【精选】北师大版七年级上册§1.2展开与折叠-数学知识点总结

合集下载

七年级数学上册 第一章 2展开与折叠例题与讲解 北师大版

七年级数学上册 第一章 2展开与折叠例题与讲解 北师大版

2 展开与折叠1.棱柱的表面展开图棱柱是由两个完全相同的多边形底面和一些长方形侧面围成的.沿棱柱表面不同的棱剪开就可以得到不同的表面展开图.如图是棱柱的一种展开图.棱柱的表面展开图是两个完全相同的多边形(底面)和几个长方形(侧面).【例1】如图,请你在横线上写出哪种立体图形的表面能展开成下面的图形.解析:(1)三棱柱两个底面是三角形(2)六棱柱两个底面是六边形(3)长方体两个底面是长方形(4)三棱柱两个底面是三角形答案:三棱柱2.圆柱、圆锥的表面展开图(1)圆柱的表面展开图沿着圆柱的一条高把圆柱剪开,就得到圆柱的表面展开图.圆柱的表面展开图是两个圆(底面)和一个长方形(侧面),如图所示.如果两个底面圆在长方形的同一侧(如图所示),折叠后上端没有底,下端有两个底,则它不能折叠成圆柱.(2)圆锥的表面展开图如图所示,圆锥的表面展开图是一个圆(底面)和一个扇形(侧面).【例2】如图所示图形都是几何体的展开图,你能说出这些几何体的名称吗?分析:主要根据顶点、棱、面的数量及侧面展开图的形状进行判断.解:圆锥、圆柱、五棱柱.3.平面图形的折叠平面图形沿某些直线折叠可以围成一定形状的立体图形,与立体图形展开成平面图形是一个互逆过程.我们已经见过很多平面图形了,但并不是所有的平面图形都能折成几何体.根据平面展开图判断立体图形的方法:(1)能够折叠成棱柱的特征:①棱柱的底面边数=侧面的个数.②棱柱的两个底面要分别在侧面展开图的两侧.(2)圆柱的表面展开图一定是两个相同的圆形和一个长方形.(3)圆锥的表面展开图一定是一个圆形和一个扇形.(4)能够折叠成正方体的特征:①6个面都是完全相同的正方形.②正方体展开图连在一起的(指在同一条直线上的)正方形最多只能为4个.③以其中1个为底面,前、后、左、右、上面都有,且不重叠.4.正方体展开图上的数字问题正方体是立体图形的展开与折叠的代表图形,与正方体的展开图有关的数字问题主要是相对面的找法,确定了三组相对面,数字问题便可迎刃而解.正方体的平面展开图共有11种,可分为四类:(1)1-4-1型相对面的确定:①第一行与第三行的正方形是相对面;②中间一行的4个正方形中,相隔一个是相对面.(2)1-3-2型相对面的确定:①第一行的正方形与第三行的左边第1个正方形是相对面;②中间一行第1个与第3个为相对面;第2个与第三行第2个为相对面.(3)2-2-2型相对面的确定:①第一行的第1个与第二行的第2个是相对面;②第二行第1个与第三行的第2个是相对面;③第三行的第1个与第一行的第2个为相对面.(4)3-3型相对面的确定:①第一行的第1个与第3个为相对面;②第二行的第1个与第3个为相对面;③第一行的第2个与第二行的第2个为相对面.【例3-1】如图所示,哪些图形经过折叠可以围成一个棱柱?分析:(1)底面是四边形,侧面有3个,显然与三棱柱、四棱柱的特征不符;(3)的两个底面在侧面同侧,折叠后也不能围成棱柱;(2)(4)折叠后可以围成棱柱.解:(2)(4)可以.【例3-2】生活中我们经常可以见到各种各样的包装盒,你能用线将图中的实物和它的平面展开图连接起来吗?分析:根据能折叠成不同几何体的特征去判断即可.解:如图所示.【例4-1】如图所示,假定用A,B表示正方体相邻的两个面,用字母C表示与A相对的面,请在下面的正方体展开图中填写相应的字母.分析:先判断属于哪种类型,再确定相对面.前三种的相对面都是隔一个即可;第四种的A与上面第一行中的第2个是相对面.解:如图所示.【例4-2】要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,则x=__________,y=__________.解析:这里关键是要找到相对的面,折叠之后可知,x与1相对,所以x=5,y与3相对,所以y=3.答案:5 3【例4-3】小丽制作了一个对面图案均相同的正方体礼品盒(如图所示),则这个正方体礼品盒的平面展开图可能是( ).___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________解析:这个正方体的平面展开图属于1-4-1型的,根据规律可知,第一行的与第三行的为相对面,中间一行的第1个与第3个、第2个与第4个为相对面,故应选A.答案:A5.表面展开图的应用正方体与图案正方体前面、上面、右面有不同的图案,按不同的类型展开后,其图案也会发生相应的变化.根据展开图判断是否与模型对应的方法:(1)三个面上的不同图案不会对立,所以可排除三种图案对立的情况;(2)位置判断:相邻三个面的图案位置是否一致.当前面和上面的图案确定位置后,另一个图案是在左面还是右面,图案放置的角度是否正确.【例5】图中给出的是哪个正方体的展开图?( ).解析:显然带有黑色的面是相对的面,所以A,B错误.又因为两个黑色小正方形应该是相对的,所以选D.答案:D。

展开与折叠(3种题型)-2023年新七年级数学核心知识点与常见题型(北师大版)(解析版)

展开与折叠(3种题型)-2023年新七年级数学核心知识点与常见题型(北师大版)(解析版)

