高等土力学复习01
考研高等土力学复习
一(b)、《高等土力学》研究的主要内容。
二、与上部结构工程相比,岩土工程的研究和计算分析有什么特点?三、归纳和分析土的特性。
四、简述土的结构性与成因,比较原状土与重塑土结构性强弱,并说明原因?五/0、叙述土工试验的目的和意义。
五/1、静三轴试验基本原理(即确定土抗剪强度参数的方法)与优点简介五/2、叙述土体原位测试(既岩土工程现场试验)的主要用途,并介绍3种原位测试方法五/3、粘土和砂土的各向异性是由于什么原因引起的?什么是诱发各向异性?五/4、介绍确定土抗剪强度参数的两种不同方法(包括设备名称),并分析其优缺点?五/5、什么叫材料的本构关系?在土的本构关系中,土的强度和应力-应变有什么联系?五/6、什么是加工硬化?什么是加工软化?请绘出他们的典型的应力应变关系曲线。
五/7、渗透破坏的主要类型?渗透变形的主要防治方法?五/8、沉降计算中通常区分几种沉降分量?它们的机理是什么?按什么原理对它们进行计算?六、阐述土工参数不确定性的主要来源和产生原因?七、岩土工程模型试验要尽可能遵守的原则?八、何谓土的剪胀特性?产生剪胀的原因?九、影响饱和无粘性土液化的主要因素有哪些?举出4种判断液化的方法。
十、刚性直剪试验的缺点并提出解决建议?十一、列举一个土工试验在工程应用中的实例,并用土力学理论解释之。
十二、叙述土工试验的目的和意义和岩土工程模型试验要尽可能遵守的原则?十三、土的本构模型主要可分为哪几类?邓肯-张本构模型的本质?并写出邓肯-张本构模型应力应变表达式,并在应力应变座标轴中表示。
十四、广义地讲,什么是土的本构关系?与其他金属材料比,它有什么变形特征?十五、在土的弹塑性本构关系中,屈服准则、硬化定理、流动法则起什么作用?十六、剑桥模型的试验基础及基本假定是什么?说明该模型各参数的意义及确定方法。
十七、给出应变硬化条件下,加载条件。
为什么该条件在应变软化条件下不能使用十八、土的本构模型主要可分为哪几类?何为非关联流动法则?写出基于非关联流动法则的弹塑性本构关系。
高等土力学复习资料!!!
1、塑限:粘性土呈塑态与半固态的分界含水率称为塑限Wp。
2、有效应力:土体内单位面积上固体颗粒承受的平均法向力,σ‘=σ-u,有效应力数值上等于总应力σ减去孔隙水压力u。
3、渗透系数:渗透系数K是综合反映土体渗透能力的一个指标,是一个待定的比例系数,其物理意义为单位水力坡降(即i=1)时的渗透速度。
4、附加应力:是指荷载在地基内引起的应力增量。
是使地基失去稳定产生变形的主要原因。
通常采用布辛涅斯克理论公式计算。
或从建筑物建造后的基底压力中扣除基底标高处原有土的自重应力后,才是基底平面处新增加于地基表面的压力,即基底附加应力。
5、分层总和法:是指将地基沉降计算深度内的土层按土质和应力变化情况划分为若干分层,分别计算各分层的压缩量,然后求其总和得出地基最终沉降量。
这是计算地基最终沉降量的基本且常用的方法。
6、土的抗剪强度:土抗剪强度是指土体抵抗剪切破坏的极限强度,包括内摩擦力和内摩擦角(粘性土还包括其粘聚力C)。
抗剪强度可通过剪切试验测定。
7、粘聚力:粘聚力又叫内聚力,是在同种物质内部相邻各部分之间的相互吸引力,这种相互吸引力是同种物质分子之间存在分子力的表现。
8、含水量:含水物质中所含水分量占该物质总重量的百分比(重量含水量)或所含水分的体积占该物质总体积的百分比(容积含水量)。
1、土的三相比例指标中,土的密度和土的重度、土粒比重和土的含水率三个指标是通过试验测定的,测定这三个基本指标后,可以推导其余各个指标。
