福建师大附中2018-2019学年高三上学期第三次月考试卷数学含答案
福建省师大附中2019届高三上学期期中考试数学(理)试卷(有答案)(精选)
福建师大附中2018-2019学年第一学期高三期中考试卷数学 (理科)本试卷共4页. 满分150分,考试时间120分钟.注意事项:试卷分第I 卷和第II 卷两部分,将答案填写在答卷纸上,考试结束后只交答案卷.第I 卷 共60分一、选择题:本大题有12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目要求.1.设集合 A ={|2-3+2≥0},B ={|2<4},则 A ∪B = ( **** ) A. R B. ∅C. {|≤1}D. {|>2}2.若复数22i1ia ++(a ∈R )是纯虚数,则复数i a 22+在复平面内对应的点在( **** ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限3. 已知命题p :“0a ∀>,都有1ae ≥成立”,则命题p ⌝为(**** ) A .0a ∃≤,有1ae <成立 B .0a ∃≤,有1ae ≥成立C .0a ∃>,有1ae ≥成立 D .0a ∃>,有1ae <成立4.利用数学归纳法证明“(n +1)(n +2) …(n +n )=2n ×1×3×…×(2n -1),n ∈N *”时,从“n =”变到“n =+1”时,左边应增乘的因式是(**** ) A .2+1 B .2(2+1) C .2k +1k +1D .2k +3k +15. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯(****) A .1盏B .3盏C .5盏D .9盏6. 设()250.2log 4,log 3a b c ===,则,,a b c 的大小关系为(**** ) A .a b c >> B .b c a >> C.a c b >> D .b a c >>7.记不等式组220,1,2x y x y +-≥⎧⎪≤⎨⎪≤⎩解集为D ,若,则实数a 的最小值是( **** )A .0B .1C .2D .4 8.如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,0120BAD ∠=,1AB AD ==. 若点E 为边CD 上的动点,则AE BE 的最小值为(**** )A .2116B .32C .2516D .39.已知函数121)(--=x e x f x (其中e 为自然对数的底数),则)(x f y =的大致图象大致为( **** )A.B.C. D10.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为(**** )11.已知函数()sin (0),f x x x =->ωωω若方程()1f x =-在(0,)π上有且只有四个实数根,则实数ω的取值范围为( **** )A. 137(,]62 B. 725(,]26 C. 2511(,]62 D. 1137(,]2612.已知关于x 的方程222log (||2)5xxe e a x a -+-++=有唯一实数解,则实数a 的值为(****)A .1-B .1C .1-或3D .1或3-第Ⅱ卷 共90分二:填空题:本大题有4小题,每小题5分.13.已知向量a ,b 的夹角为60︒,2a =,1b =,则2a b +=__****__.14.已知x y 、满足约束条件11,22x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩若目标函数()0,0z ax by a b =+>>的最大值为7,则34a b+的最小值为__****__. 15.甲和乙玩一个猜数游戏,规则如下:已知五张纸牌上分别写有112n ⎛⎫- ⎪⎝⎭(*,5n n ∈≤≤N 1)五个数字,现甲、乙两人分别从中各自随机抽取一张,然后根据自己手中的数推测谁手上的数更大.甲看了看自己手中的数,想了想说:我不知道谁手中的数更大;乙听了甲的判断后,思索了一下说:我也不知道谁手中的数更大.假设甲、乙所作出的推理都是正确的,那么乙手中的数是_***__.16.在数列{}n a 中,若存在一个确定的正整数T ,对任意*n N ∈满足n T n a a +=,则称{}n a 是周期数列,T 叫做它的周期.已知数列{}n x 满足121,(1)x x a a ==≥,21n n n x x x ++=-,若数列{}n x 的周期为3,则{}n x 的前100项的和为 **** . 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分) 如图,在ABC ∆中, 3B π=,2BC =,点D 在边AB 上, AD DC =, DE AC ⊥,E 为垂足.(Ⅰ)若BCD ∆,求CD 的长;EDCB A(Ⅱ)若DE =求A ∠的大小.18.(本小题满分12分)已知数列{}n a 的前和为n S ,若0n a >,1n a =. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若3nn n a b =,求数列{}n b 的前项和n T . 19.(本小题满分12分)在直角坐标系中,曲线,曲线为参数),以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系. (Ⅰ)求曲线的极坐标方程;(Ⅱ)已知射线与曲线分别交于点(异于原点),当时,求的取值范围.20.(本小题满分12分)已知函数()1f x a x x a =-+- (0a > ). (Ⅰ)当2a =时,解不等式()4f x ≤; (Ⅱ)若()1f x ≥,求a 的取值范围.21. (本小题满分12分)函数()()sincos3cos 022xxf x x ωωωω=⋅+>,在一个周期内的图象如图所示, A 为图象的最高点, B 、C 为图象与轴的交点,且ABC ∆为正三角形. (Ⅰ)求函数()f x 的解析式;(Ⅱ)将()f x 的图象上每个点的横坐标缩小为原的4π倍(纵坐标不变),再向右平移3π个单位得到函数()g x ,若设()g x 图象在y 轴右侧第一个最高点为P ,试问()g x 图象上是否存在点()()(),2Q g θθπθπ<<,使得OP OQ ⊥,若存在请求出满足条件的点Q 的个数,若不存在,说明理由.22.(本小题满分12分)已知函数()()()2e x f x x ax =--. (Ⅰ)当0a >时,讨论()f x 的极值情况; (Ⅱ)若()[]1()0e x f x a --+≥,求的值.EDCA福建师大附中2018-2019学年第一学期高三期中考试卷解答数学 (理科)一、选择题:ABDBB ;DCADB,BA二:填空题:本大题有4小题,每小题5分.13. 14. 7 15.7816.67三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分) (Ⅰ)由已知得1sin 2BCD S BC BD B ∆==, 又2BC =,sin B =23BD = (3)分 在BCD ∆中,由余弦定理得CD===所以CD 的长为CD = ……………6分 (Ⅱ)因为sin DE CD AD A ===……………8分 在BCD∆中,由正弦定理得sin sin BC CDBDC B=∠,又2BDC A ∠=∠, ……………10分得2sin 2A =,……………11分 解得c o s A =,所以4A π=即为所求. ……………12分 18.(本小题满分12分) 解(Ⅰ)21n a S =, 24(1)n n S a ∴=+.………………………………1分当1n =时,2114(1)S a =+,得11a =.………………………………2分 当2n ≥时,2114(1)n n S a --=+,22114()(1)(1)n n n n S S a a --∴-=+-+,………………………………3分 2211422n n n n n a a a a a --∴=+--,即111()()2()n n n n n n a a a a a a ---+-=+,0,n a > 12n n a a -∴-=.………………………………4分数列{}n a 是等差数列,且首项为11a =,公差为2,………………………………5分 12(1)21n a n n ∴=+-=-.………………………………6分(Ⅱ)由(Ⅰ)可知,1(21)3n n b n =-⋅, 231111135(21)3333n n T n ∴=⨯+⨯+⨯+⋅⋅⋅+-⋅,——①………………………………7分2311111113(23)(21)33333n n n T n n +=⨯+⨯+⋅⋅⋅+-⋅+-⋅,——②………………………………8分 ①–②得2312111112()(21)333333n n n T n +=+++⋅⋅⋅+--⋅………………………………9分2111111332(21)13313n n n ++-=+⨯--⋅-,………………………………10分化简得113n nn T +=-.…………………12分 19.(本小题满分12分) 解:(1)因为,所以曲线的普通方程为:,由,得曲线的极坐标方程,对于曲线,,则曲线的极坐标方程为(2)由(1)得,,因为,则20.(本小题满分12分)解:(1)f ()=2|-1|+|-2|=⎩⎪⎨⎪⎧-3x +4,x <1,x ,1≤x ≤2,3x -4,x >2. 所以,f ()在(-∞,1]上递减,在[1,+∞)上递增,又f (0)=f ( 8 3)=4,故f ()≤4的解集为{|0≤≤ 83}. ....................................6分(2)①若a >1,f ()=(a -1)|-1|+|-1|+|-a|≥a -1,当且仅当=1时,取等号,故只需a -1≥1,得a ≥2. .................................7分②若a =1,f ()=2|-1|,f (1)=0<1,不合题意. ...................…9分 ③若0<a <1,f ()=a|-1|+a|-a|+(1-a)|-a|≥a(1-a),当且仅当=a 时,取等号,故只需a(1-a)≥1,这与0<a <1矛盾. .............11分 综上所述, a 的取值范围是[2,+∞). …...................12分21. (本小题满分12分) 由已知得()cos3cos 3cos 223xxf x x x x x ωωπωωωω⎛⎫=⋅+=+=+ ⎪⎝⎭………2分 ∵A 为图象的最高点,∴A 的纵坐标为又∵ABC ∆为正三角形,所以4BC =…………3分 ∴42T =可得8T =, 即28πω= 得4πω=…………4分, ∴()sin()43f x x ππ=+…………5分,(Ⅱ)由题意可得()g x x =,2P π⎛ ⎝…………7分法一:作出如右下图象,由图象可知满足条件的点Q 是存在的,而且有两个………8分 注:以上方法虽然能够得到答案,但其理由可信度不高,故无法给满分.法二:由OP OQ ⊥得0OP OQ =,即02πθθ+=,即()24sin 2πθθπθπ=-<<,由此作出函数()2y x x πππ=<<及()24sin 2y x x ππ=-<<图象,由图象可知满足条件的Q 点有两个.………10分(注:数形结合是我们解题中常用的方法,但就其严密性而言,仍有欠缺和不足.)法三:由OP OQ ⊥得0OP OQ =,即02πθθ+=,即()24s i n 02πθθπθπ+=<<,问题转化为研讨函数()()24sin 2h x x x x πππ=+<<零点个数。