展开与折叠(3种题型)【知识梳理】一.几何体的展开图(1)多数立体图形是由平面图形围成的.沿着棱剪开就得到平面图形,这样的平面图形就是相应立体图形的展开图.同一个立体图形按不同的方式展开,得到的平面展开图是不一样的,同时也可看出,立体图形的展开图是平面图形.(2)常见几何体的侧面展开图:①圆柱的侧面展开图是长方形.②圆锥的侧面展开图是扇形.③正方体的侧面展开图是长方形.④三棱柱的侧面展开图是长方形.(3)立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决.从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.二.展开图折叠成几何体通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.三.专题:正方体相对两个面上的文字(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.【考点剖析】一.几何体的展开图(共9小题)1.(2022秋•江汉区期末)下列平面图形中,是棱柱的展开图的是()A.B.C.D.【分析】依据棱柱的所有的面的形状以及位置,即可得到棱柱的表面展开图.【解答】解:A.该平面图形不能围成棱柱,故本选项错误;B.该图是棱柱表面展开图,故本选项正确;C.该平面图形不能围成棱柱,故本选项错误;D.该平面图形不能围成棱柱,能围成圆柱,故本选项错误.故选:B.【点评】本题考查了几何体的展开图以及棱柱的结构特征,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.2.(2022秋•南京期末)如图是一个正方体的表面展开图,在这个正方体中,与点B重合的点为()A.点C和点D B.点A和点E C.点C和点E D.点A和点D【分析】根据图形,把正方体展开图折叠成正方体,观察得到重合的点.【解答】解:在这个正方体中,与点B重合的点为点C和点D.故选:A.【点评】本题考查了几何体的展开图,掌握折叠后的正方体的图形是关键.3.(2022秋•莲湖区期末)诗语同学周末帮妈妈拆完快递后,将包装盒展开,进行了测量,结果如图所示.已知长方体盒子的长比宽多3cm,高是2cm.(1)求长方体盒子的长和宽.(2)求这个包装盒的体积.【分析】(1)利用图中关系首先求出宽,然后求出长;(2)用体积公式即可.【解答】解:(1)宽为:(14﹣2×2)÷2=5(cm),长为:5+3=8(cm);(2)8×5×2=80(cm3).【点评】本题考查的是几何体的展开图,解题的关键是求出长和宽.4.(2022秋•鹤壁期末)如图是一个用硬纸板制作的长方体包装盒展开图,已知它的底面形状是正方形,高为12cm.(1)制作这样的包装盒需要多少平方厘米的硬纸板?(2)若1平方米硬纸板价格为元,则制作10个这样的包装盒需花费多少钱?(不考虑边角损耗)【分析】(1)根据长方体的表面积公式计算即可;(2)根据题意列式计算即可.【解答】解:(1)由题意得,2×(12×6+12×6+6×6)=360cm2;答:制作这样的包装盒需要360平方厘米的硬纸板;(2)360÷10000×5×10=1.8元,答:制作10个这样的包装盒需花费1.8元钱.【点评】本题考查了几何体的表面积,正确的计算出长方体的表面积是解题的关键.5.(2022秋•和平区期末)某校积极开展文明校园的创建活动,七年级学生设计了正方体废纸回收盒,如图所示,将写有“收”字的正方形添加到图中,使它们构成完整的正方体展开图,共有种添加方式.【分析】根据正方体表面展开图的特征进行判断即可.【解答】解:“收”字分别放在“垃”“圾”“分”“类”下方均可成完整的正方体展开图,所以有4种添加方式.故答案为:4.【点评】本题主要考查了正方体的展开图特点,掌握正方体表面展开图的特征是正确判断的关键.6.(2022秋•江阴市期末)如图是一个正方体纸盒,下面哪一个可能是它的表面展开图()A.B.C.D.【分析】正方体的空间图形,从相对面入手,分析及解答问题.B,D与此不符,所以错误;再观察3个图案所在的位置,而选项C不符,正确的是A.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.(2022秋•二道区校级期末)图①,图②,图③均为5×5的正方形网格,在网格中选择2个空白的正方形涂上阴影,使它们与图中四个有阴影的正方形一起构成一个正方体的表面展开图,并且3种方法得到的展开图不相同.【分析】依据正方体展开图的特征进行判断,即可得到3种不同的正方体展开图.【解答】解:如图所示:(答案不唯一)【点评】此题主要考查了几何体的展开图,关键是掌握正方体展开图的结构特点.8.(2022秋•伊川县期末)如图,是一个几何体的表面展开图:(1)请说出该几何体的名称;(2)求该几何体的表面积;(3)求该几何体的体积.【分析】(1(2)依据长方体的表面积等于六个面面积之和即可得出结论;(3)依据体积计算公式,即可得到该几何体的体积.【解答】解:(1)该几何体的名称是长方体;(2)该几何体的表面积为:2×(2×3+2×1+1×3)=22(平方米);(3)该几何体的体积为:2×3×1=6(立方米).【点评】本题考查了几何体的展开图,掌握立体图形与平面图形的转化,建立空间观念是关键.9.(2022秋•仪征市期末)将一个无盖正方体展开成平面图形的过程中,需要剪开条棱.【分析】根据无盖正方体的棱的条数以及展开后平面之间应有棱连着,即可得出答案.【解答】解:∵无盖正方体有5个表面,两个面共一条棱,共8条棱,要展成如图所示图形必须4条棱连接,∴要剪8﹣4=4条棱,故答案为:4.【点评】此题主要考查了正方体的展开图的性质,根据展开图的性质得出要展成如图所示图形必须4条棱连接,是解题关键.二.展开图折叠成几何体(共9小题)10.(2022秋•沈河区期末)如图,如果裁掉一个正方形后能折叠成正方体,那么能裁掉的是()A.①B.②和③C.③和④D.②或③或④【分析】根据正方体的展开图得出结论即可.【解答】解:由正方体的展开图可知,去掉②或③或④原图都可以折叠成正方形,故选:D.11.(2022秋•高新区期末)下列图形经过折叠不能成为一个封闭的正方体的是()A.B.C.D.【分析】根据正方体的展开图得出结论即可.【解答】解:由题意知,图形不能折叠成正方体,故选:D.【点评】本题主要考查正方体的展开图,熟练掌握正方体的展开图是解题的关键.12.(2022秋•青秀区校级期末)如图平面图形不能折成无盖长方体盒子的是()A.B.C.D.【分析】根据长方体展开图得出结论即可.【解答】解:由题意知,图形不能折成无盖长方体盒子,故选:C.【点评】本题主要考查长方体展开图的知识,熟练掌握长方体展开图的知识是解题的关键.13.(2022秋•晋江市期末)图①是正方体的表面展开图,该正方体从图①所示的位置折叠成图②的正方体,在图①标注的顶点A、B、C、D中,与点P重合的顶点是()A.点A B.点B C.点C D.点D【分析】先找出下面,然后折叠,找出正方形ABCD位于正方体的哪个面上,点P所在正方形位于正方体的哪个面上,即可找出与点P重合的顶点.【解答】解:如图:以正方形1为下面,将正方体从图①所示的位置折叠成图②的正方体时,正方形ABCD位于正方形的上面,点P所在正方形在前面,点B与点P重合.故选:B.【点评】本题考查正方形的展开图和空间想象能力,关键是找出或想象出折叠前后图形的关系.14.(2022秋•秦淮区期末)下列图形中,能通过折叠围成一个三棱柱的是()A.B.C.D.【分析】根据三棱柱及其表面展开图的特点对各选项分析判断即可得解.【解答】解:A、折叠后两侧面重叠,不能围成三棱柱,故本选项错误;B、折叠后能围成三棱柱,故本选项正确;C、底面有2个三角形,不能折叠围成一个三棱柱,故本选项错误;D、展开图有3个底面,不能围成三棱柱,故本选项错误.故选:B.【点评】本题考查了三棱柱表面展开图,上、下两底面应在侧面展开图长方形的两侧,且是全等的三角形,15.(2022秋•姜堰区期末)小明在学习了《展开与折叠》这一课后,掌握了长方体盒子的制作方法.如图是他制作的一个半成品的平面图:(1)在中补充一个长方形,使该平面图能折叠成一个长方体盒子;(2)已知小明制作长方体的盒子长是宽的2倍,宽是高的2倍,且长方体所有棱长的和为56cm,求这个长方体盒子的体积.【分析】(1)根据长方体的展开图补充图形即可求解;(2)根据题意,设长方体的高为a,则宽为2a,长为4a,根据长方体所有棱长的和为56cm,列出方程,进而根据体积公式即可求解.【解答】解:(1)如图所示,(2)设长方体的高为acm,则宽为2acm,长为4acm,根据题意得,4(a+2a+4a)=56(cm),解得:a=2,∴这个长方体的高为2cm,宽为4cm,长为8cm,∴这个长方体盒子的体积为:2×4×8=64(cm3).【点评】本题考查了长方体的展开图,一元一次方程的应用,掌握以上知识是解题的关键.16.(2022秋•宛城区校级期末)某“综合实践”小组开展了“长方体纸盒的制作”实践活动,他们利用边长为a(cm)的正方形纸板制作出两种不同方案的长方体盒子(图1为无盖的长方体纸盒,图2为有盖的长方体纸盒).【操作一】根据图1方式制作一个无盖的长方体盒子.方法:先在纸板四角剪去四个同样大小边长为b (cm)的小正方形,再沿虚线折合起来.【问题解决】(1)若a=12cm,b=3cm,则长方体纸盒的底面积为;【操作二】根据图2方式制作一个有盖的长方体纸盒.方法:先在纸板四角剪去两个同样大小边长为b (cm)的小正方形和两个同样大小的小长方形,再沿虚线折合起来.【拓展延伸】(2)若a=12cm,b=2cm,该长方体纸盒的体积为;(3)现有两张边长a均为30cm的正方形纸板,分别按图1、图2的要求制作无盖和有盖的两个长方体盒子,若b=5cm,求无盖盒子的体积是有盖盒子体积的多少倍?【分析】(1)由折叠可得底面是边长为6cm的正方形,进而求出底面积即可;(2)由展开与折叠可知,折叠成长方体的长、宽、高分别为a﹣2b,,b,根据体积公式进行计算即可;(3)当a=30cm,b=5cm时,分别求出按图1,图2的折叠方式所得到的长方体的体积即可.【解答】解:(1)如图1,若a=12cm,b=3cm,则长方体纸盒的底面是边长为12﹣3×2=6(cm)的正方形,因此面积为6×6=36(cm2),故答案为:36cm2;(2)如图2,先在纸板四角剪去两个同样大小边长为b(cm)的小正方形和两个同样大小的小长方形,再沿虚线折合起来可得到长为a﹣2b,宽为,高为b的长方体,当a=12cm,b=2cm,该长方体纸盒长为12﹣2×2=8(cm),宽为=4(cm),高为2cm,所以体积为8×4×2=64(cm3),故答案为:64cm3;(3)当a=30cm,b=5cm时,按图1作无盖的长方体的纸盒的体积为(30﹣5×2)(30﹣5×2)×5=2000(cm3),按图2作的长方体的纸盒的体积为(30﹣5×2)()×5=1000(cm3),2000÷1000=2(倍),答:无盖盒子的体积是有盖盒子体积的2倍.【点评】本题考查展开图折叠成几何体,掌握棱柱的展开图的特征是正确解答的前提,根据展开图得出折叠后长方体的长、宽、高是解决问题的关键.17.(2022秋•昆明期末)图(1)和图(2)中所有的正方形都相同,将图(1)的正方形放在图(2)中的①②③④⑤某一位置,所组成的图形不能围成正方体的位置是()A.①②B.②③C.③④D.②⑤【分析】由平面图形的折叠及正方体的表面展开图的特点解题.【解答】解:将图1的正方形放在图2中的②⑤的位置出现重叠的面,所以不能围成正方体.故选:D.【点评】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.熟记正方体的11种展开图是解题的关键.18.(2022秋•阳泉期末)小明在学习了正方体的展开图后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀剪开了一个长方体纸盒,可是一不小心多剪开了一条棱,把纸盒剪成了两部分,如图1、图2所示.