弹簧计算题讲解
弹簧问题
弹簧问题(动力学)知识升华一、弹簧的弹力1、弹簧弹力的大小弹簧弹力的大小由胡克定律给出,胡克定律的内容是:在弹性限度内,弹力的大小与弹簧的形变量成正比。
数学表达形式是:F=kx 其中k是一个比例系数,叫弹簧的劲度系数。
说明:①弹力是一个变力,其大小随着弹性形变的大小而变化,还与弹簧的劲度系数有关;②弹簧具有测量功能,利用在弹性限度内,弹簧的伸长(或压缩)跟外力成正比这一性质可制成弹簧秤。
2、弹簧劲度系数弹簧的力学性质用劲度系数描写,劲度系数的定义因弹簧形式的不同而不同,以下主要讨论螺旋式弹簧的劲度系数。
(1)定义:在弹性限度内,弹簧产生的弹力F(也可认为大小等于弹簧受到的外力)和弹簧的形变量(伸长量或者压缩量)x的比值,也就是胡克定律中的比例系数k。
(2)劲度系数的决定因素:劲度系数的大小由弹簧的尺寸和绕制弹簧的材料决定。
弹簧的直径越大、弹簧越长越密、绕制弹簧的金属丝越软越细时,劲度系数就越小,反之则越大。
如两根完全相同的弹簧串联起来,其劲度系数只是一根弹簧劲度系数的一半,这是因为弹簧的长度变大的缘故;若两根完全相同的弹簧并联起来,其劲度系数是一根弹簧劲度系数的两倍,这是相当于弹簧丝变粗所导致;二、轻质弹簧的一些特性轻质弹簧:所谓轻质弹簧就是不考虑弹簧本身的质量和重力的弹簧,是一个理想化的模型。
由于它不需要考虑自身的质量和重力对于运动的影响,因此运用这个模型能为分析解决问题提供很大的方便。
性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。
其伸长量等于弹簧任意位置受到的力和劲度系数的比值。
如图1和2中相同的轻弹簧,其端点受到相同大小的力时,无论弹簧是处于静止、匀速还是加速运动状态,各个弹簧的伸长量都是相同的。
性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间变化——弹簧缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。
如在图1、2、3、4、中撤出任何一个力的瞬间,弹簧的长度不会变化,弹力的大小也不会变化;但是在图5中撤出力F的瞬时,弹簧恢复原长,弹力变为零。
弹簧类型题
弹簧类型题弹簧类问题是高中物理中非常典型的变力作用模型,因这类问题过程复杂,涉及的力学规律多,综合性强,能全面考查学生的科学思维、实验探究等物理核心素养,是历年高考命题的热点,但大部分学生解决弹簧类问题感觉比较困难,思路不清,甚至无从下手.本文通过典型实例分析牛顿运动定律中的弹簧类问题、功能关系中的弹簧类问题、动量守恒定律中的弹簧类问题和实验中的弹簧问题,旨在帮助学生深刻剖析力学中弹簧类问题,抓住解题要点,提高备考效率.一、弹簧类问题命题突破要点1.弹簧的弹力是一种由弹性形变决定大小和方向的力,在弹性限度内,根据胡克定律可知F弹=kx,当题目中出现弹簧时,要注意弹力的大小和方向时刻要当时的形变相对应.一般从分析弹簧的形变入手,先确定弹簧原长位置、形变后位置、形变量x 与物体空间位置变化的关系后,分析形变所对应的弹力大小和方向,进而分析物体运动状态及变化情况.2.弹簧的形变发生改变需要时间,瞬间可认为无形变量,弹力不变,弹性势能不变.F弹=kx 中x 表示形变量,弹力和弹性势能为某特定值时,可能对应两种状态(即弹簧伸长或压缩),高考经常在此设置题目.3.求弹簧的弹力做功时,因F弹随位移呈线性变化,可先求平均力,再用功的定义式W=Fx 进行计算,也可根据功能关系ΔEp=-W (弹性势能的变化等于物体克服弹力做的功)计算,弹性势能表达式Ep=1/2kx2在目前高考中不做定量计算要求.4.弹簧连接物体组成的系统,因弹力为系统的内力,当系统外力合力为零时,系统动量守恒,应用动量守恒定律可快速求解物体的速度,此类问题涉及物体多,过程复杂,常以选择题或计算题的形式出现,注意抓住临界状态及条件,结合能量守恒定律便可求解.二、四种弹簧类问题题型一牛顿运动定律中的弹簧类问题1.弹簧弹力的特点:(1)瞬时性.弹力随形变的变化而变化,弹簧可伸长可压缩,两端同时受力,大小相等方向相反;(2)连续性.弹簧形变量不能突变,约束弹簧的弹力不能突变;(3)对称性.弹力以原长为对称,大小相等的弹力对应压缩和伸长两种状态.2.此类问题经常伴随临界问题.当题目中出现“刚好”“恰好”“正好”,表明过程中存在临界点;若出现取值范围、多大距离等词时表示过程存在“起止点”,这往往对应临界状态;若题目要求“最终加速度”“稳定速度”,即求收尾加速度和收尾速度.【例1】如图1所示,光滑水平地面上,可视为质点的两滑块A、B 在水平外力的作用下紧靠在一起压缩弹簧,弹簧左端固定在墙壁上,此时弹簧的压缩量为x0,以两滑块此时的位置为坐标原点建立如图1所示的一维坐标系,现将外力突然反向并使B 向右做匀加速运动,下列关于外力F、两滑块间弹力FN 与滑块B 的位移x 变化的关系图像可能正确的是( )【小结】准确理解胡克定律F=kx中各物理量的含义,注意x 为形变量(伸长量或缩短量),分析弹力一般从形变量入手,抓住弹力与物体位置或位置变化的对应关系,对物体进行受力分析,结合牛顿运动定律确定物体的运动状态或各物理量随位置坐标的变化情况.题型二功能关系中的弹簧类问题1.题型特点:由轻弹簧连接的物体系统,一般有重力和弹簧弹力做功,这时系统的动能、重力势能和弹簧的弹性势能相互转化机械能守恒,注意应用功能关系或机械能守恒定律进行求解.2.注意三点:(1)对同一弹簧,弹性势能的大小由弹簧的形变量决定,与弹簧伸长或压缩无关;(2)物体运动的位移与弹簧的形变量或形变量的变化量有关;(3)如果系统中两个物体除弹簧弹力外所受合外力为零,则弹簧形变量最大时两物体速度相同.【例2】如图3所示,B、C 两小球由绕过光滑定滑轮的细线相连,C 球放在固定的光滑斜面上,A、B 两小球在竖直方向上通过劲度系数为k 的轻质弹簧相连,A 球放在水平地面上.现用手控制住C 球,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知C 球的质量为4m,A、B 两小球的质量均为m ,重力加速度为g,细线与滑轮之间的摩擦不计.开始时整个系统处于静止状态;释放C 球后,B 球的速度最大时,A 球恰好离开地面,求:来计算),或者采用功能关系法(利用动能定理、机械能守恒定律或能量守恒定律求解).特别注意弹簧有相同形变量时,弹性势能相同.题型三动量守恒定律中的弹簧类问题1.题型特点:两个(或两个以上)物体与弹簧组成的系统在相互作用过程中,若系统不受外力或所受合外力为零,则系统的动量守恒;同时,除弹簧弹力以外的力不做功,则系统的机械能守恒.2.