概率论与数理统计:6-3样本均值与样本方差的分布

合集下载

概率论与数理统计各章重点知识整理

概率论与数理统计各章重点知识整理

概率论与数理统计各章重点知识整理 第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A I Y = B A B A Y I = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121Y ΛY Y…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,当P(A)>0, P(B i )>0时,. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P ΛΛ2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1)(3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0).(3)X~N (μ,σ2 )参数为μ,σ的正态分布 222)(21)(σμσπ--=x e x f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 .(2)归一性 ∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-y xdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=•j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dy y f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称P{X=x i |Y=y j } 为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称 P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛),}{},{jji j j i p p y Y P y Y x X P •=====,}{},{•=====i j i i j i p p x X P y Y x X P函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) . 二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) 1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p) 2.X~ b (n,p) (0<p<1) n pn p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i iX X n S 12211 样本标准差S 样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2 /n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2). ③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P Y 的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点.3. t 分布(1)定义 若X~N (0,1),Y~ χ2(n),且X,Y 相互独立,则t=nY X ~t(n)自由度为n 的t 分布.(2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2)时, nS X μ-~ t (n-1) .③两个正态总体 相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w (3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点. 注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P Y的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμΛΛΛ解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθΛΛΛ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A ΛΛΛθθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθΛΛ为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21Λ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量. 二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定. (2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α. (3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求. 2.单个正态总体待估参数 其它参数 W 及其分布 置信区间μ σ2已知 nX σμ-~N (0,1) (2/ασz n X ±) μ σ2未知 nS X μ-~ t (n-1) )1((2/-±n t n S X α σ2 μ未知 22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n Sn n S n ααχχ 3.两个正态总体 (1)均值差μ 1-μ 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w+-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③.(2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。

概率论与数理统计-ch6-样本与抽样分布

概率论与数理统计-ch6-样本与抽样分布

概率论与数理统计-ch6-样本与抽样分布概率论中,所研究的随机变量是假定其分布是已知的,在此前提下研究它的性质、数字特征等。

在数理统计中,所研究的随机变量的分布是未知或不完全知道的,通过重复独⽴的试验得到许多观察值去推断随机变量的种种可能分布。

1、随机样本总体:试验的全部可能的观察值。

=样本空间个体:每⼀个可能观察值。

=样本点容量:总体中所包含的个体的个数。

有限总体⽆限总体⼀个总体对应⼀个随机变量X,对总体的研究就是对随机变量X的研究。

所以将不区分总体与相应的随机变量,统称为总体X。

样本:在数理统计中,⼈们都是通过从总体中抽取⼀部分个体,根据获得的数据来对总体分布得出推断的,被抽出的部分个体叫做总体的⼀个样本。

对总体进⾏⼀次观察,就会得到⼀个随机变量X1,对总体进⾏n次重复的、独⽴的观察,就会得到n个随机变量X1,X2,...,Xn,这n个随机变量X1,X2,...,Xn是对总体随机变量X观察的结果。

则X1,X2,...,Xn是相关独⽴且与X具有相同分布,称为来⾃总体X的⼀个简单随机样本。

n称为样本的容量。

进⾏n次观察得到的⼀组实数x1,x2,...,xn是随机变量X1,X2,...,Xn的观察值,称为样本值,也称为X的n个独⽴的观测值。

2、抽样分布样本是统计推断的依据,但往往不直接使⽤样本本⾝,⽽是由样本构造的函数。

统计量:设X1,X2,...,Xn是来⾃总体X的⼀个样本,g(X1,X2,...,Xn)是其函数,且g中不含任何未知参数,则称g(X1,X2,...,Xn)是⼀统计量。

统计量也是⼀个随机变量。

g(x1,x2,...,xn)是统计量的观测值。

常⽤的统计量:经验分布函数:经验分布函数(empirical distribution function)是根据样本得到的分布函数.如设,是总体的样本值,将它们按⼤⼩顺序排列为,则称分布函数为经验分布函数是与总体分布函数相对应的统计量。

总体的分布函数是F(x),统计量的经验分布函数是F n(x),⽤F n(x)去推断F(x),当n⾜够⼤时,F n(x)以概率1收敛于F(x)。

概率论与数理统计(数理统计的基本概念)

