电阻为2R.一根长度为2r、电阻为R的金属棒MN绕着圆环的圆心O点紧贴着圆环以角速度ω沿顺时针方向匀速转动,转动过程中金属棒MN与圆环始终接触良好,则下列说法正确的是()A.金属棒MN两端的电压大小为Bωr2B.圆环消耗的电功率是变化的C.圆环中电流的大小为D.金属棒MN旋转一周的过程中,电路中产生的热量为二、非选择题:包括必考题和选考题两部分.第9题~第12题为必考题,每个试题考生都必须作答.第13题~第18题为选考题,考生根据要求作答.(一)必考题9.(5分)某活动小组利用如图所示的装置测定物块A与桌面间的最大静摩擦力,步骤如下:a.如图所示组装好器材,使连接物块A的细线与水平桌面平行b.缓慢向矿泉水瓶内加水,直至物块A恰好开始运动c.用天平测出矿泉水瓶及水的总质量md.用天平测出物块A的质量M(1)该小组根据以上过程测得的物块A与桌面间的最大静摩擦力为,本小组采用注水法的好处是.(当地重力加速度为g)(2)若认为最大静摩擦力等于滑动摩擦力,则物块A与桌面间的动摩擦因数为.10.(10分)新能源汽车是今后汽车发展的主流方向,如图1所示为车载动力电池,其技术参数是额定容量约120A•h,额定电压约3.3V,内阻约0.03Ω.现有一个用了很长时间已经老化的这种电池,某研究小组想测量这个电池的电动势和内阻,但实验器材仅有一个电流表(量程100mA、内阻90Ω)、﹣个定值电阻R0=10Ω、一个电阻箱R、一个开关S和导线若干.该同学按如图2所示电路进行实验,测得的数据如下表所示.(1)实验中将电流表与定值电阻并联实质上是把电流表改装成了大量程的电流表,则改装后的电流表的测量值I与原电流表的读数I0的关系为.(2)若利用图象确定电池的电动势和内阻,则应作(填“R﹣I”或“R﹣”)图象.(3)利用测得的数据在图3坐标纸上作出适当的图象.(4)由图象可知,该电池的电动势E=V,内阻r=Ω.11.(14分)随着时代的不断发展,快递业发展迅猛,大量的快件需要分拣.为了快件的安全,某网友发明了一个缓冲装置,其理想模型如图所示.劲度系数足够大的轻质弹簧与轻杆相连,轻杆可在固定的槽内移动,与槽间有恒定的滑动摩擦力作用,轻杆向下移动一定距离后才停下,保证了快件的安全.一质量为m 的快件从弹簧上端l处由静止释放,沿斜面下滑后与轻杆相撞,轻杆与槽间最大静摩擦力等于滑动摩擦力,大小为f=mg,不计快件与斜面间的摩擦.(1)求快件与弹簧相撞时的速度大小.(2)若弹簧的劲度系数为k=,求轻杆开始移动时,弹簧的压缩量x1.(3)已知弹簧的弹性势能表达式为E p=,其中k为劲度系数,x为弹簧的形变量.试求(2)情况下,轻杆向下运动时快件的加速度a,以及轻杆向下移动的最大距离x2.12.(18分)如图所示,A、B是一对平行的金属板,在两板间加上一周期为T 的交变电压.B板的电势φB=0,A板的电势φA随时间的变化规律为:在0~时间内φA=U(正的常量);在~T时间内φA=﹣U.现有一电荷量为q、质量为m 的带负电粒子从B板上的小孔S处进入两板间的电场区内,设粒子的初速度和重力均可忽略.(1)若粒子是在t=0时刻进入的,且经过2T时间恰好到达A板,则A、B两板间距d1为多大?(2)若粒子是在t=时刻进入的,且经过时间恰好到达A板,则A、B两板间距d2为多大?(3)若粒子是在t=时刻进入的,且A、B两板间距足够大,则粒子经过多长时间离开电场?(二)选考题,请考生任选一模块作答[物理--选修3-3](15分)13.(5分)下列说法中正确的是()A.分子间的距离增大时,分子势能一定增大B.晶体有确定的熔点,非晶体没有确定的熔点C.根据热力学第二定律可知,热量不可能从低温物体传到高温物体D.物体吸热时,它的内能可能不增加E.一定质量的理想气体,如果压强不变,体积增大,那么它一定从外界吸热14.(10分)如图,在圆柱形气缸中用一光滑导热活塞封闭一定质量的理想气体,在气缸底部开有一小孔,与U形导管相连,稳定后导管两侧水银面的高度差为h=1.5cm,此时活塞离容器底部的高度为L=50cm.已知气缸横截面积S=0.01m2,室温t0=27℃,外界大气压强为p0=75cm,Hg=1.0×105 Pa.(i)求活塞的质量;(ii)使容器内温度降至﹣63℃,求此时U形管两侧水银面的高度差和活塞离容器底部的高度L′.[物理--选修3-4](15分)15.一列简谐横波沿x轴传播,已知x轴上x1=0和x2=1m处两质点a、b的振动图象如图1、2所示,该波的波长λ>1m.则下列说法中正确的是()A.该波的频率为0.04 HzB.该波的周期为0.04 sC.该波的波长一定为4 mD.该波的传播速度可能为100 m/sE.两质点a、b不可能同时在波峰或波谷位置16.某探究小组的同学利用直角三棱镜做光学实验,棱镜的横截面如图所示,α=30°,BC边长度为a.P为垂直于直线BC的光屏.现有一宽度等于AB边长度的平行单色光束垂直射向AB面,棱镜的折射率为,已知sin75°=,cos75°=,求:(i)光线从AC面射出时的折射角;(ii)在光屏P上被折射光线照亮的光带的宽度.[物理--选修3-5](15分)17.下列说法正确的是()A.黑体辐射电磁波的强度只与黑体的温度有关B.光子与电子是同一种粒子C.发现中子的核反应方程是D.比结合能越小,表示原子核中核子结合得越牢固,原子核越稳定E.玻尔的原子理论第一次将量子观念引入原子领域,成功地解释了氢原子光谱的实验规律18.如图所示,甲、乙两小孩各乘一辆冰车在山坡前的水平冰道上做游戏.甲和他的冰车的总质量M=40kg,从山坡上自由下滑到水平冰道上的速度v1=3m/s;乙和他的冰车的总质量m=60kg,以大小为v2=0.5m/s的速度迎着甲滑来,与甲相碰.不计一切摩擦,山坡与水平冰道间光滑连接.求:(i)相碰后两人在一起共同运动的速度v;(ii)相碰后乙获得速度v2′=2m/s,则以后在原直线上运动甲、乙两人是否还会相碰.2016年全国大联考高考物理三模试卷(新课标Ⅲ卷)参考答案与试题解析一、选择题:本题共8个小题,每小题6分.在每小题给出的四个选项中,第1~4题只有一项符合题目要求,第5~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.1.(6分)在研究物理学的过程中,往往要接触到研究物理的方法,下列说法正确的是()A.伽利略在证明自由落体运动是匀变速直线运动时,采用了等效替代法B.“如果电场线与等势面不垂直,那么电场强度沿着等势面方向就有一个分量,在等势面上移动电荷时静电力就要做功”,这里使用的是归纳法C.在不需要考虑物体本身的大小和形状时,用质点来代替物体的方法是微元法D.在探究加速度与力、质量的关系实验中使用了控制变量的思想方法【解答】解:A、伽利略在研究自由落体运动时采用了理想实验和逻辑推理的方法.故A错误.B、“如果电场线与等势面不垂直,那么电场强度沿着等势面方向就有一个分量,在等势面上移动电荷时静电力就要做功.”用的是反证法.故B错误.C、在不需要考虑物体本身的大小和形状时,用质点来代替物体的方法理想模型法.故C错误.D、在探究加速度与力、质量的关系实验中使用了控制变量的思想方法.故D正确.故选:D2.(6分)如图1所示为一足够长的光滑斜面,一定质量的滑块从斜面的底端由静止开始在一沿斜面向上的外力作用下运动,经10s的时间撤走外力,利用速度传感器在计算机上描绘了滑块在0~30s内的速度﹣时间图象,如图2所示.则下列说法正确的是()A.滑块在0~10 s内的平均速度等于10~20 s内的平均速度B.滑块在0~30 s内的位移最大C.滑块在10~20 s内的加速度与20~30 s内的加速度等大反向D.滑块在10~20 s内的位移与20~30 s内的位移等大反向【解答】解:A、根据速度时间图象与时间轴包围的面积表示位移,可知,滑块在0~10 s内的位移大于10~20 s内的位移,则滑块在0~10 s内的平均速度大于10~20 s内的平均速度.故A错误.B、根据速度时间图象与时间轴包围的面积表示位移,图象在时间轴上方表示的位移为正,图象在时间轴下方表示的位移为负,则知滑块在0~20 s内的位移最大.故B错误.C、图象的斜率表示加速度,而直线的斜率是一定值,所以滑块在10~20 s内的加速度与20~30 s内的加速度等大同向,故C错误.D、根据面积表示位移,可知滑块在10~20 s内的位移与20~30 s内的位移等大反向,故D正确.故选:D3.(6分)已知火星的质量比地球的小,火星的公转半径比地球的大.如果将火星和地球互换位置,则()A.火星的公转周期将小于365天B.在地球表面发射卫星的第一宇宙速度将大于7.9 km/sC.火星公转的半径的三次方与公转周期平方的比值与地球公转的半径的三次方与公转周期平方的比值仍然相等D.火星和地球受太阳的万有引力不变【解答】解:A、根据万有引力提供向心力,有,解得,火星和地球的位置互换,火星的公转周期将等于365天,故A错误.B、根据,解得第一宇宙速度公式,地球质量和半径不变,所以在地球表面发射卫星的第一宇宙速度将仍等于7.9km/s,故B错误.C、根据开普勒第三定律,对同一个中心天体的比值相等,故C正确.D、根据万有引力定律,火星和地球与太阳之间的距离改变,所以万有引力改变,故D错误.