注意三点:(1)此类问题一般涉及多个过程,注意把相互作用过程划分为多个依次进行的子过程,分析确定哪些子过程动量或机械能守恒,哪些子过程动量或机械能不守恒;(2)对某个子过程列动量守恒和能量守恒方程时,初末状态的动量和能量表达式要对应;(3)一个常见的临界状态,即当弹簧最长或最短时,弹性势能最大,弹簧两端物体速度相等.题型四实验中的弹簧类问题实验中的弹簧类问题涉及的实验是“探究弹簧弹力与弹簧伸长量的关系”,即胡克定律F=kx.力F的测量要注意弹簧竖直且处于平衡状态,x的测量要注意不能超过弹性限度,用测量总长减去弹簧原长,不能直接测量形变量,否则会增大误差.胡克定律还可表述ΔF=kΔx,根据此式即使不测量弹簧的原长也可求劲度系数,通常以弹力F 为纵坐标,弹簧长度或伸长量x 为横坐标,通过图像斜率求劲度系数.【小结】本题用固定在弹簧上的7个指针探究弹簧的劲度系数与弹簧长度的关系,将探究劲度系数k与弹簧圈数n的关系转化为探究1/k与n之间的关系,体现了化曲为直的思想,通过实验探究让学生感受弹力与形量之间的对应关系.三、结语弹簧因它的弹力、弹性势能与形变量之间有独特的关系,牛顿运动定律、机械能守恒定律及动量守恒定律等力学核心内容均可以以弹簧为载体进行考查,试题综合性强,难度大,能全面考查学生逻辑思维能力和运用数学知识解决物理问题的能力,备受命题专家的青睐,所以,备考当中应引起足够的重视.。
有关弹簧问题的分析与计算
跟踪练习: 1.如图所示,在一粗糙水平面上有两个质量分别为 m1 和 m2 的木块 1 和 2,中间用一原长为 L、劲度系数为 K 的轻弹 簧连结起来,木块与地面间的动摩擦因数为 μ。现用一水平力向右拉木块 2,当两木块一起匀速运动时,两木块之间的距离 是:( )
A.
B.
C.
D.
2.如图所示,质量分别为 mA 和 mB 的 A 和 B 两球用轻弹簧连接,A 球用细绳悬挂起来,两球均处于静止状态,如果 将悬挂 A 球的细线剪断,此时 A 和 B 两球的瞬时加速度各是多少?
C.aA=g, aB=-g D.aA=-g,aB=
图 3-2-5
10.轻质弹簧的上端固定在电梯的天花板上,弹簧下端悬挂一个小球,电梯中有质量为 50kg 的乘客如图 3-2-3 所示,在电 梯运行时乘客发现轻质弹簧的伸长量是电梯静止时的一半,这一现象表明 ( ) A.电梯此时可能正以 1m/s2 的加速度大小加速上升,也可能是以 1m/s2 加速大小减速上升 B. 的加速度大小加速下降 C.电梯此时可能正以 5m/s2 的加速度大小加速上升,也可能是以 5m/s2 大小的加速度大小减速下降 D.不论电梯此时是上升还是下降,加速还是减速,乘客对电梯地板的压力大小一定是 250N
〖例 8〗如图所示,原长分别为 L1=0.1m 和 L2=0.2m、劲度系数分别为 k1=100N/m 和 k2=200N/m 的轻质弹簧竖直悬挂 在天花板上。两弹簧之间有一质量为 m1=0.2kg 的物体,最下端挂着质量为 m2=0.1kg 的另一物体,整个装置处于静止状态。 g=10N/kg。问:若用一个质量为 M 的平板把下面的物体竖直缓慢地向上托起,直到两个弹簧的总长度等于两弹簧的原长之 和,求这时平板施加给下面物体 m2 的支持力多大?
竖直弹簧题目及答案
八、竖直弹簧1、如图所示,物体B 和物体C 用劲度系数为k 的轻弹簧连接并竖直地静置于水平地面上。
将一个物体A 从物体B 的正上方距离B 的高度为H 0处由静止释放,下落后与物体B 碰撞,碰撞后A 与B 粘合在一起并立刻向下运动,在以后的运动中A 、B 不再分离。
已知物体A 、B 、C的质量均为M ,重力加速度为g ,忽略空气阻力。
〔1〕求A 与B 碰撞后瞬间的速度大小。
〔2〕A 和B 一起运动达到最大速度时,物体C 对水平地面的压力为多大?〔3〕开始时,物体A 从距B 多大的高度自由落下时,在以后的运动中才能使物体C 恰好离开地面?解:〔1〕设物体A 碰前速度为v 1,对物体A 从H 0高度处自由下落,由机械能守恒定律得: v 1=02gH 。
………………………………………………2分设A 、B 碰撞后共同速度为v 2,则由动量守恒定律得:Mv 1=2Mv 2,………………………………………………3分v 2=2gH 。
………………………………………………2分 〔2〕当A 、B 达到最大速度时,A 、B 所受合外力为零,设此时弹力为F ,对A 、B 由平衡条件得,F =2Mg 。
…………………………………………………………………2分设地面对C 的支持力为N ,对ABC 整体,因加速度为零,所以N =3Mg 。
……3分 由牛顿第三定律得C 对地面的压力大小为N ′=3Mg 。
………………………………2分 〔3〕设物体A 从距B 的高度H 处自由落下,根据〔1〕的结果,A 、B 碰撞后共同速度V 2=2gH 。
…………………………………………1分当C 刚好离开地面时,由胡克定律得弹簧伸长量为X =Mg /k 。
根据对称性,当A 、B 一起上升到弹簧伸长为X 时弹簧的势能与A 、B 碰撞后瞬间的势能相等。
则对A 、B 一起运动到C 刚好离开地面的过程中,由机械能守恒得:MgX MV 422122=,………………………………2分 联立以上方程解得:kMgH 8=。
弹簧K值计算公式
弹簧K值计算公式弹簧的K值是指弹簧的劲度系数,也就是弹簧对受力物体施加的回复力与受力物体的相对位移之间的比例关系。
弹簧的K值越大,代表弹簧的硬度越大,回复力越强;反之,K值越小,代表弹簧的弹性越小,回复力越弱。
弹簧的K值计算公式可以通过胡克定律来获得。
胡克定律用来描述弹簧中的弹性力与位移的关系,可以表示为:F=-Kx其中,F代表弹簧对物体施加的力,K代表弹簧的劲度系数,x代表物体的位移。
负号表示回复力的方向与位移方向相反。
根据胡克定律的公式,我们可以通过实验来计算弹簧的K值。
下面是一个示例实验:1.准备一根弹簧和一个质量块。
弹簧可以是任意类型的弹簧,质量块可以是一个受力物体,例如一个金属块。
2.将质量块挂在弹簧上。
确保质量块悬空,没有与地面或其他物体接触。
3.测量质量块对弹簧产生的位移。
可以使用一个标尺或其他测量工具来测量质量块的初始位置和位移后的位置之间的距离。
4.测量质量块的质量。
可以使用一个天平或其他质量测量工具来测量质量块的质量。
5. 计算弹簧的K值。
根据胡克定律的公式F = -Kx,可以将弹簧对质量块的力表示为质量乘以重力加速度,即F = mg,其中m为质量,g为重力加速度。