概率论与数理统计(数理统计的基本概念)
0.15 00.1.155
000.1..11
N(0,1)
n=10 n=10 nn==33
n增大
000.0..00555
nnn===111
000
-5--55
-4--44
-3-3
-2-2
-1-1
00
11
22
33
444
555
t 分布的密度曲线关于y轴对称 随着n的增大, t 分布的密度曲线越陡
n 时,t 分布趋于标准正态分布N (0,1)
13
例1 设( X1 , X 2 ,, X n )为 来 自 总 体N (, 2 )的 一 个 样 本
当, 2为未知参数时
(1)
f1( X1,
X 2 ,,
Xn)
1 n
n i 1
Xi
为一个统计量
(2)
f2 ( X1 ,
X 2 ,,
Xn)
1 n
n i 1
X
2 i
为一个统计量
(3)
f3 ( X1,
现在转入课程的第二部分
数理统计
数理统计的特点是应用面广,分支 较多, 社会的发展不断向统计提出新的问 题。
1
从历史的典籍中,人们不难发现许 多关于钱粮、户口、地震、水灾等等的 记载,说明人们很早就开始了统计的工 作 . 但是当时的统计,只是对有关事实 的简单记录和整理,而没有在一定理论 的指导下,作出超越这些数据范围之外 的推断.
9
简单随机样本:经简单随机抽样取得的个体的集合
一 般 用 ( X1 , X 2 ,, X n )表 示
样本点:样本中的个体 样本容量:样本中包含的个体的数量 样本观测值:对样本进行观测的结果,
一 般 用( x1 , x2 ,, xn )表 示

《概率与数理统计》第06章 - 样本及抽样分布

《概率与数理统计》第06章 - 样本及抽样分布

(3)g( x1, x2 ,L xn )是统计量g(X1, X2 ,L Xn )的观察值
几个常见统计量
样本平均值
X
1 n
n i 1
Xi
它反映了 总体均值 的信息
样本方差
S 2
1 n1
n i 1
(Xi
X )2
它反映了总体 方差的信息
n
1
1
n
X
2 i
i 1
nX
2
样本标准差
S
1 n
n
1
(
i 1
X
i
是来自总体的一个样本,则
(1) E( X ) E( X ) ,
(2) D( X ) D( X ) 2 n ,
n
(3) E(S 2 ) D( X ) 2
矩估计法的 理论根据
若总体X的k阶矩E( X k ) k存在,则
(4) Ak
1 n
n i 1
Xik
p k
k 1, 2,L .
(3)证明:E(S2 )
定义 设X1 , X2 ,L , Xn是来自总体X的一个样本, g( X1 , X 2 ,L , X n )是X1 , X 2 ,L , X n的函数,若g 中不含未知参数,则g( X1 , X 2 ,L , X n )称是一 个统计量.
请注意 :
(1)X1, X2 ,L
X
是样本,也是随机变量
n
(2)统计量是随机变量的函数,故也是随机变量
1
e
(
xi 2
2
)2
2
n
( xi )2
1
e i1 2 2
n
2
第二节
抽样分布

第六章样本及样本函数的分布

第六章样本及样本函数的分布

∼ t(n −1). .
Sn
177
概率论与数理统计全程学习指导
∑ = ∑ 【评注】 10
1 统计量 σ 2
n
(X i

μ)2

i =1
(n −1)S2 σ2
1 σ2
n
(X i

X )2
的分布在自由度上是
i =1
∑ ∑ 1
有差别的,这是因为在 σ2
n
(X i

X )2
中有一个约束条件
X
i =1
=1 n
x(1) ≤ x(2) ≤
≤x (k)
,并假设
x( i )
出现的频数为
ni
,那么
x( i )
出现的频率为
i = 1, 2, , k, k ≤ n . 函数
fi
=
ni n

⎧ 0,

∑ Fn (x)
=
⎪ ⎨
i
fj,
⎪ j=1
⎪⎩ 1,
x < x(1),
x(i) ≤ x < x(i+1), i = 1, 2, , k −1, x ≥ x(k).
③ χ2 分布的性质
10 若 χ2 ∼ χ2 (n) ,则 E(χ2 ) = n , D(χ2 ) = 2n ;
20
(可加性)若
χ
2
1

