六年级数学长方体正方体表面积和体积练习题

合集下载

长方体和正方体的表面积测试题

长方体和正方体的表面积测试题

长方体和正方体的表面积测试题篇一:长方体正方体的表面积和体积练习题精选长方体正方体的表面积和体积练习卷1. 长方体表面积的求法:长方体的表面积=a、b、h分别表示长方体的长、宽、高。

S表示它的表面积,则S= 。

长方体的体积=。

字母表示:。

2. 正方体表面积的求法:正方体的表面积=如果用字母a表示正方体的棱长,S表示正方体的表面积,则正方体的表面积计算公式是:S==母表示:。

1、一个长方体有()个面,他们一般都是()形,也有可能是()个面是正方形.2、把长方体放在桌面上,最多可以看到()个面。

3、一个长方体,长12厘米,宽和高都是8厘米,这个长方体的表面积是()。

4、一个长方体,长8厘米,宽是5厘米,高是4厘米,这个长方体的表面积是(),棱长之和是()。

5、一个正方体的棱长之和是84厘米,它的棱长是(),一个面的面积是(),表面积是()。

6、把三个棱长是1厘米的正方体拼成一个长方体,这个长方体的表面积是(),比原来3个正方体表面积之和减少了()。

7、把三个棱长是2分米的正方体拼成一个长方体,表面积是(),体积是()。

8、用棱长为1厘米的小正方体木块拼成一个较大的正方体,至少要()个这样的小木块才能拼成一个正方体。

9、一个正方体的棱长如果扩大2倍,那么表面积扩大()倍,体积扩大()倍。

10、一个无盖正方体铁桶内外进行涂漆,涂漆的是()个面.11、有一根长52厘米的铁丝,恰好可以焊接成一个长6厘米,宽4厘米,高()厘米的长方体。

12、一个长方体的长宽高分别是a ,b, h,如果高增高3米,那么表面积比原来增加()平方米,体积增加()立方米。

14、用27个体积是1立方厘米的小正方体粘合成一个大正方体,粘合后的大正方体的表面积是()15、一个长15厘米,宽6厘米,高4厘米的正方体的木块,可以截成()块棱长2厘米的正方体木块。

16、有一个长方体的木料长3厘米、宽3厘米,高2厘米。

把它切成1立方厘米的小方块,可以切成()。

六年级长方体和正方体练习题

六年级长方体和正方体练习题

六年级长方体和正方体练习题一.填空题。

1、表面积是54平方分米的正方体,它的体积是立方分米。

2、把一个长、宽、高分别是2分米、12厘米、10厘米的长方体铁块熔铸成一个正方体铁块。

这个正方体铁块的体积是立方厘米。

3.一个正方体的棱长总和是72厘米,它的一个面是边长厘米的正方形,它的体积是。

4.至少要个小正方体才能拼成一个大正方体,如果一个小正方体的棱长是5厘米,那么大正方体的表面积是平方厘米。

5、一根96厘米的铁丝正好做成了一个长8厘米,宽6厘米的长方体,它的高是厘米。

6、把一根长6米的长方体,切成3段一样的小长方体,表面积增加了3.6平方米。

这个长方体的体积是。

7.把三个棱长都是4厘米的正方体拼成一个长方体,表面积减少了平方厘米,它的体积是立方厘米。

8、做一个长方体的烟囱需要多少平方米铁皮,是求长方体的9、正方体的棱长扩大3倍,体积扩大倍。

10、把一个长8厘米、宽6厘米、高4厘米的的木块锯一个最大的正方体,剩下部分的体积是立方厘米。

二.看图求它们的表面积与体积。

三.实践与应用。

1、正方体的棱长总和是120厘米,它的表面积是多少平方厘米?2、一个底面是正方形的长方体,所在棱长的和是100厘米,它的高是7厘米,这个长方体的体积是多少立方厘米?3、一个长方体水箱,底面是一个边长2分米的正方形,高是30厘米,水面高度是15厘米,放入一个石头后,水面的高度是18厘米,石头的体积是多少?4、一个长方体的药水箱里装了60升的药水,已知药水箱里面长5分米,宽3分米,它的深是多少分米?5、一块长方形的铁皮,长40厘米,宽30厘米。

从四个角都剪掉边长为5厘米的小正方形后,焊成一个无盖的长方体盒子,这个盒子最多能容纳多少毫升的液体?小学六年级总复习长方体和正方体练习题一、填空题。

1.一个长方体的长是25厘米,宽是20厘米,高是18厘米,最大的面的长是厘米,宽是厘米,一个这样的面的面积是平方厘米;最小的面长是厘米,宽是厘米,一个这样的面的面积是平方厘米。