代入胡克定律的公式中,我们可以得到-mg = -Kx,整理可得K = mg/x。
通过以上步骤,我们可以计算出弹簧的K值。
请注意,弹簧的K值可能因为弹簧的形状、材料和尺寸等因素而有所差异,因此同样类型的弹簧在不同实验条件下可能会得到不同的K值。
除了通过实验获得弹簧的K值,我们还可以根据弹簧的几何参数和材料特性来计算K值。
对于一些特定类型的弹簧,有一些经验公式可以用于计算K值。
例如,对于压缩弹簧和拉伸弹簧,可以使用以下公式来计算K 值:压缩弹簧:K=(Gd^4)/(8D^3n)拉伸弹簧:K=(Gd^4)/(8D^3nL)其中,K代表弹簧的劲度系数,G代表弹簧材料的剪切模量,d代表弹簧线径,D代表弹簧半径,n代表弹簧的有效圈数,L代表弹簧的长度。
高考物理弹簧类问题的几种模型及其处理方法归纳
第四阶段:弹簧继续被压缩,压缩量继续增加,产生的弹力继续增 加,大于2mg,使得物体AB所受合力变为向上,物体开始向下减速,直
分析:(1)当剪断细线l2瞬间,不仅l2对小球拉力瞬间消失,l1的 拉力也同时消失,此时,小球只受重力作用,所以此时小球的加速度为 重力加速度g。
(2)当把细线l1改为长度相同、质量不计的轻弹簧时,在当剪断细
线l2瞬间,只有l2对小球拉力瞬间消失,弹簧对小球的弹力和剪断l2之 前没变化,因为弹簧恢复形变需要一个过程。如图5所示,剪断l2瞬 间,小球受重力G和弹簧弹力,所以有:
A.A开始运动时 C.B的速度等于零时
B.A的速度等于v时 D.A和B的速度相等时
分析:解决这样的问题,最好的方法就是能够将两个物体作用的过 程细化,明确两个物体在相互作用的过程中,其详细的运动特点。具体 分析如下:
(1)弹簧的压缩过程:A物体向B运动,使得弹簧处于压缩状态,压 缩的弹簧分别对A、B物体产生如右中图的作用力,使A向右减速运动, 使B向右加速运动。由于在开始的时候,A的速度比B的大,故两者之间 的距离在减小,弹簧不断压缩,弹簧产生的弹力越来越大,直到某个瞬 间两个物体的速度相等,弹簧压缩到最短。
2 过程中所加外力F的最大值和最小值。 ⑵此过程中力F所做的功。(设整个过程弹簧都在弹性限度内,取 g=10m/s2)
分析:此题考查学生对A物体上升过程中详细运动过程的理解。在力 F刚刚作用在A上时,A物体受到重力mg,弹簧向上的弹力T,竖直向上的 拉力F。随着弹簧压缩量逐渐减小,弹簧对A的向上的弹力逐渐减小,则 F必须变大,以满足F+T-mg=ma。当弹簧恢复原长时,弹簧弹力消失,只 有F-mg=ma;随着A物体继续向上运动,弹簧开始处于拉伸状态,则物体 A的受到重力mg,弹簧向下的弹力T,竖直向上的拉力F,满足F-Tmg=ma。随着弹簧弹力的增大,拉力F也逐渐增大,以保持加速度不变。 等到弹簧拉伸到足够长,使得B物体恰好离开地面时,弹簧弹力大小等 于B物体的重力。
力学练习题弹簧振子的频率与振幅
力学练习题弹簧振子的频率与振幅力学练习题:弹簧振子的频率与振幅弹簧振子是力学中常见的基本模型,它的频率与振幅之间存在一定的关系。
通过练习题的形式,我们将深入探讨弹簧振子的频率与振幅之间的关系,并通过计算来验证这一关系。
一、理论基础弹簧振子是由弹簧和质点组成,当质点在弹簧的作用下发生振动时,我们考虑弹簧的力学性质。
弹簧受到的力可以表示为:F = -kx其中,F为弹簧受到的力,k为弹簧的弹性系数,x为弹簧的伸长或压缩量。
根据胡克定律,弹簧的弹性系数k可以表达为:k = (F/x)其中,F为给定的力,x为弹簧的压缩或伸长量。
二、练习题1. 弹簧振子的频率与弹性系数k之间存在何种关系?根据振动的理论,弹簧振子的频率与弹性系数k之间的关系可以用如下公式表示:f = (1/2π) * √(k/m)其中,f为弹簧振子的频率,k为弹簧的弹性系数,m为质点的质量。
2. 请计算以下情况下弹簧振子的频率:(1)弹簧的弹性系数k为10 N/m,质点的质量为0.5 kg;(2)弹簧的弹性系数k为20 N/m,质点的质量为1 kg;(3)弹簧的弹性系数k为30 N/m,质点的质量为2 kg。
根据上述公式,我们可以依次计算出这三种情况下的频率:(1)f₁ = (1/2π) * √(10/0.5) = 1.13 Hz(2)f₂ = (1/2π) * √(20/1) = 2.26 Hz(3)f₃ = (1/2π) * √(30/2) = 2.68 Hz三、结论通过计算可以发现,弹簧振子的频率与弹性系数k之间存在正相关关系,即弹性系数k增大时,频率也会增大。
这是因为弹性系数越大,弹簧对质点的恢复力越大,振动的速度也会更快,从而导致频率的增大。
在实际应用中,弹簧振子的频率与振幅、质量等因素也有关系,但本练习题仅考虑了弹性系数k和质量之间的关系。
为了更全面地了解弹簧振子的特性,可以进一步研究振幅、阻尼等因素对频率的影响。
结语:通过这个练习题,我们深入探讨了弹簧振子的频率与振幅之间的关系,通过计算验证了频率与弹性系数k之间存在正相关关系。
弹簧问题解题方法
解:A离开墙前A、B和弹簧组成的系统机械能守恒,弹簧恢复 原长过程,弹性势能全部转化为B的动能,因此A刚离开墙时刻, B的动能为E。A离开墙后,该系统动量守恒,机械能也守恒。 当A、B共速时,系统动能最小,因此弹性势能最大。A刚离开 墙时刻B的动量和A、B共速时A、B的总动量相等,由动能和动 量的关系Ek=p2/2m知,A刚离开墙时刻B的动能和A、B共速时系 统的动能之比为3∶2,因此A、B共速时系统的总动能是2E/3, 这时的弹性势能最大,为E/3。
解:剪断细线瞬间,细线拉力突然变为 零,弹簧对P的拉力仍为3mg竖直向上,因 此剪断瞬间P的加速度为向上2g,而Q的加 速度为向下g;剪断弹簧瞬间,弹簧弹力突 然变为零,细线对P、Q的拉力也立即变为 零,因此P、Q的加速度均为竖直向下,大 小均为g。选C。
• 例2、如图2所示,一个弹簧台秤的秤盘质量和弹簧 质量都不计,盘内放一个物体P处于静止,P的质量 m=12kg,弹簧的劲度系数k=300N/m。现在给P施加 一个竖直向上的力F,使P从静止开始向上做匀加速 直线运动,已知在t=0.2s内F是变力,在0.2s以后F是 恒力,g=10m/s2,则F的最小值是 ,F的最大值 是 。
• 例3.如图5所示,轻弹簧的一端固定在地面上,另一端与木块B 相连,木块A放在木块B上,两木块质量均为m,在木块A上施有 竖直向下的力F,整个装置处于静止状态. • (1)突然将力F撤去,若运动中A、B不分离,则A、B共同运动 到最高点时,B对A的弹力有多大? • (2)要使A、B不分离,力F应满足什么条件?