χ2 (n1) ,
χ
2
2

χ2 (n2 )
,且
χ
2
1

χ
2
2
相互独立,则
χ
2
1
+
χ
2

概率论与数理统计各种分布总结

概率论与数理统计各种分布总结

概率论与数理统计各种分布总结概率论与数理统计中有许多不同的概率分布,每个分布都具有不同的特征和应用。

下面是一些常见的概率分布的总结:1. 均匀分布(Uniform Distribution):在一个区间内的所有取值都具有相等的概率。

它可以是离散的(离散均匀分布)或连续的(连续均匀分布)。

2. 二项分布(Binomial Distribution):描述了在一系列独立的伯努利试验中成功次数的概率分布。

每个试验只有两个可能结果(成功和失败),并且成功的概率保持不变。

3. 泊松分布(Poisson Distribution):用于描述在给定时间或空间单位内发生某事件的次数的概率分布。

它通常用于模拟稀有事件的发生情况。

4. 正态分布(Normal Distribution):也称为高斯分布,是最常见的连续概率分布之一。

它具有钟形曲线的形状,对称且具有明确的均值和标准差。

许多自然现象和测量数据都可以近似地用正态分布来描述。

5. 指数分布(Exponential Distribution):描述了连续随机事件之间的时间间隔的概率分布。

它通常用于模拟无记忆性事件的发生情况,如设备故障、到达时间等。

6. 卡方分布(Chi-Square Distribution):由正态分布的平方和构成的概率分布。

它在统计推断中广泛应用,特别是在假设检验和信赖区间的计算中。

7. t分布(Student's t-Distribution):用于小样本量情况下参数估计和假设检验。

与正态分布相比,t分布具有更宽的尾部,因此更适用于小样本数据。

8. F分布(F-Distribution):用于比较两个或多个样本方差是否显著不同的概率分布。

它经常用于方差分析和回归分析中。

这只是一些常见的概率分布的总结,还有其他许多分布,每个都在不同的领域和应用中起着重要的作用。

概率论与数理统计A第6章

概率论与数理统计A第6章

几个常见统计量
样本平均值
样本方差
它反映了总体 方差的信息
X
1 n
n i1
Xi
它反映了 总体均值 的信息
S2n11in1(Xi X)2
n1 1i n1Xi2nX2
样本标准差 S n1 1i n1(Xi X)2
样本k阶原点矩
Ak
1 n
n i1
Xik
k=1,2,…
样本k阶中心矩
Mk
1 n n i1
(1)
(n1)S2
2
~2(n1)
(2) X与S2独立 .
n取不同值时 (n 1)S 2
2
的分布
推论1 (样本均值的分布)
设X1,X2,…,Xn是取自正态总体 N(,2)
的样本, X和S2 分别为样本均值和样本方差,
则有
X ~t(n1)
Sn
证由定 1、 2理 t,分布的定义可得
X~N(0,1), n
X ~ N(,2) n
即 X~N(0,1) n
X ~ N(,2) X ~ N(0,1) n n
请注意 : 在已知总体,2时, 可用本定理计算样 本均值X.
n取不同值时样本
均值 X 的分布
定理 5 (样本方差的分布)
设X1,X2,…,Xn是来自正态总体 N(,2)的样本,
X和S2分别为样本均值和样本方差, 则有
的 点 t ( n ) 为 t ( n ) 分 布 的 上 分 位 数 。 如 图 所 示 .
t ( n )
t分布的上分位点的性质: t1(n)t(n)
t分 布 的 左 侧 分 位 点 t(n)可 查 表 求 得 , 例 t0.975(15)6.262.
当n45时,对于常 的 用值 的,可用正态近

概率论与数理统计完整公式

概率论与数理统计完整公式

概率论与数理统计完整公式概率论与数理统计是数学的一个分支,研究随机现象和随机变量之间的关系、随机变量的分布规律、经验规律及参数估计等内容。

在概率论与数理统计的学习中,有许多重要的公式需要掌握。

以下是概率论与数理统计的完整公式。

一、概率论公式:1.全概率公式:设A1,A2,…,An为样本空间S的一个划分,则对任意事件B,有:P(B)=P(B│A1)·P(A1)+P(B│A2)·P(A2)+…+P(B│An)·P(An)2.贝叶斯公式:对于样本空间S的一划分A1,A2,…,An,其中P(Ai)>0,i=1,2,…,n,并且B是S的任一事件,有:P(Ai│B)=[P(B│Ai)·P(Ai)]/[P(B│A1)·P(A1)+P(B│A2)·P(A2)+…+P (B│An)·P(An)]3.事件的独立性:若对事件A,B有P(AB)=P(A)·P(B),则称事件A,B相互独立。

4.概率的乘法公式:对于独立事件A1,A2,…,An,有:P(A1A2…An)=P(A1)·P(A2)·…·P(An)5.概率的加法公式:对事件A,B有:P(A∪B)=P(A)+P(B)-P(AB)6.条件概率的计算:对事件A,B有:P(A,B)=P(AB)/P(B)7.古典概型的概率计算:设事件A在n次试验中发生k次的次数服从二项分布B(n,p),则其概率可表示为:P(X=k)=C(n,k)·p^k·(1-p)^(n-k),其中C(n,k)=n!/[k!(n-k)!]二、数理统计公式:1.样本均值的期望和方差:样本的均值X̄的期望和方差分别为: E(X̄) = μ,Var(X̄) = σ^2 / n,其中μ 为总体的均值,σ^2 为总体方差,n 为样本容量。