故选:C4.(6分)如图所示,一质量为m的物块静止在倾角为θ的斜面上.现物块受到与斜面成α角的力F作用,且仍处于静止状态.若增大力F,物块和斜面始终保持静止状态.则()A.物块受到斜面的摩擦力变小B.物块对斜面的压力变小C.斜面受地面的摩擦力大小不变D.斜面对地面的压力大小不变【解答】解:A、对物块受力分析,受到重力、斜面的支持力N、拉力F以及斜面对物块的摩擦力f,根据平衡条件可知,若mgsinθ>Fcosα,则f=mgsinθ﹣Fcosα,F增大,f减小,若mgsinθ<Fcosα,则f=Fcosα﹣mgsinθ,F增大,f增大,N=mgcosα﹣Fsinα,F增大,N减小,根据牛顿第三定律可知,物块对斜面的压力变小,故A错误,B正确;C、把物块和斜面看成一个整体,设斜面质量为M,对整体,根据平衡条件得:地面对斜面的支持力N′=(M+m)g﹣Fsin(α+θ),F增大,N′减小,根据牛顿第三定律可知,斜面对地面的压力大小减小,斜面受地面的摩擦力f′=Fcos(α+θ),F增大,f′增大,故CD错误.故选:B5.(6分)如图所示电场,实线表示电场线.一个初速度为v的带电粒子仅在电场力的作用下从a点运动到b点,虚线表示其运动的轨迹.则()A.粒子带正电B.粒子受到的电场力不断减小C.a点电势高于b点电势D.电场力一直做正功,动能增加【解答】解:A、由轨迹弯曲方向可判断出电场力方向,受力方向指向弧内,则粒子带负电荷,故A错误.B、电场线的疏密代表电场的强弱,从a到b,电场强度先增大后减小,则粒子受到的电场力先增大后减小,故B错误;C、沿着电场线方向电势降低,则a点电势高于b点电势,故C正确;D、电场力方向与速度方向夹角大于90°,一直做负功,动能减小.故D错误.故选:C6.(6分)如图所示,匀强磁场垂直于纸面向里,匀强电场竖直向上.质量为m、电荷量为q的小球以速率v在复合场区域做匀速圆周运动.已知匀强磁场的磁感应强度为B,重力加速度为g.则()A.小球带负电B.电场强度大小为C.小球做圆周运动的半径为D.小球做圆周运动的周期为【解答】解:A、小球做匀速圆周运动,靠洛伦兹力提供向心力,则mg=qE,电场力方向竖直向上,那么小球带正电,故A错误.B、由mg=qE,得电场强度大小为E=,故B错误.C、洛伦兹力提供向心力qvB=m,得圆周运动的半径R=,故C正确.D、小球做圆周运动的周期T==,故D正确.故选:CD7.(6分)一个理想变压器,开始时开关S接1,此时原、副线圈的匝数比为9:1.一个理想二极管和一个滑动变阻器串联接在副线圈上,此时滑动变阻器接入电路的阻值为10Ω,如图1所示.原线圈接入如图2所示的正弦式交流电.则下列判断正确的是()A.电压表的示数为4 VB.滑动变阻器消耗的功率为0.8 WC.若将开关S由1拨到2,同时滑动变阻器滑片向下滑动,电流表示数将变大D.若将二极管用导线短接,电流表示数加倍【解答】解:A、原线圈交流电压的有效值为:,根据电压与匝数成正比,,得:,二极管具有单向导电性,根据电流的热效应有:,解得:,即电压表读数为,故A错误;B、滑动变阻器消耗的功率为:,故B正确;C、将开关S由1拨到2,同时滑动变阻器滑片向下滑动,根据电压与匝数成正比,副线圈电压变小,滑动变阻器电阻变大,输出功率变小,输入功率变小,根据,电流表示数将变小,故C错误;D、用将二极管用导线短接,输出功率加倍,输入功率加倍,电流表示数加倍,故D正确;故选:BD8.(6分)如图所示,用粗细均匀的铜导线制成半径为r的圆环,PQ为圆环的直径,其左右两侧存在垂直圆环所在平面的匀强磁场,磁感应强度大小均为B,但方向相反,圆环的电阻为2R.一根长度为2r、电阻为R的金属棒MN绕着圆环的圆心O点紧贴着圆环以角速度ω沿顺时针方向匀速转动,转动过程中金属棒MN与圆环始终接触良好,则下列说法正确的是()A.金属棒MN两端的电压大小为Bωr2B.圆环消耗的电功率是变化的C.圆环中电流的大小为D.金属棒MN旋转一周的过程中,电路中产生的热量为【解答】解:A、C、由右手定则,MN中电流方向由N到M,根据法拉第电磁感应定律可得,产生的感应电动势为两者之和,即E=2Bω=Bωr2,保持不变.环的电阻由两个电阻为R的半圆电阻并联组成,所以环的总电阻为,所以通过导体MN的电流:I==MN两端的电压:=所以流过环的电流:.故A正确,C正确;B、由A的分析可知,流过环的电流不变,则环消耗的电功率不变,故B错误;D、MN旋转一周外力做功为=,故D正确;故选:ACD二、非选择题:包括必考题和选考题两部分.第9题~第12题为必考题,每个试题考生都必须作答.第13题~第18题为选考题,考生根据要求作答.(一)必考题9.(5分)某活动小组利用如图所示的装置测定物块A与桌面间的最大静摩擦力,步骤如下:a.如图所示组装好器材,使连接物块A的细线与水平桌面平行b.缓慢向矿泉水瓶内加水,直至物块A恰好开始运动c.用天平测出矿泉水瓶及水的总质量md.用天平测出物块A的质量M(1)该小组根据以上过程测得的物块A与桌面间的最大静摩擦力为mg,本小组采用注水法的好处是可以连续的改变拉力.(当地重力加速度为g)(2)若认为最大静摩擦力等于滑动摩擦力,则物块A与桌面间的动摩擦因数为.【解答】解:(1)根据共点力平衡可知,最大静摩擦力f=mg,可以连续不断地注入水,即连续不断的改变拉力(2)根据共点力平衡可知,μMg=mag解得故答案为:(1)mg,可以连续的改变拉力;(2)10.(10分)新能源汽车是今后汽车发展的主流方向,如图1所示为车载动力电池,其技术参数是额定容量约120A•h,额定电压约3.3V,内阻约0.03Ω.现有一个用了很长时间已经老化的这种电池,某研究小组想测量这个电池的电动势和内阻,但实验器材仅有一个电流表(量程100mA、内阻90Ω)、﹣个定值电阻R0=10Ω、一个电阻箱R、一个开关S和导线若干.该同学按如图2所示电路进行实验,测得的数据如下表所示.(1)实验中将电流表与定值电阻并联实质上是把电流表改装成了大量程的电流表,则改装后的电流表的测量值I与原电流表的读数I0的关系为I=10I0.(2)若利用图象确定电池的电动势和内阻,则应作R﹣(填“R﹣I”或“R﹣”)图象.(3)利用测得的数据在图3坐标纸上作出适当的图象.(4)由图象可知,该电池的电动势E= 3.2V,内阻r=2Ω.【解答】解:(1)由图可知,电流表与定值电阻并联,则根据并联电路规律可知,I=I0+=10I0;(2)本实验采用电阻箱和电流表串联来测量电动势和内电阻,则根据闭合电路欧姆定律可知:I=,要想得出直线,同应变形为:R=E﹣r;故应作出R﹣图象;(3)根据(1)可知,电流是电流表示数的10倍,求出表中各对应的电流的倒数,在图中作出R﹣图象如图所示;(4)根据(2)中表达式可知,图中斜率表示电动势E,则E==3.2V;图象与纵坐标的交点表示内阻,则r=2Ω;故答案为:(1)I=10I0;(2)R﹣;(3)如图所示;(4)3.2;2.11.(14分)随着时代的不断发展,快递业发展迅猛,大量的快件需要分拣.为了快件的安全,某网友发明了一个缓冲装置,其理想模型如图所示.劲度系数足够大的轻质弹簧与轻杆相连,轻杆可在固定的槽内移动,与槽间有恒定的滑动摩擦力作用,轻杆向下移动一定距离后才停下,保证了快件的安全.一质量为m 的快件从弹簧上端l处由静止释放,沿斜面下滑后与轻杆相撞,轻杆与槽间最大静摩擦力等于滑动摩擦力,大小为f=mg,不计快件与斜面间的摩擦.(1)求快件与弹簧相撞时的速度大小.(2)若弹簧的劲度系数为k=,求轻杆开始移动时,弹簧的压缩量x1.(3)已知弹簧的弹性势能表达式为E p=,其中k为劲度系数,x为弹簧的形变量.试求(2)情况下,轻杆向下运动时快件的加速度a,以及轻杆向下移动的最大距离x2.【解答】解:(1)由于不计快件与斜面间的摩擦,所以快件向下运动的过程中机械能守恒,得:①所以:v1==(2)轻杆开始移动时,弹簧的弹力F=kx1②且F=f=mg ③解得x1==(3)轻杆开始移动时,弹簧的弹力F=kx=④沿斜面的方向,选取向下为正方向,由牛顿第二定律得:ma=mgsinθ﹣F ⑤联立④⑤得:a=负号表示方向向上.设杆移动前快件对弹簧所做的功为W,则快件开始运动到杆刚刚开始运动的过程中,对快件由动能定理得:⑥由于快件对弹簧所做的功为W转化为弹簧的弹性势能,即:W=E p=⑦联立得:快件向下做减速运动,有运动学的公式得:所以:答:(1)求快件与弹簧相撞时的速度大小是.(2)若弹簧的劲度系数为k=,轻杆开始移动时,弹簧的压缩量是.(3)已知弹簧的弹性势能表达式为E p=,其中k为劲度系数,x为弹簧的形变量.在(2)情况下,轻杆向下运动时快件的加速度大小是,方向向上,轻杆向下移动的最大距离x2是l.12.(18分)如图所示,A、B是一对平行的金属板,在两板间加上一周期为T 的交变电压.B板的电势φB=0,A板的电势φA随时间的变化规律为:在0~时间内φA=U(正的常量);在~T时间内φA=﹣U.