弹簧系统的刚度矩阵例题
弹簧系统的刚度矩阵例题摘要::1.弹簧系统刚度矩阵的概念2.弹簧系统刚度矩阵的计算方法3.弹簧系统刚度矩阵的应用举例4.总结第二步撰写正文:弹簧系统的刚度矩阵是描述弹簧系统弹性变形能力的一个重要参数,它在弹簧系统的分析与设计中具有重要作用。
本文将介绍弹簧系统刚度矩阵的概念、计算方法和应用举例。
一、弹簧系统刚度矩阵的概念弹簧系统的刚度矩阵是一个重要的力学参数,它表示弹簧系统在受到外力作用时的变形能力。
刚度矩阵的元素表示弹簧系统各部件之间的相互影响程度。
刚度矩阵的计算方法主要有两种:一种是根据弹簧系统的几何形状和材料特性计算;另一种是通过实验测量得到。
二、弹簧系统刚度矩阵的计算方法1.基于几何形状和材料特性的计算方法弹簧系统刚度矩阵的计算可以根据弹簧系统的几何形状和材料特性进行。
这种方法的计算过程相对复杂,需要考虑弹簧的材料、截面形状、长度等因素。
通常采用矩阵力学方法或有限元方法进行计算。
2.基于实验测量的计算方法弹簧系统刚度矩阵的另一种计算方法是通过实验测量得到。
这种方法需要在实验室对弹簧系统进行加载实验,通过测量弹簧的变形量来计算刚度矩阵。
实验方法包括静态拉伸试验和动态试验等。
三、弹簧系统刚度矩阵的应用举例弹簧系统刚度矩阵在许多工程领域都有广泛的应用,例如汽车、飞机等交通工具的悬挂系统,建筑物的抗震结构等。
在这些应用中,弹簧系统刚度矩阵可以帮助工程师分析弹簧系统的弹性变形能力和受力情况,从而优化设计方案,提高系统的性能。
综上所述,弹簧系统刚度矩阵是描述弹簧系统弹性变形能力的重要参数,其计算方法有多种,并在工程领域中具有广泛的应用。
物理弹簧类问题解题技巧
物理弹簧类问题解题技巧(一)弹簧类命题的突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应。
在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变。
因此,在分析瞬时变化时,可以认为弹力大小不变,即弹的弹力不突变。
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。
同时要注意弹力做功的特点:Wk=-(kx22 -kx12),弹力的功等于弹性势能增量的负值。
弹性势能的公式Ep=kx2,高考不作定量要求,可作定性讨论。
因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。
(二)弹簧类问题的分类1.弹簧的瞬时问题弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。
2.弹簧的平衡问题这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f=kx或^f=kx来求解3.弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。
4.弹力做功与动量、能量的综合问题在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。
有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起。
分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。
高中物理弹簧弹力问题(含答案)
弹簧问题归类一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F .【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为,弹簧秤的读数为.【解析】以整个弹簧秤为研究对象,利用牛顿运动定律得:12F F ma -=,即12F F a m-=,仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的.【答案】12F F a m-=1F二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【解析】弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度F a M=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:,x x F x T ma M F L M L===【答案】x x T F L=三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变.即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变.【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a =与B a =【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g .【答案】0说明:区别于不可伸长的轻质绳中张力瞬间可以突变.【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为() A.0B.大小为233g ,方向竖直向下 C.大小为233g ,方向垂直于木板向下D.大小为233g ,方向水平向右【解析】末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos N mgF θ=.撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的图图图3-7-2图3-7-1图3-7-3N F (三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为23cos 3N F g a g m θ===【答案】C.四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有:11()F k x -=-,22F kx =.则:2121()()F F kx kx --=--,即F k x ∆=∆ 说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了,物块1的重力势能增加了.【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g,弹力的改变量也为12()mm g +.所以1k 、2k 弹簧的伸长量分别为:1211()m m g k +和1221()m m g k +故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++ 五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【解析】系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ==解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ=设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--=解得:()sin A B AF m m g a m θ-+=因物体A与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()sin A B m m g d kθ+=【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程.