2.样本方差的期望:样本方差S^2的期望为:E(S^2)=σ^2,其中σ^2为总体方差。

《概率论与数理统计》第六章

《概率论与数理统计》第六章
所以,X是一个随机变量!
既然总体是随机变量X,自然就有其概率分布。
我们把X的分布称为总体分布。
总体的特性是由总体分布来刻画的。因此,常 把总体和总体分布视为同义语。
第六章 样本及抽样分布 ‹#›
例2
在例1中,假定物体真实长度为(未知)。一般 说来,测量值X就是总体,取 附近值的概率要大一 些,而离 越远的值被取到的概率就越小。
k=1,2,…
第六章 样本及抽样分布 ‹#›
它反映了总体k 阶矩的信息
样本k阶中心矩
Bk
1 n
n i 1
(Xi
X )k
它反映了总体k 阶 中心矩的信息
第六章 样本及抽样分布 ‹#›
统计量的观察值
1 n
x n i1 xi;
s2
1 n 1
n i1
(xi
x )2
s
1 n 1
n i1
(xi
x
)2
第六章 样本及抽样分布 ‹#›
实际上,我们真正关心的并不一定是总体或个
体本身,而真正关心的是总体或个体的某项数量指 标。
如:某电子产品的使用寿命,某天的最高气温, 加工出来的某零件的长度等数量指标。因此,有时也
将总体理解为那些研究对象的某项数量指标的全
体。
第六章 样本及抽样分布 ‹#›
为评价某种产品质量的好坏,通常的做法是: 从全部产品中随机(任意)地抽取一些样品进行观测(检
样本X1,X2,…,Xn 既被看成数值,又被看成随机变量, 这就是所谓的样本的二重性。
随机样本
例 4 (例2续) 在前面测量物体长度的例子中,如果我们 在完全相同的条件下,独立地测量了n 次,把这 n 次测 量结果,即样本记为
X1,X2,…,Xn .

概率论与数理统计第6章

概率论与数理统计第6章

以分组区间为底,以
Yj
Wj X j1 X j
Wj 5
为高
作频率直方图
23
从频率直方图可看到:靠近两个极端的数据出现比 较少,而中间附近的数据比较多,即中间大两头小的分 布趋势,——随机变量分布状况的最粗略的信息。
在频率直方图中, 每个矩形面积恰好等于样本值 落在该矩形对应的分组区间内的频率,即
S j
Wj X j1
Xj
X j1 X j
Wj
频率直方图中的小矩形的面积近似地反映了样本数
据落在某个区间内的可能性大小,故它可近似描述X的
分布状况。
24
12
第二.计算样本特征数
1.反映集中趋势的特征数:样本均值、中位数、众数等 样本均值MEAN 中位数MEDIAN 众数
X 90.3
91
91, 94
代表性——即子样( X1, X2 ,
,
X
)的每个分量
n
X

i
总体 X 具有相同的概率分布。
独立性——即 X1, X2, , Xn 是相互独立的随机变量。
满足上述两点要求的子样称为简单随机子样.获得简 单随机子样的抽样方法叫简单随机抽样.
从简单随机子样的含义可知,样本 X1, X2 , , Xn 是来自总体 X、与总体 X具有相同分布的随机变量.
2分布 t 分布 数理统计的三大分布(都是连续型). F分布 它们都与正态分布有密切的联系.
在本章中特别要求掌握对正态分布、 2分布、 t分布、F分布的一些结论的熟练运用. 它们
是后面各章的基础.
31
一、 2分布
定义 设总体 X ~ N 0,1 , X1, X2,..., Xn 是 X

概率论与数理统计:6-3样本均值与样本方差的分布

概率论与数理统计:6-3样本均值与样本方差的分布
是X的一个简单随机样本,试确定统计量
n
m Xi
T
i 1
的概率分布。
nm
n
X
2 i
i n 1

由题设可知:X1
,
X
2
,
X
相互独立,且
nm
Xi N 0, 2 ,i 1, 2, , n m.
n
n
Xi

Xi ~ N (0, n 2 ),
i 1

i1 ~ N (0,1).
n

nm
i n 1
基本定理
定理 设随机变量X1, X 2 , , X n 相互独立,且
Xi ~ N ( i , i2 ) (i 1, 2, , n)
则它们的任一确定的线性函数
n
n
n
ci Xi ~ N ( cii ,
ci2
2 i
).
i 1
i 1
i 1
其中c1, c2 , , cn为不全为零的常数.
一、单个正态总体的抽样分布
第6.3节 样本均值与样本方差的分布
一、基本定理 二、例题
三、小结
既然统计量是依赖于样本的,而后者又是随 机变量,故统计量也是随机变量,因而就有一定的 分布.称这个分布为“抽样分布”.也即抽样分布就 是统计量的分布
抽样分布
精确抽样分布
渐近分布
(小样本问题中使用) (大样本问题中使用)
这一节, 我们来讨论正态总体的抽样分布.
例4 设 X ~ N 1, 12 , X1, X2,......Xn 是X 的一个样本
Y ~ N
2
,
2 2
, Y1,Y2,......Yn 是 Y的一个样本。

《概率论与数理统计》教学大纲课程名称:概率论与数理统计英文名称

《概率论与数理统计》教学大纲课程名称:概率论与数理统计英文名称

《概率论与数理统计》教学大纲课程名称:概率论与数理统计英文名称:Probability Theory and Mathematical Statitics课程编号:09420003学时数及学分:54学时 3学分教材名称及作者:《概率论与数理统计》(第三版), 盛骤、谢式干、潘承毅编出版社、出版时间:高等教育出版社,2001年本大纲主笔人:邓娜一、课程的目的、要求和任务概率统计是一门重要的理论性基础课,是研究随机现象统计规律性的数学学科,本课程的任务是使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决、处理实际不确定问题的基本技能和基本素质。