六年级数学长方体正方体表面积和体积练习题

六年级数学长方体正方体表面积和体积练习题

六年级数学长方体正方体表面积和体积练习题长方体和正方体的表面积和体积练一、填空:1、一个正方体棱长5厘米,它的棱长和是(),表面积是(),体积是()。

2、一个长方体木箱的长是6分米,宽是5分米,高是4分米,它的棱长和是(),占地面积是(),表面积是(),体积是()。

3、一个长方体方钢,横截面积是12平方厘米,长2分米,体积是()立方厘米。

4、一个长方体水箱,从里面量,底面积是25平方米,水深1.6米,这个水箱能装水()升。

5、一块正方体的钢锭,棱长是10分米,如果1立方分米的钢重7.8千克,这块钢锭重()千克。

6、正方体的棱长扩大3倍,棱长和扩大()倍,表面积扩大()倍,体积扩大()倍。

7、用棱长5厘米的小正方体拼成一个大正方体,至少需这样的小正方体()块。

8、一个长方体的长、宽、高分别是a米、b米、h米。

如果高增加2米,体积比原来增加()立方米。

二、判断:1、正方体是由6个完全不异的正方形组成的图形。

()2、棱长6厘米的正方体,它的外表积和体积相称。

()3、a3表示a×3。

()4、一个长方体(不含正方体),最多有两个面面积相称。

()5、体积相等的两个正方体,它们的表面积一定相等。

()三、操作题:右图是长方体睁开图,丈量所需数据,并求长方体体积。

1四、办理问题:1、一个长方体铁块,长10分米,宽5分米,高4分米,每立方分米铁块重7.8千克,这个铁块重多少千克?2、一节长方体外形的铁皮通风管长2米,横截面是边长为10厘米的正方体,做这节通风管至少需求多少平方厘米铁皮?3、一个无盖的长方体金鱼缸,长8分米,宽6分米,高7分米。

制作这个鱼缸共需玻璃多少平方分米?这个鱼缸能装水多少升?(玻璃厚度忽略不计)。

长方体和正方体的表面积和体积 重难点应用题训练题40题 带详细答案

长方体和正方体的表面积和体积 重难点应用题训练题40题 带详细答案

长方体和正方体的表面积和体积重难点应用题训练题40题带详细答案1.将一根长52厘米的铁丝焊接成一个长6厘米、宽4厘米的长方体框架,求该长方体框架的表面积。

解:长方体的高为3厘米,表面积为108平方厘米。

2.将一根长84厘米的铁丝焊接成一个正方体框架,求该正方体框架的表面积。

解:正方体的棱长为7厘米,表面积为294平方厘米。

3.XXX老师要做一个长1.2米、宽45厘米、高1.5米的陈列箱,其中正面用玻璃,其余各面都用木板。

求XXX老师需要准备多少平方米的木板?解:陈列箱除正面外的表面积为4.23平方米。

4.舞蹈教室的长为8米,宽为6米,高为3.5米。

现在要粉刷墙壁和天花板,门窗和镜子的面积共为22平方米,每平方米需要0.25千克涂料。

求粉刷这间教室需要多少千克涂料?解:教室的墙壁和天花板的总面积为124平方米,需要31千克涂料。

5.有一个长方体,如果将它的高增加3厘米,那么它就会变成一个正方体,这时表面积会比原来增加96平方厘米。

求原长方体的表面积。

解:原长方体的长、宽、高分别为8厘米、8厘米、5厘米,表面积为336平方厘米。

6.如果把一个正方体木块一刀切成两个长方体,那么表面积会增加60平方厘米。

求原正方体的表面积。

解:原正方体的表面积为180平方厘米。

7.一个长方体的底面是面积为4平方米的正方形,它的侧面展开图正好也是一个正方形。

求该长方体的高和表面积。

解:该长方体的高为8米,表面积为72平方米。

8.桌子上有一根长1.5米的长方体木料,木料有两面是正方形。

如果把这根木料锯成两段后表面积会增加0.18平方米,求该木料的表面积。

解:该木料的表面积为未知。

1.锯成两段会增加两个面,这两个面是正方形,其面积为0.09平方米,边长为0.3米。

木料的表面积为1.98平方米。

2.将3个长5厘米、宽4厘米、高3厘米的长方体木块拼成一个表面积最小的长方体,最小表面积为202平方厘米。

3.从一个棱长为10厘米的正方体的上面竖直向下挖一个长方体的洞,洞的底面为边长是5厘米的正方形,这个空心正方体的表面积为750平方厘米。

《长方体和正方体的表面积》练习题及答案

《长方体和正方体的表面积》练习题及答案

第3课时长方体和正方体的表面积不夯实基础,难建成高楼。

1. 填一填。

(1)一个长方体,它的长是2米,宽和高都是0.6米。

它的表面积是( )平方米。

(2)一个正方体的棱长是0.4米,这个正方体的表面积是( )平方米。

(3)一个正方体的棱长和是36分米,这个正方体的表面积是( )平方分米。

(4)一个长方体的长是8厘米,宽是4厘米,高是2厘米。

这个长方体六个面中最大的一个面的面积是( )平方厘米,最小的一个面的面积是( )平方厘米。

这个长方体的表面积是( )平方厘米。

2. 计算下面形体的表面积。

(单位:厘米)(1)(2)(3)3. 一个正方体的棱长的总和是36cm,它的表面积是多少平方厘米?重点难点,一网打尽。

4. 写出下表中物体的形状是正方体还是长方体,再求表面积和棱长总和。

5. 一个长方体木箱,长1.2米、宽0.8米、高0.6米,做这个木箱至少要用多少平方米的木板?如果这个木箱无盖呢?6. 把一个棱长是5分米的正方体木箱的表面涂上油漆,一共需油漆多少克?(每平方分米用漆5克。