江西师大附中2018-2019学年高三上学期第三次月考试卷数学含答案
江西师大附中2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 阅读右图所示的程序框图,若8,10m n ==,则输出的S 的值等于( ) A .28 B .36 C .45 D .1202. 过抛物线22(0)y px p =>焦点F 的直线与双曲线2218-=y x 的一条渐近线平行,并交其抛物线于A 、 B 两点,若>AF BF ,且||3AF =,则抛物线方程为( )A .2y x =B .22y x =C .24y x =D .23y x =【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力.3. 已知命题p :对任意()0x ∈+∞,,48log log x x <,命题:存在x ∈R ,使得tan 13x x =-,则下列命题为真命题的是( )A .p q ∧B .()()p q ⌝∧⌝C .()p q ∧⌝D .()p q ⌝∧ 4. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( )A .2013B .2014 C .2015 D .20161111] 5. 已知定义在R 上的奇函数f (x )满足f (x )=2x ﹣4(x >0),则{x|f (x ﹣1)>0}等于( )A .{x|x >3}B .{x|﹣1<x <1}C .{x|﹣1<x <1或x >3}D .{x|x <﹣1}6. 已知函数[)[)1(1)sin 2,2,212()(1)sin 22,21,222nn x n x n n f x x n x n n ππ+⎧-+∈+⎪⎪=⎨⎪-++∈++⎪⎩(n N ∈),若数列{}m a 满足*()()m a f m m N =∈,数列{}m a 的前m 项和为m S ,则10596S S -=( ) A.909 B.910 C.911 D.912【命题意图】本题考查数列求和等基础知识,意在考查分类讨论的数学思想与运算求解能力.7. 定义运算,例如.若已知,则=( )A .B .C .D .8. 下列四组函数中表示同一函数的是( )A .()f x x =,2()g x =B .2()f x x =,2()(1)g x x =+C .()f x =()||g x x =D .()0f x =,()g x =1111] 9. 已知双曲线2222:1(0,0)x y C a b a b-=>>,12,F F 分别在其左、右焦点,点P 为双曲线的右支上的一点,圆M 为三角形12PF F 的内切圆,PM 所在直线与轴的交点坐标为(1,0),与双曲线的一条渐,则双曲线C 的离心率是( )A B .2 C D .210.“1ab >”是“10b a>>”( ) A .充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 11.已知集合,则A0或 B0或3C1或D1或312.若某程序框图如图所示,则该程序运行后输出的值是( ) A.7B.8C. 9D. 10【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是循环语句循环终止的条件.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.在正方形ABCD 中,2==AD AB ,N M ,分别是边CD BC ,上的动点,当4AM AN ⋅=时,则MN 的取值范围为 .【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力.14.如果实数,x y 满足等式()2223x y -+=,那么yx的最大值是 . 15.将一张坐标纸折叠一次,使点()0,2与点()4,0重合,且点()7,3与点(),m n 重合,则m n +的值是 .16.已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2132n n S S n n ++=+,若对n N *∀∈,1n n a a +< 恒成立,则m 的取值范围是_______.【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力.三、解答题(本大共6小题,共70分。
华南师范大学附属中学2018-2019学年高三上学期第三次月考试卷数学含答案
华南师范大学附属中学2018-2019学年高三上学期第三次月考试卷数学含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 阅读如下所示的程序框图,若运行相应的程序,则输出的S 的值是( )A .39B .21C .81D .1022. 双曲线E 与椭圆C :x 29+y 23=1有相同焦点,且以E 的一个焦点为圆心与双曲线的渐近线相切的圆的面积为π,则E 的方程为( ) A.x 23-y 23=1 B.x 24-y 22=1 C.x 25-y 2=1 D.x 22-y 24=1 3. 已知集合{2,1,1,2,4}A =--,2{|log ||1,}B y y x x A ==-∈,则A B =I ( ) A .{2,1,1}-- B .{1,1,2}- C .{1,1}- D .{2,1}-- 【命题意图】本题考查集合的交集运算,意在考查计算能力.4. 如图甲所示, 三棱锥P ABC - 的高8,3,30PO AC BC ACB ===∠=o,,M N 分别在BC 和PO 上,且(),203CM x PN x x ==∈(,,图乙的四个图象大致描绘了三棱锥N AMC -的体积y 与 的变化关系,其中正确的是( )A .B . C. D .1111]5. 函数sin()y A x ωϕ=+在一个周期内的图象如图所示,此函数的解析式为( ) A .2sin(2)3y x π=+B .22sin(2)3y x π=+C .2sin()23x y π=-D .2sin(2)3y x π=-6. 已知集合{}|5A x N x =∈<,则下列关系式错误的是( )A .5A ∈B .1.5A ∉C .1A -∉D .0A ∈ 7. 已知是虚数单位,若复数)(3i a i +-(R a ∈)的实部与虚部相等,则=a ( )A .1-B .2-C .D . 8. 310x y -+=的倾斜角为( )A .150oB .120oC .60oD .30o9. 已知双曲线和离心率为4sinπ的椭圆有相同的焦点21F F 、,P 是两曲线的一个公共点,若21cos 21=∠PF F ,则双曲线的离心率等于( ) A . B .25 C .26 D .2710.下列给出的几个关系中:①{}{},a b ∅⊆;②(){}{},,a b a b =;③{}{},,a b b a ⊆; ④{}0∅⊆,正确的有( )个A.个B.个C.个D.个11.设函数()()21,1 41,1x xf xx x⎧+<⎪=⎨--≥⎪⎩,则使得()1f x≥的自变量的取值范围为()A.(][],20,10-∞-U B.(][],20,1-∞-UC.(][],21,10-∞-U D.[][]2,01,10-U12.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m n+的值是()A.10B.11C.12D.13【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.设向量a=(1,-1),b=(0,t),若(2a+b)·a=2,则t=________.14.对于函数(),,y f x x R=∈,“|()|y f x=的图象关于y轴对称”是“()y f x=是奇函数”的▲条件.(填“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”)15.已知实数x,y满足2330220yx yx y≤⎧⎪--≤⎨⎪+-≥⎩,目标函数3z x y a=++的最大值为4,则a=______.16.设,则的最小值为。
福建师范大学附属中学2019届高三上学期期中考试数学(文)试题(解析版)