通过本课程的学习,要使学生初步理解和掌握概率统计的基本概念和基本方法,了解其基本理论,学习和训练运用概率统计的思想方法观察事物、分析事物以及培养学生用概率统计方法解决实际问题的初步能力。

概率统计的理论和方法的应用是非常广泛的,几乎遍及所有科学技术领域,工农业生产和国民经济的各个部门,例如使用概率统计方法可以进行气象预报,水文预报以及地震预报,产品的抽样检验,在研究新产品时,为寻求最佳生产方案可以进行试验设计和数据处理,在可靠性工程中,使用概率统计方法可以给出元件或系统的使用可靠性以及平均寿命的估计,在自动控制中,可以通过建立数学模型以便通过计算机控制工业生产,在通讯工程中可用以提高抗干扰和分辨率等。

所以我院各专业学习概率统计是非常必要的,它也是学习专业课的基础。

二、大纲的基本内容及学时分配本课程的教学要求分为三个层次。

凡属较高要求的内容,必须使学生深入理解、牢固掌握、熟练应用。

其中,概念、理论用“理解”一词表述,方法、运算用“熟练掌握”一词表述。

在教学要求上一般的内容中,概念、理论用“了解”一词表述,方法、运算用“掌握”表述。

对于在教学上要求低于前者的内容中,概念、理论用“会”一词表述,方法、运算用“知道”表述(一)随机事件及其概率1、理解随机实验、随机事件、必然事件、不可能事件等概念。

样本均值和样本方差独立证明

样本均值和样本方差独立证明

样本均值和样本方差独立证明样本均值和样本方差独立性是概率论和数理统计中的重要概念之一、为了证明样本均值和样本方差的独立性,首先需要清楚地了解这两个概念以及它们之间的数学关系。

然后,我们可以通过推导和实例分析来进一步证明它们是独立的。

样本均值是指从总体中随机抽取的样本的平均值。

样本方差是样本中各个观测值与样本均值之差的平方的平均值。

表示为S^2、具体而言,样本均值和样本方差的计算公式如下:样本均值:x̄ = (x1 + x2 + ... + xn) / n样本方差:S^2 = ((x1 - x̄)^2 + (x2 - x̄)^2 + ... + (xn - x̄)^2) / (n - 1)其中,x̄表示样本均值,x1, x2, ..., xn表示样本中的观测值,n 表示样本容量。

要证明样本均值和样本方差的独立性,我们需要进一步理解它们之间的数学关系。

根据数理统计的定义,样本方差是样本中每个观测值与均值之差的平方的平均值。

也就是说,样本方差能够对样本中每个观测值与均值之间的离散程度进行度量。

首先,我们来证明样本均值与总体中每个观测值之间的独立性。

假设总体中有N个观测值,那么样本均值可以表示为:x̄ = (x1 + x2 + ... + xn) / n其中,x1, x2, ..., xn表示总体中随机抽取的n个观测值。

显然,样本均值是总体中观测值的线性组合,而线性组合的期望值等于各个随机变量的期望值的线性组合。

由于总体中的每个观测值都是相互独立的,它们的期望值也是相互独立的。

因此,样本均值与总体中每个观测值之间是独立的。

接下来,我们来证明样本方差与样本均值之间的独立性。

样本方差的计算涉及到观测值与样本均值之间的距离。

而样本均值与观测值之间的距离是独立于样本均值本身的。

假设总体中的样本均值为x̄,样本方差为S^2S^2 = ((x1 - x̄)^2 + (x2 - x̄)^2 + ... + (xn - x̄)^2) / (n - 1)在计算样本方差时,我们可以将每个观测值与样本均值的平方差作为一个独立的变量进行研究。

概率论与数理统计公式

概率论与数理统计公式

概率论与数理统计公式1.概率公式:
1.1概率加法公式:
P(A∪B)=P(A)+P(B)-P(A∩B)
1.2条件概率公式:
P(A,B)=P(A∩B)/P(B)
P(B,A)=P(A∩B)/P(A)
1.3乘法公式:
P(A∩B)=P(A)*P(B,A)
P(A∩B)=P(B)*P(A,B)
1.4全概率公式:
P(A)=ΣP(A,B_i)*P(B_i)
1.5贝叶斯公式:
P(B,A)=P(A,B)*P(B)/P(A)
2.数理统计中的基本概念和公式:
2.1样本均值:
样本均值 = (x1 + x2 + ... + xn) / n
2.2总体均值:
总体均值=(样本均值*n-x)/(n-1)
2.3样本方差:
样本方差 = Σ(xi - x̄)² / (n-1)
2.4总体方差:
总体方差= Σ(xi - µ)² / N
2.5样本标准差:
样本标准差=√(样本方差)
2.6总体标准差:
总体标准差=√(总体方差)
2.7样本中位数:
样本中位数=(x[n/2]+x[(n+1)/2])/2(当n为偶数时)
2.8样本四分位数:
样本四分位数Q1=x[(n+3)/4]
样本四分位数Q3=x[(3n+1)/4]
2.9标准正态分布的累积分布函数的逆函数:
Zα=Φ^(-1)(α),其中Φ(z)表示标准正态分布的累积分布函数。