现有一电荷量为q、质量为m 的带负电粒子从B板上的小孔S处进入两板间的电场区内,设粒子的初速度和重力均可忽略.(1)若粒子是在t=0时刻进入的,且经过2T时间恰好到达A板,则A、B两板间距d1为多大?(2)若粒子是在t=时刻进入的,且经过时间恰好到达A板,则A、B两板间距d 2为多大?(3)若粒子是在t=时刻进入的,且A、B两板间距足够大,则粒子经过多长时间离开电场?【解答】解:(1)0﹣内,向上做匀加速直线运动,加速度为:a=;位移为:y1=;结合分析中内容“在一个周期内,前半个周期受到的电场力向上,向上做加速运动,后半个周期受到的电场力向下,继续向上做减速运动,T时刻速度为零,接着周而复始“,做出v﹣t图象,如图所示:故前2T内的位移:y=4y1=d1;联立解得:d1=;(2)若粒子是在t=时刻进入的,且经过时间恰好到达A板,画出v﹣t图象,如上图中红色的坐标轴所示:v﹣t图象与时间轴包围的面积表示位移大小,故:d2===,解得:d2=;(3)若粒子是在t=时刻进入的,做出v﹣t图象,如图所示:显然在向上匀加速运动,向上匀减速,开始向下匀加速,直到离开电场,根据位移公式,有:0=×2﹣解得:t=;答:(1)若粒子是在t=0时刻进入的,且经过2T时间恰好到达A板,则A、B 两板间距d1为;(2)若粒子是在t=时刻进入的,且经过时间恰好到达A板,则A、B两板间距d2为;(3)若粒子是在t=时刻进入的,且A、B两板间距足够大,则粒子经过时间离开电场.。
2016年高考新课标Ⅲ卷理综物理试题解析(解析版)
2016年普通高等学校招生全国统一考试(新课标3)理科综合能力测试(物理)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效。
4.考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷(选择题共126分)本卷共21小题,每小题6分,共126分。
可能用到的相对原子质量:二、选择题:本大题共8小题,每小题6分。
在每小题给出的四个选项中,第14~17题只有一项是符合题目要求,第18~21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分。
有选错的得0分。
二、选择题:本题共8小题,每小题6分。
在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
14.关于行星运动的规律,下列说法符合史实的是A.开普勒在牛顿定律的基础上,导出了行星运动的规律B.开普勒在天文观测数据的基础上,总结出了行星运动的规律C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D.开普勒总结出了行星运动的规律,发现了万有引力定律【答案】B考点:考查了物理学史15.关于静电场的等势面,下列说法正确的是A.两个电势不同的等势面可能相交B.电场线与等势面处处相互垂直C.同一等势面上各点电场强度一定相等D.将一负的试探电荷从电势较高的等势面移至电势较低的等势面,电场力做正功【答案】B【解析】试题分析:等势面相交,则电场线一定相交,故在同一点存在两个不同的电场强度方向,与事实不符,A 错误;电场线与等势面垂直,B正确;同一等势面上的电势相同,但是电场强度不一定相同,C错误;将一负电荷从高电势处移动到低电势处,受到的电场力的方向是从低电势指向高电势,所以电场力的方向与运动的方向相反,电场力做负功,D 错误。
考点:考查了电势、等势面、电场强度、电场力做功16.一质点做速度逐渐增大的匀加速直线运动,在时间间隔t 内位移为s ,动能变为原来的9倍。
2016高三物理第三次模拟考试题(含答案)
2016高三物理第三次模拟考试题(含答案)2015-2016学年度上学期高三年级三模考试物理科试卷命题人:高三物理组满分:100分一、选择题(本题共12小题,每小题4分。
1-7为单选,8-12为多选。
全部选对的得4分,选对但不全的得2分,有选错的得0分。
)1、如图所示是某质点做直线运动的v-t图象,由图可知这个质点的运动情况是()A.质点15 s末离出发点最远,20 s末回到出发点 B.5 s~15 s过程中做匀加速运动,加速度为1 m/s2 C.15 s~20 s过程中做匀减速运动,加速度为3.2 m/s2 D.5 s~15 s过程中前5 s位移120m2、若已知月球质量为m月,半径为R,引力常量为G,如果在月球上() A.以初速度v0竖直上抛一个物体,则物体上升的最大高度为R2v202Gm月 B.以初速度v0竖直上抛一个物体,则物体落回到抛出点所用时间为R2v0Gm月 C.发射一颗绕月球做圆周运动的卫星,则最大运行速度为 RGm月 D.发射一颗绕月球做圆周运动的卫星,则最小周期为2π RGm月3、某电容式话筒的原理示意图如题图所示,E为电源,R为电阻,薄片P和Q为两金属基板。
对着话筒说话时,P振动而Q可视为不动。
在P、Q间距增大过程中()A.P、Q构成的电容器的电容增大 B.P上电荷量保持不变 C.M点的电势比N点的低 D.M点的电势比N点的高4、如图所示电路中,电源电动势为E,电源内阻为r,串联的固定电阻为R2,滑动变阻器的总电阻为R1,电阻大小关系为R1=R2=r,则在滑动触头从a端移动到b端的过程中,下列描述中正确的是() A.电路中的总电流先增大后减小 B.电路的路端电压先增大后减小 C.电源的输出功率先增大后减小 D.滑动变阻器R1上消耗的功率先减小后增大5、平行板电容器C与三个可变电阻器R1、R2、R3以及电源连成如图所示的电路.闭合开关S,待电路稳定后,电容器C两极板带有一定的电荷.要使电容器所带电荷量增加,以下方法中可行的是() A.只增大R1,其他不变 B.只增大R2,其他不变 C.只减小R3,其他不变 D.只增大a、b两极板间的距离,其他不变6、在研究微型电动机的性能时,应用如图所示的实验电路.调节滑动变阻器R并控制电动机停止转动时,电流表和电压表的示数分别为0.50 A和2.0 V.重新调节R 并使电动机恢复正常运转,此时电流表和电压表的示数分别为2.0 A和24.0 V.则这台电动机正常运转时输出功率为() A.32 W B.44 W C.47 W D.48 W7、如图所示,两根水平放置且相互平行的长直导线分别通有方向相反的电流I1与I2.且I1>I2,与两根导线垂直的同一平面内有a、b、c、d四点,a、b、c在两根导线的水平连线上且间距相等,b是两根导线连线的中点,b、d连线与两根导线连线垂直。
2016年广东省佛山一中高考物理三模试卷(解析版)
2016年广东省佛山一中高考物理三模试卷一、选择题(本大题共8小题,每小题6分.在每小题给出的四个选项中,第14-18题只有一项符合题目要求,第19~21题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分).1.(6分)在物理学发展过程中,观测、实验、假说和逻辑推理等方法都起到了重要作用.下列叙述符合史实的是()A.奥斯特在实验中观察到电流的磁效应,该效应解释了电和磁之间存在联系B.安培根据通电螺线管的磁场和条形磁铁的磁场的相似性,提出了分子电流假说C.法拉第在实验中观察到,在通有恒定电流的静止导线附近的固定导线圈中,会出现感应电流D.楞次在分析了许多实验事实后提出,感应电流应具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化2.(6分)下表面粗糙,其余面均光滑的斜面置于粗糙水平地面上,倾角与斜面相等的物体A放在斜面上,方形小物体B放在A上,在水平向左大小为F的恒力作用下,A、B及斜面均处于静止状态,如图所示.现将小物体B从A上表面上取走,则()A.斜面一定静止B.斜面一定向左运动C.斜面可能向左运动D.A仍保持静止3.(6分)如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R,小球半径为r,则下列说法正确的是()A.小球通过最高点时的最小速度v min=B.小球通过最高点时的最小速度v min=C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力4.(6分)太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动,当地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学称为“行星冲日”.已知地球及各地外行星绕太阳运动的轨道半径如下表所示,则下列结论正确的是()A.海王星绕太阳运动的周期约为98.32年,相邻两次冲日的时间间隔为1.006年B.土星绕太阳运动的周期约为29.28年,相邻两次冲日的时间间隔为5.04年C.天王星绕太阳运动的周期约为52.82年,相邻两次冲日的时间间隔为3.01年D.木星绕太阳运动的周期约为11.86年,相邻两次冲日的时间间隔为1.09年5.