福建师大附中2018-2019学年高三上学期期中考试卷高三文科数学一、选择题(每小题5分,共60分;在给出的A,B,C,D四个选项中,只有一项符合题目要求)1.设集合则=A. B. C. D.【答案】C【解析】试题分析:,,则,选C.【考点】本题涉及求函数值域、解不等式以及集合的运算【名师点睛】本题主要考查集合的并集运算,是一道基础题目.从历年高考题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.本题与函数的值域、解不等式等相结合,增大了考查的覆盖面.2.命题“,”的否定是()A. ,B. ,C. ,D. ,【答案】C【解析】试题分析:特称命题的否定是全称命题,并将结论加以否定,所以命题的否定为:,考点:全称命题与特称命题3.已知是虚数单位,复数在复平面上所对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】利用复数代数形式的乘除运算化简复数,可得复平面上对应的点的坐标,从而可得结果.【详解】,对应点坐标为,在第一象限,故选A.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分. 4.已知双曲线的离心率为,则双曲线的渐近线方程为( )A. B. C. D.【答案】C 【解析】 【分析】 由可得,利用双曲线的离心率求出,从而可得的值,然后求解双曲线的渐近线方程.【详解】由双曲线可得,离心率为,则,所以双曲线的渐近线方程为,故选C.【点睛】本题主要考查双曲线的方程、双曲线的离心率以及双曲线的渐近线方程,意在考查综合应用所学知识解答问题的能力,属于中档题.5.已知函数,为图象的对称轴,将图象向左平移个单位长度后得到的图象,则的解析式为( )A. B.C. D.【答案】B 【解析】 【分析】由为图象的对称轴,可得,从而求得的值,再利函数的图象变换规律,以及诱导公式,可得出结论. 【详解】根据函数为图象的对称轴,可得,故,函数,将图象向左平移个单位长度后得到的图象,故选B.【点睛】本题主要考查正弦函数图象的对称性,函数的图象变换规律,以及诱导公式,属于基础题. 由函数可求得函数的周期为;由可得对称轴方程;由可得对称中心横坐标.6.已知抛物线的焦点为,准线与轴的交点为,抛物线上一点,若,则的面积为()A. B. C. D.【答案】A【解析】分析:由抛物线的定义,求得点的坐标,进而求解三角形的面积.详解:由抛物线的方程,可得,准线方程为,设,则,即,不妨设在第一象限,则,所以,故选A.点睛:本题主要考查了抛物线的定义及性质的应用,其中熟记抛物线的定义和性质是解答的关键,着重考查了学生的推理与运算能力.7.函数的部分图象大致为()A. B.C. D.【答案】A【解析】分析:分析函数的奇偶性,以及是函数值的符号,利用排除法即可得到答案.详解:由题意,函数满足,所以函数为奇函数,图象关于轴对称,排除;又由当时,函数,排除,故选A.8.直线与圆相交于、两点.若,则的取值范围是()A. B. C. D.【答案】B【解析】【分析】由,结合圆的半径,由勾股定理可得圆心到直线的距离,利用点到直线距离公式,列不等式可得结果.【详解】若,则圆心到直线的距离,即,解得,故选B.【点睛】本题主要考查点到直线的距离公式、直线与圆的位置关系,属于中档题.解答直线与圆的位置关系的题型,常见思路有两个:一是考虑圆心到直线的距离与半径之间的大小关系(求弦长问题需要考虑点到直线距离、半径,弦长的一半之间的等量关系);二是直线方程与圆的方程联立,考虑运用韦达定理以及判别式来解答.9.某几何体的三视图如图所示,图中正方形的边长为2,四条用虚线表示的线段长度均相等,则该几何体的表面积为()A. B. C. D.【答案】D【解析】【分析】由几何体的三视图得该几何体是棱长为2的正方体去掉一个底面半径为1高为2的圆锥,由此能求出该几何体的表面积.【详解】由几何体的三视图得该几何体是棱长为2的正方体去掉一个底面半径为1高为2的圆锥,如图,该几何体的表面积:,故选D.【点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.10.若四边形是边长为2的菱形,,分别为的中点,则()A. B. C. D.【答案】A【解析】【分析】运用向量的加减运算和平面数量积公式以及运算,主要是向量的平方即为模的平方,结合菱形的性质,化简即可得到所求值.【详解】四边形是边长为2的菱形,,可得,则,故选A.【点睛】本题主要考查向量的几何运算以及平面向量数量积公式,属于难题.向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单).11.在中,,,点在边上,且,则()A. B. C. D.【答案】C【解析】【分析】由,可得,进而中,由正弦定理建立方程即可解得的值.【详解】,,,所以,,可得,中,由正弦定理可得,中,正弦定理可得,,解得,故选C.【点睛】本题主要考查直角三角形的性质以及正弦定理在解三角形中的应用,属于中档题.正弦定理是解三角形的有力工具,其常见用法有以下三种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.12.已知椭圆的左右焦点分别为、,过点的直线与椭圆交于两点,若是以为直角顶点的等腰直角三角形,则椭圆的离心率为()A. B. C. D.【答案】D【解析】试题分析:设,若是以为直角顶点的等腰直角三角形,∴,.由椭圆的定义可知的周长为,∴,.∴.∵,∴,∴,.考点:椭圆的几何性质.【方法点晴】本题主要考查了椭圆的定义、标准方程及其简单的几何性质的应用、椭圆离心率的求解,着重考查了学生分析问题和解答问题的能力、转化与化归思想的应用,本题的解答中,若是以为直角顶点的等腰直角三角形,得出,,再由椭圆的定义,得到的周长为,列出的关系式,即可求解离心率.二、填空题(每小题5分,共20分)13.已知直线和直线垂直,则实数的值为__________.【答案】【解析】∵,∴,得.故答案为:.14.已知向量,,若,则向量与向量的夹角为_____.【答案】【解析】【分析】由,利用数量积为零可求得,从而得,求得,利用,从而可得结果.【详解】,则,,即,解得,,则,则,又,故答案为.【点睛】本题主要考查向量的夹角及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).15.设函数,则函数的零点个数是_______.【答案】2【解析】分析:首先根据题意,将函数的零点个数问题转化为方程解的个数,最后转化为函数的图像和直线交点的个数问题来解决,这样比较直观,容易理解.详解:在同一个坐标系中画出函数的图像和直线,而函数的零点个数即为函数的图像和直线的交点的个数,从图中发现,一共有两个交点,所以其零点个数为2.点睛:该题考查的是函数的零点个数问题,解决该题的方法是将函数的零点个数问题转化为函数图像交点的个数问题来解决,从而将问题简单化,并且比较直观,学生容易理解.16.半径为4的球的球面上有四点A,B,C,D,已知为等边三角形且其面积为,则三棱锥体积的最大值为_____________________.【答案】【解析】分析:求出△ABC为等边三角形的边长,画出图形,判断D的位置,然后求解即可.详解:△ABC为等边三角形且面积为9,可得,解得AB=6,球心为O,三角形ABC 的外心为O′,显然D在O′O的延长线与球的交点如图:O′C=,OO′=,则三棱锥D﹣ABC高的最大值为6,则三棱锥D﹣ABC体积的最大值为:故答案为:.点睛:(1)本题主要考查球的内接多面体和体积的计算,意在考查学生对这些知识的掌握水平和空间想象能力转化能力. (2)本题求体积的最大值,实际上是求高的最大值,所以求高是关键.三、解答题(要求写出过程,共70分)17.已知等差数列的公差为1,且成等比数列.(1)求数列的通项公式;(2)设数列,求数列的前项和.【答案】(Ⅰ).(Ⅱ).【解析】试题分析:(1)由题成等比数列则,将代入求出,即可得到数列的通项公式;试题解析:(2)由(Ⅰ). 利用分组求和法可求数列的前项和..(1)在等差数列中,因为成等比数列,所以,即,解得. 因为所以所以数列的通项公式.(2)由(1)知,所以.18.已知函数.(1)求函数的最大值;(2)已知的面积为,且角,,的对边分别为,,,若,,求的值.【答案】(1);(2).【解析】【分析】(1)利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数化为,可得函数的最大值为;(2)由题意,化简得,从而得,由,,求得的值,根据余弦定理得.【详解】(1),∴函数的最大值为.(2)由题意,化简得.∵,∴,∴,∴.由得,又,∴,或,.在中,根据余弦定理得.∴.【点睛】以三角形为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公式,一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.19.已知数列的前项和满足.(1)求的通项公式;(2)求数列的前项和为.【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)利用数列前项和与的关系解答;(Ⅱ)由(Ⅰ)得,利用裂项求和法求得数列的前项和.试题解析:(Ⅰ)当时,;当时,,(Ⅱ)由(Ⅰ)知从而数列考点:1、数列前项和与的关系;2、裂项求和法.【方法点睛】在等差(比)数列中由各项满足的条件求通项公式时,一般将已知条件转化为基本量,用和表示,通过解方程组得到基本量的值,从而确定通项公式.解决非等差等比数列求和问题,主要有两种思路:(1)转化的思想,即将一般数列设法转化为等差(比)数列,这一思想方法往往通过通项分解(即分组求和)或错位相减来完成;(2)不能转化为等差等比数列的,往往通过裂项相消法,倒序相加法来求和.20. 【选修4-4:坐标系与参数方程】已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是(t为参数).(1)求曲线C的直角坐标方程和直线L的普通方程;(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|PA|•|PB|=1,求实数m的值.【答案】(1),;(2)或或【解析】试题分析:(1)在极坐标方程是的两边分别乘以,再根据极坐标与直角坐标的互化公式及即可得到曲线的直角坐标方程,消去直线的参数方程中的参数得到直线的在普通方程;(2)把直线的参数方程代入曲线的直角坐标方程,由直线参数方程中参数的几何意义构造的方程.试题解析:(1)曲线的极坐标方程是,化为,可得直角坐标方程:.直线的参数方程是(为参数),消去参数可得.(2)把(为参数)代入方程:化为:,由,解得,∴.∵,∴,解得或.又满足.∴实数或.考点:圆的极坐标方程及直线参数方程的意义.21.已知椭圆的离心率为,短轴长为2.(1)求椭圆的标准方程;(2)设直线与椭圆交于两点,为坐标原点,若,求证:点在定圆上.【答案】(1)椭圆的标准方程为(2)证明见解析【解析】试题分析:(1)由已知可得,,椭圆为;(2)由①,且,又② ,由①②得点在定圆上. 试题解析:(1)设焦距为,由已知,,∴,,∴椭圆的标准方程为.(2)设,联立得,依题意,,化简得,①,,若,则,即,∴,∴,即,化简得,②由①②得.∴点在定圆上.(没有求范围不扣分)【点睛】本题主要考查椭圆的标准方程及其性质、直线与椭圆的位置关系、斜率公式等知识,涉及函数与方程思想、数形结合思想分类与整合、转化与化归等思想,并考查运算求解能力和逻辑推理能力,属于较难题型.第一小题由题意由方程思想建立方程组求得标准方程为;(2)设而不求法求得①,再利用韦达定理转化得② ,由①②得点在定圆上.22.函数.(I)求的单调区间;(II)若,求证:.【答案】(1)a≤0时,的单调递减区间是;时,的单调递减区间是,的单调递增区间是.(2) 证明见解析.【解析】试题分析:(1)求出导数,根据对的分类讨论,找到导数正负区间,即可求出;(2)求出函数的最小值,转化为证≥,构造,求其最小值,即可解决问题.试题解析:(Ⅰ).当a≤0时,,则在上单调递减;当时,由解得,由解得.即在上单调递减;在上单调递增;综上,a≤0时,的单调递减区间是;时,的单调递减区间是,的单调递增区间是.(Ⅱ)由(Ⅰ)知在上单调递减;在上单调递增,则.要证≥,即证≥,即+≥0,即证≥.构造函数,则,由解得,由解得,即在上单调递减;在上单调递增;∴,即≥0成立.从而≥成立.点睛:本题考查函数的单调性极值及恒成立问题,涉及函数不等式的证明,综合性强,难度大,属于难题.处理导数大题时,注意分层得分的原则,力争第一二问答对,第三问争取能写点,一般涉及求函数单调性及极值时,比较容易入手,求导后注意分类讨论,对于恒成立问题一般要分离参数,然后利用函数导数求函数的最大值或最小值,对于含有不等式的函数问题,一般要构造函数,利用函数的单调性来解决,但涉及技巧比较多,需要多加体会.。