)7. 要制作12节长方体铁皮烟囱,每节长2米、宽4分米、高3分米,要用多少平方米的铁皮?举一反三,应用创新,方能一显身手!8. 一块”舒肤佳”牌香皂长8厘米、宽5厘米、高4厘米,商场进行促销活动,把3块同样的香皂装在一起销售。

请你设计一下,怎样才能最节省包装纸?并且算一算至少需要多少平方厘米包装纸。

第3课时1. (1)5.52 (2)0.96 (3)54 (4)32 8 1122. (1)1344平方厘米(2)73.5平方厘米(3)528平方厘米3. 54平方厘米4. 略5. (1.2×0.8+1.2×0.6+0.8×0.6)×2=4.32(平方米)无盖:4.32-1.2×0.8=3.36(平方米)6. 52×6×5=750(克)7. 4分米=0.4米3分米=0.3米(0.4×2+0.3×2)×2×12=33.6(平方米)8. (8×5+8×4+5×4)×2×3-8×5×4=392(cm2)长方体与正方体的综合练习题一、表面积1.无盖的长方体或者正方体的表面积(1)一个无盖的正方体的玻璃鱼缸,棱长为7分米,制作这个鱼缸至少需要多大面积的玻璃?正方体的表面积公式=6a²,而这里是无盖的,也就是我们只需要求5个面的面积就可以了,所以S=5×7×7=245(平方分米)(2)教室长为9米,宽为6米,高为3米,用涂料粉刷四壁和天花板,扣除门窗面积20平方米,要粉刷的面积是多少平方米?长方体表面积公式=2(ab+bh+ah),六个面的面积和,但是这里粉刷墙壁,地面不刷,所以求5个面的面积,也就是少求一个长×宽。

六年级上册数学试题长方体和正方体的表面积和体积专项练习

六年级上册数学试题长方体和正方体的表面积和体积专项练习

长方体和正方体的表面积和体积专项练习一、高减少或增加引起表面积的变化:例题:一个长方体高减少3厘米后,表面积减少了72平方厘米,剩下的刚好是一个正方体,原来长方体的表面积是多少平方厘米?试一试:一个长方体,如果高增加2厘米,就成为一个正方体,这时表面积比原来增加了64平方厘米,原来的长方体的表面积是多少平方厘米?二、拼接引起表面积的变化:例题:1.用两个长、宽、高分别是6分米、4分米、2分米的长方体拼成一个较大的长方体,这个长方体怎样拼表面积最大?怎样拼表面积最小?2.用6个棱长是1厘米的小正方体拼成一个较大的长方体,拼成的长方体的表面积比原来减少了多少平方厘米?试一试:10包长、宽、高分别为8厘米、5厘米、2厘米的中华牌香烟,若用包装纸将他们打包成一个长方体,不计接头处,至少需要多少平方厘米的包装纸?三、切割引起表面积的变化:例题:将一个长10厘米、宽6厘米、高5厘米的长方体切成两个完全相同的小长方体,这两个小长方体的表面积总和比原来增加了多少平方厘米?试一试:(1)有一个长方体,若用三种不同的方法切成两个完全一样的长方体,它们的表面积分别增加30平方厘米、20平方厘米、12平方厘米。

这个长方体的表面积是多少平方厘米?(2)如右图,一个正方体木块的表面积是36平方分米,把它沿虚线截成体积相等的8个小正方体木块,这时,表面积增加了多少平方厘米?四、挖去部分引起表面积的变化:例题:在一个长6厘米、宽4厘米、高3厘米的长方体上挖去一个棱长1厘米的小正方体,剩余部分的表面积可能是多少平方厘米?试一试:用橡皮泥做一个棱长为4厘米的正方体。

(1)如右图,在顶面中心位置从上到下打一个边长为1厘米的正方形通孔,打孔后的橡皮泥块的表面积为多少平方厘米?(2)在第(1)题打孔后,再在正面中心位置处,从前到后打一个边长1厘米的正方形通孔(如右图所示),那么打孔后的橡皮泥内外的表面积总和是多少平方厘米?(3)在棱长为3厘米的正方体木块的每个面的中心上打一个直穿木块的洞,洞口呈边长为1厘米的正方形(如图)。