请根据你所学的知识,回答下列问题:观察判断:小明共剪开了条棱;动手操作:现在小明想将剪断的图2重新粘贴到图1上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒(如图3),请你帮助小明在图1中补全图形;解决问题:经过测量,小明发现这个纸盒的底面是一个正方形,其边长是长方体的高的5倍,并且纸盒所有棱长的和是880cm,求这个纸盒的体积.【分析】(1)根据平面图形得出剪开棱的条数,(2)根据长方体的展开图的情况可知有四种情况,(3)设最短的棱长高为acm,则长与宽相等为5acm,根据棱长的和是880cm,列出方程可求出长宽高,即可求出长方体纸盒的体积.【解答】解(1)小明共剪了8故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为acm,则长与宽相等为5acm,∵长方体纸盒所有棱长的和是880cm,∴4(a+5a+5a)=880,解得a=20,∴这个长方体纸盒的体积为20×100×100=200000(立方厘米).【点评】本题主要考查了几何展开图,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.三.专题:正方体相对两个面上的文字(共7小题)19.(2022秋•泗阳县期末)动手操作:做一个正方体木块,在正方体的各面分别写上1,2,3,4,5,6这6个不同的数字,若它可以摆放成如图所示的两种不同位置,请你判断数字5对面的数字是()A.1B.2C.3D.6【分析】根据图形以及数字的摆放,第一图可得6的下面为1,1的右边为4,第二个图可知4的下面是5,5的右边是2【解答】解:根据图形以及数字的摆放,第一图可得6的下面为1,1的右边为4,第二个图可知4的下面是5,5的右边是2,将正方形展开如图所示,∴5的对面是6,故选:D.【点评】本题考查了正方体展开图,相对面上的字,注意数字的摆放是解题的关键.20.(2022秋•溧水区期末)如图是一个正方体的平面展开图,若该正方体相对两个面上的数相等,则a+b+c =.【分析】利用正方体及其表面展开图的特点解题.【解答】解:由图可知,c+1=3,1+b=1,a=﹣2,所以a=﹣2,b=0,c=2,所以a+b+c=0.故答案为:0.【点评】本题考查了正方体相对两个面上的文字,解答本题的关键在于注意正方体的空间图形,从相对面入手,分析及解答问题.21.(2022秋•高邮市期末)一个正方体的6个面上分别标有字母a、b、c、d、e、f.若甲、乙两位同学分别在f、e朝上时,看到的另两个字母如图,则b对面的是.【分析】根据第一个图形和第二个图形中都含有d的面,即可判断.【解答】解:由题意可知d字母所在面相邻的面上的字母分别为a、c、e、f,则d的对面是b.即b对面的是d.故答案为:d.【点评】本题考查了正方体相对两个面上的文字,同时也考查了空间想象能力和推理能力.正确记忆立方体的特点是解题关键.22.(2022秋•川汇区期末)党的二十大报告提出,要以中国式现代化全面推进中华民族伟大复兴.将“中国式现代化”这六个字分别写在一个正方体的六个表面上,如图是它的一种展开图,则与“式”相对的字是()A.中B.国C.现D.代【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【解答】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“式”字相对的面上的汉字是“中”.故选:A.【点评】本题考查了正方体的展开图形,掌握相对面进行分析及解答是关键.23.(2022秋•青神县期末)如果一个骰子相对两面的点数之和为7,它的表面展开图如图所示,则下面判断正确的是()A.A代表B.B代表C.C代表D.B代表【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.【解答】解:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A与点数是1的对面,B与点数是2的对面,C与点数是4的对面,∵骰子相对两面的点数之和为7,∴A代表的点数是6,B代表的点数是5,C代表的点数是3.故选:A.【点评】本题考查了正方体相对两个面上的文字,掌握从相对面入手是关键.24.(2022秋•汉台区期末)如图是正方体的平面展开图,若将图中的平面展开图折叠成正方体后,相对面上的两个数之和为7,求x﹣y+z的值.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面判断即可.【解答】解:由图可知:z与4相对,y与﹣2相对,x与12相对,由题意得:z+4=7,y+(﹣2)=7,x+12=7,∴z=3,y=9,x=﹣5,∴x﹣y+z=﹣5﹣9+3=﹣11,∴x﹣y+z的值为﹣11.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.25.(2022秋•青神县期末)一个立方体的六个面上分别标上一至六点(一个小圆表示一点,每个面上的点数不同),然后将完全一样的四个立方体摆放成如图样式的一个长方体,我们能看到的面上的点数如图所示,则长方体底面上的点数之和是.【分析】先判断出相对的面的点数,再进行计算即可.【解答】解:由题意可知,“3点”的面的邻面有“2点、6点、4点、5点”,所以与“3点”相对的面的点数为“1点”;因为“4点”的面的邻面有“6点、5点、3点、1点”,所以与“4点”相对的面的点数为“2点”;因为“6点”的面的邻面有“3点、1点、4点、2点”,所以与“6点”相对的面的点数为“5点”;所以长方体底面上的点数之和是:4+1+5+2=12.故答案为:12.【点评】本题考查了正方体相对两个面上的文字,关键是弄清每个骰子六面点数之和是几,每个骰子看见面的点数之和是几.【过关检测】一.选择题(共4小题)1.(2022•河南三模)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“豫”字所在面相对的面上的汉字是()A.老B.南C.河D.家【分析】根据正方体的平面展开图找相对面的方法,同层隔一面判断即可.【解答】解:在原正方体中,与“豫”字所在面相对的面上的汉字是“家”,故选:D.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的平面展开图找相对面的方法是解题的关键.2.(2022•金坛区二模)某几何体的表面展开图如图所示,这个几何体是()A.圆柱B.长方体C.四棱锥D.五棱锥【分析】根据四棱锥的侧面展开图得出答案.【解答】解:这个几何体由四个三角形和一个正方形围成,故这个几何体为四棱锥.故选:C.【点评】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.3.(2022•梧州模拟)下列在立体图形中,它的侧面展开图是扇形的是()A.正方体B.长方体C.圆柱D.圆锥【分析】根据常见立体图形的侧面展开图判断即可得出答案.【解答】解:A选项,正方体的侧面展开图是长方形,故该选项不符合题意;B选项,长方体的侧面展开图是长方形,故该选项不符合题意;C选项,圆柱的侧面展开图是长方形,故该选项不符合题意;D选项,圆锥的侧面展开图是扇形,故该选项符合题意;故选:D.【点评】本题考查了几何体的展开图,掌握常见几何体的侧面展开图:①圆柱的侧面展开图是长方形.②圆锥的侧面展开图是扇形.③正方体的侧面展开图是长方形是解题的关键.4.(2022•丰台区二模)如图,下列水平放置的几何体中,侧面展开图是扇形的是()A.B.C.D.【分析】根据几何体的展开图:三棱柱的侧面展开图是三个长方形;四棱柱的侧面展开图是四个长方形;圆柱的侧面展开图是矩形;圆锥的侧面展开图是扇形;可得答案.【解答】解:AB、侧面展开图是四个长方形,故此选项不符合题意;C、侧面展开图是一个长方形,故此选项不符合题意;D、侧面展开图是扇形,故此选项符合题意.故选:D.【点评】本题考查了几何体的展开图,记住常用几何体的侧面展开图是解题的关键.二.填空题(共3小题)5.(2022•晋中一模)“双奥之城”指既举办过夏季奥运会又举办过冬季奥运会的城市.2008年北京夏季奥会之后,2022年北京冬季奥运会成功举办,使北京成为世界上首座“双奥之城”.下列正方体展开图的每个面上都标有一个汉字,把它们折成正方体后,与“双”字相对面上的汉字是.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面,判断即可.【解答】解:与“双”字相对面上的汉字是城,故答案为:城.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.6.(2021秋•息县期末)根据表面展开图依次写出立体图形的名称:、、.【分析】根据表面展开图的形状判断即可.【解答】解:圆锥的表面展开图是一个扇形和圆,四棱锥的表面展开是一个四边形和四个三角形,三棱柱的表面展开是三个长方形和两个三角形.【点评】本题考查立体图形的表面展开,熟悉各几何体表面展开的形状是求解本题的关键.7.(2021秋•绵阳期末)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“y”一面与相对面上的代数式相等,则有“xy2”一面与相对面上的代数式的和等于0(用数字作答).【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端对面,判断即可.【解答】解:由图可知:y与2y﹣3相对,xy2与﹣3xy相对,由题意得:y=2y﹣3,∴y=3,∴xy2+(﹣3xy)=9x+(﹣9x)=0,∴有“xy2”一面与相对面上的代数式的和等于0,故答案为:0.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.三.解答题(共5小题)8.(2021秋•武功县期末)如图是正方体的平面展开图,若将图中的平面展开图折叠成正方体后,相对面上的两个数之和为7,求x﹣y+z的值.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面判断即可.【解答】解:由图可知:z与4相对,y与﹣2相对,x与12相对,由题意得:z+4=7,y+(﹣2)=7,x+12=7,∴z=3,y=9,x=﹣5,∴x﹣y+z=﹣5﹣9+3=﹣11,∴x﹣y+z的值为﹣11.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.9.(2021秋•临汾期末)阅读与思考请阅读下列材料,并完成相应的任务:任务:(1)在图②中,若字母Q表示包装盒的上表面,字母P表示包装盒的侧面,则下表面在包装盒表面展开图中的位置是;A.字母B B.字母A C.字母R D.字母T(2)若在图③中,网格中每个小正方形的边长为1,求包装盒的表面积.【分析】(1)根据长方体的表面展开图找相对面的方法,同层隔一面,判断即可;(2)根据长方体的表面积公式进行计算即可解答.【解答】解:(1)在图②中,若字母Q表示包装盒的上表面,字母P表示包装盒的侧面,则下表面在包装盒表面展开图中的位置:字母B,故答案为:A;(2)由题意得:2×3×2+2×3×1+2×2×1=12+6+4=22,∴包装盒的表面积为22.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据长方体的表面展开图找相对面的方法是解题的关键.10.(2021秋•渠县期末)如图,是底面为正方形的长方体的表面展开图,折叠成一个长方体,那么:(1)与N重合的点是哪几个?(2)若AB=3cm,AH=5cm,则该长方体的表面积和体积分别是多少?【分析】(1)把展开图折叠即可得出答案;。

