图像分割方法综述matlab论文
基于MATLAB的图像分割技术

利用阀值法对图像进行分割:>> f=imread('peppers.png');>> f=rgb2gray(f);>> f=im2double(f);>> t=0.5*(min(f(:))+max(f(:)));>> done=false;>> while ~doneg=f>=t;tn=0.5*(mean(f(g))+mean(f(~g)));done=abs(t-tn)<0.1;t=tn;end;>> display('Threshold(t)-Iterative'); Threshold(t)-Iterative>> tt =0.4691>> r=im2bw(f,t);>> subplot(2,2,1);imshow(f);>> subplot(2,2,2);imshow(r);>> xlabel('迭代法全局阀值分割');>> th=graythresh(f);>> thth =0.3961>> s=im2bw(f,th);>> subplot(2,2,3);imshow(s);>> xlabel('全局阀值Otsu分割');>> se=strel('disk',10);>> ft=imtophat(f,se);>> thr=graythresh(ft);>> thrthr =0.1098>> lt=im2bw(ft,thr);>> subplot(2,2,4);imshow(lt);>> xlabel('局部阀值分割');用迭代法对图像进行分割:>> i=imread('eight.tif');>> zmax=max(max(i));>> zmin=min(min(i));>> tk=(zmax+zmin)/2;>> bcal=1;>> isize=size(i);>> while (bcal)ifg=0;ibg=0;fg=0;bg=0;for j=1:isize(1)for k=1:isize(2)tmp=i(j,k);if(tmp>=tk)ifg=ifg+1;fg=fg+double(tmp);elseibg=ibg+1;bg=bg+double(tmp);end;end;end;zo=fg/ifg;zb=bg/ibg;tktmp=uint8((zo+zb)/2);if(tktmp==tk)bcal=0;elsetk=tktmp;end;end;>> disp(strcat('迭代后阀值',num2str(tk))); 迭代后阀值165>> newi=im2bw(i,double(tk)/255);>> subplot(1,2,1);imshow(i);>> subplot(1,2,2);imshow(newi);>> xlabel('迭代法');用Otsu法进行阀值选择:>> i=imread('coins.png');>> subplot(1,2,1);imshow(i);>> bw=im2bw(i,graythresh(getimage)); >> subplot(1,2,2);imshow(bw);使用分水岭算法对图像进行分割:>> c1=-10;>> c2=-c1;>> dist=sqrt(2*(2*c1)^2);>> rad=dist/2*1.4;>> li=[floor(c1-1.2*rad) ceil(c2+1.2*rad)];>> [x,y]=meshgrid(li(1):li(2));>> bw1=sqrt((x-c1).^2+(y-c1).^2)<=rad;>> bw2=sqrt((x-c2).^2+(y-c2).^2)<=rad;>> bw=bw1|bw2;>> subplot(1,3,1);imshow(bw);>> d=bwdist(~bw);>> subplot(1,3,2);imshow(d,[]);>> d=-d;>> d(~bw)=-Inf;>> l=watershed(d);>> rgb=label2rgb(l,'jet',[.5 .5 .5]);>> subplot(1,3,3);imshow(rgb);使用分水岭算法:>> c1=-10;>> c2=-c1;>> dist=sqrt(3*(2*c1)^2);>> rad=dist/2*1.4;>> li=[floor(c1-1.2*rad) ceil(c2+1.2*rad)];>> [x,y,z]=meshgrid(li(1):li(2));>> bw1=sqrt((x-c1).^2+(y-c1).^2+(z-c1).^2)<=rad; >> bw2=sqrt((x-c2).^2+(y-c2).^2+(z-c2).^2)<=rad; >> bw=bw1|bw2;>> figure;isosurface(x,y,z,bw,0.5);axis equal;>> set(gcf,'color','w');>> xlim(li);ylim(li);zlim(li);>> view(3);camlight;lighting gouraud;>> d=bwdist(~bw);>> figure;isosurface(x,y,z,d,rad/2);axis equal;>> set(gcf,'color','w');>> xlim(li);ylim(li);zlim(li);>> view(3);camlight;lighting gouraud;>> d=-d;>> d(~bw)=-Inf;>> l=watershed(d);>> figure;>> isosurface(x,y,z,l==2,0.5);>> isosurface(x,y,z,l==3,0.5);>> axis equal;>> set(gcf,'color','w');>> xlim(li);ylim(li);zlim(li);>> view(3);camlight;lighting gouraud;改进的Watershed算法分割图像:>> i=imread('cameraman.tif'); >> subplot(2,3,1);imshow(i);>> i=double(i);>> hv=fspecial('prewitt');>> hh=hv.';>> gv=abs(imfilter(i,hv,'replicate')); >> gh=abs(imfilter(i,hh,'replicate'));>> g=sqrt(gv.^2+gh.^2);>> subplot(2,3,2);df=bwdist(i); >> imshow(uint8(df*8));>> l=watershed(df);>> em=l==0;>> subplot(2,3,3);imshow(em); >> im=imextendedmax(i,20);>> subplot(2,3,4);imshow(im);>> g2=imimposemin(g,im|em); >> subplot(2,3,5);imshow(g2);>> l2=watershed(g2);>> wr2=l2==0;>> i(wr2)=255;>> subplot(2,3,6);imshow(uint8(i));使用区域生长法对图像进行分割:>> i=imread('peppers.png'); >> i=rgb2gray(i);>> i1=double(i);>> s=255;>> t=55;>> if numel(s)==1si=i1==s;s1=s;elsesi=bwnorph(s,'shrink',Inf);j=find(si);s1=i1(j);end;>> ti=false(size(i1));>> for k=1:length(s1)sv=s1(k);s=abs(i1-sv)<=t;ti=ti|s;end;>> [g,nr]=bwlabel(imreconstruct(si,ti));>> subplot(1,2,1);imshow(i);>> subplot(1,2,2);imshow(g);>> nrnr =2对给定图像进行四叉树分解:>> i=imread('liftingbody.png');>> s=qtdecomp(i,.27);>> blocks=repmat(uint8(0),size(s));>> for dim=[512 256 128 64 32 16 8 4 2];numblocks=length(find(s==dim));if(numblocks>0)values=repmat(uint8(1),[dim dim numblocks]);values(2:dim,2:dim,:)=0;blocks=qtsetblk(blocks,s,dim,values);end;end;>> blocks(end,1:end)=1;>> blocks(1:end,end)=1;>> subplot(1,2,1);imshow(i);>> subplot(1,2,2);imshow(blocks,[]);提取四叉树分解的子块信息:>> i=[1 1 1 1 2 3 6 61 12 1 4 5 6 81 1 1 1 10 15 7 71 1 1 1 20 25 7 720 22 20 22 1 2 3 420 22 22 20 5 6 7 820 22 20 20 9 10 11 1222 22 20 20 13 14 15 16]; >> s=qtdecomp(i,5);>> [vals,r,c]=qtgetblk(i,s,4)vals(:,:,1) =1 1 1 11 12 11 1 1 11 1 1 1 vals(:,:,2) =20 22 20 2220 22 22 2020 22 20 2022 22 20 20r =15c =11>> i=[1 1 1 1 2 3 6 61 12 1 4 5 6 81 1 1 1 10 15 7 71 1 1 1 20 25 7 720 22 20 22 1 2 3 420 22 22 20 5 6 7 820 22 20 20 9 10 11 1222 22 20 20 13 14 15 16];>> s=qtdecomp(i,5);>> newvals=cat(3,zeros(4),ones(4));>> j=qtsetblk(i,s,4,newvals)j =0 0 0 0 2 3 6 60 0 0 0 4 5 6 80 0 0 0 10 15 7 70 0 0 0 20 25 7 71 1 1 1 123 41 1 1 1 5 6 7 81 1 1 1 9 10 11 121 1 1 1 13 14 15 16 使用Roberts边缘检测算子对图像进行边缘检测:>> i=imread('circuit.tif');>> bw1=edge(i,'roberts');>> subplot(1,2,1);imshow(i);>> subplot(1,2,2);imshow(bw1);使用Sobel进行边缘检测:>> i=imread('circuit.tif');>> bw1=edge(i,'roberts');>> subplot(1,2,1);imshow(i); >> subplot(1,2,2);imshow(bw1); >> clear;>> image=imread('circuit.tif'); >> i0=edge(image,'sobel');>> i1=edge(image,'sobel',0.06); >> i2=edge(image,'sobel',0.04); >> i3=edge(image,'sobel',0.02); >> subplot(2,3,1);imshow(image); >> subplot(2,3,2);imshow(i0); >> subplot(2,3,3);imshow(i1); >> subplot(2,3,4);imshow(i2); >> subplot(2,3,5);imshow(i3);使用Prewitt算子进行边缘检测:>> i=imread('rice.png');>> subplot(2,2,1);imshow(i);>> bw3=edge(i,'prewitt');>> subplot(2,2,2);imshow(bw3);>> [bw3,th3]=edge(i,'prewitt');>> bw3=edge(i,'prewitt',0.05,'horizontal'); >> subplot(2,2,3);imshow(bw3);>> bw3=edge(i,'prewitt',0.05,'vertical'); >> subplot(2,2,4);imshow(bw3);使用Log算子进行边缘检测:>> i=imread('circuit.tif');>> [bw1,th]=edge(i,'log');>> subplot(2,3,1);imshow(i);>> subplot(2,3,2);imshow(bw1); >> bw2=edge(i,'log',0.0056);>> subplot(2,3,3);imshow(bw2); >> h=fspecial('gaussian',5);>> [bw3,th3]=edge(i,'zerocross',[],h); >> subplot(2,3,4);imshow(bw3); >> bw4=edge(i,'zerocross',0.025,h); >> subplot(2,3,5);imshow(bw4);使用Canny算子进行边缘检测:>> i=imread('circuit.tif');>> subplot(1,3,1);imshow(i);>> [bw,th]=edge(i,'canny');>> subplot(1,3,2);imshow(bw);>> [bw1,th1]=edge(i,'canny',[0.2,0.6]); >> subplot(1,3,3);imshow(bw1);。
浅析基于MATLAB的图像分割方法