(6分)CD、EF是两条水平放置的阻值可忽略的平行金属导轨,导轨间距为L,在水平导轨的左侧存在磁感应强度方向垂直导轨平面向上的匀强磁场,磁感应强度大小为B,磁场区域的长度为d,如图所示.导轨的右端接有一电阻R,左端与一弯曲的光滑轨道平滑连接.将一阻值也为R的导体棒从弯曲轨道上h高处由静止释放,导体棒最终恰好停在磁场的右边界处.已知导体棒与水平导轨接触良好,且动摩擦因数为μ,则下列说法中正确的是()A.电阻R的最大电流为B.流过电阻R的电荷量为C.整个电路中产生的焦耳热为mghD.电阻R中产生的焦耳热为mgh6.(6分)理想变压器原线圈a匝数n1=200匝,副线圈b匝数n2=100匝,线圈a接在,μ=44sin314t(V)交流电源上,“12V,6W”的灯泡恰好正常发光.电阻R 2=16Ω,电压表V为理想电表.下列推断正确的是()A.交变电流的频率为100HzB.穿过铁芯的磁通量的最大变化率为Wb/sC.电压表V的示数为22VD.R1消耗的功率是1W7.(6分)如图所示,劲度数为k的轻弹簧的一端固定在墙上,另一端与置于水平面上质量为m的物体接触(未连接),弹簧水平且无形变.用水平力F缓慢推动物体,在弹性限度内弹簧长度被压缩了x0,此时物体静止.撤去F后,物体开始向左运动,运动的最大距离为4x0.物体与水平面间的动摩擦因数为μ,重力加速度为g.则()A.撤去F后,物体先做匀加速运动,再做匀减速运动B.撤去F后,物体刚运动时的加速度大小为﹣μgC.物体做匀减速运动的时间等于D.物体开始向左运动到速度最大的过程中克服摩擦力做的功为μmg(x0﹣)8.(6分)如图甲所示,在倾角为θ的光滑斜面上,有一个质量为m的物体在沿斜面方向的力F的作用下由静止开始运动,物体的机械能E随位移x的变化关系如图乙所示.其中0~x1过程的图线是曲线,x1~x2过程的图线为平行于x轴的直线,则下列说法中正确的是()A.物体在沿斜面向下运动B.在0~x1过程中,物体的加速度一直增大C.在0~x2过程中,物体先减速再匀速D.在x1~x2过程中,物体的加速度为gsinθ三、非选择题:包括必考题和选考题两部分.第22题~第32题为必考题,每个试题考生都必须作答.第33题~第40题为选考题,考生根据要求作答.(一)必考题(本大题共4小题,共129分)9.(6分)某实验小组用一只弹簧秤和一个量角器等器材验证力的平行四边形定则,设计了如图所示的实验装置,固定在竖直木板上的量角器的直边水平,橡皮筋的一端固定于量角器的圆心O的正上方A处,另一端系绳套1和绳套2.主要实验步骤如下:ⅰ.弹簧秤挂在绳套1上竖直向下拉橡皮筋,使橡皮筋的结点到达O处,记下弹簧秤的示数F;ⅱ.弹簧秤挂在绳套1上,手拉着绳套2,缓慢拉橡皮筋,使橡皮筋的结点到达O处,此时绳套1沿0o方向,绳套2沿120o方向,记下弹簧秤的示数F1;ⅲ.根据力的平行四边形定则计算绳套1的拉力F1′=①;ⅳ.比较②,即可初步验证;ⅴ.只改变绳套2的方向,重复上述实验步骤.回答下列问题:(1)完成实验步骤:①;②;(2)将绳套1由0o方向缓慢转动到60o方向,同时绳套2由120o方向缓慢转动到180o方向,此过程中保持橡皮筋的结点在O处不动,保持绳套1和绳套2的夹角120o不变.关于绳套1的拉力大小的变化,下列结论正确的是(填选项前的序号)A.逐渐增大B.先增大后减小C.逐渐减小D.先减小后增大.10.(9分)如图(甲)表示某电阻R随摄氏温度t变化的关系,图中R0表示0℃时的电阻,K表示图线的斜率.若用该电阻与电池(E,r)、电流表R g、变阻器R′串连起来,连接成如图(乙)所示的电路,用该电阻做测温探头,把电流表的电流刻度改为相应的温度刻度,于是就得到了一个简单的“电阻测温计”.①实际使用时要把电流表的刻度值改为相应的温度刻度值,若温度t1<t2,则t1的刻度应在t2的侧(填“左”、“右”);②在标识“电阻测温计”的温度刻度时,需要弄清所测温度和电流的对应关系.请用E、R0、K等物理量表示所测温度t与电流I的关系式:t=;③由②知,计算温度和电流的对应关系,需要测量电流表的内阻(约为200Ω).已知实验室有下列器材:A.电阻箱(0~99.99Ω);B.电阻箱(0~999.9Ω);C.滑线变阻器(0~20Ω);D.滑线变阻器(0~20kΩ).此外,还有电动势合适的电源、开关、导线等.请在图丙方框内设计一个用“半偏法”测电流表内阻Rg的电路;在这个实验电路中,电阻箱应选;滑线变阻器应选.(只填代码)11.(14分)如图所示,半径为R的水平绝缘圆盘可绕竖直轴OO′转动,水平虚线AB、CD互相垂直,一电荷量为+q的可视为质点的小物块置于距转轴r处,空间有方向A指向B的匀强电场.当圆盘匀速转动时,小物块相对圆盘始终静止.小物块转动到位置Ⅰ(虚线AB上)时受到的摩擦力为零,转动到位置Ⅱ(虚线CD 上)时受到的摩擦力为f.求:(1)圆盘边缘两点间电势差的最大值;(2)小物块由位置Ⅰ转动到位置Ⅱ克服摩擦力做的功.12.(18分)如图所示,等腰直角三角形ACD的直角边长为2a,P为AC边的中点,Q为CD边上的一点,DQ=a.在△ACD区域内,既有磁感应强度大小为B、方向垂直纸面向里的匀强磁场,又有电场强度大小为E的匀强电场,一带正电的粒子自P点沿平行于AD的直线通过△ACD区域.不计粒子的重力.(1)求电场强度的方向和粒子进入场区的速度大小v0;(2)若仅撤去电场,粒子仍以原速度自P点射入磁场,从Q点射出磁场,求粒子的比荷;(3)若仅撤去磁场,粒子仍以原速度自P点射入电场,求粒子在△ACD区域中运动的时间.(二)选考题:共45分.请考生从给出的3道物理题、3道化学题、2道生物题中每科任选一题作答,并用2B铅笔在答题卡上把所选题目题号后的方框涂黑.注意所做题目的题号必须与所涂题目的题号一致,在答题卡选答区域指定位置答题.如果多做,则每学科按所做的第一题计分.【物理-选修3-3】13.(5分)下列说法正确的是()A.当一定量气体吸热时,其内能可能减小B.玻璃、石墨和金刚石都是晶体,木炭是非晶体C.气体分子单位时间内和单位面积器壁碰撞的次数,与单位体积内气体的分子数和气体温度有关D.当液体与大气相接触时,液体表面层内的分子所受其它分子作用力的合力总是指向液体内部E.单晶体有固定的熔点,多晶体和非晶体没有固定的熔点14.(10分)如图所示,一个上下都与大气相通的直圆筒,内部横截面的面积S=0.01m2,中间用两个活塞A与B封住一定质量的理想气体,A、B都可沿圆筒无摩擦地上、下滑动,但不漏气,A的质量可不计、B的质量为M,并与一劲度系数k=5×103N/m的较长的弹簧相连.已知大气压强p0=1×105Pa,平衡时,两活塞间的距离l0=0.6m.现用力压A.使之缓慢向下移动一定距离后,保持平衡.此时,用于压A的力F=5×102N.求:(假定气体温度保持不变.)(1)此时两活塞间的距离(2)活塞A向下移的距离.(3)大气压对活塞A和活塞B做的总功.【物理-选修3-4】(15分)15.一列简谐横波在弹性介质中沿x轴正方向传播,波源位于坐标原点O,t=0时开始振动,3s时停止振动,3.5s时的波形如图所示,其中质点a的平衡位置与O的距离为5.0m.以下说法正确的是()A.波速为B.波长为C.波源起振方向沿y轴正方向D.2.0 s~3.0 s内质点a沿y轴负方向运动E.0~3.0 s内质点a通过的总路程为16.如图所示,由某种透明物质制成的直角三棱镜ABC,折射率n=3,∠A=30°.一束与BC面成30°角的光线从O点射入棱镜,从AC面上O′点射出.不考虑光在BC面上的反射,求从O′点射出的光线的方向.【物理-选修3-5】(15分)17.下列说法中正确定的是()A.核反应方程U→Th+He属于裂变B.根据爱因斯坦质能方程,物体具有的能量和它的质量之间存在着正比关系C.β衰变中产生的β射线实际上是原子的核外电子挣脱原子核的束缚而形成的D.中子与质子结合成氘核的过程中需要放出能量E.氢原子辐射出一个光子后,根据玻尔理论可知氢原子的电势能减少,核外电子的运动的加速度增大18.如图所示,光滑水平面上放着质量都为m的物块A和B,A紧靠着固定的竖直挡板,A、B 间夹一个被压缩的轻弹簧(弹簧与A、B均不拴接),用手挡住B 不动,此时弹簧弹性势能为mv02.在A、B间系一轻质细绳,细绳的长略大于弹簧的自然长度.放手后绳在短暂时间内被拉断,之后B继续向右运动,一段时间后与向左匀速运动、速度为v0的物块C发生碰撞,碰后B、C立刻形成粘合体并停止运动,C的质量为2m.求:(ⅰ)B、C相撞前一瞬间B的速度大小;(ⅱ)绳被拉断过程中,绳对A所做的功W.2016年广东省佛山一中高考物理三模试卷参考答案与试题解析一、选择题(本大题共8小题,每小题6分.在每小题给出的四个选项中,第14-18题只有一项符合题目要求,第19~21题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分).1.(6分)在物理学发展过程中,观测、实验、假说和逻辑推理等方法都起到了重要作用.下列叙述符合史实的是()A.奥斯特在实验中观察到电流的磁效应,该效应解释了电和磁之间存在联系B.