六年级上册数学试题长方体和正方体的表面积和体积专项练习

六年级上册数学试题长方体和正方体的表面积和体积专项练习

长方体和正方体的表面积和体积专项练习一、高减少或增加引起表面积的变化:例题:一个长方体高减少3厘米后,表面积减少了72平方厘米,剩下的刚好是一个正方体,原来长方体的表面积是多少平方厘米?试一试:一个长方体,如果高增加2厘米,就成为一个正方体,这时表面积比原来增加了64平方厘米,原来的长方体的表面积是多少平方厘米?二、拼接引起表面积的变化:例题:1.用两个长、宽、高分别是6分米、4分米、2分米的长方体拼成一个较大的长方体,这个长方体怎样拼表面积最大?怎样拼表面积最小?2.用6个棱长是1厘米的小正方体拼成一个较大的长方体,拼成的长方体的表面积比原来减少了多少平方厘米?试一试:10包长、宽、高分别为8厘米、5厘米、2厘米的中华牌香烟,若用包装纸将他们打包成一个长方体,不计接头处,至少需要多少平方厘米的包装纸?三、切割引起表面积的变化:例题:将一个长10厘米、宽6厘米、高5厘米的长方体切成两个完全相同的小长方体,这两个小长方体的表面积总和比原来增加了多少平方厘米?试一试:(1)有一个长方体,若用三种不同的方法切成两个完全一样的长方体,它们的表面积分别增加30平方厘米、20平方厘米、12平方厘米。

这个长方体的表面积是多少平方厘米?(2)如右图,一个正方体木块的表面积是36平方分米,把它沿虚线截成体积相等的8个小正方体木块,这时,表面积增加了多少平方厘米?四、挖去部分引起表面积的变化:例题:在一个长6厘米、宽4厘米、高3厘米的长方体上挖去一个棱长1厘米的小正方体,剩余部分的表面积可能是多少平方厘米?试一试:用橡皮泥做一个棱长为4厘米的正方体。

(1)如右图,在顶面中心位置从上到下打一个边长为1厘米的正方形通孔,打孔后的橡皮泥块的表面积为多少平方厘米?(2)在第(1)题打孔后,再在正面中心位置处,从前到后打一个边长1厘米的正方形通孔(如右图所示),那么打孔后的橡皮泥内外的表面积总和是多少平方厘米?(3)在棱长为3厘米的正方体木块的每个面的中心上打一个直穿木块的洞,洞口呈边长为1厘米的正方形(如图)。

(完整版)“长方体和正方体”练习题及答案

(完整版)“长方体和正方体”练习题及答案

六年级第一学期“长方体和正方体”练习题姓名成绩一、填空题。

(每空1分,共24分)1、在括号里填上合适的单位名称。

⑴一小瓶红墨水是60()⑵一台电冰箱的体积约是240()⑶一种油箱的容积是0.6()⑷一只火柴盒的体积约是9.6()⑸一种水箱可容水约24()2、一个长方体长5厘米,宽5厘米,高4厘米,这个长方体有2个面是()形,还有()个面的面积相等,长方体的表面积是()。

3、一个长方体的体积是162立方厘米,它的底面积是32.4平方厘米,底面长8.1厘米,这个长方体的高是( )厘米,宽是( )厘米。

4、一个长方体的体积是240立方厘米,长是8厘米,宽是6厘米,高是()厘米。

5、 6.4立方米=( )立方分米 4500毫升=( )升80立方厘米=()立方分米 3.8升 = ( )毫升7.05立方分米=( )升 50平方厘米=()平方分米6、右图是由棱长1厘米的小正方体拼成的,它的体积是()立方厘米,至少再加上()个小正方体,就能成为一个较大的正方体。

7、一个长方体,长、宽、高分别为a米、b米、c米,如果高增加4米,新的长方体比原来长方体增加了()立方米。

8、一个长方体的表面积是90平方分米,把它平均分开正好成两个相等的正方体,每个正方体的表面积是()平方分米。

9、用3个棱长4厘米的正方体粘合成一个长方体,长方体的表面积比3个正方体的表面积少()平方厘米。

10、一个长方体相邻三个面的面积分别为10平方厘米、15平方厘米和6平方厘米,这个长方体的体积为()。

11、一个长方体的宽和高都是5厘米,把它从长的中点截成两个相同的长方体后,得到其中一个长方体的表面积比原来大长方体的表面积减少120平方厘米。

原来长方体的体积是()立方厘米。

二、判断题。

(每题2分,共12分)1、正方体棱长扩大到原来的2倍,体积扩大到原来的8倍。

……………()2、a3=3a。

……………………………………………………………………()3、一个长方体茶叶罐,体积和容积相等。

长方体正方体表面积及体积练习题整理版

长方体正方体表面积及体积练习题整理版

稍复杂的长方体和正方体的体积和表面积练习一、填空1、一个长方体的棱长总和是48cm,宽是2cm,长是宽的2倍,它的表面积是( )。

2、一个长方体方木,长2m,宽和厚都是30cm,把它的长截成2段,表面积增加()。

3、长方体中最多可以有()条棱的长度相等,最少有()条棱的长度相等。

4、两个完全相同的长方体,长10cm,宽7cm,高4cm,拼成一个表面积最大的长方体后,表面积是(),比原来减少了();如果拼成一个表面积最小的长方体,表面积是(),比原来减少了()。