像 中要提取 的 目标 物 与其背 景在灰 度特 性上 的差异 ,通过
设 置 合 适 的 灰 度 门 限 ( 值 ) 将 图 像 的 灰 度 划 分 为 两 个 或 阈 , 多个 灰 度 区 间 , 以确 定 有 意 义 的 区 域 或 分 割 物 体 的边 界 。 阈 值 分 割 常 用 于 图像 的 二 值 化 处 理 , 选 择 一 个 合 适 的 阈值 , 即 通 过 判 断 图像 中 的 每 一 个 像 素 点 的 特 征 属 性 是 否 满 足 阂 值
绍, 重点对 边缘检 测技 术的几 种常用 算 子进行 比较分 析 , 并 通 过 MAT AB 数 字 图 像 处 理 工 具 编 程 实 现 基 于 各 算 子 的 L
边缘 检测 。
2 .基 于 阈 值 的 图像 分 割 阈 值 分 割 『 一 种 常 用 的 图 像 分 割 方 法 , 主 要 利 用 图 2 1 是 它
阈值 分 割 。
对 于 图像 函数 r ,)它 在像 素 点( ,) 的梯 度 是一 ( y, x xy处
个矢量 , 义为: 定
Gx) [ ] E’=票 fy (]
梯度有 两个重要特性 : () 度 的方 向 为 函 数 f ,) 大 变 化 率 的 方 向 ; 1梯 ( Y最 x
划分成若 干个这样 的有意义 区域 的过程 , 各区域是具有 相近
特 性 的像 素 的连 通 集 合 。
始 区域 , 根据给定 的均 匀性检测准 则进行分裂 和合并这些 区
域 , 步 改 善 区 域 划 分 的 性 能 , 至 最 后 将 图 像 分 成 数 量 最 逐 直 少 的均匀区域 为止。 4 .基 于 边 缘 检 测 的 图 像 分 割 及 算 子 分 析 边 缘 是 指 图 像 中像 素 灰 度 值 或 色 彩 等 属 性 有 突 变 的 像 素 的集 合 , 存 在 于 目标 与 背 景 、 它 目标 与 目标 之 间 , 含 了丰 包 富 的 图 像 信 息 。基 于 边 缘 检 测 [ 图 像 分 割 正 是利 用 边 缘 的 2 ] 的 灰 度 变 化 特 性 , 过 考 察 图 像 中各 像 素 在 某 个 邻 域 内 灰 度 的 通
图像分割综述

摘要图像分割是把图像划分为有意义的若干区域的图像处理技术,分割技术在辅助医学诊断及运动分析、结构分析等领域都有着重要的研究价值和广泛的应用发展前景。
在阅读大量文献的基础上,本文对图像分割技术的理论基础、发展历程及图像分割方法的热点、难点问题进行了分类综述,对不同分割算法优缺点进行了总结和归纳,并对图像分割的发展趋势进行了初步的展望和预测。
在此基础上,为了对图像分割理论有更直观的认识,本文选取并行边界算法和分水岭算法这两种方法,用MATLAB软件进行了基础的仿真,并对结果进行了分析和总结,本文重点对一些近年来新兴的算法,比如水平集(Level-set)算法、马尔科夫随机场算法(Markov)、模糊算法、遗传算法、数学形态学算法等进行了概略性的探讨,对这些新兴算法的特点、原理、研究动态进行了分析和总结。
关键词:图像分割;边界;区域;水平集;马尔科夫AbstractImage segmentation is an image processing technology that divides the image into a number of regions. Image segmentation has very important significance in supporting medical diagnosis, motion analysis, structural analysis and other fields.Based on recent research, a survey on the theory and development of image segmentation, hot and difficult issues in image segmentation is given in this article. And describes the characteristics of each method as well as their respective advantages and disadvantages in image segmentation .This article introduces and analyzes some basic imaging and image segmentation methods in theory and describes the development trends of medical image segmentation. To have a better understanding of image segmentation, I use MATLAB software to stimulate on images about the parallel edge algorithms and watershed algorithm. And the analysis of the segmentation results is given in the article.This article introduces and analyzes the new algorithms in recent years such as Level-set algorithm, Markov algorithm, Fuzzy algorithm, Genetic algorithm and Morphological algorithm. In this paper, the features, theory and research trends of these algorithms are analyzed and summarized.Keywords: Image segmentation; Border; Area;Level-set;Markov第1章引言1.1 图像分割的背景和重要作用图像是传达信息的一种方式,图像中含有大量的有用信息,理解图像并从图像中抽取信息以用来完成其他工作是数字图像技术中一个重要的应用领域,而理解图像的第一步就是图像的分割。
如何在Matlab中进行图像分割

如何在Matlab中进行图像分割图像分割是图像处理中十分重要的一项技术,它能够将图像划分为多个具有独立意义的区域,有助于进一步的图像分析和处理。
在Matlab中进行图像分割,我们可以利用许多现成的函数和工具箱,使得整个过程更加高效和便捷。
本文将介绍如何在Matlab中进行图像分割,包括基于阈值的分割方法、基于边缘的分割方法以及基于区域的分割方法。
首先,基于阈值的分割方法是最简单和常用的图像分割方法之一。
它基于图像的亮度或颜色信息,将图像分为不同的区域。
在Matlab中,我们可以使用im2bw 函数将彩色图像转换为二值图像,然后使用graythresh函数或multithresh函数确定适当的阈值。
例如,下面的代码演示了如何使用阈值进行图像分割:```matlabimg = imread('image.jpg');grayImg = rgb2gray(img);threshold = graythresh(grayImg);binaryImg = im2bw(grayImg, threshold);```其次,基于边缘的分割方法是通过检测图像中的边缘信息来实现图像分割。
在Matlab中,我们可以使用一系列边缘检测算法,如Sobel算子、Canny算子等。
这些算法可以提取图像中的边缘信息,并将其转化为二值图像。
下面的代码演示了如何使用Canny算子进行图像分割:```matlabimg = imread('image.jpg');grayImg = rgb2gray(img);edgeImg = edge(grayImg, 'canny');```最后,基于区域的分割方法是将图像分为具有相似纹理、颜色或形状特征的区域。
在Matlab中,我们可以使用基于区域的分割算法,如分水岭算法、区域生长算法等。
这些算法可以通过对图像进行区域合并或区域分裂来实现图像分割。
(完整版)matlab图像分割毕业设计