【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物图图3-7-6 图3-7-8体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大?(2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少? 【解析】由题意可知,弹簧开始的压缩量0mg x k =,物体B 刚要离开地面时弹簧的伸长量也是0mgx k=. (1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F 所做的功等于物体A 增加的动能及重力势能的和.即:201222F x mg x mv ⋅=⋅+得:022v gx =(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.在最低点有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为在最低点物体A 的加速度.在最高点,物体B 恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则:002(2)k x mg F ma +-=而0kx mg =,简谐运动在上、下振幅处12a a =,解得:032mgF =[也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002xmg k F +=,解得:032mgF =.]【答案】022gx 32mg说明:区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关. 七.与弹簧相关的临界问题通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论。
各种类型弹簧有效圈数的详细计算方法
各种类型弹簧有效圈数的详细计算方法各种类型弹簧有效圈数的详细计算方法:有效圈数是指弹簧能保持相同节距的圈数。
弹簧有效圈数=总圈数-支撑圈,具体根据结构进行计算。
1、对于拉伸弹簧,有效圈数n=总圈数n1,当n;20时圆整为整数圈,当n20时圆整为半圈。
2、对于压缩弹簧,有效圈数n=总圈数n1-支撑圈数n2,n2可查表获得。
尾数应为1/4、1/2、3/4、或整圈。
我们的通俗算法是压簧总圈数减掉上下接受接触不会产生变形的圈数,一般减2圈;扭簧和拉簧的有效圈数就是总圈数。
拓展资料弹簧是一种利用弹性来工作的机械零件。
用弹性材料制成的零件在外力作用下发生形变,除去外力后又恢复原状。
亦作“弹簧”。
一般用弹簧钢制成。
弹簧的种类复杂多样,按形状分,主要有螺旋弹簧、涡卷弹簧、板弹簧、异型弹簧等。
注意问题由于受产品结构限制,多股簧一般具有强度高、性能好的特点。
要求其材料在弹簧强度和韧性上对最终性能予以保证。
多股簧在加工过程中,应注意的是:1、支承圈根据产品要求可选用冷并和热并两种方法。
采用热并方式不允许将簧加热至打火花或发白,硅锰钢温度不得高于850℃。
支承圈与有效圈应有效接触,间隙不得超过圈间公称间隙的10%2、多股簧特性可由调整导程决定,绕制时索距可进行必要调整。
拧距可取3~14倍钢丝直径,但一般取8~13倍为佳。
其簧力还与自由高度、并端圈、外径及钢丝性能等有密切关系,可通过调整其中某项或几项予以改变。
3、不带支承圈的弹簧和钢丝直径过细的弹簧不应焊接簧头,但端头钢索不应有明显的松散,应去毛刺。
凡需焊接头部的多股簧,其焊接部位长度应小于3倍索径(最长不大于10毫米)。
加热长度应小于一圈,焊后应打磨平滑,气焊时焊接部位应进行局部低温退火。
4、弹簧表面处理一般进行磷化处理即可,也可进行其它处理。
凡要进行镀层为锌与镉时,电镀后应进行除氢处理,除氢后抽3%(不少于3件)复试立定处理,复试中不得有断裂。
弹簧应清除表面脏物、盐痕、氧化皮,方法可采用吹砂或汽油清洗的办法,但不能采用酸洗。
弹簧计算实例
例12-1设计一圆柱形螺旋压缩弹簧,簧丝剖面为圆形。
已知最小载荷Fmin=200N,最大载荷Fmax=500N,工作行程h=10mm,弹簧Ⅱ类工作,要求弹簧外径不超过28mm,端部并紧磨平。
解:试算(一):(1)选择弹簧材料和许用应力。
选用C级碳素弹簧钢丝。
根据外径要求,初选C=7,由C=D2/d=(D-d)/d得d=3.5mm,由表1查得sb=1570MPa,由表2知:[t]=0.41sb=644MPa。
(2) 计算弹簧丝直径d由式得K=1.21由式得d≥4.1mm由此可知,d=3.5mm的初算值不满足强度约束条件,应重新计算。
试算(二):(1) 选择弹簧材料同上。
为取得较大的I>d值,选C=5.3。
仍由C=(D-d)/d,得d=4.4mm。
查表1得sb=1520MPa,由表2知[t]=0.41sb=623MPa。
(2) 计算弹簧丝直径d由式得K=1.29由式得d≥3.7mm。
可知:I>d=4.4mm满足强度约束条件。
(3) 计算有效工作圈数n由图1确定变形量λmax:λmax=16.7mm。
查表2,G=79000N/mm2,由式得n=9.75取n=10,考虑两端各并紧一圈,则总圈数n1=n+2=12。
至此,得到了一个满足强度与刚度约束条件的可行方案,但考虑进一步减少弹簧外形尺寸与重量,再次进行试算。
试算(三):(1)仍选以上弹簧材料,取C=6,求得K=1.253,d=4mm,查表1,得sb=1520MPa,[t]=0.41sb=623MPa。
(2) 计算弹簧丝直径。
得d≥3.91mm。
知d=4mm满足强度条件。
(3)计算有效工作圈数n。
由试算(二)知,λmax=16.7mm,G=79000N/mm2由式得n=6.11取n=6.5圈,仍参考两端各并紧一圈,n1=n+2=8.5。
这一计算结果即满足强度与刚度约束条件,从外形尺寸和重量来看,又是一个较优的解,可将这个解初步确定下来,以下再计算其它尺寸并作稳定性校核。
弹簧计算题讲解
高三专题复习:弹簧(习题讲解)1.(13分)如图所示,将质量均为m 厚度不计的两物块A 、B 用轻质弹簧相连接,只用手托着B 物块于H 高处,A 在弹簧弹力的作用下处于静止,将弹簧锁定.现由静止释放A 、B ,B 物块着地时解除弹簧锁定,且B 物块的速度立即变为0,在随后的过程中当弹簧恢复到原长时A 物块运动的速度为υ0,且B 物块恰能离开地面但不继续上升.已知弹簧具有相同形变量时弹性势能也相同. (1)B 物块着地后,A 向上运动过程中合外力为0时的速度υ1;(2)B 物块着地到B 物块恰能离开地面但不继续上升的过程中,A 物块运动的位移Δx ;(3)第二次用手拿着A 、B 两物块,使得弹簧竖直并处于原长状态,此时物块B 离地面的距离也为H ,然后由静止同时释放A 、B ,B 物块着地后速度同样立即变为0.求第二次释放A 、B 后,B 刚要离地时A 的速度υ2.2.(13分) (1)设A 、B 下落H 过程时速度为υ,由机械能守恒定律有:22212mv mgH =(1分) B 着地后,A 和弹簧相互作用至A 上升到合外力为0的过程中,弹簧对A 做的总功为零.