5、一个正方体的棱长总和是48厘米,它的表面积是().二、选择1、一个棱长是1分米的正方体木块,横截成三个体积相等的小长方体后,表面积增加了( )A、2平方分米B、4平方分米C、6平方分米2、大正方体棱长是小正方体棱长的3倍,大正方体的表面积是小正方体表面积的()倍。

A、3 B、6 C、93、一个正方体表面积是150平方厘米,把它平均分成两个长方体,每个长方体的表面积是()A、75平方厘米B、100平方厘米C、90平方厘米4、一个长方体有四个面的面积相等,则其余两个面是( )A、长方形B、正方形C、不一定5、挖一个长8米、宽6米、深4。

5米的长方体水池,这个水池的占地面积至少是()A、48平方米B、44平方米C、36平方米D、222平方米三、计算1、一个长方体的12条棱长总和是64厘米,侧面是一个周长为24厘米的长方形,它的长是多少?2、粮店售米用的长方体木箱(上面没有盖),长1。

2米,宽0.6米,高0。

8米,制作这样一个木箱至少要用木板多少平方米?3、把一个长方体和一个正方体拼成一个新的长方体,这个新长方体的表面积比原来的长方体的表面积增加了80平方厘米,求正方体的表面积。

4、一个长方体的木块,截成两个完全相等的正方体。

两个正方体棱长之和比原来长方体棱长之和增加40厘米,求原长方体的长是多少厘米?5、用三个长3厘米,宽2厘米,高1厘米的长方体拼成一个表面积最小的大长方体,这个长方体的表面积是多少平方厘米?6、一个小食堂长10米,宽8米,高5米,要粉刷四壁和顶棚.扣除门窗面积18.4平方米,平均每平方米用石灰0.2千克,一共用石灰多少千克?7、一个棱长是5分米的正方体水池,蓄水的水面低于池口2分米,水的容量是( )升8、有大、中、小三个长方体水池,它们的口都是正方形分别是5分米、3分米、2分米,现在把两块石头分别放入中、小水池内,这两个水池的水面分别升高6厘米,如果这两块石头都沉入大水池中,那么大水池的水面将升高多少厘米?9、一个带盖的长方体木箱,体积是0.576立方米,它的长是12分米,宽是8分米,做这样一个木箱至少要用木板多少平方米?10、一个房间的长6米,宽3.5米,高3米,门窗面积是8平方米。

(完整版)长方体的表面积练习题

(完整版)长方体的表面积练习题

长方体、正方体表面积单元测试(1)1、一个长方体水箱容量是320升,这个水箱的底面是一个边长为8分米的正方形,水箱的高是多少分米?2、一块长方形铁皮,长26厘米,宽16厘米,在它的四个角上都剪去边长为3厘米的正方形,然后焊接成一个无盖的铁盒,求这个铁盒的容积是多少毫升?3、楼房外壁用于流水的水管是长方体。

如果每节长15分米,横截面是一个长方形,长1分米,宽0.6分米。

做一节水管,至少要用铁皮多少平方分米?4、加工厂要加工一批洗衣机外套(没有底面),每台洗衣机的长60厘米,宽40厘米,高80厘米,做1250个机套至少用布多少平方米?一、填空1、一个正方体的棱长为A,棱长之和是(),当A=5厘米时,这个正方体的棱长总和是()厘米。

2、一个长方体的长是6厘米,宽是5厘米,高是4厘米,它的上面的面积是()平方厘米;前面的面积是()平方厘米;右面的的面积是()平方厘米。

这个长方体的表面积是()平方厘米。

3、一个长方体最多可以有()个面是正方形,最多可以有()条棱长度相等。

4、把一根长80厘米,宽5厘米,高3厘米的长方体木料锯成长都是40厘米的两段,表面积比原来增加了()平方厘米。

5、用铁丝焊接成一个长12厘米,宽10厘米,高5厘米的长方体的框架,至少需要铁丝()厘米。

6、一个长方体的长是25厘米,宽是20厘米,高是18厘米,最大的面的长是()厘米,宽是()厘米,它的面积是()平方厘米;最小的面长是()厘米,宽是()厘米,它的面积是()平方厘米。

7、一个长方体的长是5分米,宽和高都是4分米,在这个长方体中,长度为4分米的棱有()条,面积是20平方分米的面有()个。

8、一个长方体的金鱼缸,长是8分米,宽是5分米,高是6分米,不小心前面的玻璃被打坏了,修理时配上的玻璃的面积是()。

9、一个正方体的棱长总和是72厘米,它的一个面是边长()厘米的正方形,它的表面积是()平方厘米。

10、至少需要()厘米长的铁丝,才能做一个底面周长是18厘米,高3厘米的长方体框架。

长方体、正方体的表面积和体积综合试题

长方体、正方体的表面积和体积综合试题

长方体、正方体的表面积和体积综合试题————————————————————————————————作者:————————————————————————————————日期:2长方体、正方体的表面积和体积综合练习题1、一个长方体的长6厘米,宽5厘米,高4厘米。