数字图像的多分辨率分析处理方法研究—基于小波变换的医学图像分割的研究电信学院电子信息工程专业摘要图像分割是一种重要的图像分析技术.对图像分割的研究一直是图像技术研究中的热点和焦点。
医学图像分割是图像分割的一个重要应用领域,也是一个经典难题,至今已有上千种分割方法,既有经典的方法也有结合新兴理论的方法.本论文首先介绍了双峰法以及最大类方差自动阈值法,然后重点介绍一种基于小波变换的图像分割方法,该方法先对图像的灰度直方图进行小波多尺度变换,然后从较大的尺度系数到较小的尺度系数逐步定位出灰度阈值.最后,对这几种算法的分割效果进行了比较。
实验结果表明,本设计能够实时稳定的对目标分割提取,分割效果良好。
医学图像分割是医学图像处理中的一个经典难题.图像分割能够自动或半自动描绘出医学图像中的解剖结构和其它感兴趣的区域,从而有助于医学诊断。
关键词:小波变换;图像分割;阈值The image segmentation is an important technology of image processing. It is still a hot point and focus of image processing。
Medical image segmentation is an important application in the field of image segmentation, and it is also a classical difficult problem for researchers。
Thousands of methods have been put forward to medical image segmentation. Some use classical methods and others use new methods.In this paper , first introduced the petronas method and maximum between class variance 。
基于MATLAB的图像分割算法研究

摘要本文从原理和应用效果上对经典的图像分割方法如边缘检测、阈值分割技术和区域增长等进行了分析。
对梯度算法中的Roberts算子、Sobel算子、Prewitt算子、拉普拉斯(Laplacian)算子、LoG(Laplacian-Gauss)算子、坎尼(Canny)算子的分割步骤、分割方式、分割准则相互比较可以看出根据坎尼(Canny)边缘算子的3个准则得出的边缘检测结果最满意。
而阈值分割技术的关键在于阈值的确定,只有阈值确定好了才能有效的划分物体与背景,但这种方法只对于那些灰度分布明显,背景与物体差别大的图像的分割效果才明显。
区域增长的基本思想是将具有相似性质的像素集合起来构成新区域。
与此同时本文还分析了图像分割技术研究的方向。
关键词:图像处理图像分割AbstractThis article analyses the application effect to the classics image segmentation method like the edge examination, territory value division technology, and the region growth and so on.For comparing the Roberts operator, Sobel operator, Prewitt operator, the operator of Laplacian and the operator of LoG(Laplacian-Gauss),Canny operator in gradient algorithm,the step, the way and the standard of the image segmentation,we can find out the three standard of Canny edge operator the edge detection result of reaching most satisfy. And the key point of threshold segmentation lie in fixing the threshold value, it is good to have only threshold value to determine it then can be effective to divide object and background,but this kind of method is good to those gray scales,the big difference image effect between the background and obiect. The basic idea of area is to form the new region from similar nature.And also, this paper analyses the research direction of image segmentation technology at the same time.Key words: image processing image segmentation operator目录(一般目录要求最多是三级目录,不要出现四级目录)第一章绪论 (1)1.1数字图像处理的基本特点 (1)1.1.1数字图像处理的信息大多是二维信息,处理信息量很大(三级标题有问题)1 1.1.2数字图像处理占用的频带较宽 (2)1.1.3数字图像中各个像素是不独立的,其相关性大 (2)1.1.4作合适的假定或附加新的测量 (2)1.1.5数字图像处理后的图像受人的因素影响较大 (2)1.2数字图像处理的优点 (2)1.2.1再现性好 (2)1.2.2处理精度高 (3)1.2.3适用面宽 (3)1.2.4灵活性高 (3)1.3数字图像处理的应用 (4)1.3.1航天和航空技术方面的应用 (4)1.3.2生物医学工程方面的应用 (5)1.3.3通信工程方面的应用 (5)1.3.4工业和工程方面的应用 (5)1.3.5军事公安方面的应用 (5)1.3.6文化艺术方面的应用 (6)1.4数字图像分割技术的发展概况 (6)1.4.1 基于分形的图像分割技术 (6)1.4.2 基于神经网络的图像分割技术 (7)1.5本文的主要流程图 (8)第二章数字图像处理的处理方式 (9)2.1图像变换 (9)2.2图像编码压缩 (9)2.3图像增强和复原 (9)2.4图像分割 (9)2.5图像描述 (10)2.6图像分类(识别) (10)第三章 MATLAB平台及其开发环境 (11)3.1.MATLAB的组成 (11)3.1.1MATLAB主要有以下几个部分 (11)a.数值计算功能 (12)b.符号计算功能 (12)c.数据分析功能 (12)d.动态仿真功能 (12)e.程序借口功能 (13)f.文字处理功能 (13)3.2MATLAB的特点 (13)3.2.1功能强大,可扩展性强 (13)3.2.2界面友好,编程效率高 (14)3.2.3图像功能,灵活且方便 (14)3.3MATLAB在图像处理中的应用 (14)第四章图像分割概念及算法研究 (16)4.1图像分割的基本概念 (16)4.1.1图像分割定义 (16)4.2边缘检测方法(4.1和4.2之间不是并行关系) (17)4.2.1边缘检测概述 (17)4.2.2边缘检测梯度算法 (19)a.梯度边缘检测算法基本步骤及流程图 (19)b.Robert算子 (20)c.Sobel算子 (21)d.Prewitt算子 (21)4.2.3拉普拉斯(Laplacian)算子 (22)4.2.4LoG(Laplacian-Gauss)算子 (24)4.2.5坎尼(Canny)算子 (25)4.3灰度阈值分割 (27)4.3.1阈值分割介绍 (28)a.阈值化分割原则 (28)b.阈值分割算法分类 (29)4.3.2全局阈值 (30)a.极小值点阈值 (31)b.最优阈值 (31)c.迭代阈值分割 (33)4.3.3动态阈值 (34)a.阈值插值 (35)b.水线阈值算法 (35)4.4区域分割 (37)4.4.1区域生长的基本原理、步骤及流程图 (37)4.4.2生长准则和过程 (40)a.灰度差准则 (40)b.灰度分布统计准则 (41)c.区域形状准则 (42)4.4.3分裂合并 (43)第五章总结 (45)5.1对于图像边缘检测的分析 (45)5.2对于图像阈值分割的分析 (45)5.3对于图像区域分割的分析 (46)5.4改进意见(改进可另外做为一章比如说某某算法等的若干改进等,不要放入总结一章中)(总结是对整篇文章的一个概述,应该是写比如得出些什么结论,一些算法间比较等相关问题。
如何使用MATLAB进行图像分割与识别