厦门双十中学2018-2019学年高三上学期第三次月考试卷数学含答案
厦门双十中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 在下面程序框图中,输入44N =,则输出的S 的值是( )A .251B .253C .255D .260【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是把正整数除以4后按余数分类.2. 为得到函数sin 2y x =-的图象,可将函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象( )A .向左平移3π个单位 B .向左平移6π个单位C.向右平移3π个单位 D .向右平移23π个单位 3. (m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( ) A .(1,+∞) B .(﹣∞,﹣1)C .D .4. 已知集合23111{1,(),,}122i A i i i i -=-+-+(其中为虚数单位),2{1}B x x =<,则A B = ( ) A .{1}- B .{1} C .2{1,}2- D .2{}25. 已知实数[1,1]x ∈-,[0,2]y ∈,则点(,)P x y 落在区域20210220x y x y x y +-⎧⎪-+⎨⎪-+⎩……… 内的概率为( )A.34B.38C.14D.18【命题意图】本题考查线性规划、几何概型等基础知识,意在考查数形结合思想及基本运算能力. 6. 若当R x ∈时,函数||)(x a x f =(0>a 且1≠a )始终满足1)(≥x f ,则函数3||log x x y a =的图象大致是 ( )【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等.7. 在正方体1111ABCD A BC D -中,,E F 分别为1,BC BB 的中点,则下列直线中与直线EF 相交的是( )A .直线1AAB .直线11A B C. 直线11A D D .直线11BC 8. 已知i z 311-=,i z +=32,其中i 是虚数单位,则21z z 的虚部为( )A .1-B .54 C .i - D .i 54 【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.9. 已知函数22()32f x x ax a =+-,其中(0,3]a ∈,()0f x ≤对任意的[]1,1x ∈-都成立,在1 和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为T ,则T =( ) A .20152B .20153C .201523D .20152210.已知函数(5)2()e 22()2xf x x f x x f x x +>⎧⎪=-≤≤⎨⎪-<-⎩,则(2016)f -=( )A .2e B .e C .1 D .1e【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力.11.集合{}{}2|ln 0,|9A x x B x x =≥=<,则A B = ( )A .()1,3B .[)1,3C .[]1,+∞D .[],3e 12.由两个1,两个2,两个3组成的6位数的个数为( ) A .45B .90C .120D .360二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知函数y=f (x ),x ∈I ,若存在x 0∈I ,使得f (x 0)=x 0,则称x 0为函数y=f (x )的不动点;若存在x 0∈I ,使得f (f (x 0))=x 0,则称x 0为函数y=f (x )的稳定点.则下列结论中正确的是 .(填上所有正确结论的序号)①﹣,1是函数g (x )=2x 2﹣1有两个不动点;②若x 0为函数y=f (x )的不动点,则x 0必为函数y=f (x )的稳定点; ③若x 0为函数y=f (x )的稳定点,则x 0必为函数y=f (x )的不动点; ④函数g (x )=2x 2﹣1共有三个稳定点;⑤若函数y=f (x )在定义域I 上单调递增,则它的不动点与稳定点是完全相同.14.给出下列命题: ①存在实数α,使②函数是偶函数③是函数的一条对称轴方程④若α、β是第一象限的角,且α<β,则sin α<sin β其中正确命题的序号是 .15.计算121(lg lg 25)1004--÷= ▲ .16.已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2132n n S S n n ++=+,若对n N *∀∈,1n n a a +< 恒成立,则m 的取值范围是_______.【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力.三、解答题(本大共6小题,共70分。
湖南师范大学附属中学2018-2019学年高三上学期第三次月考试卷数学含答案
湖南师范大学附属中学2018-2019学年高三上学期第三次月考试卷数学含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知数列{}n a 为等差数列,n S 为前项和,公差为d ,若201717100201717S S -=,则d 的值为( ) A .120 B .110C .10D .20 2. 已知函数f (x )=⎩⎪⎨⎪⎧log 2(a -x ),x <12x ,x ≥1若f (-6)+f (log 26)=9,则a 的值为( )A .4B .3C .2D .13. 若某程序框图如图所示,则该程序运行后输出的值是( )A.7B.8C. 9D. 10【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是循环语句循环终止的条件. 4. 已知2a =3b =m ,ab ≠0且a ,ab ,b 成等差数列,则m=( )A. B. C. D .65.双曲线=1(m ∈Z )的离心率为( )A.B .2C.D .36. 下列函数中,定义域是R 且为增函数的是( )A.x y e -=B.3y x = C.ln y x = D.y x = 7. 执行如图的程序框图,则输出的s=( )A. B.﹣ C. D.﹣8. 设等比数列{}n a 的前项和为n S ,若633S S =,则96SS =( ) A .2 B .73 C.83D .3 9. 已知三棱锥S ABC -外接球的表面积为32π,090ABC ∠=,三棱锥S ABC -的三视图如图所示,则其侧视图的面积的最大值为( )A .4 B. C .8 D.10.圆锥的高扩大到原来的 倍,底面半径缩短到原来的12,则圆锥的体积( ) A.缩小到原来的一半 B.扩大到原来的倍 C.不变 D.缩小到原来的1611.设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( ) A .50x -<<或5x > B .5x <-或5x > C .55x -<< D .5x <-或05x << 12.设集合3|01x A x x -⎧⎫=<⎨⎬+⎩⎭,集合(){}2|220B x x a x a =+++>,若 A B ⊆,则的取值范围 ( )A .1a ≥B .12a ≤≤ C.a 2≥ D .12a ≤<二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.在ABC ∆中,90C ∠=,2BC =,M 为BC 的中点,1sin 3BAM ∠=,则AC 的长为_________.14.平面向量,满足|2﹣|=1,|﹣2|=1,则的取值范围 .15.在平面直角坐标系中,(1,1)=-a ,(1,2)=b ,记{}(,)|M O M λμλμΩ==+a b ,其中O 为坐标原点,给出结论如下:①若(1,4)(,)λμ-∈Ω,则1λμ==;②对平面任意一点M ,都存在,λμ使得(,)M λμ∈Ω; ③若1λ=,则(,)λμΩ表示一条直线; ④{}(1,)(,2)(1,5)μλΩΩ=;⑤若0λ≥,0μ≥,且2λμ+=,则(,)λμΩ表示的一条线段且长度为其中所有正确结论的序号是 .16.已知抛物线1C :x y 42=的焦点为F ,点P 为抛物线上一点,且3||=PF ,双曲线2C :12222=-by a x(0>a ,0>b )的渐近线恰好过P 点,则双曲线2C 的离心率为 .【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.三、解答题(本大共6小题,共70分。
山东师范大学附属中学2018-2019学年高三上学期第三次月考试卷数学含答案