2.10卡方分布的累积分布函数的逆函数:
x^2α=χ^2^(-1)(α),其中χ^2(x)表示卡方分布的累积分布函数。

概率论与数理统计答案第六章

概率论与数理统计答案第六章

第六章 样本及抽样分布1.[一] 在总体N (52,6.32)中随机抽一容量为36的样本,求样本均值X 落在50.8到53.8之间的概率。

解: 8293.0)78()712(}63.68.163.65263.62.1{}8.538.50{),363.6,52(~2=-Φ-Φ=<-<-=<<X P X P N X2.[二] 在总体N (12,4)中随机抽一容量为5的样本X 1,X 2,X 3,X 4,X 5. (1)求样本均值与总体平均值之差的绝对值大于1的概率。

(2)求概率P {max (X 1,X 2,X 3,X 4,X 5)>15}. (3)求概率P {min (X 1,X 2,X 3,X 4,X 5)>10}.解:(1)⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-=>-25541225415412}112{|X P X P X P =2628.0)]25(1[2=Φ-(2)P {max (X 1,X 2,X 3,X 4,X 5)>15}=1-P {max (X 1,X 2,X 3,X 4,X 5)≤15}=.2923.0)]21215([1}15{1551=-Φ-=≤-∏=i i X P (3)P {min (X 1,X 2,X 3,X 4,X 5)<10}=1- P {min (X 1,X 2,X 3,X 4,X 5)≥10}=.5785.0)]1([1)]21210(1[1}10{15551=Φ-=-Φ--=≥-∏=i i X P 4.[四] 设X 1,X 2…,X 10为N (0,0.32)的一个样本,求}.44.1{1012>∑=i i X P解:)5(1.0}163.0{}44.1{),10(~3.0101221012221012查表=>=>∑∑∑===i ii ii iX P XP χX7.设X 1,X 2,…,X n 是来自泊松分布π (λ )的一个样本,X ,S 2分别为样本均值和样本方差,求E (X ), D (X ), E (S 2).解:由X ~π (λ )知E (X )= λ ,λ=)(X D∴E (X )=E (X )= λ, D (X )=.)()(,)(2λX D S E nλnX D ===[六] 设总体X~b (1,p),X 1,X 2,…,X n 是来自X 的样本。

概率论与数理统计总结之第六章

概率论与数理统计总结之第六章

第六章 样本及抽样分布 总体与个体:我们将试验的全部可能的观察值称为总体,这些值不一定都不相同,数目上也不一定是有限的,每一个可能观察值称为个体 总体中所包含的个体的个数称为总体的容量 容量为有限的称为有限总体 容量为无限的称为无限总体设X 是具有分布函数F 的随机变量,若,,21X X …n X ,是具有同一分布函数F 的、相互独立的随机变量,则称,,21X X …n X ,为从分布函数F (或总体F 、或总体X )得到的容量为n 的简单随机样本,简称样本,它们的观察值,,21x x …n x ,称为样本值,又称为X 的n 个独立的观察值由定义得:若,,21X X …n X ,为F 的一个样本,则,,21X X …n X ,相互独立,且它们的分布函数都是F ,所以(,,21X X …n X ,)的分布函数为,,(21*x x F …)(),1∏==ni i n x F x又若X 具有概率密度f ,则(,,21X X …n X ,)的概率密度为,,(21*x x f …).(),1∏==ni i n x f x设,,21X X …n X ,是来自总体X 的一个样本,g(,,21X X …n X ,)是,,21X X …n X ,的函数,若g 中不含未知参数,则称g(,,21X X …n X ,)是一统计量设,,21X X …n X ,是来自总体X 的一个样本,n x x x ,^,,21是这一样本的观察值,定义:样本平均值∑==ni i X n X 11样本方差⎪⎭⎫ ⎝⎛--=--=∑∑==n i i n i i X n X n X X n S 12221211)(11样本标准差∑=--==ni i X X n S S 122)(11 样本k 阶(原点)矩,2,1,11==∑=k X n A n i ki k …样本k 阶中心矩,3,2,)(11=-=∑=k X X n B k ni i k …经验分布函数设,,21X X …n X ,是总体F 的一个样本,用∞<<-∞x x S ),(表示,,21X X …n X ,中不大于x 的随机变量的个数。