2、土的级配是否良好,常用_不均匀系数Cu_和曲率系数Cc两个指标综合确定。
3、前期固结压力大于现有覆盖土重的土称为_超固结土__土。
4、地基的总变形量由_瞬时沉降变形_______、固结变形和次固结变形这三部分组成。
5、有效应力原理公式表达式为__σ=σ’+u_。
6对挡土墙稳定性进行验算是指抗滑稳定验算验算和抗倾覆验算及地基土的承载力验1、土中的水中(C.重力水)能够传递静水压力。
2、表征土软硬状态的指标是(D.液性指数 )3、土体具有压缩性的主要原因是(B.主要是由孔隙的减少引起的)4、地下水位下降会引起(D.土中有效应力增加 )5、在软土地基上填筑路堤,最主要的问题是(A.稳定问题 )。
高等土力学第一章 课件
土的动应力-应 变关系
土的动力性质分 类
地震工程中的土动力学问题
土的动力性质:土的动剪切强度、动压缩强度和阻尼比等 地震工程中的土动力学问题:地震引起的土体液化、震陷、滑坡等 土的动力学模型:土的动力学本构模型、数值模拟方法等 抗震设计方法:基于土动力学原理的抗震设计方法、土体加固技术等
抗震设计方法与措施
土的应力-应变关系
土的应变:土体变形的程度
土的应力:土体受到的压力 或拉力
土的应力-应变关系曲线: 描述土的应力与应变之间的
关系
土的应力-应变关系的影响 因素:如土的种类、含水率、
温度等
04
土的强度与稳定性
土的强度
土的强度定义:土体抵抗剪切破坏的极限能力
土的强度分类:天然强度、有效强度、瞬时强度
地下水渗流 对工程的影 响
排水设计的 基本原则和 方法
排水设施的 种类和特点
排水设施的 布置和设计 要点
排水设施的 施工和维护
渗流对土体稳定性的影响
渗流现象及其产生原因 渗流对土体稳定性的影响 土体排水与加固措施 实际工程中的应用与案例分析
06
土的动力性质与地 震工程
土的动力性质
土的动强度
土的动变形
土力学的基本原理和概念 土力学在土木工程中的应用范围 土力学在土木工程中的具体应用案例 高等土力学在土木工程中的重要性
高等土力学在水利工程中的应用
水利工程中的土压力问题:介绍土压力的 产生、分类和计算方法,以及在水利工程 中的应用。
水利工程中的渗流问题:介绍渗流的基本 原理、计算方法和在水利工程中的应用, 包括堤坝、水库等。
土的物理性质
土的分类:根据土的颗粒大小、矿物成分、结构等特点进行分类 土的物理性质指标:包括密度、含水量、孔隙率、塑性指数等,用于描述土的物理性质 土的力学性质:包括抗剪强度、压缩性、渗透性等,用于描述土在力作用下的行为 土的工程分类:根据土的工程性质和特点,将土分为不同的类型,以便于工程设计和施工
北京交大高等土力学复习要点
北京交⼤⾼等⼟⼒学复习要点临界状态⼟⼒学1,等效固结应⼒]/)exp[('λv n p e -=,正常固结线上对应于某⼀孔隙⽐e 的平均有效应⼒。
2,理想⼟,⼀种重塑⼟,是结构性完全丧失的天然⼟。
3,临界状态,外荷载作⽤下,其变形发展过程中,⽆论初始状态和应⼒路径如何,都在某⼀特定点结束,如果这⼀点存在的话,则该点处于临界状态。
临街状态也可定义为:⼟体在剪切试验⼤变形阶段,它趋向于最后的临界条件,即体积和总应⼒不变,⽽剪应变还在不断持续发展和流动的状态。
4,正常固结⼟,历史上没有出现过卸载的⼟。
(超固结⽐为1的⼟)5,膨胀曲线,如果沿着正常固结线固结的⼟出现卸载,则卸载段的曲线为膨胀曲线。