安培根据通电螺线管的磁场和条形磁铁的磁场的相似性,提出了分子电流假说C.法拉第在实验中观察到,在通有恒定电流的静止导线附近的固定导线圈中,会出现感应电流D.楞次在分析了许多实验事实后提出,感应电流应具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化【解答】解:A、1820年,丹麦物理学家奥斯特在实验中观察到电流的磁效应,揭示了电和磁之间存在联系.故A正确.B、安培根据通电螺线管的磁场和条形磁铁的磁场的相似性,提出了分子电流假说,很好地解释了磁化现象.故B正确.C、法拉第在实验中观察到,在通有恒定电流的静止导线附近的固定导线圈中,不会出现感应电流.故C错误.D、楞次在分析了许多实验事实后提出楞次定律,即感应电流应具有这样的方向,感应电流的磁场总要阻碍引起感应电流的磁通量的变化.故D正确.故选ABD2.(6分)下表面粗糙,其余面均光滑的斜面置于粗糙水平地面上,倾角与斜面相等的物体A放在斜面上,方形小物体B放在A上,在水平向左大小为F的恒力作用下,A、B及斜面均处于静止状态,如图所示.现将小物体B从A上表面上取走,则()A.斜面一定静止B.斜面一定向左运动C.斜面可能向左运动D.A仍保持静止【解答】解:令A、B的质量分别为M和m,以AB整体为研究对象受力分析,如图所示,根据平衡条件有:F=(M+m)gtanθ取走质量为m的B后,没斜面方向Fcosθ=(M+m)gsinθ>Mgsinθ,故A将向上滑动,B在A上时,斜面对A的支持力N=Fsinθ+(M+m)gcosθ,当取走质量为m的B后,斜面对A的支持力N′=Fsinθ+Mgcosθ,根据牛顿第三定律知,A对斜面的压力减小,小物体B未从A上表面上取走时,A对斜面压力的水平分力不大于地面对斜面的最大静摩擦力,取走B后,A对斜面的压力减小,仍满足A对斜面压力的水平分力不大于地面对斜面的最大静摩擦力,故斜面仍保持与地面静止,故A正确,BCD错误;故选:A3.(6分)如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R,小球半径为r,则下列说法正确的是()A.小球通过最高点时的最小速度v min=B.小球通过最高点时的最小速度v min=C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力【解答】解:A、在最高点,由于外管或内管都可以对小球产生弹力作用,当小球的速度等于0时,内管对小球产生弹力,大小为mg,故最小速度为0.故AB 错误.C、小球在水平线ab以下管道运动,由于沿半径方向的合力提供做圆周运动的向心力,所以外侧管壁对小球一定有作用力,而内侧管壁对小球一定无作用力.故C正确.D、小球在水平线ab以上管道运动,由于沿半径方向的合力提供做圆周运动的向心力,当速度非常大时,内侧管壁没有作用力,此时外侧管壁有作用力.当速度比较小时,内侧管壁有作用力力.故D错误.故选:C.4.(6分)太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动,当地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学称为“行星冲日”.已知地球及各地外行星绕太阳运动的轨道半径如下表所示,则下列结论正确的是()A.海王星绕太阳运动的周期约为98.32年,相邻两次冲日的时间间隔为1.006年B.土星绕太阳运动的周期约为29.28年,相邻两次冲日的时间间隔为5.04年C.天王星绕太阳运动的周期约为52.82年,相邻两次冲日的时间间隔为3.01年D.木星绕太阳运动的周期约为11.86年,相邻两次冲日的时间间隔为1.09年【解答】解:根据开普勒第三定律,有:;解得:T=;故T火==1.84年;T木==11.86年;T土==29.28年;T天==82.82年;T海==164.32年;如果两次行星冲日时间间隔为t年,则地球多转动一周,有:2π=()t解得:t=故天王星相邻两次冲日的时间间隔为:t天=≈1.01年;土星相邻两次冲日的时间间隔为:t土=≈1.04年;木星相邻两次冲日的时间间隔为:年A、海王星绕太阳运动的周期约为98.32年,故A错误;B、土星绕太阳运动的周期约为29.28年,相邻两次冲日的时间间隔为1.04年,故B错误;C、天王星绕太阳运动的周期约为82.82年,相邻两次冲日的时间间隔为1.01年;故C错误;D、木星绕太阳运动的周期约为11.86年,相邻两次冲日的时间间隔为1.09年;故D正确;故选:D.5.(6分)CD、EF是两条水平放置的阻值可忽略的平行金属导轨,导轨间距为L,在水平导轨的左侧存在磁感应强度方向垂直导轨平面向上的匀强磁场,磁感应强度大小为B,磁场区域的长度为d,如图所示.导轨的右端接有一电阻R,左端与一弯曲的光滑轨道平滑连接.将一阻值也为R的导体棒从弯曲轨道上h高处由静止释放,导体棒最终恰好停在磁场的右边界处.已知导体棒与水平导轨接触良好,且动摩擦因数为μ,则下列说法中正确的是()A.电阻R的最大电流为B.流过电阻R的电荷量为C.整个电路中产生的焦耳热为mghD.电阻R中产生的焦耳热为mgh【解答】解:A、金属棒下滑过程中,由机械能守恒定律得:mgh=mv2,金属棒到达水平面时的速度v=,金属棒到达水平面后进入磁场受到向左的安培力做减速运动,则导体棒刚到达水平面时的速度最大,所以最大感应电动势为E=BLv,最大的感应电流为I==,故A错误;B、流过电阻R的电荷量q==,故B正确;C、金属棒在整个运动过程中,由动能定理得:mgh﹣W B﹣μmgd=0﹣0,则克服安培力做功:W B=mgh﹣μmgd,所以整个电路中产生的焦耳热为Q=W B=mgh﹣μmgd,故C错误;D、克服安培力做功转化为焦耳热,电阻与导体棒电阻相等,通过它们的电流相等,则金属棒产生的焦耳热:Q R=Q=(mgh﹣μmgd),故D错误.故选:B6.(6分)理想变压器原线圈a匝数n1=200匝,副线圈b匝数n2=100匝,线圈a接在,μ=44sin314t(V)交流电源上,“12V,6W”的灯泡恰好正常发光.电阻R2=16Ω,电压表V为理想电表.下列推断正确的是()A.交变电流的频率为100HzB.穿过铁芯的磁通量的最大变化率为Wb/sC.电压表V的示数为22VD.R1消耗的功率是1W【解答】解:ABC、由公式可知,角速度ω=100π,则f===50Hz;故A 错误;灯泡正常发光,故副线圈中电流为I===0.5A;故电压表示数为:U2=12+IR2=12+0.5×16=20V;故穿过铁芯的磁通量的最大变化率为:=Wb/s;故B正确,C错误;D、由电压之比等于匝数之比可知,输出端电压为40V,R1两端的电压为U1=44﹣40=4V;根据电流之比等于匝数的反比可得:I1=0.25A;则功率P=UI=4×0.25=1W;故D正确;故选:BD.7.(6分)如图所示,劲度数为k的轻弹簧的一端固定在墙上,另一端与置于水平面上质量为m的物体接触(未连接),弹簧水平且无形变.用水平力F缓慢推动物体,在弹性限度内弹簧长度被压缩了x0,此时物体静止.撤去F后,物体开始向左运动,运动的最大距离为4x0.物体与水平面间的动摩擦因数为μ,重力加速度为g.则()A.撤去F后,物体先做匀加速运动,再做匀减速运动B.撤去F后,物体刚运动时的加速度大小为﹣μgC.物体做匀减速运动的时间等于D.物体开始向左运动到速度最大的过程中克服摩擦力做的功为μmg(x0﹣)【解答】解:A.撤去力F后,物体受四个力作用,竖直方向上重力和地面支持力是一对平衡力,水平方向受向左的弹簧弹力和向右的摩擦力,合力F合=F弹﹣f,根据牛顿第二定律物体产生的加速度a=.撤去F后,物体水平方向上受到弹簧的弹力和滑动摩擦力,滑动摩擦力不变,而弹簧的弹力随着压缩量的减小而减小,弹力先大于滑动摩擦力,后小于滑动摩擦力,则物体向左先做加速运动后做减速运动,随着弹力的减小,合外力先减小后增大,则加速度先减小后增大,故物体先做变加速运动,再做变减速运动,最后物体离开弹簧后做匀减速运动;故A错误;B.撤去F后,物体刚运动时的加速度大小为:a===﹣μg,故B正确;C.由题意知,物体离开弹簧后通过的最大距离为3x0,由牛顿第二定律得:匀减速运动的加速度大小为a==μg.将此运动看成向右的初速度为零的匀加速运动,则:3x0=at2,得t==,故C正确;D.由上分析可知,当弹簧的弹力与滑动摩擦力大小相等、方向相反时,速度最大,此时弹簧的压缩量为x=,则物体开始向左运动到速度最大的过程中克服摩擦力做的功为W=μmg(x0﹣x)=μmg(x0﹣),故D正确.故选:BCD.8.(6分)如图甲所示,在倾角为θ的光滑斜面上,有一个质量为m的物体在沿斜面方向的力F的作用下由静止开始运动,物体的机械能E随位移x的变化关系如图乙所示.其中0~x1过程的图线是曲线,x1~x2过程的图线为平行于x轴的直线,则下列说法中正确的是()A.物体在沿斜面向下运动B.在0~x1过程中,物体的加速度一直增大C.