概率论与数理统计常用的统计分布

概率论与数理统计常用的统计分布

概率论与数理统计
2 X ~ N ( , ) , X1 , X 2 ,... X n 是 定理 2 设总体
取自 X 的一个样本, X 与 S 为该样本的样 本均值与样本方差,则有
2 2 S 2 2 ( X i X )2 ~ 2 (n 1) (1) i 1
概率论与数理统计
设总体 X 的均值和方差 2 E( X ) , D( X ) 都存在. X1 , X 2 , , Xn 是来自总体 X 的样本,则 2 E ( X ) , D( X ) n , E ( S 2 ) 2
n n 1 1 E( X ) E( n X i ) n E( X i ) i 1 n i 1 n
n
X (2) T S / n ~ t (n 1)
概率论与数理统计
设 X1 , X 2 , , Xn 是总体 X ~ N ( , 2 ) 的样本, X , S 2分别为样本均值和样本方差,则有 X ~ t (n 1) S/ n 由定理一、定理二有 2 ( n 1) S X 2 Y ~ N ( 0 , 1) , 2 ~ (n 1) 2 / n 2 且 Y 与 独立,由 t 分布的定义有 X X / n Y ~ t (n 1) S/ n (n 1) S 2 / 2 S 2/n n 1


3 0.1 P3 |X | 99.7%. P | X | X | 0.03} 99.7%. P{| n 100

概率论与数理统计
例3 在设计导弹发射装置时, 重要事情之 一是研究弹着点偏离目标中心的距离的方 差.对于一类导弹发射装置, 弹着点偏离目标 中心的距离服从正态分布N(μ,100), 现在进 行了25次发射试验, 用S2记这25次试验中弹 着点偏离目标中心的距离的样本方差. 试求 S2超过50的概率.

样本均值的期望和方差

样本均值的期望和方差

样本均值的期望和方差(1)样本(背景知识):由学过的概率论的知识可以知道,若在总体个数有限的情况下,抽取出一些个体,总体的分布可能会发生变化,所以个体的分布可能反映不了总体的分布。

后一句不太好理解,所以举个经典例子:若N个产品中有M个废品,在抽样调查其废品率时,正常抽取样本(随机抽不放回),则样品的废品率服从超几何分布;而产品中的废品率服从二项分布。

这样由样品得到的估计,统计性质就与总体不同。

而且当产品数量不是很大时,这种分布差异无法忽视。

然而只有在总体中包含的个体极多或包含无限多个个体时,不放回的抽取才对总体的分布影响极少或者毫无影响,这种例子才不成立,此时可以用样本估计总体。

这种情形在应用中最为常见,数理统计学在理论上对其研究得也最深入。

此时称抽出的若干数据独立同分布,称这组数据为从某总体抽出的独立随机样本,简称为从某总体中抽出的样本。

【1】(2)样本均值/方差:顾名思义,样本均值就是样本的均值,样本方差就是样本数据的方差。

(3)总体均值/方差:同上。

(4)样本均值/方差的期望:样本数据均为我们抽取得来(是已知量)我们利用它算出样本参数(例如样本均值),假装它是总体的参数(例如总体均值,是未知量),这就是用样本估计总体的过程;由样本的定义,用样本估计得到的总体的参数不是完美的,有时和真正的总体的参数之间可能有一个偏移。

那么接下来一个很自然的想法就是,由于我们对样本参数计算式已知,除去不可控的抽样随机性,从计算方法的角度上来说,我们可以知道这个偏移量是多少吗?更进一步地,我们可以在计算方法上对这个偏移加以修正吗?自然地,类似前述在定义样本时举过的例子,我们还可以假设对总体的数据和参数已知,这样就可以用总体的数据和参数模拟抽样,反算出样本参数,并与真实的总体参数加以对比,达到修正偏移的目的了!而这样反算出的样本参数,就叫做样本参数(例如样本均值、样本方差)的期望。

从正面的/科学的(也是教材上的)角度来说,我们是用总体反过来估计了样本,得到的当然就是样本参数的期望值啦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本定理
定理 设随机变量X1, X 2 , , X n 相互独立,且
Xi ~ N ( i , i2 ) (i 1, 2, , n)
则它们的任一确定的线性函数
n
n
n
ci Xi ~ N ( cii ,
ci2
2 i
).
i 1
i 1
i 1
其中c1, c2 , , cn为不全为零的常数.
一、单个正态总体的抽样分布
求 P X 165 3

由题设可知: X ~ N 165,
25 20
,即X
N 165, 1.25,
P X 165 3 PX 168 PX 162
1
3 1.25
3 1.25
2 1 2.68 0.0074
例2 设 X ~ N 0, 25, X1, X2,...X20, 是它的一个样本,
正态总体N 1, 2 和N 2 , 2 的样本,且它们相
互独立,则1
t
X
Y Sn
1 2
11 n1 n2
~
t n1
n2
2,
其中Sn
n1 1 S12 n2 1 S22 ;
n1 n2 2
*了解*
2
S12 S22
F n1 1, n2 1,其中S12和S22为两总体的样本方差.
5 20
所以
Y
20
X 5
2
2 X 5 20
~ 2 1.
例2 设 X ~ N 0, 25, X1, X2,...X20, 是它的一个样本,
2