(1分)即22121210mv mv -=(1分) 解得:gH v 21= (1分)(2)B 物块恰能离开地面时,弹簧处于伸长状态,弹力大小等于mg ,B 物块刚着地解除弹簧锁定时,弹簧处于压缩状态,弹力大小等于mg .因此,两次弹簧形变量相同,则这两次弹簧弹性势能相同,设为E P .(1分)H又B 物块恰能离开地面但不继续上升,此时A 物块速度为0.从B 物块着地到B 物块恰能离开地面但不继续上升的过程中,A 物块和弹簧组成的系统机械能守恒P P E x mg mv E +∆=+2121(2分)得Δx =H (1分) (3)弹簧形变量x x ∆=21(1分) 第一次从B 物块着地到弹簧恢复原长过程中,弹簧和A 物块组成的系统机械能守恒2212121mv mgx mv E P +=+(1分) 第二次释放A 、B 后,A 、B 均做自由落体运动,由机械能守恒得刚着地时A 、B 系统的速度为gH v 21=(1分)从B 物块着地到B 刚要离地过程中,弹簧和A 物块组成的系统机械能守恒P E mv mgx mv ++=22212121(1分) 联立以上各式得222v gH v -=(1分)3.(20分)如图所示,一轻弹簧竖直放置在地面上,轻弹簧下端与地面固定,上端连接一质量为M 的水平钢板,处于静止状态。
弹簧类问题的求解
弹簧类问题的求解由于涉及到的弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的分析,不能建立与之相关的物理模型,导致解题思路不清、效率低下,错误率较高。
下面我们归纳六类问题探求解法。
一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为"轻弹簧",是一种常见的理想化物理模型。
由于“轻弹簧”质量不计,选取任意小段弹簧分析,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大。
故:轻质弹簧中各部分间的张力处处相等,均等于弹簧两端的受力。
弹簧一端受力为F ,另一端受力一定也为F 。
若是弹簧秤,则弹簧秤示数为F 。
例1、如图所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加水平方向的力F 1、F 2,且F 1>F 2则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .分析与解 以整个弹簧秤为研究对象:利用牛顿运动定律12F F ma -= ∴12F F a m-= 仅以轻质弹簧为研究对象:则弹簧两端的受力都是F 1,所以弹簧秤的读数为F 1 说明 F 2作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的。
二、弹簧弹力瞬时问题因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变。
因此,在分析瞬时变化时,可以认为弹力大小和方向不变,即弹簧的弹力瞬间不突变。
例2、如图所示,木块A 与B 用一轻弹簧相连,竖直放在木块C上,三者静置于地面,A 、B 、C 的质量之比是1∶2∶3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是a A =____ ,a B =____分析与解 由题意可设A 、B 、C 的质量分别为m 、2m 、3m以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均没变,故木块A 的瞬时加速度为0以木块AB 为研究对象,由平衡条件可知,木块C 对木块B 的作用力F cB =3mg 以木块B 为研究对象,木块B 受到重力、弹力和F cB 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均没变,F cB 瞬时变为0,故木块C 的瞬时合外力为竖直向下的3mg 。
高中物理 弹簧问题
高中物理弹簧问题弹簧问题是物理学中常见的问题之一。
轻弹簧是指不考虑弹簧本身质量和重力的弹簧,是一个理想模型,可以充分拉伸和压缩。
无论弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向,合力恒等于零。
弹簧读数始终等于任意一端的弹力大小。
弹簧弹力是由弹簧形变产生的,弹力大小和方向时刻与当时形变对应。
一般应从弹簧的形变分析入手,先确定弹簧原长位置和现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
轻弹簧的性质有三点:1、在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的,其伸长量等于弹簧任意位置受到的力和劲度系数的比值;2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变,具有缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零;3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。
分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。
弹簧问题的题目类型主要包括弹簧问题受力分析、瞬时性问题和动态过程分析。
在受力分析中,需要找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程,并通过弹簧形变量的变化来确定物体位置的变化。
在瞬时性问题中,需要针对不同类型的物体的弹力特点,对物体做受力分析。
在动态过程分析中,可以采用三点分析法,明确接触点、平衡点和最大形变点,来分析物体的运动情况。
除了以上几种题型,弹簧问题还涉及到动量和能量以及简谐振动的问题。
在解决弹簧问题时,需要注意抓住弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向,合力恒等于零的特点求解,同时要灵活运用整体法隔离法,优先对受力少的物体进行隔离分析。
在解决临界极值问题时,需要考虑弹簧连接物体的分离临界条件和最大最小速度、加速度。
对于分离瞬间的分析,需要采用隔离法,并且需要根据具体条件来判断弹簧是否处于原长状态。
在物体做变加速运动时,加速度等于零时速度达到最大值,速度等于零时加速度达到最大值。
弹力的计算公式例题
弹力的计算公式例题弹力是物体受到外力作用时产生的一种力,它是一种使物体发生形变的力,当外力作用停止时,物体会恢复原状。
弹力是一种常见的力,它在日常生活和工程应用中都有着重要的作用。
弹力的计算公式是一种用来计算弹力大小的数学公式,它可以帮助我们准确地计算出物体受到外力作用时产生的弹力大小。
下面我们将通过一个例题来介绍弹力的计算公式。
假设有一个弹簧,其弹性系数为k,当受到外力F作用时,弹簧发生形变,并产生一个弹力。
我们可以利用弹力的计算公式来计算出这个弹力的大小。
首先,我们需要知道弹力的计算公式:弹力F = k x。
其中,F表示弹力的大小,k表示弹簧的弹性系数,x表示弹簧的形变量。
假设弹簧的弹性系数k为100 N/m,形变量x为0.1 m,我们可以通过上面的公式来计算出弹力的大小:F = 100 0.1 = 10 N。
所以,当弹簧受到外力作用时,产生的弹力大小为10 N。
通过这个例题,我们可以看到弹力的计算公式是一种非常实用的工具,它可以帮助我们准确地计算出物体受到外力作用时产生的弹力大小。