山东师范大学附属中学2018-2019学年高三上学期第三次月考试卷数学含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知函数()xF x e =满足()()()F x g x h x =+,且()g x ,()h x 分别是R 上的偶函数和奇函数, 若(0,2]x ∀∈使得不等式(2)()0g x ah x -≥恒成立,则实数的取值范围是( )A .(,-∞B .(,-∞C .(0,D .)+∞ 2. 如图,1111D C B A ABCD -为正方体,下面结论:① //BD 平面11D CB ;② BD AC ⊥1;③ ⊥1AC 平面11D CB .其中正确结论的个数是( )A .B .C .D .3. 集合{}{}2|ln 0,|9A x x B x x =≥=<,则AB =( )A .()1,3B .[)1,3C .[]1,+∞D .[],3e 4. 执行如图所示的程序框图,则输出结果S=( )A .15B .25C .50D .1005. 已知等差数列{}n a 中,7916a a +=,41a =,则12a 的值是( )A .15B .30C .31D .64 6. 等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1B .2C .3D .47. 已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是( )A .﹣1B .0C .1D .28. 如图,AB 是半圆O 的直径,AB =2,点P 从A 点沿半圆弧运动至B 点,设∠AOP =x ,将动点P 到A ,B 两点的距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )9. 棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积为1S 、2S 、3S ,则( )A .123S S S <<B .123S S S >>C .213S S S <<D .213S S S >> 10.已知平面向量(12)=,a ,(32)=-,b ,若k +a b 与a 垂直,则实数k 值为( ) A .15- B .119 C .11 D .19【命题意图】本题考查平面向量数量积的坐标表示等基础知识,意在考查基本运算能力. 11.已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆1)1()3(22=-++y x 上,使得2π=∠APB ,则31≤≤n ;命题:函数x xx f 3log 4)(-=在区间 )4,3(内没有零点.下列命题为真命题的是( )A .)(q p ⌝∧B .q p ∧C .q p ∧⌝)(D .q p ∨⌝)( 12.设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A .1B .2C .4D .6二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.若6()mx y +展开式中33x y 的系数为160-,则m =__________.【命题意图】本题考查二项式定理的应用,意在考查逆向思维能力、方程思想. 14.不等式()2110ax a x +++≥恒成立,则实数的值是__________.15.已知数列{a n }满足a n+1=e+a n (n ∈N *,e=2.71828)且a 3=4e ,则a 2015= .16.已知1,3x x ==是函数()()()sin 0f x x ωϕω=+>两个相邻的两个极值点,且()f x 在32x = 处的导数302f ⎛⎫'<⎪⎝⎭,则13f ⎛⎫= ⎪⎝⎭___________. 三、解答题(本大共6小题,共70分。
2018-2019年上海市上师大附中高三下第三次月考数学试卷及答案
上海师范大学附属中学2019年高三第三次质量检测数学试题一、填空题(本大题共有12题,满分54分).1. 设集合{2,3,4,12}A =,{0,1,2,3}B =,则A B = {}2,32.不等式11x<的解集为 ()(),01,-∞+∞3.已知tan 2θ=-,且,2πθπ⎛⎫∈⎪⎝⎭,则cos θ=___4.已知球主视图的面积等于9π,则该球的体积为__36π ___.5. 从5男3女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人志愿者服务队,要求服务队中至少有1名女生,共有种不同的选法_____780____.(用数字作答)6. 定义(),,,a a bF a b b a b≤⎧=⎨>⎩,已知函数()f x 、()g x 的定义域都是R ,则下列四个命题中为真命题的是____(2)(3)(4)____(写出所有真命题的序号)①若()f x 、()g x 都是奇函数,则函数()()(),F f x g x 为奇函数 ②若()f x 、()g x 都是偶函数,则函数()()(),F f x g x 为偶函数 ③若()f x 、()g x 都是增函数,则函数()()(),F f x g x 为增函数 ④若()f x 、()g x 都是减函数,则函数()()(),F f x g x 为减函数7.已知函数()f x 是定义在R 上且周期为4的偶函数,当时[2,4]x ∈,43()|log ()|2f x x =-,则1()2f 的值为128.已知n S 为数列{}n a 的前n 项和,121a a ==,平面内三个不共线的向量OA 、OB 、OC 满足11()(1)n n n OC a a OA a OB -+=++-,2n ≥,*n N ∈,若A 、B 、C 在同一直线上,则2018S = 29. 已知点,C D 是椭圆2214x y +=上的两个动点,且点(0,2)M ,若MD λ=MC ,则实数λ的取值范围为__1,33⎡⎤⎢⎥⎣⎦____.10.已知数列{}n a ,其通项公式为31n a n =+,*n ∈N ,{}n a 的前n 项和为n S ,则limnn nS n a →∞=⋅12. 11.已知点A (–3,–2)和圆C :(x–4)2+(y–8)2=9,一束光线从点A 发出,射到直线l :y=x –1后反射(入射点为B ),反射光线经过圆周C 上一点P ,则折线ABP 的最短长度是 712.已知函数()f x 的定义域为R ,且()()1f x f x ⋅-=和()()114f x f x +⋅-=对任意的x R ∈都成立,若当[]0,1x ∈时,()f x 的值域为[]1,2,则当[]100,100x ∈-时,函数()f x 的值域为100100[2,2]- .二、选择题(每题5分,共20分)13. 若非空集合A 、B 、C 满足AB C =,且B 不是A 的子集,则( B )A. “x C ∈”是“x A ∈”的充分条件但不是必要条件B. “x C ∈”是“x A ∈”的必要条件但不是充分条件C. “x C ∈”是“x A ∈”充要条件D. “x C ∈”既不是“x A ∈”的充分条件也不是“x A ∈”的必要条件14.定义在R 上的函数()f x 满足2201()4210x xx f x x -⎧+≤<=⎨--≤<⎩,且(1)(1)f x f x -=+,则函数35()()2x g x f x x -=--在区间[1,5]-上的所有零点之和为( B ) A. 4 B. 5 C. 7 D. 815.已知函数1202()12212x x f x x x ⎧≤≤⎪⎪=⎨⎪-<≤⎪⎩,且1()()f x f x =,1()(())n n f x f f x -=,1,2,3,n =⋅⋅⋅,则满足方程()n f x x =的根的个数为( C )A. 2n 个B. 22n 个C. 2n个 D. 2(21)n-个16.关于x 、y 的二元一次方程组的增广矩阵是111222a b c a b c ⎛⎫⎪⎝⎭,则方程组存在唯一解的条件是( C ).A .⎪⎪⎭⎫ ⎝⎛21aa 与⎪⎪⎭⎫ ⎝⎛21b b 平行 B .⎪⎪⎭⎫ ⎝⎛21a a 与⎪⎪⎭⎫ ⎝⎛21c c 不平行C .⎪⎪⎭⎫⎝⎛21a a 与⎪⎪⎭⎫ ⎝⎛21b b 不平行 D .⎪⎪⎭⎫ ⎝⎛21b b 与⎪⎪⎭⎫ ⎝⎛21c c 不平行三、解答题:(本大题共有5题,满分76分)17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数()2cos f x x =,()1cos 2g x x x =+. (1)若直线x a =是函数()y f x =的图像的一条对称轴,求()2g a 的值; (2)若02x π≤≤,求()()()h x f x g x =+的值域.解:(1)()21cos 2cos 2x f x x +==,其对称轴为2,,2k x k x k Z ππ==∈,因为直线线x a =是函数()y f x =的图像的一条对称轴, 所以,2k a k Z π=∈, 又因为()1222g x x =+,所以()()()112sin 2=222g a g k k ππ==+ 即()122g a =. (2)由(1)得()()()1cos 2212sin 216h x f x g x x x x π=+=+⎛⎫=++ ⎪⎝⎭1710,,2,,sin 2,2266662x x x ππππ⎡⎤⎡⎤⎛⎫⎡⎤∈∴+∈+∈- ⎪⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭⎣⎦所以()h x 的值域为122⎡⎤⎢⎥⎣⎦,. 18.(本题满分14分)第1小题满分6分,第2小题满分8分.已知函数()221x f x a =-+(常数a R ∈) (1)讨论函数()f x 的奇偶性,并说明理由;(2)当()f x 为奇函数时,若对任意的[]2,3x ∈,都有()2x mf x ≥成立,求m 的最大值.【答案】:(1)若当1a =时,()f x 为奇函数。
高中数学必修一 《2 1 等式性质与不等式性质》课时练习01
第二章 一元二次函数、方程和不等式 2.1等式性质与不等式性质(共2课时)(第1课时)一、选择题1.【2018-2019学年银川一中】下列说法正确的是( ) A.某人月收入x 不高于2000元可表示为" 2 000x <" B.小明的身高x ,小华的身高y ,则小明比小华矮表示为"x y >" C.某变量x 至少是a 可表示为"x a ≥" D.某变量y 不超过a 可表示为"y a ≥" 【答案】C【解析】对于,A x 应满足 2 000,x ≤故A 错;对于,,B x y 应满足x y <,故B 不正确; C 正确; 对于,D y 与a 的关系可表示为y a ≤,故D 错误.2.【2018-2019正定一中期中】3.已知()12,0,1a a ∈,记12M a a =, 121N a a =+-,则M 与N 的大小关系是( )A. M N <B. M N >C. M N =D.不确定 【答案】B【解析】由题意得()()1212121110M Na a a a a a -=--+=-->,故M N >.故选B3. 【2018-2019莆田二中期末】某同学参加期末模拟考试,考后对自己的语文和数学成绩进行了如下估计:语文成绩()x 高于85分,数学成绩()y 不低于80分,用不等式组可以表示为( )A .8580x y >⎧⎨⎩ B .8580x x <⎧⎨⎩C .8580x y ⎧⎨>⎩ D .8580x y >⎧⎨<⎩ 【答案】A 【解析】语文成绩()x 高于85分,数学成绩()y 不低于80分,8580x y >⎧∴⎨⎩,故选:A .4.【2018-2019湖南师大附中月考】有一家三口的年龄之和为65岁,设父亲、母亲和小孩的年龄分 别为x 、y 、z ,则下列选项中能反映x 、y 、z 关系的是( )A .65x y z ++=B .65x y z x zy z ++=⎧⎪>⎨⎪>⎩C .650x y z x z y z ++=⎧⎪>>⎨⎪>>⎩D .65656565x y z x y z ++=⎧⎪<⎪⎨<⎪⎪<⎩ 【答案】C 【解析】一家三口的年龄之和为65岁,设父亲、母亲和小孩的年龄分别为x 、y 、z ,65x y z ∴++=,0x z >>,0y z >>.