如何使用MATLAB进行图像分割与识别图像分割与图像识别是计算机视觉领域中的重要研究方向,其中MATLAB作为一种常用的编程工具,在图像处理和机器学习方面有着广泛的应用。
本文将介绍如何使用MATLAB进行图像分割与识别,并分析其中的关键技术和算法。
一、图像分割图像分割是将一副图像分割成多个具有独立语义的区域的过程。
图像分割可以帮助我们理解图像中的目标和背景,并为图像后续处理提供基础。
在MATLAB中,有许多图像分割算法可供选择,其中比较常用的是基于聚类的方法和基于边缘检测的方法。
聚类方法是将像素点根据它们在颜色、纹理或其他特征空间中的相似度进行分组。
在MATLAB中,可以使用k-means聚类算法进行图像分割。
通过设置合适的聚类中心数量,可以将图像分成不同的区域。
边缘检测方法是通过检测图像中的边缘来进行分割。
MATLAB提供了多种边缘检测算法,如Sobel算子和Canny算子。
这些算法可以帮助我们找到图像中的边缘,并将图像分割成不同的区域。
二、图像识别图像识别是通过计算机算法对图像中的目标进行自动识别和分类的过程。
MATLAB中有多种图像识别算法可供选择,其中比较常用的是基于特征提取和机器学习的方法。
特征提取是图像识别的关键步骤之一。
在MATLAB中,可以使用SIFT、SURF和HOG等算法提取图像的特征。
通过提取图像的关键点和描述子,可以将图像转换成一组可用于识别的特征向量。
机器学习是图像识别的核心技术之一。
在MATLAB中,可以使用支持向量机(SVM)、卷积神经网络(CNN)和深度学习等算法进行图像识别。
这些算法可以对提取的特征进行训练和分类,并实现目标的自动识别和分类。
三、MATLAB图像处理工具箱MATLAB提供了丰富的图像处理工具箱,包含了大量处理图像的函数和工具。
使用MATLAB图像处理工具箱,可以很方便地进行图像处理和分析。
例如,可以使用MATLAB图像处理工具箱中的imread函数读取图像,并使用imresize函数修改图像的尺寸。
在Matlab中实现医学图像分割和医学图像配准的方法

在Matlab中实现医学图像分割和医学图像配准的方法医学图像处理在现代医学中起着重要的作用,它可以帮助医生更好地了解人体的结构和病变情况。
其中,医学图像分割和医学图像配准是两个常用的图像处理任务。
本文将介绍如何使用Matlab实现这两个任务的方法。
一、医学图像分割医学图像分割是将医学图像中感兴趣的区域从背景中分离出来的过程。
这对于病灶的检测和定位非常重要。
在Matlab中,有多种方法可以实现医学图像分割,如基于阈值的分割、基于区域的分割和基于边缘的分割等。
1. 基于阈值的分割基于阈值的分割是医学图像分割中最简单的方法之一。
它将图像中的像素根据亮度和颜色等特征进行分类。
在Matlab中,可以使用imbinarize函数实现阈值分割。
通过调整阈值的大小,可以得到不同的分割结果。
然而,这种方法对于复杂的图像可能效果不佳。
2. 基于区域的分割基于区域的分割是将图像中的像素分成若干区域,并根据相似性准则将它们合并或进一步细分的方法。
在Matlab中,可以使用regionprops函数计算各个区域的特征,并根据这些特征对区域进行分类和合并。
这种方法通常适用于异质性较小的图像。
3. 基于边缘的分割基于边缘的分割是通过检测图像中的边缘信息来实现分割的方法。
在Matlab中,可以使用边缘检测算法(如Canny算子)来提取图像中的边缘信息,并通过边缘连接或边缘跟踪来实现分割。
这种方法对于图像中有明显边缘的情况效果较好。
二、医学图像配准医学图像配准是将多个医学图像的位置和方向相对一致的过程。
它在医学影像的比较、融合和后续处理等方面具有重要的应用。
在Matlab中,有多种方法可以实现医学图像配准,如基于特征的配准、基于互信息的配准和基于形变场的配准等。
1. 基于特征的配准基于特征的配准是通过提取图像中的一些特征点或特征区域,并通过计算它们之间的相似性来实现配准的方法。
在Matlab中,可以使用SURF算法或SIFT算法来提取图像的特征,并通过RANSAC算法等方法来计算配准的变换矩阵。
如何使用MATLAB进行图像分割处理

如何使用MATLAB进行图像分割处理图像分割是计算机视觉领域中的一项重要任务,它可以将图像中的不同区域分割出来,为后续的图像分析和理解提供基础。
MATLAB作为一种强大的数学计算工具和编程语言,提供了丰富的图像处理函数和工具箱,可以方便地进行图像分割处理。
本文将介绍如何使用MATLAB进行图像分割处理。
首先,我们需要加载图像。
MATLAB提供了imread函数用于读取图像文件。
例如,我们可以使用以下代码加载一张名为"image.jpg"的图像:```matlabimage = imread('image.jpg');```加载图像后,我们可以对图像进行预处理。
预处理的目的是为了减少噪声和增强图像的对比度,从而更好地进行分割。
MATLAB提供了丰富的图像预处理函数,如imresize、imadjust、imnoise等。
我们可以根据实际需求选择适当的函数进行预处理。
例如,以下代码使用imadjust函数对图像进行对比度增强:```matlabimage = imadjust(image);```接下来,我们可以选择合适的分割算法对图像进行分割。
MATLAB提供了多种图像分割算法,如阈值分割、区域生长、边缘检测等。
我们可以根据图像的特点和需求选择适合的算法。
以下是一种常用的阈值分割算法的示例代码:```matlabthreshold = graythresh(image);binaryImage = imbinarize(image, threshold);```在上述代码中,graythresh函数计算出一个合适的阈值,然后imbinarize函数将图像转化为二值图像。
通过调整阈值的大小,我们可以控制分割的精度和效果。
除了阈值分割,MATLAB还提供了更复杂的分割算法,如基于区域的分割算法。
这些算法可以根据图像中的区域特征进行分割,例如颜色、纹理、形状等。
以下是一种基于区域的分割算法的示例代码:```matlabsegmented = regiongrowing(image, seed);```在上述代码中,regiongrowing函数根据种子点对图像进行区域生长分割。
基于MATLAB的图像分割的技术研究

3 基 于特 定理 论的 分割方 法
脉 冲耦合神 经网络 (P N C N)被引 入到 图像 分割 中 , 它 是一种不 同 于传 统 人 工 神 经 网络 的新 型 神 经 网 络 , 由 是 Eko ch m为解 释在猫的大脑视觉皮层 中实验所观察到 的与特 征有关的神经元 同步行 为现象而提出的 j 。 PN C N的单个神 经元 由树 突 、 非线 性 连接 调制 、 冲产 脉 生三部分构成 , 如图 1 示。 所
接 收
J
I
呻 『— 一 — —— —— —— —_
1 +/
I
1 基 于 阈值 的 图像 分 割
灰度阅值分割法是一种最常用 的并行 区域技术 , 它是 图 像分 割中应用数量最 多的一类 … 。阈值分割 方法 实际上 是 输入 图像,到输出 图像 g的如下变换 :
, 、
割 , 介 绍 了一 种 基 于特 定 理 论一 并
关键 词 : M
像 仿 真 , 分 析 了仿 真 效 率 与效 果 。 最后 提 出 了多 种 分 割 方 法整 合 的观 点 。 并
A B; 图像 分 割 ;脉 冲 耦 合 神 经 网 络
中 图分 类 号 : 9 1
文献标识码 : A
个环境 中, 用起来非常方便 。同时 , A L B具有很强的 M TA
开放性和适应性 , 在保持 内核不变 的情况 下 , T A MA L B推 出 了适 合不 同学科 的工具箱 , 图像处理工具箱 , 如 小波分析工 具箱 、 号 处理工具 箱 、 信 神经 网络工具箱 等 ,极大地 方便 了 不 同 学 科 的 研 究 工 作 J 。
划分的 区域外再选取 一种 子点 , 同样过 程生成 新 的 区域 ; 按 最终将图像分割成若干个 目标 区域。
数字图像分割及matlab实现