北师大版七年级数学上册展开与折叠知识讲解-2022年学习资料

北师大版七年级数学上册展开与折叠知识讲解-2022年学习资料

棱锥特点:-1n棱推有n顶点,棱-有n介面,侧面的形状都是三角形-边形-2哪些面的形状与大小一定完全相-同 -不一定存在-3哪些棱的长度一定相等?-注:此题中n为不小于3的正整数.
问题1-你能马上说出十棱柱的顶点数、棱-数、面数吗?-顶点:20-棱:30-面:12-问题2-你能马上说出 棱柱的顶点数、棱数、-顶点:2n-棱:3n-面:n+2
北师大版七年级数学上册-第一章丰的图形世鳏-层与折叠-第二课时
想一想,做一做-把一个正方体的表面沿某些棱剪开,展成-一个平面图形,你能得到下面的些平面图-形吗?
下图经过折叠能否围成一个正方形?
·将一个正方体的表面沿某些棱剪开,能能-得到哪些平面图形?小组合作探索-正方体的11种不-同的展开图
底面-侧面-◆侧棱-2这个棱柱有几个侧面?侧面的形-状是什么图形?-答:棱柱有5个侧面,每个侧面都是长方形 -棱柱侧面的形状都是长方形,
底面-1-侧面-一侧棱-3侧面的个数与底面图形的边数有-什么关系?-答:侧面的个数与地面图形的边数相等。柱侧面的个数和底面图形的边数相等
底面-侧面-◆侧棱-4这个棱柱有几条侧棱?它们的长-度之间有什么关系?-答:棱柱有5条侧棱,每条侧棱的长度 等。-棱柱所有侧棱长都相等.
知识技能:-1、一个六棱柱模型如图所示。它的底-面边长都是5厘米,侧棱长4厘米。观-察这个模型,回答下列问 -2这个六棱柱一共有-多少条棱?它们的长度-分别是多少?-解:18条棱,6条侧棱的-长度彼此相等,均为4厘 -围成底面的所有棱长都相-等,均为5厘米-第1题
课堂小结:-·本节课我们学习了立体图形与平面图形之-间的关系:-展开-折叠
一、观察思考-1.冰淇淋筒-展开
2.长方形纸-折叠-044
交流归纳:-有些立体图形-展开-平面图形-折叠-有些平面图形

北师大版数学七年级上册 1.2 展开与折叠

北师大版数学七年级上册 1.2 展开与折叠

2展开与折叠第1课时正方体的展开与折叠1.进一步认识立体图形与平面图形的关系,了解立体图形可由平面图形围成,立体图形可展开为平面图形.2.经历展开与折叠、模型制作等活动发展空间观念,积累数学活动经验,形成较为规范的语言.3.在操作活动中揭发学生自主学习的热情和积极思考的习惯,体验学习数学的乐趣。