故选:C .5. 【2018-2019六安中学月考】若2x ≠-且1y ≠,则2242M x y x y =++-的值与5-的大小关系是( )A. 5M >-B. 5M <-C. 5M ≥-D. 5M ≤- 【答案】A【解析】()225425M x y x y --=++-+()()2221x y =++-,∵2,1x y ≠-≠,∴()220x +>,()210y ->,因此()()22210x y ++->.故5M >-.6.【2018-2019攀枝花市级联考】某公司从2016年起每人的年工资主要由三个项目组成并按下表规定实施:若该公司某职工在2018年将得到的住房补贴与医疗费之和超过基础工资的25%,到2018年底这 位职工的工龄至少是( )A .2年B .3年C .4年D .5年【答案】C【解析】设这位职工工龄至少为x 年,则2400160010000(110%)25%x +>+⨯, 即40016003025x +>,即 3.5625x >,所以至少为4年.故选:C . 二、填空题7.【2018-2019银川一中】若x ∈R ,则x 1+x 2与12的大小关系为________. 【答案】x 1+x 2≤12【解析】∵x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2)≤0,∴x 1+x 2≤12.8.【2018-2019学年山东威海市期中】一辆汽车原来每天行驶xkm ,如果该汽车每天行驶的路程比原来多19km ,那么在8天内它的行程将超过2200km ,用不等式表示为 . 【答案】8(19)2200x +> 【解析】汽车原来每天行驶xkm ,该汽车每天行驶的路程比原来多19km ,∴现在汽车行驶的路程为19x km +,则8天内它的行程为8(19)x km +, 若8天内它的行程将超过2200km ,则满足8(19)2200x +>; 故答案为:8(19)2200x +>;9.【2017-2018学年上海市金山中学】如图所示的两种广告牌,其中图(1)是由两个等腰直角三角形构成的,图(2)是一个矩形,从图形上确定这两个广告牌面积的大小关系,并将这种关系用含字母(),a b a b ≠的不等式表示出来__________【答案】()2212a b ab +> 【解析】(1)中面积显然比(2)大,又(1)的面积()222211,2S a b a b =+=+ (2)的面积2S ab =,所以有()2212a b ab +> 10.【2018广西玉林高一联考】近来鸡蛋价格起伏较大,假设第一周、第二周鸡蛋价格分别为a 元/斤、b 元/斤,家庭主妇甲和乙买鸡蛋的方式不同:家庭主妇甲每周买3斤鸡蛋,家庭主妇乙每周买10元钱的鸡蛋,试比较谁的购买方式更优惠(两次平均价格低视为实惠)__________.(在横线上填甲或乙即可) 【答案】乙【解析】由题意得甲购买产品的平均单价为3362a b a b++=, 乙购买产品的平均单价为2021010aba b a b=++,由条件得a b ≠. ∵()()22022a b a b ab a b a b -+-=>++, ∴22a b aba b+>+,即乙的购买方式更优惠. 三、解答题11.【陕西省安康市高级中学检测】有一公园,原来是长方形布局,为美化市容,市规划局要对这个公园进行规划,将其改成正方形布局,但要求要么保持原面积不变,要么保持原周长不变,那么对这个公园选哪种布局方案可使其面积较大? 【答案】见解析;【解析】 设这个公园原来的长方形布局的长为a ,宽为b (a>b ).若保持原面积不变,则规划后的正方形布局的面积为ab ;若保持周长不变,则规划后的正方形布局的周长为2(a+b ),所以其边长为2ba +,其面积为(2b a +)2.因为ab -(2b a +)2=ab -()()()04444222<--=+-=+b a b a ab b a (a>b ),所以ab <(2b a +)2.故保持原周长不变的布局方案可使公园的面积较大.12.【沈阳市东北育才学校2018-2019高一】某家庭准备利用假期到某地旅游,有甲、乙两家旅行社提供两种优惠方案,甲旅行社的方案是:如果户主买全票一张,其余人可享受五五折优惠;乙旅行社的方案是:家庭旅游算集体票,可按七五折优惠.如果这两家旅行社的原价相同,请问该家庭选择哪家旅行社外出旅游合算? 【答案】见解析;【解析】设该家庭除户主外,还有()x x x N ∈人参加旅游, 甲、乙两旅行社收费总金额分别为12,y y ,—张全票的票价为a 元,则只需按两家旅行社的优惠条件分别计算出12,y y , 再比较12,y y 的大小即可.∵()120.55,0.751y a ax y x a =+=+,而()120.550.751y y a ax x a -=+-+()0.2 1.25a x =-. ∴当 1.25x >时. 12y y <;当 1.25x <时, 12y y >.又x 为正整数,所以当1x =时, 12y y >,即两口之家应选择乙旅行社; 当()1x x x N >∈时, 12y y <,即三口之家或多于三口的家庭应选择甲旅行社.2.1等式性质与不等式性质(第2课时)一、选择题1.(2019湖南高一期中)若a >b ,c >d ,下列不等式正确的是( ) A .c b d a ->- B .ac bd >C .a c b d ->-D .a bd c> 【答案】A【解析】由题意,因为a b >,所以a b -<-,即b a ->-, 又因为c d >,所以c b d a ->-, 故选:A .2.(2019·福建高二期末)若,0a b c ac >><,则下列不等式一定成立的是 A .0ab > B .0bc <C .ab ac >D .()0b a c ->【答案】C【解析】取1,0,1a b c ===-代入,排除A 、B 、D ,故选:C 。
西北师范大学附属中学2018-2019学年高三上学期第三次月考试卷数学含答案
西北师范大学附属中学2018-2019学年高三上学期第三次月考试卷数学含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 复数i i -+3)1(2的值是( )A .i 4341+-B .i 4341-C .i 5351+-D .i 5351-【命题意图】本题考查复数乘法与除法的运算法则,突出复数知识中的基本运算,属于容易题. 2. 已知AC ⊥BC ,AC=BC ,D满足=t+(1﹣t),若∠ACD=60°,则t 的值为( )A.B.﹣C.﹣1D.3.已知向量=(﹣1,3),=(x ,2),且,则x=( )A.B.C.D.4. 如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个 圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )A .π1B .π21C .π121-D .π2141-【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.5. S n 是等差数列{a n }的前n 项和,若3a 8-2a 7=4,则下列结论正确的是( ) A .S 18=72 B .S 19=76 C .S 20=80D .S 21=846. 设F 为双曲线22221(0,0)x y a b a b-=>>的右焦点,若OF 的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为1||2OF ,则双曲线的离心率为( )DABCOA. B.3C. D .3 【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想. 7. 已知集合,则A0或 B0或3C1或D1或38. 函数f (x )=sin (ωx +φ)(ω>0,-π2≤φ≤π2)的部分图象如图所示,则φω的值为( )A.18 B .14C.12D .19. 已知正方体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若+,则x 、y 的值分别为( )A .x=1,y=1B .x=1,y= C .x=,y= D .x=,y=110.12,e e 是平面内不共线的两向量,已知12AB e ke =-,123CD e e =-,若,,A B D 三点共线,则的值是( )A .1B .2C .-1D .-211.已知变量,x y 满足约束条件20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,则y x 的取值范围是( )A .9[,6]5B .9(,][6,)5-∞+∞ C .(,3][6,)-∞+∞ D .[3,6]12.在ABC ∆中,角A ,B ,C 的对边分别是,,,BH 为AC 边上的高,5BH =,若2015120aBC bCA cAB ++=,则H 到AB 边的距离为( )A .2B .3 C.1 D .4二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.如图,在棱长为的正方体1111D ABC A B C D -中,点,E F 分别是棱1,BC CC 的中点,P 是侧 面11BCC B 内一点,若1AP 平行于平面AEF ,则线段1A P 长度的取值范围是_________.14.(本小题满分12分)点M (2pt ,2pt 2)(t 为常数,且t ≠0)是拋物线C :x 2=2py (p >0)上一点,过M 作倾斜角互补的两直线l 1与l 2与C 的另外交点分别为P 、Q .(1)求证:直线PQ 的斜率为-2t ;(2)记拋物线的准线与y 轴的交点为T ,若拋物线在M 处的切线过点T ,求t 的值.15.已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为_________.16.已知n S 是数列1{}2n n -的前n 项和,若不等式1|12n n nS λ-+<+|对一切n N *∈恒成立,则λ的取值范围是___________.【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力.三、解答题(本大共6小题,共70分。
福建省师大附中2019届高三上学期期中考试数学(文)试卷(含答案)
由 0 ,即 3(m 1)2 4(m2 2m) 0 ,解得: 1 m 3 .
