因式分解练习题精选三
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解练习题精选三
1.若(2x)n−81 = (4x2+9)(2x+3)(2x−3),那么n的值是( ) A.2 B.4 C.6 D.8
2.若9x2−12xy+m是两数和的平方式,那么m的值是( ) A.2y2 B.4y 2 C.±4y2 D.±16y2
3.把多项式a4− 2a2b2+b4因式分解的结果为( )
A.a2(a2−2b2)+b4 B.(a2−b2)2
C.(a−b)4 D.(a+b)2(a−b)2
4.把(a+b)2−4(a2−b2)+4(a−b)2分解因式为( )
A.( 3a−b)2 B.(3b+a)2
C.(3b−a)2 D.( 3a+b)2
5.计算:(−)2001+(−)2000的结果为( )
A.(−)2003 B.−(−)2001
C.D.−
6.已知x,y为任意有理数,记M = x2+y2,N = 2xy,则M与N的大小关系为( ) A.M>N B.M≥N C.M≤N D.不能确定
7.对于任何整数m,多项式( 4m+5)2−9都能( )
A.被8整除B.被m整除
C.被(m−1)整除D.被(2n−1)整除
8.将−3x2n−6xn分解因式,结果是( )
A.−3xn(xn+2) B.−3(x2n+2xn)
C.−3xn(x2+2) D.3(−x2n−2xn)
9.下列变形中,是正确的因式分解的是( )
A.0.09m2− n2 = ( 0.03m+ )( 0.03m−)
B.x2−10 = x2−9−1 = (x+3)(x−3)−1
C.x4−x2 = (x2+x)(x2−x)
D.(x+a)2−(x−a)2 = 4ax
10.多项式(x+y−z)(x−y+z)−(y+z−x)(z−x−y)的公因式是( ) A.x+y−z B.x−y+z C.y+z−x D.不存在11.已知x为任意有理数,则多项式x−1−x2的值( ) A.一定为负数
B.不可能为正数
C.一定为正数
D.可能为正数或负数或零
二、解答题:
分解因式:
(1)(ab+b)2−(a+b)2
(2)(a2−x2)2−4ax(x−a)2
(3)7xn+1−14xn+7xn−1(n为不小于1的整数)
参考答案
一、选择题:
1.B 说明:右边进行整式乘法后得16x4−81 = (2x)4−81,所以n应为4,答案为B.
2.B 说明:因为9x2−12xy+m是两数和的平方式,所以可设9x2−12xy+m = (ax+by)2,则有9x2−12xy+m = a2x2+2abxy+b2y2,即a2 = 9,2ab = −12,b2y2 = m;得到a = 3,b = −2;或a = −3,b = 2;此时b2 = 4,因此,m = b2y2 = 4y2,答案为B.
3.D 说明:先运用完全平方公式,a4− 2a2b2+b4 = (a2−b2)2,再运用两数和的平方公式,两数分别是a2、−b2,则有(a2−b2)2 = (a+b)2(a−b)2,在这里,注意因式分解要分解到不能分解为止;答案为D.
4.C 说明:(a+b)2−4(a2−b2)+4(a−b)2 = (a+b)2−2(a+b)[2(a−b)]+[2(a−b)]2 = [a+b−2(a−b)]2 = (3b−a)2;所以答案为C.
5.B 说明:(−)2001+(−)2000 = (−)2000[(−)+1] = ()2000 •= ()2001 =
−(−)2001,所以答案为B.
6.B 说明:因为M−N = x2+y2−2xy = (x−y)2≥0,所以M≥N.
7.A 说明:( 4m+5)2−9 = ( 4m+5+3)( 4m+5−3) = ( 4m+8)( 4m+2) =
8(m+2)( 2m+1).
8.A
9.D 说明:选项A,0.09 = 0.32,则0.09m2− n2 = ( 0.3m+n)( 0.3m−n),所以A错;选项B的右边不是乘积的形式;选项C右边(x2+x)(x2−x)可继续分解为
x2(x+1)(x−1);所以答案为D.
10.A 说明:本题的关键是符号的变化:z−x−y = −(x+y−z),而x−y+z≠y+z−x,同时x−y+z≠−(y+z−x),所以公因式为x+y−z.
11.B 说明:x−1−x2 = −(1−x+x2) = −(1−x)2≤0,即多项式x−1−x2的值为非正数,正确答案应该是B.
二、解答题:
(1) 答案:a(b−1)(ab+2b+a)
说明:(ab+b)2−(a+b)2 = (ab+b+a+b)(ab+b−a−b) = (ab+2b+a)(ab−a) =
a(b−1)(ab+2b+a).
(2) 答案:(x−a)4
说明:(a2−x2)2−4ax(x−a)2
= [(a+x)(a−x)]2−4ax(x−a)2
= (a+x)2(a−x)2−4ax(x−a)2
= (x−a)2[(a+x)2−4ax]
= (x−a)2(a2+2ax+x2−4ax)
= (x−a)2(x−a)2 = (x−a)4.
(3) 答案:7xn−1(x−1)2
说明:原式= 7xn−1 •x2−7xn−1 •2x+7xn−1 = 7xn−1(x2−2x+1) = 7xn−1(x−1)2.额外练习
因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)
3.因式分解xy+6-2x-3y=(x-3)(y-2)
4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^2
5.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)
6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)
7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^2
8.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)
9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)