6,四个重要公式 a ,临界状态线 p q f f M ''= p f f 'ln v λ-Γ=b ,正常固结线 V=N-λln P 'c ,回弹线 V=v k -kln P '(弹性墙内的体积)7, Roscoe ⾯,三轴仪内受轴向压缩荷载的所有正常各向等固结试样都遵循同⼀个⾯,这个⾯即为Roscoe ⾯,同时Roscoe ⾯还是可能与不可能路径的状态边界⾯。
8, Roscoe ⾯的⼀切等V 截⾯形状相同,仅尺⼨不⼀。
9,在p:q 平⾯上排⽔路径⼀定是⼀条斜率为3的直线。
10,超固结⼟,超固结⽐⼤于1的⼟。
(超固结⽐:⼟的先期固结压⼒(Pc)与现有⼟层⾃重压⼒(Po)之⽐)11,破坏状态,偏应⼒达到最⼤值的状态。
12,极限状态,应⼒、体积虽不变化但仍能出现⼤剪应变的状态。
13, Hvorslev ⾯,针对超固结⼟的状态边界⾯。
超固结⼟⽆论排⽔还是不排⽔路径都将达到Hvorslev ⾯,然后沿着Hvorslev ⾯到达临界状态线。
14,⼟样在破坏时,⽆论是排⽔还是不排⽔路径,破坏后都以某种速率朝临界状态线移动,移动的速率与试样与临界状态线的距离有关。
15,超固结⼟剪切膨胀,产⽣负孔隙⽔压,正常固结⼟剪切压缩,产⽣正孔隙⽔压。
高等土力学第一章 课件
高等土力学第一章课件
汇报人:
目录
CONTENTS
01 添加目录标题 03 土的应力与应变
02 土力学基本概念 04 土的强度与稳定性
05 土压力与挡土墙设 计
06 地基承载力与沉降 计算
07 特殊土工程性质与 处理方法
添加章节标题
土力学基本概念
土的气组成的自然体
黄土的工程分类:根据黄土的工程性质,可 以将黄土分为不同的类型,不同类型的黄土 在工程中的处理方法也有所不同。
黄土的处理方法:包括排水固结法、强夯 法、换填法等,这些方法可以有效地改善 黄土的工程性质,提高工程的稳定性和安 全性。
膨胀土工程性质与处理方法
膨胀土的定义与分类
膨胀土的工程性质
膨胀土的膨胀机理
土的应变:土体变形的大小 和方向
土的应力-应变关系曲线:描述 土的应力与应变之间关系的曲 线
土的应力:土体受到的力,包 括压应力、剪应力和弯应力等
土的应力-应变关系特点:非 线性和弹塑性等
土的强度与稳定性
土的强度
土的强度定义:土体抵抗剪切破坏的极限能力 土的强度分类:天然强度、残余强度、有效强度等 影响土强度的因素:土的成分、结构、应力历史、环境条件等 土的强度试验方法:直接剪切试验、三轴压缩试验、无侧限抗压试验等
稳定的能力。
地基承载力的影响 因素:包括土的物 理性质、力学性质、 地质条件、地下水 位、荷载大小和分
布等。
添加标题
添加标题
地基承载力与沉降 计算的关系:地基 承载力是影响建筑 物沉降的重要因素 之一,通过合理的 地基设计和沉降计 算,可以确保建筑 物的稳定性和安全
性。
添加标题
地基承载力与建筑 物安全性的关系: 地基承载力不足可 能导致建筑物沉降、 倾斜甚至倒塌,因 此在进行建筑设计 时,必须充分考虑 地基承载力的要求。
高等土力学复习要点——土的性质
高等土力学复习要点——土的性质高等土力学是土力学的进一步深化和发展,主要研究土的性质和力学特性。
土的性质是指土的组成、结构、化学性质等方面的性质,对于研究土的力学行为和工程应用具有重要意义。
以下是高等土力学复习要点之一:土的性质。
1.组成和结构:土是由颗粒状固体颗粒和间隙水等组成的多相体系。
颗粒可以分为黏土颗粒、粉砂颗粒和砂粒等,颗粒的形状、大小和组成对土的性质和力学特性有重要影响。
土的结构可以分为砂土结构、黏土结构和松散土结构等,不同结构有不同的力学特性。
2.含水量和干密度:土的含水量是指土中所含水分的质量与干土质量的比值。
土的干密度是指土的干湿状态下单位体积的质量。