设 t1, t2 是上述方程的两实根,则 t1 t2 3(m 1), t1t2 m2 2m ,
……7 分
又直线 l 过点 P(m,0) ,由上式及 t 的几何意义得
| PA | | PB || t1t2 || m2 2m | 1,解得: m 1或 m 1 2 ,都符合 1 m 3 ,因此实数 m 的值 为1或1 2 或1 2 . 10 分
,得
x
3y m ,即 x
3y m 0 ,
∴直线 l 的普通方程为 x 3y m 0 .……5 分
(Ⅱ)将
x
y
3t 2 1
2
t
m
代入
(x
1)2
y2
1,得:
3 2
t
m
12
1 2
t
2
1,
整理得: t2 3(m 1)t m2 2m 0 ,
1 (Ⅱ)求数列{
a a 2n1 2n1
}
的前
n
项和为
Tn
.
20.(本小题满分 10 分)
已知曲线 C 的极坐标方程是 2cos ,以极点为平面直角坐标系的原点,极轴为 x 轴的正半轴,建立
平面直角坐标系,直线
l
的参数方程是
x
y
3 2
t 1 2
t
m
(
t
为参数).
21.解析:(Ⅰ)设焦距为 2c ,由已知 e c 3 , 2b 2 , a2 b2 c2 . a2
哈尔滨师范大学附属中学2018-2019学年高三上学期第三次月考试卷数学含答案
哈尔滨师范大学附属中学2018-2019学年高三上学期第三次月考试卷数学含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设函数()()21,141x x f x x ⎧+<⎪=⎨≥⎪⎩,则使得()1f x ≥的自变量的取值范围为( )A .(][],20,10-∞-B .(][],20,1-∞-C .(][],21,10-∞-D .[][]2,01,10-2. 已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为( )A .24B .80C .64D .2403. 已知抛物线C :28y x =的焦点为F ,P 是抛物线C 的准线上的一点,且P 的纵坐标为正数,Q 是直线PF 与抛物线C的一个交点,若PQ =,则直线PF 的方程为( )A .20x y --=B .20x y +-=C .20x y -+=D .20x y ++=4.函数的零点所在区间为( )A .(3,4)B .(2,3)C .(1,2)D .(0,1)5. 设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B = ð( ) A.{}|12x x <≤ B.{}|21x x -≤< C. {}|21x x -≤≤ D. {}|22x x -≤≤ 【命题意图】本题主要考查集合的概念与运算,属容易题.6. 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信 息,可确定被抽测的人数及分数在[]90,100内的人数分别为( )A .20,2B .24,4C .25,2D .25,47. 已知全集U R =,{|239}x A x =<≤,{|02}B y y =<≤,则有( ) A .A ØB B .A B B = C .()R A B ≠∅ ð D .()R A B R = ð 8. 在△ABC 中,若A=2B ,则a 等于( ) A .2bsinAB .2bcosAC .2bsinBD .2bcosB9. 已知一三棱锥的三视图如图所示,那么它的体积为( )A .13 B .23C .1D .2 10.已知数列{}n a 是各项为正数的等比数列,点22(2,log )M a 、25(5,log )N a 都在直线1y x =-上,则数列{}n a 的前n 项和为( )A .22n- B .122n +- C .21n - D .121n +-11.已知1()21x f x =+,则331(log 2)(log )2f f +=( )A .12B .1C .2D .412.如图,1111D C B A ABCD -为正方体,下面结论:① //BD 平面11D CB ;② BD AC ⊥1;③ ⊥1AC 平面11D CB .其中正确结论的个数是( )A .B .C .D .二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一 个红球的概率为 .14.如图,已知m ,n 是异面直线,点A ,B m ∈,且6AB =;点C ,D n ∈,且4CD =.若M ,N 分别是AC ,BD 的中点,MN =m 与n 所成角的余弦值是______________.【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.15.将曲线1:C 2sin(),04y x πωω=+>向右平移6π个单位后得到曲线2C ,若1C 与2C 关于x 轴对称,则ω的最小值为_________.16.若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数1212||z z z +在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力.三、解答题(本大共6小题,共70分。
2024-2025学年江西师大附中高三(上)第三次月考数学试卷(含答案)
2024-2025学年江西师大附中高三(上)第三次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.复数z 满足|z−i|=2,z 在复平面内对应的点为(x,y),则( )A. (x−1)2+y 2=4B. (x−1)2+y 2=2C. x 2+(y−1)2=4D. x 2+(y−1)2=22.如图,在△ABC 中,点D 在BC 的延长线上,|BD|=3|DC|,如果AD =x AB +y AC ,那么( )A. x =12,y =32B. x =−12,y =32C. x =−12,y =−32D. x =12,y =−323.纯洁的冰雪,激情的约会,2030年冬奥会预计在印度孟买举行.按常理,该次冬奥会共有7个大项,如冰球、冰壶、滑冰、滑雪、雪车等;一个大项又包含多个小项,如滑冰又分为花样滑冰、短道速滑、速度滑冰三个小项.若集合U 代表所有项目的集合,一个大项看作是几个小项组成的集合,其中集合A 为滑冰三个小项构成的集合,下列说法不正确的是( )A. “短道速滑”不属于集合A 相对于全集U 的补集B. “雪车”与“滑雪”交集为空集C. “速度滑冰”与“冰壶”交集不为空集D. 集合U 包含“滑冰”4.已知直线l :x +y−3=0上的两点A ,B ,且|AB|=1,点P 为圆D :x 2+y 2+2x−3=0上任一点,则△PAB 的面积的最大值为( )A.2+1B. 22+2C.2−1D. 22−25.已知函数f(x)的部分图象如图所示,则f(x)的解析式可能为( )A. f(x)=xcosπx B. f(x)=(x−1)sinπx C. f(x)=xcos[π(x +1)]D. f(x)=(x−1)cosπx6.已知正数a ,b ,c 满足2022a =2023,2023b =2022,c =ln2,下列说法正确的是( )A. log a c >log b cB. log c a >log c bC. a c <b cD. c a <c b7.已知抛物线C 1:y =x 2+2x 和C 2:y =−x 2+a ,若C 1和C 2有且仅有两条公切线l 1和l 2,l 1和C 1、C 2分别相切于M ,N 点,l 2与C 1、C 2分别相切于P ,Q 两点,则线段PQ 与MN ( )A. 总是互相垂直 B. 总是互相平分C. 总是互相垂直且平分D. 上述说法均不正确8.在平面四边形ABCD 中,AB ⊥AC ,且AB =AC ,AD = 2CD =22,则BD 的最大值为( )A. 27B. 6C. 25 D. 23二、多选题:本题共3小题,共18分。
专题1.3 以棱柱、棱锥与球的组合体为背景的选择题——新高考数学专项练习题附解析
何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积问题,这是一种重要的解题策略——补
形法.常见的补形法有对称补形、联系补形与还原补形.对于还原补形,主要涉及台体中“还台为锥”问题.本
题可以利用补体法,将四棱锥补体为直三棱锥,利用直三棱柱的外接球半径求法确定其外接球半径.
【举一反三】【贵州省贵阳第一中学、云南师大附中、广西南宁三中 2019 届高三“333”高考备考诊断联考数
BC=8,AA1=4,则 V 的最大值是
ቤተ መጻሕፍቲ ባይዱ
A.4π
9
B.
2
C.6π
32
D.