在0~x2过程中,物体先减速再匀速D.在x1~x2过程中,物体的加速度为gsinθ【解答】解:A、在0~x1过程中物体机械能在减小,知拉力在做负功,拉力方向向上,所以位移方向向下,故物体在沿斜面向下运动,故A正确;B、根据功能关系得:△E=F•△x,得F=,则知图线的斜率表示拉力,在0~x1过程中图线的斜率逐渐减小到零,知物体的拉力逐渐减小到零.根据a=,可知,加速度一直增大,故B正确;C、在0~x1过程中,加速度的方向与速度方向相同,都沿斜面向下,所以物体做加速运动.x1~x2过程中,F=0,物体做匀加速运动,故C错误;D、在x1~x2过程中,拉力F=0,机械能守恒,此时加速度为a==gsinθ,故D正确.故选:ABD.三、非选择题:包括必考题和选考题两部分.第22题~第32题为必考题,每个试题考生都必须作答.第33题~第40题为选考题,考生根据要求作答.(一)必考题(本大题共4小题,共129分)9.(6分)某实验小组用一只弹簧秤和一个量角器等器材验证力的平行四边形定则,设计了如图所示的实验装置,固定在竖直木板上的量角器的直边水平,橡皮筋的一端固定于量角器的圆心O的正上方A处,另一端系绳套1和绳套2.主要实验步骤如下:ⅰ.弹簧秤挂在绳套1上竖直向下拉橡皮筋,使橡皮筋的结点到达O处,记下弹簧秤的示数F;ⅱ.弹簧秤挂在绳套1上,手拉着绳套2,缓慢拉橡皮筋,使橡皮筋的结点到达O处,此时绳套1沿0o方向,绳套2沿120o方向,记下弹簧秤的示数F1;ⅲ.根据力的平行四边形定则计算绳套1的拉力F1′=①;ⅳ.比较②,即可初步验证;ⅴ.只改变绳套2的方向,重复上述实验步骤.回答下列问题:(1)完成实验步骤:①;②F1和F1′;(2)将绳套1由0o方向缓慢转动到60o方向,同时绳套2由120o方向缓慢转动到180o方向,此过程中保持橡皮筋的结点在O处不动,保持绳套1和绳套2的夹角120o不变.关于绳套1的拉力大小的变化,下列结论正确的是A(填选项前的序号)A.逐渐增大B.先增大后减小C.逐渐减小D.先减小后增大.【解答】解:(1)①根据的平行四边形定则计算绳套1的拉力F1′=Ftan30°=,②通过比较F1和F1′,在误差范围内相同,则可初步验证,(2)两个绳套在转动过程中,合力保持不变,根据平行四边形定则画出图象,如图所示:根据图象可知,绳套1的拉力大小逐渐增大,故A正确.故选:A故答案为:(1)①,②F1和F1′;(2)A10.(9分)如图(甲)表示某电阻R随摄氏温度t变化的关系,图中R0表示0℃时的电阻,K表示图线的斜率.若用该电阻与电池(E,r)、电流表R g、变阻器R′串连起来,连接成如图(乙)所示的电路,用该电阻做测温探头,把电流表的电流刻度改为相应的温度刻度,于是就得到了一个简单的“电阻测温计”.①实际使用时要把电流表的刻度值改为相应的温度刻度值,若温度t1<t2,则t1的刻度应在t2的右侧(填“左”、“右”);②在标识“电阻测温计”的温度刻度时,需要弄清所测温度和电流的对应关系.请用E、R0、K等物理量表示所测温度t与电流I的关系式:t=﹣(R g+r+R′+R0);③由②知,计算温度和电流的对应关系,需要测量电流表的内阻(约为200Ω).已知实验室有下列器材:A.电阻箱(0~99.99Ω);B.电阻箱(0~999.9Ω);C.滑线变阻器(0~20Ω);D.滑线变阻器(0~20kΩ).此外,还有电动势合适的电源、开关、导线等.请在图丙方框内设计一个用“半偏法”测电流表内阻Rg的电路;在这个实验电路中,电阻箱应选B;滑线变阻器应选D.(只填代码)【解答】解:解:①由图甲所示图象可知,随温度升高电阻阻值增大,温度t1<t2,温度为温度t1时的电阻小于温度为t2时的电阻,电源电动势不变,由闭合电路欧姆定律可知,温度为t1时电路电流大,电流表偏转角大,由此可知,t1刻度应在t2的右侧;②根据由图示电路图由闭合电路的欧姆定律得:E=I(r+R+R g+R′),由图甲所示图象可知:R=R0+kt,解得:t=﹣(R g+r+R′+R0);③应用半偏法测电流表内阻的实验电路图如图所示:。
广东省深圳市高级中学2016届高三第三次模拟考试理科综合物理试题(精品解析版)
广东省深圳市高级中学2016届高三第三次模拟考试理综物理试题1. 如图所示,一个菱形框架绕着过对角线的竖直轴匀速转动,在两条边上各有一个质量相等的小球套在上面,整个过程小球相对框架没有发生滑动,A与B到轴的距离相等,则下列说法错误的是:A. 框架对A的弹力方向可能垂直框架向下B. 框架对B的弹力方向只能垂直框架向上C. A与框架间可能没有摩擦力D. A、B所受的合力大小相等【答案】C【解析】试题分析:球在水平面做匀速圆周运动,合外力指向圆心,对进行受力分析可知,受重力,当静摩擦力方向向上时,框架对的弹力方向可能垂直框架向下,故A正确;球在水平面做匀速圆周运动,合外力指向圆心,对进行受力分析可知,受重力,要使合力水平向右,框架对的弹力方向只能垂直框架向上,故B正确;若与框架间没有摩擦力,则只受重力和框架对的弹力,两个力的合力方向不可能水平向左,指向圆心,故C错误;、两球所受的合力提供向心力,转动的角速度相等,半径也相等,根据,可知,合力大小相等,故D正确。
考点:向心力、牛顿第二定律【名师点睛】本题关键要把圆周运动的知识和牛顿第二定律结合求解,关键是正确对AB两个小球进行受力分析,合力提供向心力,知道共轴转动时,角速度相等,难度适中。
2. 在一大雾天,一辆小汽车以30 m/s的速度匀速行驶在高速公路上,突然发现正前方30 m处有一辆大卡车以10 m/s的速度同方向匀速行驶,小汽车紧急刹车,刹车过程中刹车失灵.如图所示,图线a、b分别为小汽车和大卡车的v-t图象(忽略刹车反应时间),以下说法正确的是:A. 因刹车失灵前小汽车已减速,故不会发生追尾事故B. 在t=3 s时发生追尾事故C. 在t=5 s时发生追尾事故D. 若紧急刹车时两车相距40米,则不会发生追尾事故且两车最近时相距10米【答案】B【解析】试题分析:根据速度-时间图象所时间轴所围“面积”大小等于位移,由图知,t=3s时,b车的位移为:,a车的位移为则,所以在在时追尾.当速度相等时,a车的位移为b车的位移为,则两车相距,D错误;考点:考查了追击相遇问题3. 如图所示,一固定光滑杆与水平方向夹角为,将一质量为的小环套在杆上,通过轻绳悬挂一个质量为的小球,静止释放后,小环与小球保持相对静止以相同的加速度a一起下滑,此时绳子与竖直方向夹角为,则下列说法正确的是:A. 杆对小环的作用力大于B. 不变,则越大,越小C. ,与、无关D. 若杆不光滑,可能大于【答案】C【解析】试题分析:以整体为研究对象,分析受力情况,如图:学&科&网...学&科&网...学&科&网...考点:本题考查了整体法与隔离法的受力分析、力的合成与分解、牛顿第二定律.4. 如图所示,轻杆AB长,两端各连接一个小球(可视为质点),两小球质量关系为,轻杆绕距B端处的O轴在竖直平面内顺时针自由转动。
广东省六校联盟2016届高三第三次联考理科综合物理试题(原卷版)
广东省“六校联盟”2016届高三第三次联考理科综合试题命题学校:广州二中 2015.12.18本试卷共16页,40题(含选考题)。
全卷满分300分。
考试用时150分钟。
考生注意:1.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试题卷、草稿纸上无效。
2.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效。
3.选考题的作答:先把所选题目对应题号右边的方框,在答题卡上指定的位置用2B 铅笔涂黑。
考生应根据自己选做的题目准确填涂题号,不得多选。
答题答在答题卡上对应的答题区域内。
可能用到的相对原子质量:H 1 C 12 O 16 Na 23 Cl 35.5 Co 59第I 卷 (共21小题,共126分)二、选择题:本题共8小题,每小题6分。
在每小题给出的四个选项中,第14-18题只有一项符合题目要求,第19-21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