1
P
20
X
2 i
190,
i1
2
Y
20
X 5
的分布。
3
,
使
19S 2
P
25
0.75
解: 3 因为 19S 2 ~ 2 19,
1
P
1 25
20 i 1
X
2 i
7.6
1 0.995 0.005.
例2 设 X ~ N 0, 25, X1, X2,...X20, 是它的一个样本,
2

1
P
20
X
2 i
190 ,
i1
2
Y
20
X 5
的分布。
3
,
使
P
19S 2
25
0.75
解:2因为X ~ N 0, 25,所以 X ~ N 0,1,
例4 设 X ~ N 1, 12 , X1, X2,......Xn 是X 的一个样本
Y ~ N
2
,
2 2
, Y1,Y2,......Yn 是 Y的一个样本。
又 X1, X2,......Xn 与 Y1,Y2,......Yn 相互独立,
求统计量 分析:
n
F
i 1 n
2
X Xi
是X
i 1
的概率分布。
nm
n
X
2 i
i n 1

由题设可知:X1
,
X
2
,
X
相互独立,且
nm
Xi N 0, 2 ,i 1, 2, , n m.
n
2 分布, t 分布, F 分布.
4.熟练掌握有关单个正态总体的样本均值、 样本方差的分布结论,并加以应用。
课堂提高
例1 设X1, X 2 , X3, X 4来自总体N (0, 2 )的样本,
试确定统计量T X1 X 2 的分布.
X
2 3
X
2 4

X1
X2
~
N (0,2 2 ), 于是
X1 X2
,
2
n
.
(由P126的独立同分布中心极限定理5.2.1推证)
定理的结论说明:不论总体服从何分布,只要其期望
为 ,方差为 2 ,则它的大样本的样本均值 X 均可
近似地看作服从正态分布
N
,
2
n
.
第六章小结
1.掌握统计量的概念及两个常用统计量. 2.掌握分位数的概念及查表方法. 3.掌握三个常用统计分布的定义及性质:
25

2 0.75
19
14.56.
例3 若总体X N , 2 ,X1, X 2,
,
X

n
其简单随机样本,X为样本均值,S 2为样本方差。
试确定U
n
X
2
及V
n
X
S
2
的分布。
解 由题设可知 X
N
,
2
n
,
故 X N 0,1,
n
从而
X
n
2
n
X
2
U
2 1.
例3 若总体X N , 2 ,X1, X 2,
定理6.3.2 设 X1, X2, , Xn 是来自正态总体 N(, 2)
的样本,则
1 X ~
N
,
2
n

n i1
(Xi )2 2
2 n;
2 样本均值X与样本方差S2相互独立;
n
3
n 1 S 2
2
(Xi X )2
i 1
2
2 n 1;
4 X t n 1.
Sn
例1 设 X ~ N 165, 25, X1, X2,...X20 是它的一个样本,
2 2
~
N (0,1)
X 3 与 X 4 独立同分布于N(0,1),于是
2
2
X
2 3
2
X
2 4 2
~
2(2)
由t分 布 的 定 义
X1 X2
2 2 ~ t(2)
X
2 3
X
2 4
2 2
即 X1 X2 ~ t(2)
X
2 3
X
2 4
例2 设总体X ~ N (0, 2 ), ( X1, X 2 , , X nm )
2
Y Yi
2 2 2 1
i 1
的分布
n
2
X Xi
i 1
12
n
2
Y Yi
2
n 1 , i1
2 2
2 n 1,
F F n 1,n 1.
三、大样本总体的抽样分布
定理6.3.1 设X1, X 2, , X n是来自均值为,方差为 2
的总体的一组样本,当n充分大时,近似地有
X
~N
第6.3节 样本均值与样本方差的分布
一、基本定理 二、例题
三、小结
既然统计量是依赖于样本的,而后者又是随 机变量,故统计量也是随机变量,因而就有一定的 分布.称这个分布为“抽样分布”.也即抽样分布就 是统计量的分布
抽样分布
精确抽样分布
渐近分布
(小样本问题中使用) (大样本问题中使用)
这一节, 我们来讨论正态总体的抽样分布.
,
X

n
其简单随机样本,X为样本均值,S 2为样本方差。
试确定U
n
X
2
及V
n
X
S
2
的分布。
续解 而 n 1 S 2
2
2 n 1,
2
从而
X
n
n 1 S 2
2
n
1
1
n
X
S
2
V
F 1, n 1.
二、两个正态总体的抽样分布
定理6.3.3 设X1, X 2 , , X n1和Y1,Y2 , ,Yn2是分别来自
2

1
P
20
X
2 i
190 ,
i1
2
Y
20
X 5
的分布。
3
,
使
P
19S 2
25
0.75
解: 1由X ~ N 0, 25,可知 X ~ N 0,1,

1 25
20 i 1
X
2 i
~
2
5 20 ,
P
20
i1
X
2 i
190
P
1 25
20 i1
X
2 i
190 25
7.6
相关文档
最新文档