Keywords:Image segmentation;Edge detection;Genetic algorithm;Matlab
第一章 绪论
1
图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程。图像分割是数字图像处理中的一项关键技术,它使得其后的图像分析、识别等高级处理阶段所要处理的数据量大大减少,同时又保留有关图像结构特征的信息。而且,在数字图像处理工程中,一方面,图像分割是目标表达的基础,对特征测量有重要的影响;另一方面,图像分割是自动目标识别的关键步骤,图像分割及其基于分割的目标表达、特征提取和参数测量等将原始图像转化为更抽象更紧凑的形式,分割中出现的误差会传播至高层次处理阶段,因此分割的精确程度是至关重要的。只有通过细致精细的图像分割,才能使得更高层的图像分析和理解成为可能。因此,图像分割是由图像处理进到图像分析的关键步骤,在图像工程中占据重要的位置。
关键词:图像分割,边缘检测,遗传算法,Matlab
Abstract
Image segmentationis a key step ofimage analysis and understanding, the results will directly affectthe feature extraction and description ofthe target, andfurtherthetargetidentification,classification andimageunderstanding. This paper introducescarefullythe image segmentation technology and MATLABrealization.The thesis includesthe definitionandbasisof image segmentation, the edge pointsdetection,the edge linestrailing, the threshold segmentationand regional segmentation method.In accordance withvarious of the algorithm,I givethe comparis-on and analysis of the algorithm,geneticsegmentationalgorithm ismainlyintroduced, thesealgorithmare realizedby MATLAB software programming.
基于MATLAB实现分形图形的绘制论文

目录前言 (1)第一章 MATLAB介绍 (2)1.1 MATLAB简介 (2)1.2 MATLAB语言 (2)1.2.1 创建向量、向量元素的访问: (2)1.2.2 创建矩阵、矩阵元素的访问 (3)1.2.3 流程控制 (4)1.3 MATLAB语言的传统优点 (5)第二章分形入门知识 (6)2.1 分形理论 (6)2.2 分形几何观及其应用 (7)第三章 Koch雪花的绘制 (7)3.1 von Koch曲线简介 (8)3.2 Koch雪花算法设计 (8)第四章 Frac_tree绘制 (11)第五章 Mandelbort集的绘制 (12)5.1 Mandelbort集简介 (13)5.2 Mandelbort集算法设计 (13)第六章 Julia集的绘制 (17)6.1 Julia集简介 (18)6.2 Julia集的算法设计 (18)6.3 Julia集与Mandelbort集 (20)第七章花篮簇的绘制 (22)总结 (23)主要参考文献: (23)前言分形是描述不规则几何形态的有力工具。
不言而喻,不规则的几何形态在我们的周围处处可见,诸如花草、山脉、烟云、火焰等举目皆是。
至于微观世界的复杂物质结构,宏观世界浩瀚天体的演变,更展现出了层出不穷的不规则几何形态,它们往往都是分形几何的研究对象。
大自然向人类展示其美丽多变形态的同时,也提出了难以回答的询问:怎样描述复杂的自然表象?恰恰是分形几何学,它把自然形态看作是具有无限嵌套层次的精细结构,并且在不同的尺度下保持某种相似的属性,于是在变换与迭代中得到描述自然形态的有效方法。
分形的研究离不开计算机。
如果不是计算机图形图像处理功能的增强,不能想象怎样才能直观地看到Julia集和Mandelbort集的精细结构,更不能想象可以产生具有无限细结的自然景物和高度真实感的三维动画。
反过来,分形理论与方法又极大地丰富了计算机图形学内容,甚至分形的思想会在计算机科学的发展上产生一定的影响。
利用Matlab进行图像分割的常用方法与应用案例

利用Matlab进行图像分割的常用方法与应用案例引言:图像分割是图像处理领域的一项重要技术,它将图像分割成具有相似特征的区域或像素。
图像分割在许多应用中起着关键作用,如医学图像分析、计算机视觉和机器人视觉等领域。
本文将介绍Matlab中常用的图像分割方法和应用案例。
一、基于阈值的图像分割方法基于阈值的图像分割方法是最简单和最常用的一种方法。
它根据像素的灰度值与预先设定的阈值进行比较,将图像分为前景和背景两个部分。
Matlab中提供了丰富的函数和工具箱来实现基于阈值的图像分割。
例如,可以使用im2bw函数将灰度图像转换为二值图像,代码如下:```matlabimage = imread('image.jpg');gray_image = rgb2gray(image);threshold = graythresh(gray_image);bw_image = im2bw(gray_image, threshold);imshow(bw_image);```二、基于边缘检测的图像分割方法边缘检测是图像分割中常用的一种方法,它基于图像中不同区域之间的边界。
常用的边缘检测算法有Sobel、Prewitt和Canny等。
在Matlab中,可以使用edge函数实现边缘检测,代码如下:```matlabimage = imread('image.jpg');gray_image = rgb2gray(image);edge_image = edge(gray_image, 'sobel');imshow(edge_image);```三、基于聚类分析的图像分割方法聚类分析是图像分割中一种常见的方法,它将图像中的像素分成不同的群集,每个群集代表一个区域或对象。
常用的聚类算法有K-means和Mean-shift等。
在Matlab中,可以使用kmeans函数实现K-means聚类,代码如下:```matlabimage = imread('image.jpg');feature_vector = reshape(image, [], 3);[cluster_index, cluster_center] = kmeans(double(feature_vector), 2);segmented_image = reshape(cluster_index, size(image, 1), size(image, 2));imshow(segmented_image);```四、图像分割的应用案例1. 医学图像分割医学图像分割在临床诊断和研究中具有重要意义。
基于matlab的图像预处理技术研究文献综述

毕业设计文献综述题目: 基于matlab的图像预处理技术研究专业:电子信息工程1前言部分众所周知,MATLAB在数值计算、数据处理、自动控制、图像、信号处理、神经网络 、优化计算 、模糊逻辑 、小波分析等众多领域有着广泛的用途,特别是MATLAB的图像处理和分析工具箱支持索引图像、RGB 图像、灰度图像、二进制图像,并能操作*.bmp、*.jpg、*.tif等多种图像格式文件如。
果能灵活地运用MATLAB提供的图像处理分析函数及工具箱,会大大简化具体的编程工作,充分体现在图像处理和分析中的优越性。
图像就是用各种观测系统观测客观世界获得的且可以直接或间接作用与人眼而产生视觉的实体。
视觉是人类从大自然中获取信息的最主要的手段。
拒统计,在人类获取的信息中,视觉信息约占60%,听觉信息约占20%,其他方式加起来才约占20%。
由此可见,视觉信息对人类非常重要。
同时,图像又是人类获取视觉信息的主要途径,是人类能体验的最重要、最丰富、信息量最大的信息源。
通常,客观事物在空间上都是三维的(3D)的,但是从客观景物获得的图像却是属于二维(2D)平面的。
图像存在方式多种多样,可以是可视的或者非可视的,抽象的或者实际的,适于计算机处理的和不适于计算机处理的。
图像处理它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程 。
图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。
图像处理作为一门学科大约形成于20世纪60年代初期。
早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。
图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。
首次获得实际成功应用的是美国喷气推进实验室(JPL)。
他们对航天探测器徘徊者7号在 1964 年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响 ,由计算机成功地绘制出月球表面地图,获得了巨大的成功。
如何在Matlab中进行图像分割和图像识别