【教学重点】在操作活动中,发展空间观念、积累数学活动经验.【教学难点】根据几何体的展开图判断能折叠成什么样的几何体.一、情境导入,初步认识在生活中,我们经常见到正方体形状的盒子.为了设计和制作这样的盒子,我们需要了解这种盒子展开后的平面图形.1.正方体有多少个面?多少条棱?多少个顶点?2.请同学们将自己准备的纸盒剪开,看看展开后的形状是怎样的?【教学说明】学生很容易得出正方体有6个面、12条棱、8个顶点,让学生自己动手操作有利于学生直观地了解正方体的展开图.二、思考探究,获取新知1.正方体的展开图问题 1 将小正方形纸盒沿某些棱任意剪开,你能得到哪些形状的平面图形?能否将得到的平面图形分类?【教学说明】学生进行裁剪,教师巡视.把学生剪好的平面图形贴在黑板上(重复的不再贴),再让学生讨论怎样分类.【归纳结论】将正方体沿不同的棱展开可得到不同的表面展开图,共有如下11种情形,可分为四类.141型(共6种)231型(共3种)33型(1种)222型(1种)问:一个正方体要将其展开成一个平面图形,必须沿几条棱剪开?学生分组进行讨论,得出结论.【归纳结论】由于正方体有12条棱,6个面,将其表面展成一个平面图形,面与面之间相连的棱有5条(即未剪开的棱),因此需要剪开7条棱.2.平面图形的折叠问题2下图中的图形经过折叠能否围成一个正方体?【教学说明】学生动手实际操作,激发学生的积极性和主动性,有助于学生得出正确的结论,发展学生的几何直观性.【归纳结论】若是正方体11种展开图的平面图形就能折叠成一个正方体,否则不能折叠成一个正方体.三、运用新知,深化理解1.(四川巴中中考)如图是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是()A.大B.伟C.国D.的2.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“您”相对的面上的字是________.【答案】1.D 2.年四、师生互动,课堂小结1.正方体的展开图.2.通过这节课的学习,学到了哪些新知识?【教学说明】教师引导学生回顾本节课所学知识,加深对新知识的理解.【板书设计】1.布置作业:从教材“习题1.3”中选取.2.完成练习册中本课时的相应作业.本节课通过学生自己动手操作,感受正方体的展开与折叠.第2课时棱柱、圆柱、圆锥的展开与折叠1.了解棱柱、圆柱、圆锥的侧面展开图.2.经历展开与折叠、模型制作等活动发展空间观念,在动手实践制作过程中学会与他人合作.3.通过识图想物,看物想图,画图制作等活动,培养学生学数学,做数学,爱数学的情感,体会生活中的数学美.【教学重点】掌握和识别棱柱、圆柱、圆锥等几何体的展开图.【教学难点】能根据展开图判断和制作简单立体模型.一、情境导入,初步认识同学们,在我们日常生活中,随处可见各种五花八门的图形,说出几种你常见到的图形名称并说出它们由哪些平面图形构成?1.牛奶盒拆开后会展成什么样的平面图形?2.谷堆可由什么样的平面图形组成?【教学说明】利用学生感兴趣的生活中常见的实物,激发学生的求知欲.二、思考探究,获取新知1.正棱柱的展开图问题1将下面的几何体沿某些棱剪开,展开成一个平面图形,能得到哪些形状的平面图形?【教学说明】强化学生的空间想象力,通过棱柱展开图加深对知识的理解.2.圆柱、圆锥的侧面展开问题2 教材第10页“做一做”的内容【教学说明】学生动手实际操作,能直观地得出结论.【归纳结论】圆柱的侧面展开图是长方形,圆锥的侧面展开图是扇形. 三、运用新知,深化理解1.上图中经过折叠能围成棱柱的是________(填序号).2.画出下面棱柱的一种展开图.【教学说明】学生自主完成,加深对新学知识的掌握和理解.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.(2)(4)2.四、师生互动,课堂小结1.正方体的展开图,圆柱、圆锥的侧面展开图.2.通过这节课的学习,学到了哪些新知识?【教学说明】鼓励学生积极动手探索,体验棱柱、圆锥、圆柱展开变化的过程.【板书设计】1.布置作业:从教材“习题1.4”中选取.2.完成练习册中本课时的相应作业.了解圆柱、圆锥、棱柱的侧面展开图,了解几何体与它展开的平面图形的对应关系.根据给出的展开图准确还原几何体,提高学生的空间想象能力.。

北师大版 七年级数学上册 知识点汇总

北师大版    七年级数学上册  知识点汇总

第十节 科学计数法 定义:一般地,一个大于10的数可以表示成a✖10∧n,其中1<a<10,n是正整 数,这种记数方法叫做科学记数法
第十一节 有理数的混合运算 运算顺序 先算乘方,再算乘除,最后算加减 如果有括号,先算括号里面的
第十二节 用计算器进行计算
第三章 整式及其加减
第一节 用字母表示数 字母可以表示任何数
第五章 一元一次方程
第一节 认识一元一次方程 一元一次方程:只含有1个未知数,且未知数的次数都是1的方程,叫做一元一 次方程 方程的解:使得方程左右两边的值相等的未知数的值,叫做方程的解 本质:一元一次方程的本质是带有未知数的等式 等式的基本性质 等式两边同时加上(或减去)同一个代数式,所得结果仍是等式 等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是等式
第四节 整式的加减 同类项:所含字母相同,并且相同字母的指数也相同的项 合并同类项:指把同类型合并成一项(即进行计算) 规则:合并同类项时,把同类项的系数相加,字母和字母的指数不变 去括号法则
法则1:括号前是”+”号,把括号和它前面的“+”去掉,原括号里各项的符号都 不改变 法则2:括号前是“-”号,把括号和它前面的“-”去掉,原括号里各项的符号都 要改变
第二节 代数式 定义:用运算符号把数和字母连接而成的式子,叫做代数式 注意:单独的一个数或一个字母也是代数式
第三节 整式 含义:单项式和多项式统称为整式 单项式:表示数字与字母乘积的代数式 单独的一个数或者一个字母也是单项式 单项式的系数:单项式中的数字因数 单项式的次数:单项式中所有字母的指数和 注意:指数为1时,一般不写出来 多项式:几个单项式的和叫做多项式 【注意】“和”包括了减法,因为减去一个数等于加上这个数的相反数。减法 运算都可转化为加法运算 多项式的项:每个单项式叫做多项式的项 多项式的次数:次数最高的项的次数

新北师大版七上数学 第一章 几何体的展开与折叠知识点系统归纳总结

新北师大版七上数学 第一章 几何体的展开与折叠知识点系统归纳总结

第一章几何体的展开与折叠一、知识点睛1、几何体可分为四类:_______、_______、_______、_______.棱柱与圆柱的异同:相同点:____________________________________________.不同点:①________________________;②_________________________.棱柱与棱锥的区别:①________________ ___;②__________ ________.2、n棱柱有_______个面________个顶点_______条棱.n棱锥有_______个面________个顶点_______条棱.3、图形是由_______、_______、_______构成的,面与面相交得到_______,线与线相交得到_______.点动成_______,线动成_______,面动成_______.4、正方体的表面展开图,分成四大类共11种.5、一个正方体截面可能是______________________________ _________;一个三棱柱的截面可能是;一个n棱柱的截面最多可能是边形,至少是边形;一个n棱锥的截面可以是用一个平面去截一个圆柱截面可能是用一个平面去截一个圆锥截面可能是用一个平面去截一个球截面可能是6、n边形的内角和为________________.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成____________个三角形.7、物体的三视图:主视图,左视图,俯视图(通过图形画物体的三视图,通过三视图求图形的个数)二、习题精练:1.圆锥是由_____个面围成,其中_____个平面,_____个曲面.2.六棱柱有______个顶点,_____个面;七棱锥有_____个顶点,_____个面.3.______棱锥有20条棱;______棱柱有48条棱;______棱柱有8个面;______棱锥有10个面.4.流星划过天空,形成了一道美丽的弧线,这说明了_______________;汽车的雨刷刷过玻璃时,形成了一个扇形,这说明了______________;薄薄的硬币在桌面上转动时,看上去像球,这说明了___________________.5.把一块学生用的三角板以一条直角边为轴旋转一周形成的几何体是______.6.如图,上排的平面图形绕轴旋转一周,可以得到下排的几何体,那么与甲、乙、丙、丁各平面图形顺序对应的几何体的编号应为()甲丁丙乙①②③④A.③④①②B.①②③④C.③②④①D.④③②①7.指出下列平面图形是什么几何体的表面展开图:①______________;②_____________;③_____________;④______________;⑤_____________.8.下列图形是正方体的表面展开图的是()A. B.C.D.9.下列各图经过折叠后不能围成正方体的是()A.B.C.D.10.从如图的纸板上11个无阴影的正方形中选1个(将其余10个都剪去),与图中5个有阴影的正方形折成一个正方体,不同的选法有()A.3种B.4种C.5种D.6种123x y享众41211.图中表面展开图折叠成正方体后,相对面上两个数之和为6,则x=____________,y=____________.12.图中表面展开图折叠成正方体后,相对面上两个数之和相同,则“众”代表的数字是______,“享”代表的数字是______.13.小丽制作了一个如下图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是()A.B.C.D.14.下面四个图形中,经过折叠能围成如图只有三个面上印有图案的正方体纸盒的是()A.B.C.D.15.将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是()A.B.C.D.16.一个小立方块的六个面分别标有字母A,B,C,D,E,F,如图是从三个不同方向看到的情形,请说出A,B,E对面分别是_____,_____,______.ADECEBBAF17.如果正方体的六个面上分别标有:团、结、就、是、力、量.从三个不同的方向看到的情形如下,则团、结、力对面的字分别是()A.量,就,是B.就,是,量C.量,是,就D.就,量,是力是团力就结结团量1.正方体的截面不可能是()A.四边形B.五边形C.六边形D.七边形2.从多边形的一个顶点出发,分别连接这个顶点与其余各个顶点,可以把五边形分割成3个三角形,把六边形分割成4个三角形,…,如果是十二边形,可以分割成_____个三角形.3.一个多边形的内角和为1800°,则它是_____________边形.4.从一个多边形的某个顶点出发,分别连接这个顶点和其余各顶点,可以把这个多边形分割成5个三角形,则这个多边形的边数为_________,这个多边形的内角和为___________.5.一个直立在水平面上的圆柱的主视图、俯视图、左视图分别是()A.长方形、圆、长方形B.长方形、长方形、圆C.圆、长方形、长方形D.正方形、长方形、圆6.下图是由7个完全相同的小立方块搭成的几何体,那么这个几何体的左视图是()A.B.C.D.7.如图,这是一个由小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数,请你画出它的主视图与左视图.421328.如图,这是一个由小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数,请你画出它的主视图与左视图.3112119.如图是由一些相同的小立方块构成的几何体的三视图,那么构成这个立体图形的小立方块有()A.4个B.5个C.6个D.7个左视图主视图10. 如图是由一些相同的小立方块构成的几何体的三视图,那么构成这个立体图形的小立方块有( )A .4个B .5个C .6个D .7个11. 用小立方块搭一几何体,使得它的主视图和俯视图如图所示,这样的几何体最多要_____个立方块,最少要_____个立方块.俯视图主视图12. 如图是一个由若干个相同的小立方块组成的几何体的主视图和俯视图,则能组成这个几何体的小立方块的个数最多是________个,最少是________个.俯视图主视图13. 用小立方块搭成的几何体,主视图和俯视图如下,问这样的几何体有多少可能?它最多需要多少个小立方块,最少需要多少个小立方块,请画出最多和最少时的左视图.俯视图主视图14. 用小立方块搭成的几何体,主视图和俯视图如下,问这样的几何体有多少可能?它最多需要多少个小立方块,最少需要多少个小立方块,请画出最多和最少时的左视图.俯视图主视图左视图主视图俯视图15. 如图是由大小相同的小立方块组成的简单几何体的主视图和左视图,那么组成这个几何体的小立方块最多为________个.左视图主视图16.17. 示,则组成这个几何体需要的小立方块的个数最多是________块.18. 已知下图为一几何体的三视图:(1)写出这个几何体的名称;(2)任意画出它的一种表面展开图; (3)若主视图的长为8 cm ,俯视图中圆的半径为3 cm ,求这个几何体的表面积和体积.俯视图:圆左视图:长方形主视图:长方形19.如果从一个多边形的一个顶点出发,分别连接这个顶点与其余各顶点,可将这个多边形分割成2 014个三角形,那么此多边形的边数为__________.。