14.关于单位制以下说法正确的是A .千克、安培、库仑是导出单位B .安培、千克、米是基本单位C .国际单位制中,质量的单位可以是克,也可以是千克D .库仑定律中的静电常量k 的单位是22/N m A15.如图15所示,小球以v 0=5m/s 的速度水平抛出,飞行过程中经过空中的P 、Q 两点,小球在P 点时的速度方向与水平方向的夹角为45°,小球在Q 点时的速度方向与水平方向的夹角为60°(空气阻力忽略不计,g 取10 m/s 2 ),以下正确的是A.P点距离抛出点的距离为2.5mB.Q点距离抛出点的水平距离为2.5mC.P、Q两点间的高度差h=2.5 mt=-sD.小球经过P、Q两点间的时间间隔1)16.如图16所示,小物体P放在直角斜劈M上,M下端连接一竖直弹簧,并紧贴竖直光滑墙壁;开始时,P、M静止,M与墙壁间无作用力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年广东省高考物理三模试卷学校:___________姓名:___________班级:___________考号:___________一、单选题(本大题共4小题,共16.0分)1.下列叙述正确的是()A.牛顿根据理想斜面实验,提出力不是维持物体运动的原因B.奥斯特首先发现了电流周围存在磁场C.磁感线越密的地方磁感应强度越大,磁通量也越大D.在回旋加速器中,磁场力使带电粒子的速度增大【答案】B【解析】解:A、伽利略根据理想斜面实验,提出了力不是维持物体运动的原因.故A错误;B、奥斯特首先发现了电流周围存在磁场,故B正确;C、磁感线越密的地方磁感应强度越大,但磁通量不一定也越大,磁通量的大小还与线圈平面和磁感应强度之间的夹角有关,故C错误D、在回旋加速器中,电场力使带电粒子的速度增大,在回旋加速器中,磁场力使带电粒子的速度方向发生变化.故D错误故选:B根据物理学史和常识解答AB选项,记住著名物理学家的主要贡献即可;磁通量的大小还与线圈平面和磁感应强度之间的夹角有关;在回旋加速器中,磁场力使带电粒子的速度方向发生变化.本题考查物理学史,是常识性问题,对于物理学上重大发现、发明、著名理论要加强记忆,这也是考试内容之一.2.质量为m的“嫦娥二号”探测卫星,在距月球表面高度为h的轨道上做匀速圆周运动,已知运行周期为T,月球的半径为R,月球质量为M,引力常量为G,则()A.月球表面的重力加速度为B.月球对卫星的万有引力为C.卫星以恒定的向心加速度运行D.卫星运行周期T与卫星质量有关【答案】A【解析】解:A、根据万有引力等于重力得,,解得g=.故A正确.B、月球对卫星的万有引力F=.故B错误.C、根据得,a=,T=,知向心加速度大小不变,但是方向始终指向圆心,时刻改变.周期与卫星的质量无关.故C、D错误.故选A.根据万有引力等于重力求出月球表面的重力加速度,根据万有引力提供向心力得出向心加速度的大小以及判断出周期与什么因素有关.解决本题的关键掌握万有引力提供向心力和万有引力等于重力这两个理论,并能熟练运用.3.如图有a、b、c、d四个离子,它们带等量同种电荷,质量不等有m a=m b<m c=m d,以不等的速率v a<v b=v c<v d进入速度选择器后,有两种离子从速度选择器中射出进入B2磁场.由此可判定()A.射向P1板的是a离子B.射向P2板的是b离子C.射向A1的是c离子D.射向A2的是d离子【答案】A【解析】解:A、通过在磁场中偏转知,粒子带正电.在速度选择器中,有q E=qv B.v=,只有速度满足一定值的粒子才能通过速度选择器.所以只有b、c两粒子能通过速度选择器.a 的速度小于b的速度,所以a的电场力大于洛伦兹力,a向P1板偏转.故A正确,B错误.C、只有b、c两粒子能通过速度选择器进入磁场B2,根据r=,知质量大的半径大,知射向A1的是b离子,射向A2的是c离子.故C、D错误.故选A.在速度选择器中,粒子受到的电场力和洛伦兹力相等,有q E=qv B.知只有速度满足一定值的粒子才能通过速度选择器.进入磁场B2后,有r=,v、B2、q相同,质量大的半径大.解决本题的关键知道只有速度满足一定的值,才能通过速度选择器.由速度选择器出来进入磁场,速度一定,根据r=,可比较粒子偏转半径的大小.4.如图,金属棒ab,金属导轨和螺线管组成闭合回路,金属棒ab在匀强磁场B中沿导轨向右运动,则()A.ab棒不受安培力作用B.ab棒所受安培力的方向向右C.ab棒向右运动速度越大,所受安培力越大D.螺线管产生的磁场,A端为N极【答案】C【解析】解:A:回路中的一部分切割磁感线时,导体棒中要产生感应电流,而电流在磁场中就一定会有安培力,故A错误;B:根据楞次定律可知,感应电流总是起到阻碍的作用,故安培力的方向与导体棒一定的方向相反,应当向左,故B错误;C:ab棒向右运动时,E=BL v,,F=BIL,所以:,速度越大,所受安培力越大.故C正确;D:根据右手定则,ab中的电流的方向向上,流过螺旋管时,外侧的电流方向向下,根据右手螺旋定则,B端的磁场方向为N极.故D错误.回路中的一部分切割磁感线时,导体棒中要产生感应电流,而电流在磁场中就一定会有安培力;感应电流的大小与运动速度有关,运动速度越大,所受安培力越大.该题考查楞次定律、右手定则及法拉第电磁感应定律,属于该部分知识的基本应用.属于简单题.二、多选题(本大题共5小题,共30.0分)5.如图所示,人和物处于静止状态、当人拉着绳向右跨出一步后,人和物仍保持静止、不计绳与滑轮的摩擦,下列说法中正确的是()A.绳的拉力大小不变B.人所受的合外力增大C.地面对人的摩擦力增大D.人对地面的压力减小【答案】AC【解析】解:A、物体始终处于静止状态,所以绳子对物体的拉力始终等于mg,故A正确;B、人保持静止状态,合力为零,故B错误;C、D、对人受力分析并正交分解如图:由平衡条件得:N+mgsinθ=M gf=mgcosθ当人拉着绳向右跨出一步后,θ将变小:所以:f=mgcosθ会变大,N=M g-mgsinθ也将变大,故C正确,D错误;故选AC.当人拉着绳向右跨出一步后,人和物仍保持静止,所以人和物始终处于平衡状态,分别对物体和任受力分析应用平衡条件分析即可.本题为平衡条件得应用:动态分析.常用的方法是画图法和解析式法,一般物体受3个力时常用画图法,受4个以上的力时用解析式法.6.物体在竖直向上的拉力和重力的作用下竖直向上运动,运动的v-t图象如图所示.则()A.物体所受拉力是恒力B.物体所受拉力是变力C.第1s末和第4s末拉力的功率相等D.第5s末物体离出发点最远BD【解析】解:A、由速度时间图象可知,物体在运动的过程中的加速度是变化的,而重力是不变的,所以物体所受拉力一定是变力,所以A错误,B正确;C、第1s末和第4s末物体的速度是一样的,但是第1s末处于加速阶段,拉力大于重力,第4s末处于减速阶段,拉力小于重力,所以两个时刻的拉力大小不一样,功率不同,故C错误.D、根据速度-时间图象与坐标轴围成的面积表示位移可知,5s末位移最大,及第5s末物体离出发点最远,故D正确.故选BD.根据速度时间的图象,判断物体的受力的情况和运动的情况,知道速度-时间图象与坐标轴围成的面积表示位移,再由功率的公式就可以做出判断.要根据图象得出有用的信息,速度-时间图象中直线的斜率表示加速度的大小,面积表示位移,速度不变就表示物体处于受力平衡状态.7.在如图所示的电路中,电源电动势为E、内电阻为r,C为电容器,R0为定值电阻,R为滑动变阻器.开关闭合后,灯泡L能正常发光.当滑动变阻器的滑片向右移动时,下列判断正确的是()A.灯泡L将变暗B.灯泡L将变亮C.电容器C的电荷量减小D.电容器C的电荷量增大【答案】AD【解析】解:A、B由题R增大,电流I=减小,灯泡L将变暗.故A正确,B错误.C、D路端电压U=E-I r增大,则电容器电量Q=CU增大.故C错误,D正确.故选AD.灯泡L和滑动变阻器R串联、电容器C和定值电阻R0串联后两条支路再并联.当电路稳定后,电容器这一路没有电流,相当于开关断开,对另一路没有影响.电容器的电压等于路端电压.当滑动变阻器的滑片向右移动时,变阻器接入电路的电阻增大,根据欧姆定律分析电流和路端电压的变化,分析灯泡亮度和电容器电量的变化.本题关键的要抓住电容器的特点:当电路稳定时,和电容器串联的电路没有电流,电容器电压等于这一串联电路两端的电压.8.用均匀导线做成的正方形线圈边长为l,正方形的一半放在垂直于纸面向里的匀强磁场中,如图所示,当磁场以的变化率增强时,则()A.线圈中感应电流方向为acbdaB.线圈中产生的电动势C.线圈中a点电势高于b点电势D.线圈中a、b两点间的电势差为【答案】AB【解析】解:A、磁感应强度增大,由楞次定律可知,感应电流沿acbda方向,故A正确;B、由法拉第电磁感应定律可得,感应电动势E==S=l××=•,故B正确;C、acb段导线相当于电源,电流沿a流向b,在电源内部电流从低电势点流向高电势点,因此a点电势低于b点电势,故C错误;D、设导线总电阻为R,则a、b两点间的电势差U ab=×=,故D错误;故选AB.由楞次定律可以判断出感应电流的方向,由法拉第电磁感应定律可以求出感应电动势,由欧姆定律可以求出a、b两点间的电势差.熟练应用楞次定律、法拉第电磁感应定律、欧姆定律即可正确解题.9.如图所示,实线为方向未知的三条电场线,虚线分别为等势线1、2、3,已知MN=NQ,带电量相等的a、b两带电粒子从等势线2上的O点以相同的初速度飞出.仅在电场力作用下,两粒子的运动轨迹如图所示,则()A.a一定带正电,b一定带负电B.a加速度减小,b加速度增大C.MN两点电势差|U MN|等于NQ两点电势差|U NQ|D.a粒子到达等势线3的动能变化量比b粒子到达等势线1的动能变化量小【答案】BD【解析】解:A、由图,a粒子的轨迹方向向右弯曲,a粒子所受电场力方向向右,b粒子的轨迹向左弯曲,b粒子所受电场力方向向左,由于电场线方向未知,无法判断粒子的电性.故A错误.B、由题,a所受电场力逐渐减小,加速度减小,b所受电场力增大,加速度增大.