如何在Matlab中进行图像分割和图像识别图像分割和图像识别是计算机视觉领域中非常重要的任务。
在许多应用中,如人脸识别、物体检测和医学图像分析等领域,准确的图像分割和图像识别可以为后续的处理和分析提供有价值的信息。
本文将介绍如何使用Matlab来进行图像分割和图像识别。
一、图像分割图像分割是将图像划分为多个子区域的过程,目标是将图像中有意义的对象从背景中提取出来。
常见的图像分割方法有阈值分割、区域生长、边缘检测等。
1. 阈值分割阈值分割是一种简单而有效的图像分割方法。
该方法根据像素灰度值与事先确定的阈值之间的关系将图像分割为目标和背景。
在Matlab中,可以使用im2bw函数实现二值图像分割,具体操作如下:```matlabI = imread('image.jpg'); % 读取图像T = graythresh(I); % 计算阈值BW = im2bw(I, T); % 进行图像二值分割imshow(BW); % 显示二值图像```2. 区域生长区域生长是一种基于像素之间相似性的图像分割方法。
该方法从种子点开始,通过合并与种子点相似的像素,逐渐生长形成图像的不同区域。
在Matlab中,可以使用regiongrowing函数实现区域生长分割,具体操作如下:```matlabI = imread('image.jpg'); % 读取图像seed = [x, y]; % 设置种子点坐标region = regiongrowing(I, seed); % 区域生长分割imshow(region); % 显示分割结果```3. 边缘检测边缘检测是一种常用的图像分割方法,通过寻找图像中灰度值变化较为剧烈的区域,将图像分割为目标和背景。
在Matlab中,可以使用edge函数实现边缘检测分割,具体操作如下:```matlabI = imread('image.jpg'); % 读取图像BW = edge(I, 'Canny'); % Canny边缘检测imshow(BW); % 显示边缘图像```二、图像识别图像识别是指通过计算机算法对图像进行分析和处理,从而识别出图像中的对象或特征。
图像分割毕业论文

第一章绪论1.1课题的研究背景及意义随着信息技术的开展和不断深入,人们越来越多的利用计算机来帮助人类获取与处理各种信息。
据统计,在人类从外界获得的信息中有75%左右是来自视觉或者说图像信息,它是人类最有效的信息获取和交流方式,图像也因为其所含的信息量大、表现直观而在近年得到的广为宣传和应用的多媒体中占据了重要的地位。
图像分割是一种根本的计算机视觉技术,是从图像处理到图像分析的关键步骤。
图像分割就是将图像表示为物理上有意义的连通区域的集合,是进行图像分析的第一步工作,也是解决起来比较困难的一个问题。
对于那些基于图像分割结果的接下来的任务,如特征提取、目标识别等的质量的好坏都取决于是否有一个质量比较好的图像分割结果,有效合理的图像分割能够为基于内容的图像检索、对象分析等抽象出十分有用的信息,从而使得更高层的图像理解成为可能[1]。
1.1.1图像分割在数字图像处理中的地位为了弄清图像分割在数字图像处理中所处的地位,我们引入并使用“图像工程〞这个概念。
图像技术在广义上是各种与图像有关技术的总称。
图像技术种类很多,跨度很大,但可以将它们归在一个整体框架一一“图像工程〞之下。
图像工程是一个对整个图像领域进行研究应用的新科学,它的内容非常丰富,根据抽象程度和研究方法等的不同可分为三个有特点的层次〔如图1-1所示〕:图像处理、图像分析和图像理解[2]。
图1-1图像分割在图像工程中的位置图像处理着重强调在图像之间进行变换以改善图像的视觉效果。
图像分析那么主要是对图像中感兴趣的目标进行监测和测量,以获得它们的客观信息从而建立对图像的描述。
图像理解的重点是在图像分析的根底上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对原始成像客观场景的解释,从而指导和规划行动。
图像处理、图像分析和图像理解具有不同的操作对象,参考图1-1图像处理是比较低层的操作,它主要在图像像素级上进行处理。
图像分析那么进入了中层,它侧重于对像素集合到目标的表达测量描述。
图像分割算法研究综述

图像分割算法研究综述一、本文概述随着计算机视觉技术的飞速发展,图像分割作为其中的一项关键任务,日益受到研究者的关注。
图像分割是指将数字图像细分为多个图像子区域的过程,这些子区域在某种特性或计算上呈现出一致性,如颜色、纹理、形状或空间关系等。
这些被分割的子区域能够显著简化或改变图像的表示形式,使其更适合于进行高级的图像分析和理解任务,如目标识别、场景理解等。
本文旨在全面综述近年来图像分割算法的研究进展,分析和评价各类算法的性能与特点。
我们将对图像分割的基本概念和常用方法进行介绍,包括基于阈值的分割、基于边缘的分割、基于区域的分割以及基于深度学习的分割等。
接着,我们将对各类算法的优缺点进行深入探讨,并结合实际应用场景,分析其在不同任务中的表现。
本文还将关注图像分割领域的发展趋势,如多模态图像分割、弱监督学习在图像分割中的应用等。
我们期望通过本文的综述,能够为读者提供一个清晰、全面的图像分割算法知识框架,并为未来的研究提供有益的参考和启示。
二、图像分割算法分类图像分割是计算机视觉领域的一项关键任务,旨在将图像划分为具有相似性质的区域。
根据不同的原理和方法,图像分割算法可以大致分为以下几类:基于阈值的分割方法:这是最简单的一类图像分割方法,它根据像素值的差异来设置阈值,从而将图像分为不同的区域。
这种方法对于背景与前景有明显对比的简单图像效果较好,但对于复杂场景或光照不均的图像则可能效果不佳。
基于边缘的分割方法:边缘分割方法主要依赖于检测图像中的边缘信息,即像素值发生剧烈变化的区域。
常用的边缘检测算子有Sobel、Canny等。
这类方法对于具有明显边缘特征的图像效果较好,但容易受到噪声的影响。
基于区域的分割方法:基于区域的分割方法是根据像素的相似性将图像划分为不同的区域。
典型的算法有区域生长和分裂合并。
这类方法对于具有均匀纹理和颜色的图像效果较好,但对于边界模糊或复杂纹理的图像可能效果不佳。
基于深度学习的分割方法:随着深度学习技术的发展,基于卷积神经网络(CNN)的图像分割方法取得了显著的进展。
如何进行图像分割的Matlab实现

如何进行图像分割的Matlab实现引言:图像分割是计算机视觉领域的一项基础技术,它将图像中的像素点分为不同的区域,使得具有相似特征的像素被聚类到一起。
在图像分析、目标检测、图像处理等任务中,图像分割起着至关重要的作用。
本文将介绍如何使用Matlab实现图像分割算法,包括传统的阈值分割、基于区域的分割以及基于深度学习的分割等。
一、传统的阈值分割1.1 简介阈值分割是最简单和常用的图像分割方法之一,它根据像素的灰度值与阈值的比较结果将像素分为两类:前景和背景。
在Matlab中,可以使用函数`im2bw`实现二值化分割任务。
1.2 实现步骤(1)加载图像:使用`imread`函数读取待分割的图像,并将其转换为灰度图像。
(2)确定阈值:根据图像的灰度直方图,可以通过分析波峰和波谷来确定一个适合的阈值。
(3)二值化分割:使用`im2bw`函数将灰度图像二值化,得到分割后的图像。
(4)结果显示:使用`imshow`函数将原图像和分割结果进行显示。
二、基于区域的分割2.1 简介基于区域的分割方法将图像划分为具有一定连续性和相似性质的区域,其基本思想是将图像中相似的像素组成区域,并对区域进行合并或分裂,以达到分割的目的。
2.2 实现步骤(1)加载图像:同样使用`imread`函数读取待分割的图像。
(2)图像预处理:可选的预处理步骤包括噪声去除、图像增强等,以提供更好的分割效果。
(3)区域生长:选择一个适当的种子点作为起始点,在附近的像素中根据一定的准则来判断是否属于同一区域,并逐步生长扩展区域,直至满足停止准则。
(4)结果显示:使用`imshow`函数将原图像和分割结果进行显示。
三、基于深度学习的分割3.1 简介基于深度学习的分割方法是近年来发展起来的一种高效且准确的分割技术,主要基于深度卷积神经网络(CNN)和全卷积网络(FCN)。
深度学习模型通过学习大量标注的图像,能够学习到图像的高级特征,从而实现更准确的图像分割。
如何在Matlab中进行图像分割与区域提取