它的棱长和是多少?一个正方体的棱长是8厘米。

它的棱长和是多少?2、长方体的棱长和是60厘米,长6厘米,高4厘米。

宽是多少?3、正方体的棱长和是96厘米。

它的棱长是多少?4、一个正方体礼盒,棱长为1.5 dm,包装这个礼品盒至少要用多少平方分米的包装纸?(接头不计。

)5、用一根长48厘米的铁丝围成一个长方体,这个长方体长5厘米,宽4厘米,它的高是多少厘米?6、一个长方体的长是15厘米,宽是12厘米,棱长总和是148厘米,它的高是多少、?7、两根同样长的铁丝焊长方体和正方体,长方体长7厘米,宽5厘米,高3厘米,正方体的棱长是多少厘米?1.一个长方体的长8厘米,宽5厘米,高3厘米。

它的表面积是多少?2、一个长方体无盖玻璃鱼缸,它的底长4dm,宽25cm,高20cm,做这样一个鱼缸至少要玻璃多少平方厘米?这个鱼缸占了多大的空间?3.一个房间的长6米,宽3.5米,高3米,门窗面积是8平方米。

现在要把这个房间的四壁和顶面粉刷水泥,粉刷水泥的面积是多少平方米?如果每平方米需要水泥4千克,一共要水泥多少千克?4.一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,这张商标纸的面积是多少平方厘米?5、挖一个长50米,宽30米,深2米的养鱼池,这个养鱼池的占地面积是多少平方米?可挖多少方土?36、一个通风管的横截面是边长是0.5米的正方形,长2.5米。

如果用铁皮做这样的通风管25只,需要多少平方米的铁皮?7.一个正方体的表面积是24平方分米,把它分成两个完全相同的长方体,每个长方体的表面积是多少平方分米?8.一个长方体,如果高减少3厘米,就成为一个正方体。

(完整版)长方体和正方体的表面积知识点及练习题

(完整版)长方体和正方体的表面积知识点及练习题

长方体和正方体的表面积知识点1、长方体的表面积就是长方体六个面的总面积。

由于相对的面完全相同,所以可以先求出前面、和下面三个面的面积,再乘以2,就可以求出表面积了。

长方体的表面积 = 长×宽×2+长×高×2+宽×高×2=(长×宽+长×高+宽×高)×2正方体的六个面完全相同,所以计算时只要算出其中的一个面,再乘6就可以了。

正方体的表面积 = 棱长×棱长×62、在解决一些问题时,要充分考虑实际情况,想清楚要算几个面。

在解答时,可以把这几个面的面积分别算出来,再相加,也可以先算出六个面的面积总和,再减去不需要的那个(些)面。

一个抽屉有5个面,分别是前面、后面、左面、右面、底面。

所以做这样一个抽屉所需要的木板,只要算出这5个面的面积就可以了。

通风管顾名思义是通风用的,没有底面。

所以只要算四个侧面就可以了。

(1)具有六个面的长方体、正方体物品:油箱、罐头盒、纸箱子等;(2)具有五个面的长方体、正方体物品:水池、鱼缸等;(3)具有四个面的长方体、正方体物品:水管、烟囱等。

长方体和正方体表面积知识巩固一、填空题。

1、一个正方体的棱长之得84厘米,它的棱长是(),一个面的面积是(),表面积是(),体积是()。

2、一个长方体的长、宽、高都扩大2倍,它的表面积就()。

3、两个棱长2厘米的正方体木块,拼成一个长方体,这个长方体的表面积是()。

4、把一个长12厘米,宽和高都是3厘米的长方体分割成4个大小一样的正方体,表面积增加了(),每个正方体的表面积是()。

5、用棱长1厘米的小正方体木块拼成一个较大的的正方体,至少要()块这样的小木块,拼成的正方体的棱长是(),表面积是()。

6、把一个棱长2分米的正方体切成两个体积相等的长方体,其中一个长方体的表面积是()平方分米。

7、一个长方体的长是25厘米,宽是20厘米,高是18厘米,最大的面的长是()厘米,宽是()厘米,它的面积是()平方厘米;最小的面长是()厘米,宽是()厘米,它的面积是()平方厘米。

小学六年级数学长方体和正方体练习题精选

小学六年级数学长方体和正方体练习题精选

小学六年级数学长方体和正方体练习题精选1.一个长方体玻璃容器,向容器里倒入6L升水,这时水面高度是15厘米,再把一个苹果放入水中,量得这时水面的高度是16.5厘米,请你计算苹果的体积。

2.一个长方体玻璃容器,从里面量长、宽均为2dm,向容器中倒入5L的水,再把一个土豆放入水中。

这时量得容器内的水深是13cm。

这个土豆的体积是多少?3.一个长方体,如果长減少2厘米,宽和高不变,它的体积减少48立方厘米如果宽增加3厘米,长和高不变,它的体积增加99立方厘米,如果高增加4厘米,长和宽不变,它的体积增加352立方厘米,原来长方体的表面积是多少平方厘米?4.一个长方体,如果高截掉2厘米,表面积就减少了32平方厘米,剩下的正好是一个正方体,原来长方体的体积和表面积分别是多少?5.一个长方体,如果长增加2厘米,则体积增加40立方厘米,如果宽增加3厘米,则体积增加90立方厘米,如果高增加4厘米,则体积增加96立方厘米,原长方体的表面积是多少平方厘米?6.工地上有一个长方体沙堆,底面积18平方米,高8米。