3
12. 【 2018 河 南 漯 河 中 学 三 模 】 已 知 三 棱 锥 S ABC 的 底 面 是 以 AB 为 斜 边 的 等 腰 直 角 三 角 形 ,
AB 4, SA SB SC 4 ,则三棱锥的外接球的球心到平面 ABC 的距离为( )
类型一 四面体的外接球问题 典例 1.【2019·山东师范大学附中高考模拟(文)】已知三棱锥 S ABC 中,SA 平面 ABC ,且 ACB ,
6 AC 2 AB 2 3, SA 1.则该三棱锥的外接球的体积为( )
A. 13 13 8
【答案】D 【解析】
B.13
C. 13 6
D. 13 13 6
C.若 AD=3,则 BD=4;
D.四面体 ABCD 体积的最大值为 4 5 . 3
2.(多选题)【2019·广东高三月考(理)】已知矩形 ABCD , AB 1, BC 3 ,将 ADC 沿对角线 AC
进行翻折,得到三棱锥 D ABC ,则在翻折的过程中,有下列结论, 其中正确的是( ) A.三棱锥 D ABC 的体积最大值为 1 ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建师大附中2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是则几何体的体积为( )34意在考查学生空间想象能力和计算能R ∈,均有210x ->” ,n αβ⊂,m n ⊥则αβ⊥=t ,若∠ACD=60°,则t 的值为( )A 的取值范围是( )1111]A .(0,]6 B .[,)6π C. (0,]3π D .[,)3ππ 5. 函数()()f x x R Î是周期为4的奇函数,且在02[,]上的解析式为(1),01()sin ,12x x x f x x x ì-#ï=íp <?ïî,则1741()()46f f +=( ) A .716 B .916 C .1116 D .1316【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.6. 正方体1111D ABC A B C D - 中,,E F 分别为1,AB B C 的中点,则EF 与平面ABCD 所成角的正 切值为( )A .B .2 C.12 D .227. 函数sin()y A x ωϕ=+在一个周期内的图象如图所示,此函数的解析式为( ) A .2sin(2)3y x π=+B .22sin(2)3y x π=+C .2sin()23x y π=-D .2sin(2)3y x π=-8. 设a ,b 为正实数,1122a b+≤,23()4()a b ab -=,则log a b =( )A.0B.1-C.1 D .1-或0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力. 9. 下列正方体或四面体中,P 、Q 、R 、S 分别是所在棱的中点,这四个点不共面的一个图形是 ( )10.一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体积为1V ,多面体BCE ADF -的体积为2V ,则=21V V ( )1111] A .41 B .31 C .21D .不是定值,随点M 的变化而变化11.已知圆M 过定点)1,0(且圆心M 在抛物线y x 22=上运动,若x 轴截圆M 所得的弦为||PQ ,则弦长||PQ 等于( )A .2B .3C .4D .与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大. 12.复数121ii-+在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知x ,y 为实数,代数式2222)3(9)2(1y x x y ++-++-+的最小值是 .【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力.14.已知函数21,0()1,0x x f x x x ⎧-≤=⎨->⎩,()21x g x =-,则((2))f g = ,[()]f g x 的值域为 .【命题意图】本题考查分段函数的函数值与值域等基础知识,意在考查分类讨论的数学思想与运算求解能力.15.在极坐标系中,O 是极点,设点A ,B 的极坐标分别是(2,),(3,),则O 点到直线AB的距离是 . 16.已知a 、b 、c 分别是ABC ∆三内角A B C 、、的对应的三边,若C a A c cos sin -=,则3s i n c o s ()4A B π-+的取值范围是___________. 【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想.三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)17.如图,四棱锥P ABC -中,,//,3,PA BC 4PA ABCD AD BC AB AD AC ⊥=====,M 为线段AD 上一点,2,AM MD N =为PC 的中点.(1)证明://MN 平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值;18.如图所示,在正方体1111ABCD A BC D -中. (1)求11AC 与1B C 所成角的大小;(2)若E 、F 分别为AB 、AD 的中点,求11AC 与EF 所成角的大小.19.(本小题满分12分)已知圆()()22:1225C x y -+-=,直线()()():211740L m x m y m m R +++--=∈.(1)证明: 无论m 取什么实数,L 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时L 的方程.20.已知数列{a n }共有2k (k ≥2,k ∈Z )项,a 1=1,前n 项和为S n ,前n 项乘积为T n ,且a n+1=(a ﹣1)S n +2(n=1,2,…,2k ﹣1),其中a=2,数列{b n }满足b n =log 2,(Ⅰ)求数列{b n }的通项公式;(Ⅱ)若|b 1﹣|+|b 2﹣|+…+|b 2k ﹣1﹣|+|b 2k ﹣|≤,求k 的值.21.已知函数f(x)是定义在R 上的奇函数,当x ≥0时,.若,f(x-1)≤f(x),则实数a 的取值范围为A[] B[] C[]D[]22.(本小题满分13分) 已知函数32()31f x ax x =-+, (Ⅰ)讨论()f x 的单调性;(Ⅱ)证明:当2a <-时,()f x 有唯一的零点0x ,且01(0,)2x ∈.福建师大附中2018-2019学年高三上学期第三次月考试卷数学含答案(参考答案) 一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 【答案】D 【解析】2. 【答案】C 【解析】考点:1.不等式性质;2.命题的否定;3.异面垂直;4.零点;5.充要条件.【方法点睛】本题主要考查不等式性质,命题的否定,异面垂直,零点,充要条件.充要条件的判定一般有①定义法:先分清条件和结论(分清哪个是条件,哪个是结论),然后找推导关系(判断,p q q p ⇒⇒的真假),最后下结论(根据推导关系及定义下结论). ②等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断. 3. 【答案】A【解析】解:如图,根据题意知,D 在线段AB 上,过D 作DE ⊥AC ,垂足为E ,作DF ⊥BC ,垂足为F ;若设AC=BC=a,则由得,CE=ta,CF=(1﹣t)a;根据题意,∠ACD=60°,∠DCF=30°;∴;即;解得.故选:A.【点评】考查当满足时,便说明D,A,B三点共线,以及向量加法的平行四边形法则,平面向量基本定理,余弦函数的定义.4.【答案】C【解析】考点:三角形中正余弦定理的运用.5.【答案】C6.【答案】D【解析】考点:直线与平面所成的角. 7. 【答案】B 【解析】考点:三角函数()sin()f x A x ωϕ=+的图象与性质. 8. 【答案】B.【解析】2323()4()()44()a b ab a b ab ab -=⇒+=+,故11a b a b ab++≤⇒≤2322()44()1184()82()()a b ab ab ab ab ab ab ab ab++⇒≤⇒=+≤⇒+≤,而事实上12ab ab +≥=, ∴1ab =,∴log 1a b =-,故选B.9. 【答案】D 【解析】考点:平面的基本公理与推论. 10.【答案】B 【解析】考点:棱柱、棱锥、棱台的体积. 11.【答案】A【解析】过M 作MN 垂直于x 轴于N ,设),(00y x M ,则)0,(0x N ,在MNQ Rt ∆中,0||y MN =,MQ 为圆的半径,NQ 为PQ 的一半,因此2222222200000||4||4(||||)4[(1)]4(21)PQ NQ MQ MN x y y x y ==-=+--=-+又点M 在抛物线上,∴0202y x =,∴2200||4(21)4PQ x y =-+=,∴2||=PQ .12.【答案】C【解析】二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.【解析】-+∞.14.【答案】2,[1,)【解析】15.【答案】.【解析】解:根据点A,B的极坐标分别是(2,),(3,),可得A、B的直角坐标分别是(3,)、(﹣,),故AB的斜率为﹣,故直线AB的方程为y﹣=﹣(x﹣3),即x+3y﹣12=0,所以O点到直线AB的距离是=,故答案为:.【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题.16.【答案】【解析】三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)17.【答案】(1)证明见解析;(2.【解析】试题解析:(2)在三角形AMC 中,由22,3,cos 3AM AC MAC ==∠=,得 2222cos 5CM AC AM AC AN MAC =+-∠=, 222AM MC AC +=,则AM MC ⊥, ∵PA ⊥底面,ABCD PA ⊂平面PAD ,∴平面ABCD ⊥平面PAD ,且平面ABCD平面PAD AD =,∴CM ⊥平面PAD ,则平面PNM ⊥平面PAD ,在平面PAD 内,过A 作AF PM ⊥,交PM 于F ,连结NF ,则ANF ∠为直线AN 与平面PMN 所成角。
在Rt PAM ∆中,由PA AM PM AF =,得AF =sin ANF ∠=所以直线AN 与平面PMN .1考点:立体几何证明垂直与平行. 18.【答案】(1)60︒;(2)90︒. 【解析】试题解析:(1)连接AC ,1AB ,由1111ABCD A BC D -是正方体,知11AAC C 为平行四边形, 所以11//AC AC ,从而1B C 与AC 所成的角就是11AC 与1B C 所成的角. 由11AB AC B C ==可知160B CA ∠=︒,即11AC 与BC 所成的角为60︒.考点:异面直线的所成的角.【方法点晴】本题主要考查了异面直线所成的角的求解,其中解答中涉及到异面直线所成角的概念、三角形中位线与正方形的性质、正方体的结构特征等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,本题的解答中根据异面直线所成角的概念确定异面直线所成的角是解答的关键,属于中档试题.19.【答案】(1)证明见解析;(2)250x y --=. 【解析】试题分析:(1)L 的方程整理为()()4270x y m x y +-++-=,列出方程组,得出直线过圆内一点,即可证明;(2)由圆心()1,2M ,当截得弦长最小时, 则L AM ⊥,利用直线的点斜式方程,即可求解直线的方程.1111](2)圆心()1,2M ,当截得弦长最小时, 则L AM ⊥, 由12AM k =-得L 的方程()123y x -=-即250x y --=. 考点:直线方程;直线与圆的位置关系. 20.【答案】【解析】(本小题满分13分)解:(1)当n=1时,a 2=2a ,则;当2≤n ≤2k ﹣1时,a n+1=(a ﹣1)S n +2,a n =(a ﹣1)S n ﹣1+2,所以a n+1﹣a n =(a ﹣1)a n ,故=a ,即数列{a n }是等比数列,,∴T n =a 1×a 2×…×a n =2n a1+2+…+(n ﹣1)=,b n ==.…(2)令,则n ≤k+,又n ∈N *,故当n ≤k 时,,当n ≥k+1时,.…|b 1﹣|+|b 2﹣|+…+|b 2k ﹣1﹣|+|b 2k ﹣|=+()+…+()…=(k+1+…+b 2k )﹣(b 1+…+b k )=[+k]﹣[]=,由,得2k 2﹣6k+3≤0,解得,…又k ≥2,且k ∈N *,所以k=2.…【点评】本题考查数列的通项公式的求法,考查满足条件的实数值的求法,是中档题,解题时要认真审题,注意等比数列的性质和构造法的合理运用.21.【答案】B 【解析】当x ≥0时,f (x )=,由f (x )=x ﹣3a 2,x >2a 2,得f (x )>﹣a 2; 当a 2<x <2a 2时,f (x )=﹣a 2;由f (x )=﹣x ,0≤x ≤a 2,得f (x )≥﹣a 2。