新北师大版七年级上册数学知识点总结

新北师大版七年级上册数学知识点总结

新北师大版七年级上册数学知识点总结一、丰富的图形世界1、生活中的立体图形我们生活在一个充满立体图形的世界中。

常见的立体图形有:柱体(圆柱、棱柱)、锥体(圆锥、棱锥)、球体。

圆柱:上下底面是两个完全相同且平行的圆,侧面是一个曲面。

棱柱:上下底面是两个完全相同且平行的多边形,侧面是多个长方形。

圆锥:底面是一个圆,侧面是一个曲面。

棱锥:底面是一个多边形,侧面是多个三角形。

2、展开与折叠很多立体图形都可以通过展开变成平面图形,同样,一些平面图形也可以折叠成立体图形。

例如,正方体有 11 种展开图,需要记住一些常见的展开图形式,以便能够快速判断一个平面图形能否折叠成正方体。

3、截一个几何体用一个平面去截一个几何体,截面的形状可能多种多样。

例如,用一个平面去截正方体,截面可能是三角形、四边形(包括正方形、长方形、梯形)、五边形、六边形。

二、有理数及其运算1、有理数的概念有理数包括整数(正整数、0、负整数)和分数(正分数、负分数)。

能化成分数形式的小数也是有理数。

2、数轴数轴是一条规定了原点、正方向和单位长度的直线。

任何一个有理数都可以在数轴上找到对应的点,数轴上的点与有理数是一一对应的关系。

3、相反数绝对值相等,符号相反的两个数互为相反数。

例如,5 的相反数是-5,0 的相反数是 0。

4、绝对值数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值。

正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是 0。

5、有理数的比较大小正数大于 0,0 大于负数,正数大于负数。

两个负数比较大小,绝对值大的反而小。

6、有理数的加法同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,绝对值相等时和为 0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

一个数同 0 相加,仍得这个数。

7、有理数的减法减去一个数,等于加上这个数的相反数。

8、有理数的乘法两数相乘,同号得正,异号得负,并把绝对值相乘。

初中数学七年级目录及主要知识点(北师大版)

初中数学七年级目录及主要知识点(北师大版)

七年级(上册)第一章 丰富的图形世界一、生活中的立体图形⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧立体图形叫多面体。

这样的棱锥的面是平的面,像、多面体:围成棱柱和、球体圆锥棱锥、锥体如、三棱柱、四棱柱棱柱的种类棱柱圆柱、柱体432::1二、展开与折叠:正方体的11种不同的展开图。

正方体的表面展开图用“口诀”:一线不过四,田凹应弃之;相间,“Z ”端是对面,间二,拐角邻面知。

三、⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧俯视图。

从上面看到的图形叫做左视图。

从左面看到的图形叫做到的图叫做主视图。

一般的我们把从正面看、三视图:、截一个几何体21四、生活中的平面图形⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧-)个三角形。

边形都可以分割成(每个干个三角形。

把这个多边形分割成若个顶点,出发,分别连接其它各多边形的分割:从一点定义、多边形、圆和扇形221n n第二章 有理数及其运算一、数怎么不够用了⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负有理数零正有理数、有理数分数整数有理数21二、数轴⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧这个点到原点的距离。

几何意义的绝对值是绝对值是它的相反数,的值是它本身,一个负数规定:一个正数的绝对、绝对值大于左边的数。

、比较:右边的数总是相反数为的相反数。

符号不同的两个数称为、相反数:像这样只有。

方向、单位长度的直线、定义:规定原点、正:.0043.0021三、有理数的加减法⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧、水位的变化个数的相反数。

去一个数,等于加上这、有理数减法法则:减相加,仍得这个数、一个数和;相加得、互为相反数的两个数的绝对值;对值减去较小符号,并且用较大的绝取绝对值较大的加数的值不同时,、异号两数相加,绝对;且把它们的绝对值相加同的符号,并、同号两数相加,取相、有理数加法法则3200:1d c b a 四、有理数的乘除法、乘方⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧次幂的叫做次方或看成运算的结果的读作次方。

读法:看成运算的,读作相乘,记作个相同的因数、乘方:一般地,。

七年级数学《展开与折叠》知识点整合_知识点总结

七年级数学《展开与折叠》知识点整合_知识点总结

七年级数学《展开与折叠》知识点整合_知识点总结
想要更好的学习数学首先要做的就是理解运用课本中的知识,因此为同学们整理了七年级数学展开与折叠知识点,希望大家可以更快更好的提高成绩。

知识点一:正方体的表面展开图
正方体是特殊的棱柱,它的六个面都是大小相同的正方形,将一个正方体的表面展开,可以得到11种不同的展开图,把它归为四类:一四一型,6种;二三一型,3种;三三型,1种;二二二型,一种。

正方体展开图口诀:
1、一线不过四;田凹应弃之。

2、找相对面:相间,“Z”端是对面。

3、找邻面:间二,拐角邻面知。

知识点二:棱柱的表面展开图
棱柱的表面展开图是由两个相同的多边形和一些长方形组成的。

知识点三:圆柱、圆锥的表面展开图
1、圆柱的表面展开图是由两个大小相同的圆(底面)和一个长方形(侧面)组成,其中侧面展开图长方形的一边的长是底面圆的周长,另一边的长是圆柱的高。

2、圆锥的表面展开图是由一个(侧面)和一个圆(底面)组成,其中扇形的半径长是圆锥母线(即圆锥底面圆周上任一点与顶点的连线)长,而扇形的弧长则是圆锥底面圆的周长
光有七年级数学展开与折叠知识点的整理是不够的,还要结合练习题的运用,总结之后来检测一下吧!。