故B 正确.C、已知MN=NQ,由于MN段场强大于NQ段场强,所以MN两点电势差|U MN|大于NQ 两点电势差|U NQ|.故C错误.D、根据电场力做功公式W=U q,|U MN|>|U NQ|,a粒子从等势线2到3电场力做功小于b粒子从等势线2到1电场力做功,所以a粒子到达等势线3的动能变化量比b粒子到达等势线1的动能变化量小.故D正确.故选BD根据粒子轨迹的弯曲方向,判断电场力方向.当电场力方向与场强方向相同时,粒子带正电,当电场力方向与场强方向相反时,粒子带负电.电场线越密,场强越大,粒子受到的电场力越大,加速度越大.非匀强电场中,距离相等的两点间,场强越大,电势差越大.根据电场力做功的大小,判断动能变化量的大小.本题是电场中轨迹问题,关键要根据轨迹的弯曲方向能判断出粒子的电场力方向.常见题型,比较简单.三、实验题探究题(本大题共2小题,共18.0分)10.某同学设计了如图1所示的装置来探究加速度与力的关系.弹簧秤固定在一合适的木块上,桌面的右边缘固定一个光滑的定滑轮,细绳的两端分别与弹簧秤的挂钩和矿泉现缓慢向瓶中加水,直到木块刚刚开始运动为止,记下弹簧秤的示数F0,以此表示滑动摩擦力的大小.再将木块放回原处并按住,继续向瓶中加水后,记下弹簧秤的示数F,然后释放木块,并用秒表记下木块从P运动到Q处的时间t.①木块的加速度可以用d、t表示为a= ______ .②改变瓶中水的质量重复实验,确定加速度与弹簧秤示数F的关系.如图2图象能表示该同学实验结果的是______ .③用加水的方法改变拉力的大小与挂钩码的方法相比,它的优点是______ .A.可以改变滑动摩擦力的大小B.可以更方便地获取更多组实验数据C.可以更精确地测出摩擦力的大小D.可以获得更大的加速度以提高实验精度.【答案】;C;BC【解析】解:①根据匀变速直线运动公式得:d=at2,解得:a=.(2)由牛顿第二定律可知,F-F0=ma,故a=F-,当F1>F0时,木板才产生加速度.随着继续向瓶中加水后,矿泉水瓶的质量不断增加,矿泉水瓶的质量不能远小于木板的质量,那么水的重力与绳子的拉力差值越来越大,则图象出现弯曲.故选:C.(3)A、不可以改变滑动摩擦力的大小,故A错误.B、缓慢向瓶中加水,直到木板刚刚开始运动,可以比较精确地测出摩擦力的大小,故B正确.C、缓慢向瓶中加水,可以更方便地获取多组实验数据,故C正确.D、并没有获得很大的加速度,可以获取多组实验数据以提高实验精度.故D错误;故选:BC.故答案为:①;②C;③BC.①长木板做匀加速直线运动,根据位移时间关系公式列式求解加速度;②知道减小误差的常用方法是多次测量取平均值;③知道当水的质量远远小于木板的质量时,水的重力近似等于绳子的拉力实验要明白实验目的,懂得实验原理,科学选择器材,合理安排实验步骤,细心记录数据,认真分析和处理数据,总结实验结论.11.用伏安法测一节干电池的电动势E和内电阻r,器材有:电压表:0-3-15V;电流表:0-0.6-3A;变阻器R1(总电阻20Ω);以及电键S和导线若干.①根据现有器材设计实验电路并连接电路实物图甲,要求滑动变阻器的滑动头在右端时,其使用的电阻值最大.______ V.③表为另一组同学测得的数据.可以发现电压表测得的数据______ ,将影响实验结果的准确性,原因是:______ .【答案】1.5;间隔很小;电池的内阻太小【解析】解:①一节干电池电动势约为1.5V,因此电压表应选0~3V量程;由坐标系内所描点可知,电流的最大值为0.6A,则电流表应选0~0.6A量程,如果选0~3A量程,则电路最大电流为其量程的五分之一,读数误差太大;伏安法测电源电动势与内阻,电压表测路端电压,电流表测电路电流,实物电路图如图所示:②根据坐标系中所描出的点作出干电池的U-I图象如图所示:由图示干电池U-I图线可知,图象与纵轴交点坐标值是1.5,则干电池的电动势:E=1.5V.③由表中实验数据可知,电压表测量值间隔很小,这是由于电源(电池)内阻太小造成的.故答案为:①电路图如图所示;②图象如图所示;1.5;③间隔很小;电池的内阻太小.①根据电源电动势选择电压表量程,根据图示电流最大值选择电流表量程;由于电池内阻较小,所以对电源来说,电流表应采用外接法,根据伏安法测电源电动势与内阻的实验原理连接实物电路图.②根据坐标系内描出的点,作出电源的U-I图象;电源的U-I的纵轴截距是电源电动势,图象斜率的绝对值是电电源的内阻.本题考查测电动势和内阻实验的数据处理,注意要结合公式理解图象的斜率及截距的含义.要掌握描点法作图的方法.四、计算题(本大题共2小题,共36.0分)12.如图所示,完全相同的金属板P、Q带等量异种电荷,用绝缘杆将其连成一平行正对的装置,放在绝缘水平面上,其总质量为M,两板间距为d,板长为2d,在P板中央位置处有一小孔.一质量为m、电量为+q的粒子,从某一高度下落通过小孔后进入PQ,恰能匀速运动.外部的电场可忽略,板间电场可视为匀强电场,重力加速度为g,求:①PQ间电场强度及电势差;②粒子下落过程中,装置对绝缘水平面的压力;③现给PQ间再加一垂直纸面向里、磁感应强度B的匀强磁场,要使粒子进入PQ后不碰板飞出,则粒子应距P板多高处自由下落?【答案】解:①因小球受力平衡,mg=q E得:E=电场方向向上PQ间的电势差U=E d=②在小球未进入PQ前对地的压力N1=M g进入PQ后小球受到向上大小等于mg的电场力,根据牛顿第三定律可得PQ对地的压力N2=M g+mg③依题意得:当粒子轨迹恰好与P板右边缘相切时,粒子圆周运动的半径R1=根据qv1B=m得v1=又由机械能守恒定律得mgh1=联立解得h1=h2=故要使粒子进入PQ后不碰板飞出,粒子应距P板<h<高处自由下落.答:①PQ间电场强度E=,方向向上;电势差为;②在小球未进入PQ前对地的压力N1=M g进入PQ后PQ对地的压力N2=M g+mg;③要使粒子进入PQ后不碰板飞出,粒子应距P板<h<高处自由下落.【解析】(1)粒子进PQ后,恰能匀速运动,重力与电场力平衡,由平衡条件求出电场强度E.(2)粒子进PQ前,装置对绝缘水平面的压力等于重力M g,粒子进PQ后,电场对粒子作用大小为mg,方向向上,根据牛顿第三定律,粒子对电场的力大小为mg,方向向下,则装置对绝缘水平面的压力等于总重力.(3)给PQ间再加一垂直纸面向里、磁感应强度B的匀强磁场后,粒子做匀速圆周运动,洛伦兹力提供向心力.当轨迹恰好与P板、Q板右边缘相切时,粒子恰好进入PQ 后不碰板飞出,分别由几何知识这两种临界情况下粒子的半径,根据牛顿第二定律求出速度,由机械能守恒定律求出下落时的高度,得到小球应距P板高度范围.本题是电场、磁场与力学知识的综合应用,关键在于分析磁场中临界条件,抓住各过程之间的联系.13.如图所示,宽为L=0.1m的MN、PQ两平行光滑水平导轨分别与半径r=0.5m的相同竖直半圆导轨在N、Q端平滑连接,M、P端连接定值电阻R,质量M=2kg的cd绝缘杆垂直静止在水平导轨上,在其右侧至N、Q端的区域内充满竖直向上的匀强磁场,B=1T.现有质量m=1kg的ab金属杆,电阻为R o,R o=R=1Ω,它以初速度v0=12m/s水平向右与cd绝缘杆发生正碰后,进入磁场并最终未滑出,cd绝缘杆则恰好能通过半圆导轨最高点,不计其它电阻和摩擦,ab金属杆始终与导轨垂直且接触良好,取g=10m/s2,求:(1)碰后瞬间cd绝缘杆的速度大小v2与ab金属杆速度大小v1;(2)碰后ab金属杆进入磁场瞬间受到的安培力大小F ab;(3)ab金属杆进入磁场运动全过程中,电路产生的焦耳热Q.【答案】解:(1)cd绝缘杆通过半圆导轨最高点时,由牛顿第二定律有:解得:碰撞后cd绝缘杆滑至最高点的过程中,由动能定理有:解得碰撞后cd绝缘杆的速度:v2=5m/s两杆碰撞过程,动量守恒,设初速度方向为正方向,则有:mv0=mv1+M v2解得碰撞后ab金属杆的速度:v1=2m/s(2)ab金属杆进入磁场瞬间,由法拉第电磁感应定律:E=BL v1闭合电路欧姆定律:安培力公式:F ab=BIL联立解得:F ab===0.01N;(3)ab金属杆进入磁场后由能量守恒定律有:解得:Q=×1×22=2J(1)碰后瞬间cd绝缘杆的速度大小v2与ab金属杆速度大小v1分别为5m/s和2m/s;答:(2)碰后ab金属杆进入磁场瞬间受到的安培力大小F ab为0.01N;(3)ab金属杆进入磁场运动全过程中,电路产生的焦耳热Q为2J.【解析】(1)cd绝缘杆通过半圆导轨最高点时,由牛顿第二定律可求得速度,再根据动能定理可求得碰撞cd的速度,则对碰撞过程分析,由动量守恒定律可求得碰后ab的速度;(2)对ab在磁场中运动分析,由E=BL v求得电动势,根据闭合电路欧姆定律以及安培力公式即可求得安培力;(3)对ab进入磁场过程进行分析,根据能量守恒定律可求得产生的热量.本题考查结合导体切割磁感线规律考查了功能关系以及动量守恒定律,要注意正确分析物理过程,明确导体棒经历的碰撞、切割磁感线、圆周运动等过程,明确各过程中物理规律的应用,要注意最高点时的临界问题以及动量守恒定律的应用方法等.。