在工程应用中,我们经常会用到这个公式来设计弹簧系统、弹簧振动器等。
除了弹簧,弹力的计算公式也适用于其他一些弹性体,比如橡胶、弹性绳等。
只要我们知道了弹性体的弹性系数和形变量,就可以利用这个公式来计算出弹力的大小。
需要注意的是,弹力的计算公式只适用于弹性体受到外力作用产生的弹力,对于其他类型的力,比如重力、摩擦力等,都有各自的计算公式。
因此,在使用弹力的计算公式时,需要确保所研究的物体是弹性体,并受到外力作用产生的弹力。
总之,弹力的计算公式是一种非常实用的工具,它可以帮助我们准确地计算出物体受到外力作用时产生的弹力大小。
通过掌握这个公式,我们可以更好地理解和应用弹力的知识,在工程设计和科学研究中发挥重要作用。
希望通过这个例题的介绍,大家能对弹力的计算公式有更深入的理解和掌握。
弹簧伸长数学题
弹簧伸长数学题
弹簧伸长数学题可以用胡克定律来解决。
根据胡克定律,弹簧的伸长量与施加在其上的力成正比。
具体来说,可以使用以下公式来计算伸长量:
伸长量 = 弹簧的劲度系数 ×施加在弹簧上的力
假设弹簧的劲度系数为 k,施加在弹簧上的力为 F,伸长量为x。
则可以表示为:
x = k × F
如果已知某个弹簧的劲度系数为 k1,并且施加在该弹簧上的力为 F1,伸长量为 x1。
同时,又知道另一个弹簧的劲度系数为 k2,并且施加在该弹簧上的力为 F2,伸长量为 x2。
则可以建立以下等式:
k1 × F1 = x1
k2 × F2 = x2
根据上述等式,可以解得两个未知数。
例如,如果已知任意两个量,就能计算出第三个量。
7.轻弹簧弹性势能大小计算问题
7.轻弹簧弹性势能的大小计算一 知能掌握(一)轻弹簧弹力做功1.弹力功的特点弹簧弹力的功与路径无关。
同一弹簧在某一过程中弹力的功只是取决于初末状态弹簧形变量的大小,与弹力的作用点经过的路径没有关系。
2.弹力做功的计算(1)平均力求功:因为弹力随着位移是线性变化的,所以弹力功的大小可以用平均力求得即,说明:①上式是弹簧由原长到伸长或者压缩x 长度的过程弹力做的功,上式中的F 是形变量为x 时的弹力。
②当形变量由x 1变为x 2时弹力功的大小为(2)图像法求功:如图所示,弹力F 与形变量l 成线性关系,如果将形变量l 分成很多小段Δl ,在各小段上的弹力可以当作恒力处理,由W =F Δl 知,很多个矩形的面积之和就与弹力做功的大小相等,综合起来考虑,图线与l 轴所夹面积,就等于弹力做功的大小.则W =12F ·l =12kl ·l =12kl 2.(3)功能关系、能量转化和守恒定律求功.同时要注意弹力做功的特点:W k = —(21kx 22 —21kx 12), (二)轻弹簧弹性势能的大小计算方法1.功能关系:弹力的功等于弹性势能增量的负值即:W k = —(21kx 22 —21kx 12)=-ΔE p =E p1- E p2,弹力做正功时弹性势能减少;弹力做负功时弹性势能增加。
2.计算公式:弹性势能的大小计算公式:(此式的定量计算在高中阶段不作要求)。
3.能的转化和守恒定律:(三)弹性势能大小的三个特点:1.同一弹簧弹性势能与形变量的平方成正比;2.同一弹簧形变量(拉伸或压缩)相同时弹性势能相同;3.同一弹簧形变量(拉伸或压缩)的变化量相同时弹性势能的变化量相同。
(四)轻弹簧弹性势能大小计算常用的两种方法:1.公式法;运用弹性势能大小计算公式、与形变量的平方成正比等2.功能关系、能量守恒定律:运用动能定理等功能关系,机械能守恒定律、能量转化与守恒定律等(五)轻弹簧弹性势能相关问题的解题策略1.选择合适的对象分析,是单个物体还是几个物体组成的一个系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三专题复习:弹簧(习题讲解)1.(13分)如图所示,将质量均为m 厚度不计的两物块A 、B 用轻质弹簧相连接,只用手托着B 物块于H 高处,A 在弹簧弹力的作用下处于静止,将弹簧锁定.现由静止释放A 、B ,B 物块着地时解除弹簧锁定,且B 物块的速度立即变为0,在随后的过程中当弹簧恢复到原长时A 物块运动的速度为υ0,且B 物块恰能离开地面但不继续上升.已知弹簧具有相同形变量时弹性势能也相同. (1)B 物块着地后,A 向上运动过程中合外力为0时的速度υ1;(2)B 物块着地到B 物块恰能离开地面但不继续上升的过程中,A 物块运动的位移Δx ;(3)第二次用手拿着A 、B 两物块,使得弹簧竖直并处于原长状态,此时物块B 离地面的距离也为H ,然后由静止同时释放A 、B ,B 物块着地后速度同样立即变为0.求第二次释放A 、B 后,B 刚要离地时A 的速度υ2.2.(13分) (1)设A 、B 下落H 过程时速度为υ,由机械能守恒定律有:22212mv mgH =(1分) B 着地后,A 和弹簧相互作用至A 上升到合外力为0的过程中,弹簧对A 做的总功为零.(1分)即22121210mv mv -=(1分) 解得:gH v 21= (1分)(2)B 物块恰能离开地面时,弹簧处于伸长状态,弹力大小等于mg ,B 物块刚着地解除弹簧锁定时,弹簧处于压缩状态,弹力大小等于mg .因此,两次弹簧形变量相同,则这两次弹簧弹性势能相同,设为E P .(1分)又B 物块恰能离开地面但不继续上升,此时A 物块速度为0.从B 物块着地到B 物块恰能离开地面但不继续上升的过程中,A 物块和弹簧组成的系统机械能守恒P P E x mg mv E +∆=+2121(2分)得Δx =H (1分) (3)弹簧形变量x x ∆=21(1分) 第一次从B 物块着地到弹簧恢复原长过程中,弹簧和A 物块组成的系统机械能守恒H2212121mv mgx mv E P +=+(1分) 第二次释放A 、B 后,A 、B 均做自由落体运动,由机械能守恒得刚着地时A 、B 系统的速度为gH v 21=(1分)从B 物块着地到B 刚要离地过程中,弹簧和A 物块组成的系统机械能守恒P E mv mgx mv ++=22212121(1分) 联立以上各式得222v gH v -=(1分)3.(20分)如图所示,一轻弹簧竖直放置在地面上,轻弹簧下端与地面固定,上端连接一质量为M 的水平钢板,处于静止状态。
现有一质量为m 的小球从距钢板h=5m 的高处自由下落并与钢板发生碰撞,碰撞时间极短且无机械能损失。
已知M=3m ,不计空气阻力,g=10m/s 2。
(1) 求小球与钢板第一次碰撞后瞬间,小球的速度v 1和钢板的速度v 2。
(2) 如果钢板作简谐运动的周期为,以小球自由下落的瞬间为计时起点,以向下方向为正方向,在下图中画出小球的速度v 随时间t 变化的v--t 图线。
要求至少画出小球与钢板发生四次碰撞之前的图线。
(不要求写出计算过程,只按画出的图线给分)4.(12分)如图1—10(a )所示,一质量为m 的物体系于长度分别为l 1、l 2的两根细线上,l 1的一端悬挂在天花板上,与竖直方向夹角为θ,l 2水平拉直,物体处于平衡状态.现将l 2线剪断,求剪断瞬时物体的加速度.(1)下面是某同学对该题的一种解法: 解:设l 1线上拉力为T 1,l 2线上拉力为T 2,重力为mg ,物体在三力作用下平衡 T 1cos θ=mg ,T 1sin θ=T 2,T 2=mgtan θ,剪断线的瞬间,T 2突然消失,物体即在T 2反方向获得加速度.因为mgtan θ=ma ,所以加速度a =g tan θ,方向在T 2反方向.你认为这个结果正确吗?请对该解法作出评价并说明理由.(2)若将图(a )中的细线l 1改为长度相同、质量不计的轻弹簧,如图1—10(b )所示,其他条件不变,求解的步骤和结果与(1)完全相同,即a =g tan θ,你认为这个结果正确吗?请说明理由.19.(12分) (1)错.因为l 2被剪断的瞬间,l 1上的张力大小发生了变化.(6分)(2)对.因为l 2被剪断的瞬间,弹簧l 1的长度未发生变化,T 1大小和方向都不变.(6分) 5.(16分)水平面上放有质量为M 和m 的两个物体,且M=2m ,两物体与水平面间的动摩擦因数相同,中间用劲度系数为K 的轻质弹簧连接。