北师大版数学七年级上第一二三章重点难点考点总结

北师大版数学七年级上第一二三章重点难点考点总结

七年级第一、二、三章重点、难点、考点总结一、生活中的立体图形:图形的分类。

例:1、将下列几何体分类,柱体有:,锥体有(填序号)。

A B C D E F G H2、将下列几何体分类,并写出你的分类标准。

二、展开与折叠:对面、展开图面积。

例:1、如图所示,将图折起来,得到一个正方体,那么“C”的对面是_________(填编号)2、用一个宽5厘米,长9厘米的矩形卷一个圆柱,则此圆柱的侧面积为_________,总面积为_________。

三、截一个几何体:截面形状。

例:正方体的截面形状有:_________,圆柱的截面形状有:_________,球体的截面形状有:_________。

四、从不同方向看:三视图。

例:1_________。

2、如图,这是一个由一些相同的正方体构成的立体图形的俯视图,有数字表示该位置正方体的数量,请画出该立体图形的主视图与左视图。

五、生活中的平面图形:将一多边形分割成若干三角形。

例:从五边形的某个顶点出发,可以将这个五边形分作_________个三角形,如果从边上的某点(不与端点重合)出发,可以将这个五边形分作_________个三角形。

六、数怎么不够用了:正数和负数的概念、有理数的概念。

例:1、下列各数:-20、-0.5、0、+55、4、-221、+91、1、-2,是正数的有_________,是整数的有_________,是负数的有_________,是非整数的有_________。

2、如果水位上升35米用+35表示,那么下降100米表示为_________,水位无变化表示为_________。

七、数轴:数轴三要素、相反数、数轴上数的大小。

例:比较-3、2、0、-3.5、21的大小。

八、绝对值:灵活运用,不忘基础。

例:1、|5|的数是_________。

2、互为相反数的两数绝对值是否相等。

3、已知|a+5|+|b-2|=0,则6ba=_________。

九、有理数的加法、减法、乘法、除法、乘方及混合运算:符号确定后绝对值运算、去括号、运算等级,运算顺序、运算律的灵活运用、运算技巧。

北师大版七年级上册数学各章节知识梳理

北师大版七年级上册数学各章节知识梳理

七年级上册北师版数学各章节知识梳理整体分析一教学目标:七年级主要帮助孩子完成小学到初中的过度,培养学生初中的学习方法和思维品质,通过老师讲解、示范、带着做,让学生学会学习定义概念、计算,重在培养孩子有序思考,条理表达,习惯规范,动作标准等良好的学习习惯,从而让孩子对数学产生兴趣,喜欢数学;本学期将要学习有关代数的初步知识,对图形的进一步认识;在数学的思维上,学生正处于形象思维向逻辑抽象思维的转变期,这期间,结合教学,让学生适当思考部分有利于思维的题,无疑是对学生终身有用的;在学习习惯上,部分小学的不良习惯要得到纠正,良好的习惯要得到巩固,如独立思考,认真进行总结,及时改正作业,超前学习等,都应得到强化;对于小学升入初中,学生有一个适应的过程,刚开始起点宜低,讲解慢,使学生迅速适应初中生活;本册内容为“丰富的图形世界”、“有理数及其运算”、“整式及其加减”、“基本平面图形”、“一元一次方程”、“数据的收集与整理”;学生通过经历从具体情境中抽象出符号的过程,认识有理数和代数式,掌握必要的有理数和代数式的运算技能,能运用有理数,代数式探索具体问题中的数量关系和变化规律,并能运用有理数的代数式来进行描述;学生在经历物体和图形的初步认识过程中,掌握基本的识图与作图技能,认识最基本的图形――点和线,进而认识角、相交线和平行线;二教材分析:第一章丰富的图形世界这部分的主要内容是通过生活中熟悉的图形展开研究,包括图形的形状、构成、性质、图形的展开与折叠,图形的截面,图形的方向视图等;这部分从生活中常见的立体图形入手,使学生在丰富的现实情境中、在展开与折叠等数学活动过程中,认识常见几何体及点、线、面的一些性质;再通过展开与折叠、切截,从不同方向看等活动,在平面图形与几何体的转换中发展学生的空间观念;最后,由立体图形转向平面图形,在丰富的活动中使学生认识一些平面图形的简单性质;展开与折叠、切截,从不同方向看,是认识到事物的重要手段,在学习过程中,要亲自去展开与折叠、切截,亲自去观察、思考,并与同伴交流,从而积累有关图形的经验,发展空间观念;第二章有理数及其运算这部分的主要内容是有理数的概念及其加减法、乘除法、和乘方运算,以及使用计算器作简单的有理数运算;这部分内容在设计上是从实际问题情境与已有的小学数学知识基础着手,提出问题,引导学生自主地发现新的有理数的一些概念,探索有理数的数量关系及其规律;在方法上采用了由具体特殊的现象发现一般规律,使学生初步体验从实际问题抽象出数学模型的思想方法,初步学会表示数量关系的一些数学工具以及解决一些简单问题的方法;同时适当控制练习和习题的难度,引人计算器,避免不必要的烦琐的计算;第三章整式及其加减这部分的主要内容是在学习有理数的基础上,引入字母表示有理数,实现由数到式的飞跃;继而介绍代数式、代数式的值及其相关概念,以及多项式的升降幂排列,并在这些概念的基础上介绍同类项的概念、合并同类项的法则以及去括号与添括号的法则;采用了与第二部分内容相同的设计思想,即从实际问题着手,结合学生已有的生活经验与已有的知识基础,提出问题,引导学生用字母表示数,实现学生的思维由数到式的飞跃,并运用类比的思想探索数量关系及其规律,初步学会表示数量关系的代数工具并用于解决一些简单问题的方法;第四章基本平面图形这部分的主要内容是识别线段、射线、直线、角、平行与垂直等有关概念,从事折纸、模型以及使用直尺、三角板、量角器、圆规等几何工具,画角、线段、平行线、垂线,制作七巧板、图案设计等活动;第五章一元一次方程这部分的主要内容是介绍方程、一元一次方程的相关概念,解方程和运用解方程解决实际问题;通过丰富的实例,从中寻找等量关系,建立一元一次方程;利用天平直观地归纳等式的性质,运用等式的性质解一元一次方程;归纳解方程的一般步骤;建立方程模型,运用一元一次方程解决实际问题,总结运用方程解决实际问题的一般过程;第六章数据的收集与整理通过实践活动,运用身边熟悉的事物,从多种角度对大数进行感受和估计;学习表示大数的一个重要方法:科学计数法;通过数据统计过程,从扇形统计图尽可能多地获取信息,体会扇形统计图的特点,学习制作扇形统计图;通过对报纸中数据的分析,使学生理解三种统计图的不同特点,并能根据具体问题选择适当的统计图描述数据;三重要时间节点第一次月考一般在九月底,考试内容为前两章,主要是第二章有理数及其运算,考查定义概念和运算能力;期中考试一般在十月底,考试前四章内容,主要内容是有理数及其运算和整式及其加减;。

北师大版数学七年级上册1.2展开与折叠1

北师大版数学七年级上册1.2展开与折叠1


红兰
白 黄红
绿 兰黄



灿若寒星
谢谢!
灿若寒星
4
51 2 3
6
灿若寒星
(Ⅳ)巩固基础,检测自我
练一练
2、如果将正方体的表面分别标上数字1,2,3,4,5, 6,使它的任意两个相对面的数字之和为7,将它沿某些 棱剪开,能展开成下列的平面图形吗?
5
413 6
2
(1)
5 62 1 3 4
(2)
灿若寒星
1 2 34
65
(3)
(Ⅴ)课堂小结,布置作业
灿若寒星
将相对的两个面涂上相同的 颜色,正方体的平面展开图
共有以下11种:
观察思考有何 规律
灿若寒星
第一类、四个一行中排列,两端各一个 任意放,共(六记种忆。口诀:141)
灿若星
第二类,二在三上露一端,一在三下任 意放,(共记三忆口种诀。:231)
灿若寒星
第三类、两两三行排有序,恰似登天上云梯,仅
相隔一个而不相连
1 23 4 5
6
(1)
12 34 5 6
(2)
1 23
12 34
456 56
(3)
(4)
了! 太棒 你们
(5)