如何在Matlab中进行图像分割与区域提取引言图像分割是图像处理中的一个重要任务,在许多领域中都被广泛应用,如医学影像分析、计算机视觉和机器人导航等。
本文将着重介绍如何使用Matlab进行图像分割与区域提取,以及一些常用的方法和技巧。
一、图像分割基础图像分割是将一个图像划分为不同的区域或对象的过程。
通常情况下,图像分割的目标是将图像中的前景和背景分开,以便于进一步的分析和处理。
在Matlab 中,可以使用一些基于阈值、边缘检测或区域生长的方法进行图像分割。
1. 阈值分割阈值分割是最简单的图像分割方法之一。
它基于图像的灰度值,将灰度值高于或低于某个阈值的像素分为不同的区域。
在Matlab中,可以使用imbinarize函数进行阈值分割,示例如下:```matlabI = imread('image.jpg');level = graythresh(I);BW = imbinarize(I, level);```其中,I为待分割的图像,level为自动确定的阈值,BW为分割后的二值图像。
2. 边缘检测边缘检测是通过检测图像中的灰度值变化来找到图像中的边缘。
在Matlab中,常用的边缘检测算法包括Sobel、Prewitt和Canny等。
下面是使用Canny算法进行边缘检测的示例:```matlabI = imread('image.jpg');BW = edge(I, 'canny');```其中,I为待分割的图像,BW为检测到的边缘图像。
3. 区域生长区域生长是一种基于像素相似度的图像分割算法。
它从种子点开始,将与种子点相似的像素逐步添加到区域中,直到满足某个停止准则。
在Matlab中,可以使用regiongrowing函数进行区域生长,示例如下:```matlabI = imread('image.jpg');seed = [100, 100];tolerance = 10;BW = regiongrowing(I, seed, tolerance);```其中,I为待分割的图像,seed为种子点的坐标,tolerance为容差值,BW为分割后的区域。
基于matlab的数字图像分割技术研究及实现