用这些沙子铺在6米长、4米宽的长方体池子里,能铺多厚?7.现有一张长40厘米、宽20厘米的长方形铁皮,请你用它做一只深是5厘米的长方体无盖铁皮盒(焊接处及铁皮厚度不计,容积越大越好),你做出的铁皮盒容积是多少立方厘米?8.长方形铁皮长24厘米,四角剪去连长3厘米的正方形后,再焊接成长方形盒子,盒子容积是486立方厘米,求原长方形铁皮宽。

9.有一块长方形的铁皮,长60厘米,宽40厘米。

在这块铁皮的四角剪去边长5厘米的小正方形,然后制成一个无盖的长方体盒子,求这个长方体盒子的体积。

10.把一个长方体截去一个高为8厘米的长方形后,剩下的部分是一个正方体。

正方体的表面积比原来长方体的表面积减少320平方厘米。

求原来长方体的体积。

11.有一个长方体,它的前面和上面的面积之和是209平方厘米,如果它的长、宽、高都是质数,那么这个长方体的体积是多少立方厘米?12.如果一个小正方体的表面积是6平方厘米,由27个这样的小正方体组成一个大正方体,大正方体的表面积是多少平方厘米?13.两个完全相同的长方体,长6厘米,宽4厘米,高2厘米,拼成一个表面积最大的长方体,拼成后的长方体表面积比原来两个长方体的表面积减少多少平方厘米?14.一个长方体的纸盒,底面是周长为12厘米的正方形,高是2.5厘米,这个长方体纸盒的表面积和体积各是多少?15.一个正方体棱长总和是96厘米,它的表面积和体积分别是多少?16.把一个表面积是54平方分米的正方体木料锯成两个长方体,这两个长方体的表面积是多少平方分米?17.建造一个长方体游泳池,长30米,宽10米,深1.6厘米,池的四壁和底面用瓷砖铺砌,如果每平方米用瓷砖25块,共需要多少块?18.将棱长是6厘米的正方体铁块,锻造成长3厘米,宽2厘米的长方体,锻造成的这个长方体的高是多少厘米?19.在一个长3分米,宽24厘米,高22厘米的玻璃缸中,水深19厘米,小明将一块棱长12厘米的正方形铁块投入水中,投入后缸中的水会溢出吗?分析与答案20.分析与答案。

小学数学长方体正方体表面积体积综合练习题(陈历源)

小学数学长方体正方体表面积体积综合练习题(陈历源)

长方体与正方体的综合练习题一、表面积1.无盖的长方体或者正方体的表面积(1)一个无盖的正方体的玻璃鱼缸,棱长为7分米,制作这个鱼缸至少需要多大面积的玻璃?正方体的表面积公式=6a²,而这里是无盖的,也就是我们只需要求5个面的面积就可以了,所以S=5×7×7=245(平方分米)(2)教室长为9米,宽为6米,高为3米,用涂料粉刷四壁和天花板,扣除门窗面积20平方米,要粉刷的面积是多少平方米?长方体表面积公式=2(ab+bh+ah),六个面的面积和,但是这里粉刷墙壁,地面不刷,所以求5个面的面积,也就是少求一个长×宽.可以用总得表面积-长×宽,也可以直接求S=ab+2(ah+bh),这个题的特殊性是粉刷墙壁,最后要减掉门窗的面积。

S=9×6+2×(9×3+6×3)=144平方米144—20=124平方米2.求四个面的面积国家游泳中心水立方体育馆外形为长方体,长是177米,宽是177米,高为30米,他四周的总面积是多少?这是一个有两个面是正方形的长方体,除了上下两个面,其余四个面完全相同,求四周的表面积,S=2ah+2bh=177×30×4(这里长宽相等,因此直接求出一个面的乘以4就可以了)3.铺瓷砖的问题求出表面积除以一块瓷砖的小面积,也就是课上经常说的大面积÷小面积二、体积1.利用公式直接求体积这类题较为简单,但是要注意看题目里的单位是否统一,如果不统一要先化成统一单位如长方体长6米,宽70分米,高4米,体积是多少立方米?2.知道体积,长、宽、高其中的两个,求另外一个量h=v÷a÷b,a=v÷h÷b,b=v÷a÷h3。