持就是
灿若寒星

利 (6)
(Ⅳ)巩固基础,检测自我
议一议
1、下列图形可以折成一个正方体形的子.折好以 后,与1相邻的数是什么?相对的数是么?先想一 想,再具体折一折,看看你的想法是否正确.
(记忆口诀:一2种22。)
第四类、三个三个排两行,中间一“日”放光芒,
(记忆口诀仅一:种33。)
灿若寒星

北师大版七年级数学上册《展开与折叠(第2课时 )》

北师大版七年级数学上册《展开与折叠(第2课时 )》
圆锥展开后的平面图形是什么样的? 思考1 圆锥侧面展开后的平面图形是什么样的?
探究新知
思考2 圆锥展开后的平面图形是什么样的?
总结:圆锥的表面展开图是由扇形和 一个圆(底面)组成,其中扇形的半 径是圆锥母线(即圆锥底面圆周上任 一点与顶点的连线)长,而扇形的弧 长则是圆锥底面圆的周长.
探究新知
练一练 下面几个图形是一些常见几何体的展开图, 你能正确说出这些几何体的名字吗?
(2)因为AB=5,AD=3,BE=4,DF=6,
所以侧面积为3×6+5×6+4×6=18+30+24=72,
底面积为 1 3 4 2 12
.
2
所以这个食品包装盒的表面积为72+12=84.
方法点拨:此题是将动手操作和计算相结合,了解立体图形 表面展开图与立体图形间的关系,掌握图形面积的计算(公式) 是解本题的关键.由表面展开图可知立体图形的表面积等于表 面展开图各部分图形面积之和.
XXX学校
1.2 展开与折叠
第2课时
班级:X年级X班
北师大版 数学 七年级 上册
导入新知
想一想 下面立体图形展开后平面图形的形状.
探究新知
将长方体完全展开后形状是怎样的?
展开
折叠
素养目标
3.经历展开与折叠、模型制作等活动,发展空间观念, 积累数学活动经验.
2.能根据展开图判断和制作简单的立体模型. 1.通过展开与折叠活动,了解棱柱、圆柱和圆锥的展 开图.
连接中考
如图,一个几何体上半部为正四棱锥,下半部为立方体,且有 一个面涂有颜色,该几何体的表面展开图是( B )
A.
B.
C.
D.
课堂检测
基础巩固题

七年级数学上册 第一章 丰富的图形世界 2 展开与折叠课件 (新版)北师大版

七年级数学上册 第一章 丰富的图形世界 2 展开与折叠课件 (新版)北师大版

图1-2-5
答案 A 由题图中几何体的特征知含有数字4、6、8的三个面两两相 邻,故折叠后三个面一定相交于一点.只有A选开图,若将其围成正方体,则与点P重合的两 点应该是 ( )
图1-2-6 A.S和Z B.T和Y C.U和Y D.T和V 答案 D 结合图形知,围成立体图形后Q与S重合,P与T重合,很显然P 又与V重合,故选D.(也可以动手操作一下)
解析 如图1-2-3所示.
图1-2-3
题型一 观察猜想题 例1 在下列四个正方体中,只有一个是用图1-2-4所示的纸片折叠而成 的,那么这个正方体是 ( )
解析 选项A、B的正方体展开后,黑点所在的面分别在小三角形所在 面的上面和右边,与所给纸片不符,所以可排除A和B;对于C,小圆圈的上 面和右边是空白的,同样与所给纸片不符,也可排除.故选D. 答案 D 点拨 根据展开后的平面图形确定立体图形,需分清有标记的面与其他 面之间的位置关系.
1.(2013浙江宁波中考)下列四张正方形硬纸片,剪去阴影部分后,如果沿 虚线折叠,可以围成一个封闭的长方体包装盒的是 ( )
答案 C A剪去阴影部分后,可围成无盖的正方体,故此选项不合题意; B剪去阴影部分后,无法围成长方体,故此选项不合题意;C剪去阴影部分 后,能围成长方体,故此选项正确;D剪去阴影部分后,显然不能围成长方 体,故此选项不合题意.故选C.
知识点一 正方体的展开与折叠 1.图1-2-1是一个正方体,它的表面展开图可以是 ( )
图1-2-1
答案 B B选项是“一四一”型,故选B.
2.(2015山东济宁中考)一个正方体的每个面都有一个汉字,其平面展开 图如图1-2-2所示,那么在该正方体中和“值”字相对的字是 ( )
图1-2-2 A.记 B.观 C.心 D.间 答案 A 可以自己动手折一下.

2024秋季北师大版新教材七年级上册1.2-课时2-棱柱、圆柱、圆锥的展开与折叠

 2024秋季北师大版新教材七年级上册1.2-课时2-棱柱、圆柱、圆锥的展开与折叠

课堂练习
5.一种产品的包装盒如图所示.为了生产这种包装盒,需要 先画出其表面展开图的纸样(单位:cm). (1)如图给出三种纸样甲、乙、丙,在甲、乙、丙中,正确 的有 甲、丙 .



(2)从已知正确的纸样中选出一种,在原图上标注出尺寸. 解:如图所示.

(2)从已知正确的纸样中选出一种,在原图上标注出尺寸. 解:如图所示.
课堂练习
1. 下列各硬纸片分别沿虚线折叠,得不到长方体纸盒 的是 ③④ (填序号)
课堂练习
2. 把如图所示的纸片沿着虚线折叠,可以得到的
几何体是( A )
A.三棱柱
B.四棱柱
C.三棱锥
D.四棱锥
课堂练习
3. 下列选项中,左边的图形能够折成右边的立体图形的是( C )
A
B
C
D
课堂练习
4. 如图是一个长方体的展开图,每个面上都标注了字母, 将展开图折叠为长方体后,如果F面在前面,B面在左面 (字母在长方体的表面),那么在上面的字母是 C .
解:圆锥
三棱柱
圆柱
长方体 (四棱柱)
探究新知
例3 下列图形中,可能是如图所示圆锥的侧面展开图 的是( B )
归纳:
表面展开图
侧面展开图 表面展开图
示例
棱柱
两个相同的 多边形和一
些长方形
一些长方形
圆柱
两个相同的 圆和一个长
方形
长方形
圆锥 一个圆和一
个扇形
扇形
棱锥
一个多边形 和一些三角

一些三角形
棱柱的表面展开图中,上、下底面的边数均与侧面长方形的个数相等.
立体 图形
侧面展开图 长方形
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2展开与折叠
同步练习2:
1,如图,把左边的图形折叠起来,它会变为()
2,下面图形经过折叠不能围成棱柱的是()
3,如图,把左边的图形折叠起来,它会变成()
4,一个几何体的边面全部展开后铺在平面上,不可能是()
A.一个三角形
B.一个圆
C.三个正方形
D.一个小圆和半个大圆
5,(1)侧面可以展开成一长方形的几何体有;
(2)圆锥的侧面展开后是一个;
(3)各个面都是长方形的几何体是;
(4)棱柱两底面的形状,大小,所有侧棱长都.
6,用一个边长为4cm的正方形折叠围成一个四棱柱的侧面,若该四棱柱的底面是一个正方形,则此正方形边长为cm.
7,用一个边长为10cm的正方形围成一个圆柱的侧面(接缝略去不计),求该圆柱的体积.
8,用如图所示的长31.4cm,宽5cm的长方形,围成一个圆柱体,求需加上的两个底面圆的面积是多少平方厘米?( 取3.14)
9,如图,在一个正方体木块的两个相距最远的顶点外逗留着1只苍蝇和1只蜘蛛,蜘蛛沿哪条路径去捉苍蝇最快?请说明理由.
第9题图第10题图
10,如图,正方体a的上、前、右三个面上分别注有A,B,C三个字母,它的展开图如图b 所示,请用D,E,F三个字母在展开图上分别标注下、后、左三个面.
11,如图,一个长方体的底面是边长为1cm的正方形,侧棱长为2cm,现沿图中粗黑线的棱剪开,请画出展开图。

12,已知圆锥的侧面展开图是一个半圆,求它的侧面积与底面积的比.
答案:1,B 2,D 3,B 4,B 5,(1)圆柱棱柱(2)扇形(3)长方体(4)相同相等相等6,1 7,250 cm38,78.5cm29,略
10,略11,略12,2。

相关文档
最新文档