摘要本文通过对图像分割技术的深入研究,对图像分割的研究现状和国内外研究动态进行了跟踪,针对目前常用的图像分割技术如:阈值分割方法,边缘检测方法,边界法和区域法等作了总结。
在matlab环境下用这些方法对一些具有不同特点的图像进行分割处理,并取得了比较满意的效果,为图像处理的进一步进行奠定了基础。
最后对图像分割技术的研究前景和应用前景作了展望和预见。
关键词:图像分割,直方图,matlab实现IAbstractThe images are passed to the in-depth technical study on the status of research and images are dynamic and a tracking study, with the present images are commonly used technologies such as : thresholds are methods of detection methods, such as border law and regional law summarized.In matlab environment using some of these methods have different characteristics to the images are processed and made more satisfactory results for the image processing laid the foundation for the further.Finally on the images are the prospects for technology research and application prospects of a vision and foresight.Key words: Imagery processing, image Partition, histogram, Mat lab realizationII目录第1章绪论 (1)1.1数字图像处理技术简介 (1)1.2数字图像处理的应用 (2)1.3数字图像处理的优点 (4)1.4数字图像处理方法 (5)1.4.1空域法 (5)1.4.2变换域法 (6)第二章数字图像处理基础 (7)2.1 数字图像处理的主要研究内容 (7)2.1.1图像变换 (7)2.1.3图像增强和复原 (8)2.1.4图像分割 (8)2.1.5.图像描述 (8)2.1.6图像分类(识别) (8)2.2相关概念介绍 (9)2.2.1图像的表示方法 (9)2.2.2图像的数字化 (10)2.2.3灰度 (10)2.2.4灰度图像 (10)2.2.5像素(Pixel) (10)2.2.6图像二值化 (11)2.2.7图像增强 (11)2.2.8直方图 (11)2.2.8.1直方图的基本概念 (11)2.2.8.2直方图的性质 (12)第三章图像分割 (13)3.1 图像分割的研究现状 (13)3.2图像分割在图象处理中的位置 (13)3.3 图像分割的定义 (14)3.4传统图像阈值分割法 (15)III第四章 MATLAB简介 (16)4.1 MATLAB的主要功能 (19)4.2 MATLAB的技术特点 (21)4.3MATLAB的基本知识 (22)4.3.1、基本运算 (22)4.3.2、常用函数: (23)4.3.3MATLAB常用的三角函数 (23)4.3.4适用于向量的常用函数有: (23)4.3.5重复命令 (24)4.3.6逻辑命令 (26)4.3.7基本xy平面绘图命令 (26)第五章基于matlab的算法实现及仿真 (31)5.1基于阈值的分割方法 (31)5.2边缘检测法 (33)5.3边界法 (35)5.4区域法 (38)5.5其他特殊方法 (41)结论 (46)参考文献 (47)致谢 ··········································································································错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图像分割方法综述摘要:图像分割就是根据图像的某些特征或特征集合的相似性准则对图像进行分类,把图像空间分成若干个某些具有一致性属性的不重叠区域。
它是图像分析和理解的基础,是计算机视觉领域中最困难的问题之一。
图像分割的质量将直接影响着对图像的后续处理,所以图像分割被视为图像处理的瓶颈,具有十分重要的意义。
人们很早就开始了对图像分割方法的研究,并且几十年来,这方面的研究从来没有间断过。
到目前为止,已经有大量的关于图像分割的理论、技术、方法被人们相继提出并广泛应用。
关键字:图像分割;阈值;区域和边缘;交互式算法;纹理分割彩色图像分割1.引言图像分割是一项基于计算机技术的重要的图像分析和处理技术,从其产生至今,已经广泛的应用于各个领域,为人们的生产和生活中图像处理的水平提高做出了重大贡献。
2.国内外发展的状况人工生命是一个快速发展的多学科交叉的研究领域,是计算机科学新的发展方向之一。
目前,已经有科研人员尝试将人工生命应用到图像分割领域中。
虽然目前使用人工生命进行图像分割的研究还比较少,但是这些相关研究成果表明将人工生命引入到图像分割中能获得有意义的成功,显示出了巨大的潜力。
在医学数据可视化方面,也有了许多硕果。
如:医学图像如CT图像和MRI图像的三维重建、显示与分析处理;大脑生理形态分析,神经细胞中钙活性的可视化;计算机辅助外科手术模拟与计划等。
其中值得一提的:如美国国家超级计算机应用中心利用远程的并列计算机资源,用体绘制技术实现了CT扫描三维数据的动态显示。
其内容为显示一个狗心脏跳动周期的动态图像。
3.图像分割概述人类感知外部世界的两大途径是听觉和视觉,尤其是视觉,因此图像信息是非常重要的一类信息。
在一幅图像中,人们往往只对其中的某些目标感兴趣,这些目标通常占据一定的区域,并且在某些特性(如灰度、轮廓、颜色、纹理等)上和周围的图像有差别。
这些特性差别可能非常明显,也可能很细微,以致人眼觉察不出来。
计算机图像处理技术的发展,使得人们可以通过计算机来获取与处理图像信息。
现在,图像处理技术已经成功应用于许多领域,其中,纸币识别、车牌识别、文字识别、指纹识别等已为大家所熟悉。
图像分割是指将一幅图像分解为若干互不交叠的、有意义的、具有相同性质的区域。
好的图像分割应具有以下特征:(1)分割出来的各区域对某种性质(例如灰度、纹理)而言具有相似性,区域内部是连通的且没有过多小孔。
(2)相邻区域对分割所依据的性质有明显的差异。
(3)区域边界是明确的。
大多数图像分割方法只是部分满足上述特征。
如果强调分割区域的同性质约束,则分割区域很容易产生大量小孔和不规则边缘;若强调不同区域间性质差异的显著性,则易造成不同性质区域的合并。
具体处理时,不同的图像分割方法总是在各种约束条件之间寻找一种合理的平衡。
4.图像分割算法的具体分类目前从国际上的图像分割方法来看,具体的操作过程中的分割方法的种类是非常繁多和复杂的,并没有一个公认的统一的标准。
虽然图像分割算法的分类并不影响它的使用,但是优化其分类可以帮助我们更好的筛选和取得需要的图像信息。
尤其是面对不同的图像处理对象,明确的分类可以使得我们更好的从事图像分割的研究工作。
基于这种分类理念,我们将图像分割算法分为常见的这样几类,即基于阈值的方法、基于聚类的方法、基于区域和边缘的方法、基于全局优化的方法以及其他方法,并逐一进行简要介绍。
4.1基于阈值的方法相较于以上的其他图像分割方法,该方法是目前实践中应用最广的一项技术,它的操作优势是比较明显的,即操作简便易行,且效果良好,能够满足大部分普通的图像分割的需要。
该方法的主要工作原理是通过图像中的待分割出的目标图像和其余的图像背景的灰度的不同,定义一个阈值,以达到在图像中将二者的属性区别开的目的。
这种基于图像的属性的分离和切割方法可以更好的确定目标图像,达到分割的效果。
聚类法作为基于阈值的最主要的分割方法之一,是实践中最为常用的,其工作原理主要将各种图像的组成部分划分为不同的区域,并选择一定的图像样本进行区域间的分类,以达到一个图像切割的目的,这种方法的优点是便于不同特性的图片的统一提取,大大的提高了图像的切割效率。
4.2基于区域和边缘的方法所谓图像的区域和边缘,就是整体图像的可对称部位,操作中我们根据图像的不同的对称和比例问题,将图像划分为整齐的各个区域。
这种方法的划分图像的特点和传统的区域分割算法有着异曲同工之处,即通过对于某种图像的对称的特性的利用,达到将图像分块的目的。
但是经过实践检验,我们发现这种算法的应用范围受限,即主要应用于面积较小的图像处理的过程中,并且其分割的效果极易受到种子点的位置的影响,不便于操作中的灵活掌握。
所以,针对于这种传统的区域分割法的缺点,新型的基于区域和边缘的对称分割法应运而生。
这种新型的算法的最主要的表现形式是区域分裂-合并方法,这种方法研发至今已经收到了良好的效果反馈,其作用原理主要是将相邻的图像模块进行有序的分裂,并在分裂的过程中根据不同的特性进行重组。
区域分裂-合并算法的合并标准是根据操作员的具体设定而随时调整的,这样就便于图像的分割和合并的过程的灵活操作。
但是随着该技术的不断的应用和创新,业内同仁在应用中摸索出了一些合并的有效方式和执行原则,为该方法提供了更好的操作技术指导。
增加了满足合并条件的相邻区域的匹配率,减少了算法的迭代次数,提出了一种新的分裂-合并算法并行方案,有效提高了算法的效率。
边缘检测是底层视觉处理中最重要的环节之一。
在图像中边界表明一个特征区域的终结和另一个特征区域的开始,边界所分开区域的内部特性是一致的,而不同区域内部特性是不同的,边缘检测正是利用了目标和背景在某种图像特性上的差异来实现的,这些差异包括灰度、颜色或者纹理特征。
简单地说边缘检测方法通过检测包含不同区域的边缘来解决图像分割问题,由于在不同区域之间的边缘上像素灰度值得变化明显,所以常常利用图像一阶导数的局部极大值和二阶导数的过零点特征来作为判断边缘点的依据。
4.3基于全局优化的方法基于全局优化方法的基本思想是建立一个全局的评价函数,或者称能量函数,每一种可能的分割结果都会对应能量函数的一个值,而使得能量函数值最小的方法是最优的分割方法。
这类方法能够利用图像的全局信息,因此往往能得到很不错的效果,但是由于需要在一个及其庞大的解空间中寻找最优解,因此它们的速度一般比较慢。
利用马尔代夫穗机场进行图像分割是典型的基于全局优化的方法。
最近越来越多引起人们关注的基于Graph Cuts的图像分割方法也具有明显的能量函数的形式,它的能量函数具有与使用马尔科夫随机场的方法相似的形式。
5.当前常见的图像分割方法介绍5.1基于图论的图像分割方法基于图论(Graph Theory Based)的图像分割方法使用加权图(Weighted Graph)来映射图像,图像的像素对应图的节点集,像素之间的相邻关系对应边集,节点的属性对应像素的特征信息(比如灰度、颜色甚至运动信息),边的属性(即边上的权重)对应像素之间的差别(Difference)或相似性(Similarity)。
使用基于图论的方法进行图像分割有很多优点。
首先,有很好的数学基础。
图论经过了很长时间的发展,无论在理论上还是在实践上都比较成熟;针对局部某一个方面,有很多算法进行处理,尤其有可用的优化算法。
其次,将图像映射为图之后,图像的特征就在图论领域进行处理了,这种映射有很好的类比性。
然后,在基于图论的图像分割方法中,图像区域的提取与边的提取是一个问题,因为分割之后连通区域(Connected Region)的边界就是区域的边。
这样,提取的区域边界永远是合并的,这不需要额外的条件和准则来处理和判断。
将图像映射到图之后,我们可以使用图论中很多成熟的理论和数学工具来进行图像分割,比如基于最小生成树(MST-based)、最小割/最大流(MinimumCut/Maximum Flow)、归一化切割(Normalized Cut)、图谱(Spectral Graph)以及能量最小化的理论。
首先从使用理论方法的角度看,我们可以将基于图论的分割方法分为基于最小生成树方法、最小割/最大流方法、谱方法等。
其次,从分层实现的角度看,基于图论的方法可以分为一般图方法和分层图(HierarchicalGraph)方法。
前者仅仅使用一个层次的图来映射图像;后者使用一个金字塔结构来描述图像的分割过程,在金字塔的每一层,都对应一个图来描述分割的过程和结果,是一个层次式的结构。
5.2纹理分割方法纹理分割就是把具有相同或一致纹理特性的区域聚类为一个大的区域。
因此,纹理是一种区域特性,要在一定范围的区域上才能反映或测量出来。
在图像处理中,图像分割是一个基本但又困难的工作,而纹理分割又是图像分割中的难题。
研究纹理分割主要涉及三个问题:(1)如何从图像中提取纹理特征。
(2)如何有效地从测量出的众多纹理特征中提取用于分割的特征。
(3)如何有效地分割图像。
纹理分割方法大致可以分为两类:一类是传统的统计模型方法,即通过分析局部空是关系,如共生矩阵、二阶矩统计、马尔可夫随机场和局部线性变换;另一类滤波理论方法,如Gabor滤波和小波变换。
纹理分割过程一般分为如下两步:特征抽取和特征建模。
特征抽取在纹理分割过程中起相当重要的作用。
可以说,如果抽取的纹理特征能够有效地区分不同纹理,那么纹理分割就变得很容易。
目前还没有一种有效的方法,可以描述所有的纹理图像,一方面是由于纹理图像的情况太复杂;另一方面是由于对纹理的理解还不够。
人们一直在尝试采用各种方法来描述纹理,力求对纹理的描述更准确和符合人们对图像处理的要求。
特征建模就是怎么有效地利用得到的特征图像分割纹理,以取得满意的分割效果。
主要的特征建模方法有:区域生长、聚类和阈值、估计理论方法、变方差方法等。
5.3彩色图像分割人眼由于对亮度具有适应性,在一幅复杂图像的任一点上人眼只能识别几十种(人眼的灰度级敏感区不超过20个灰度级,但却可识别成千上万种颜色)。
许多情况下,单纯利用灰度信息无法从背景中提取出目标,还必须借助于色彩信息。
由于彩色图像提供了比灰度图像更多的信息,因此随着计算机处理能力的快速提高,彩色图像处理正受到人们越来越多的关注。
彩色图像分割大多数是在灰度图像分割算法的基础上发展起来的,即利用灰度图像分割算法和不同的彩色空间对彩色图像进行分割。
人眼所感知的色彩是由通常称为三原色的红(R)、绿(G)、蓝(B)3种颜色混合而成。
RGB适合于显示系统,却不适合于图像分割分析,因为R、G、B3个分量是高度相关的,即只要亮度改变,3个分量都会相应改变。
而且,RGB是一种很不均匀的颜色空间,所以两种颜色之间的色差不能表示为该颜色空间中两点间的距离。