砌砖问题问用了多少块砖的问题?(1)如:某住宅小区,长为30米,厚为24厘米,高为2米,每立方米用砖525块,一共用多少块砖?先统一单位,再求体积,再用体积乘以525就等于一共用了多少块砖(2)长为3米,宽为2米,高为6米的墙,如果用20立方分米的砖去砌墙,用砖多少块大体积÷小体积表面积1、一个长方体的长是8厘米,宽是4厘米,高是2厘米,这个长方体的表面积是多少?2、一个正方体的棱长是5厘米,它的表面积是多少平方厘米?3、用一根48厘米的铁丝扎成一个正方体,这个正方体的表面积是多少平方厘米?4、把一个棱长为5厘米的正方体,锯成3个长方体,它的表面积增加了多少平方厘米?5、把3个棱长为4厘米的正方体拼成一个长方体,这个长方体的表面积比原来的3个正方体的表面积之和减少了多少?6、一个无盖的长方体铁皮水桶,长是8分米,宽是6分米,高是0。

人教版6年级长方体和正方体练习题

人教版6年级长方体和正方体练习题

人教版6年级长方体和正方体练习题一、填空1.一个长方体的长、宽、高分别为米、米、米。

如果高增加2米,新的长方体体积比原来增加()立方米,表面积增加()平方米。

考查目的:计算长方体的表面积和体积。

答案:,。

解析:因为长方体的底面大小不变(长、宽不变),高增加2米,新的长方体体积比原来增加的体积,即为同样底面积且高为2米的长方体的体积,根据“长方体的体积=长×宽×高”可求得新长方体体积比原来增加的体积。

表面积增加的部分是高为2米的新长方体4个侧面的面积,即。

2.用12个棱长1厘米的小正方体拼成一个长3厘米、宽与高都是2厘米的大长方体,再将它去掉一个小正方体(如图所示),现在它的表面积是()平方厘米。

如果去掉的是角上的一个小正方体,它的表面积是()平方厘米。

考查目的:计算长方体的表面积。

答案:34,32。

解析:由图形可知,在棱的中间去掉一个小正方体后,表面积比原来增加了2个小正方体面的面积,即在原长方体表面积的基础上加2个小正方体面的面积。

如果去掉的是角上的一个小正方体,与原长方体相比表面积不会发生改变。

3.棱长1厘米的小正方体至少需要()个可拼成一个较大的正方体。

需要()个这样的小正方体可拼成一个棱长为1分米的大正方体,如果把这些小正方体依次排成一排,可以排成()米。

考查目的:长方体和正方体的特征,体积单位和长度单位之间的进率。

答案:8,1000,10。

解析:每个小正方体的棱长都是1厘米,则其体积是1立方厘米,可以用它组成棱长是2厘米的正方体,这样就需要2×2×2=8(个)小正方体。

棱长1分米的大正方体体积是1立方分米,需要1000个棱长1厘米的小正方体拼成,将这些小正方体依次排成一排,长度就是1000个棱长1厘米的小正方体的边长之和。

4.一块长方形铁皮如图所示,剪掉四个角上所有阴影部分的正方形(每个正方形都相同)后,沿虚线折起来,做成没有盖子的长方体铁盒,该铁盒的长是()cm,宽是()cm,高是()cm,表面积是()cm2,容积是()cm3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长方体和正方体的表面积和体积练习
一、填空:
1、一个正方体棱长5厘米,它的棱长和是(),表面积是(),体积是()。

2、一个长方体木箱的长是6分米,宽是5分米,高是4分米,它的棱长和是(),占地面积是(),表面积是(),体积是()。

3、一个长方体方钢,横截面积是12平方厘米,长2分米,体积是()立方厘米。

4、一个长方体水箱,从里面量,底面积是25平方米,水深1.6米,这个水箱能装水()升。

5、一块正方体的钢锭,棱长是10分米,如果1立方分米的钢重7.8千克,这块钢锭重()千克。

6、正方体的棱长扩大3倍,棱长和扩大()倍,表面积扩大()倍,体积扩大()倍。

7、用棱长5厘米的小正方体拼成一个大正方体,至少需这样的小正方体()块。

8、一个长方体的长、宽、高分别是a米、b米、h米。

如果高增加2米,体积比原来增加()立方米。

二、判断:
1、正方体是由6个完全相同的正方形组成的图形。

()
2、棱长6厘米的正方体,它的表面积和体积相等。

()
3、a3表示 a×3 。

()
4、一个长方体(不含正方体),最多有两个面面积相等。

()
5、体积相等的两个正方体,它们的表面积一定相等。

()
三、操作题:
右图是长方体展开图,测量所需数据,并求长方体体积。

四、解决问题:
1、一个长方体铁块,长10分米,宽5分米,高4分米,每立方分米铁块重7.8千克,这个铁块重多少千克?
2、一节长方体形状的铁皮通风管长2米,横截面是边长为10厘米的正方体,做这节通风管至少需要多少平方厘米铁皮?
3、一个无盖的长方体金鱼缸,长8分米,宽6分米,高7分米。

制作这个鱼缸共需玻璃多少平方分米?这个鱼缸能装水多少升?(玻璃厚度忽略不计)
4、有一个底面积是300平方厘米、高10厘米的长方体,里面盛有5厘米深的水。

现在把一块石头浸没到水里,水面上升2厘米。

这块石头的体积是多少立方厘米?。

相关文档
最新文档