开始弹簧处于原长,如图所示。
现给M 施予大小为F 的水平拉力,使两物体一起向右匀加速运动。
求运动稳定后弹簧被拉伸的长度Δx 。
23.(16分)对整个系统有 F -μ(m+M )g=(m+M )a (6分)对m 有 k Δx -μm g= m a (6分) 解得 Δx=kF3 (4分) 6.(18分)如图所示,静止在光滑水平面上的物块A 和长平板B 的质量分别为m A =5 kg,m B =15kg ,劲度系数k =×103 N/m 的轻弹簧的两端分别固定在A 、B 上,A 、B 之间无摩擦,原先弹簧处于自由状态。
现将大小相等方向相反的两个水平恒力F 1、F 2分别同时作用在A 、B 上,F 1=F 2=200 N ,在此后的过程中,弹簧处于弹性限度内,已知弹簧的弹性势能E p =21kx 2,其中的x 为弹簧的伸长量或压缩量,试求: (1)开始运动后的某一时刻,A 、B 两物体的速率之比; (2)当两物体的速度达最大时,弹簧的弹性势能。
31.(18分)解:(1)因F 1和F 2等大反向,系统动量守恒,设当A 的速率为v 1时,B 的速率为v 2 有m A v A -m B v B =0 (6分) 得v A /v B =m B /m A =15/5=3 (2分) (2)当弹簧弹力和拉力相等时,A 、B 同时达最大速度 (2分) 设此时弹簧的伸长量为x 有kx =F 1-F 2 x =F 1/k =200/1000 m=0.20 m (4分)此时弹簧的弹性势能为E P =kx 2/2=1000×2 J=20 J(4分)7.(14分)用轻弹簧相连的质量均为2 kg 的A 、B 两物块都以v =6 m /s 的速度在光滑的水平地面上运动,弹簧处于原长,质量4 kg 的物块C 静止在前方,如图所示.B 与C 碰撞后二者粘在一起运动.求:在以后的运动中:(1)当弹簧的弹性势能最大时,物体A 的速度多大?(2)弹性势能的最大值是多大?(3)A 的速度有可能向左吗?为什么?19.(14分)(1)当A 、B 、C 三者的速度相等时弹簧的弹性势能最大. (2分) 由于A 、B 、C 三者组成的系统动量守恒,(m A +m B )v =(m A +m B +m C )v A ′ (1分) 解得 v A ′=4226)22(++⨯+ m/s=3 m/s(2分)(2)B 、C 碰撞时B 、C 组成的系统动量守恒,设碰后瞬间B 、C 两者速度为v ′,则m B v =(m B +m C )v ′ v ′=4262+⨯=2 m/s设物A 速度为v A ′时弹簧的弹性势能最大为E p ,根据能量守恒E p =21(m B +m C )2v ' +21m A v 2-21(m A +m B +m C ) 2'A v=×(2+4)×22+×2×62-×(2+2+4)×32=12 J(4分) (3)A 不可能向左运动 (1分) 系统动量守恒,m A v +m B v =m A v A +(m B +m C )v B设 A 向左,v A <0,v B >4 m/s(1分)则作用后A 、B 、C 动能之和E ′=21m A v A 2+21(m B +m C )v B 2>21(m B +m C )v B 2=48 J (1分)实际上系统的机械能E =E p +21 (m A +m B +m C )·2'A v =12+36=48 J(1分) 根据能量守恒定律,E '>E 是不可能的(1分)8.(16分)如图1—13所示,光滑轨道上,小车A 、B 用轻弹簧连接,将弹簧压缩后用细绳系在A 、B 上.然后使A 、B 以速度v 0沿轨道向右运动,运动中细绳突然断开,当弹簧第一次恢复到自然长度时,A 的速度刚好为0,已知A 、B 的质量分别为m A 、m B ,且m A <m B.求:(1)被压缩的弹簧具有的弹性势能E p . (2)试定量分析、讨论在以后的运动过程中,小车B 有无速度 22.(16分)解:(1)设弹簧第一次恢复自然长度时B 的速度为 v B 以A 、B 弹簧为系统动量守恒 (m A +m B )v 0=m B v B ①(3分)机械能守恒:21(m A +m B )v 02+E p =21m B v B 2②(3分) 由①、②解出E p =202)(v m m m m BB A A +③(2分)(2)设以后运动过程中B 的速度为0时,A 的速度为v A ,此时弹簧的弹性势能为E p ′,用动量守恒(m A +m B )v 0=m A v A ④(3分) 机械能守恒21(m A +m B )v 2+E p =21m A v A 2+ E p ′⑤(3分) 图1—13由④、⑤解出202202p 2)(2)(v m m m v m m m E AB A B B A +-+='⑥因为m A <m B 所以E p ′<0弹性势能小于0是不可能的,所以B 的速度没有等 于0的时刻9.(20分)在纳米技术中需要移动或修补原子,必须使在不停地做热运动(速率约几百米每秒)的原子几乎静止下来且能在一个小的空间区域内停留一段时间,为此已发明了“激光制冷”的技术,若把原子和入射光分别类比为一辆小车和一个小球,则“激光制冷”与下述的力学模型很类似。
一辆质量为m 的小车(一侧固定一轻弹簧),如图所示以速度v 0水平向右运动.一个动量大小为p ,质量可以忽略的小球水平向左射人小车并压缩弹簧至最短,接着被锁定一段时间△T ,再解除锁定使小球以大小相同的动量p 水平向右弹出,紧接着不断重复上述过程,最终小车将停下来。
设地面和车厢均为光滑,除锁定时间△T 外,不计小球在小车上运动和弹簧压缩、伸长的时间。
求:(1)小球第一次入射后再弹出时,小车的速度的大小和这一过程中小车动能的减少量; (2)从小球第一次入射开始到小车停止运动所经历的时间. 25.解:(1)小球射入小车和从小车中弹出的过程中,小球和小车所组成的系统动量守恒,由动量守恒定律,得mv 0—p=mv 1’, mv 1’=mv 1+p 则 mpv v 201-=……………………………………………………4分 此过程中小车动能减少量为21202121mv mv E k -=∆, )(222020mp v p m p pv E k -=-=∆……………………………………4分(2)小球第二次入射和弹出的过程,及以后重复进行的过程中,小球和小车所组成的系统动量守恒,由动量守恒定律,得mv 1—p=mv ’2,mv ’2=mv 2+p ,………………………………………1分则 )2(22012mpv m p v v -=-=………………………………………………1分 同理可推得)2(0mpn v v n -=………………………………………4分 要使小车停下来,即v n =0,小球重复入射和弹出的次数为pmv n 20=,…………………………………………………………4分 故小车从开始运动到停下来所经历时间为T pmv T n t ∆=∆=20………………………………………………2分 (2分)10.(9分)如图,在光滑的水平面上,有质量均为m 的A 、B 两个物体。