含水量和干密度是土的基本物理性质,对土的抗剪强度、固结性质和渗透性等有影响。
3.粒度分布:土的粒度分布是指不同颗粒大小的土颗粒在土体中的分布情况。
粒度分布对土的工程性质和渗透性等有很大影响,常用粒度分布曲线来描述土的粒度分布特征。
4.粘聚力和内摩擦角:粘聚力是指土颗粒之间的黏结力,其大小取决于土颗粒的粒度、形状和颗粒间的水膜等因素。
内摩擦角是指土体在应力作用下发生剪切破坏时粒间摩擦力与正应力之间的关系。
粘聚力和内摩擦角是土的基本力学性质,对土的稳定性、承载力和变形特性有重要影响。
5.渗透性:土的渗透性是指水分在土中传导的能力,是土体的物理性质之一、渗透性与土的孔隙结构、颗粒大小和排水路径等因素有关,影响土的排水性能和固结性质。
6.压缩性和固结性:土的压缩性是指土在受到外界荷载作用下发生体积变形的能力。
土的固结性是指土颗粒之间的排列变得更加紧密,导致土的体积减小。
土的压缩性和固结性对于工程填土的沉降和变形控制具有重要意义。
7.剪切特性和强度特性:土的剪切特性是指土体在受到剪切应力作用下的变形和破坏特性。
土的强度特性是指土体抵抗外界应力作用下发生破坏的能力。
剪切特性和强度特性是土体力学性质的重要表征,对于土的稳定性和承载力有重要影响。
高等土力学-复习大纲-Word-..
高等土力学考纲一、土质学 (1)知识点: (1)题目: (3)二、土的强度 (5)知识点: (5)题目: (8)三、本构理论 (9)知识点: (9)题目: (10)四、固结与流变 (12)知识点: (12)题目: (13)五、边坡稳定 (14)知识点: (14)题目: (15)一、土质学知识点:土的来源:土是母岩经过风化作用、搬运作用、沉积作用形成的松散堆积物质。
因此,土是由岩石风化而来的。
沉积岩是土经过成岩作用形成的岩石,因此,土和岩石实际上是互为物质来源,在地质历史时期是相互转化的。
举例:花岗岩风化作用,风力侵蚀(海蚀风、风蚀城堡、风蚀柱、风蚀蘑菇、风蚀洼地、戈壁滩),流水侵蚀(V形谷、沟谷、峡谷、瀑布),冰川侵蚀,海浪侵蚀。
成土作用:冰川堆积,风沙堆积,风力堆积(带有大量沙粒的气流,如果遇到灌丛或石块,风沙受阻堆积下来,就形成沙丘。
需利用植被阻滞),流水沉积。
土中矿物:原生矿物,次生矿物,水溶盐,有机质,次生氧化物和难容盐。
土的分类:按土堆积的地点与母岩关系分为残积土(母岩风化后未经搬运而与母岩处于同一地点的土叫残积土)、坡积土(母岩风化后经过重力短距离搬运的土)、运积土(岩石风化后经过搬运作用而存在于与母岩有一定距离的土),运积土按搬运力不同分为洪积土、冰渍土、冲积土、风积土;按土的沉积环境分残积土、动水沉积土(坡积土,洪积土,冲积土)、静水沉积土(湖相沉积土,海相沉积土)、风积土、冰渍土。
土的三相:指土矿物颗粒组成的固相,土孔隙中的水组成的液相和土孔隙中的气体组成的气相。
(三相之间的相互作用和三相比例的变化及各相的物质组成变化是土的性质变化的内因)土壤中的晶体粘土矿物是母岩在经受化学风化而成土过程中形成的层状硅酸盐晶体矿物粘土矿物具有可塑性、粘结性、膨胀性、阳离子交换与吸附特性等特殊性质,是土壤中最活跃的成分之一,因此成为土质学的主要研究对象(粘土矿物内部电荷经常处于不平衡状态,因此表面可吸附阳离子和水分子,在水中能分散成胶体悬浮状态)。
2017高等土力学试题 (1)
2017高等土力学1.在土的弹塑性模型中, 屈服面和破坏面有何不同和有何联系?答:屈服面是土体的应力在应力空间上的表现形式,可以看成是三维应力空间里应力的一个坐标函数,因此对土体来说,不同的应力在应力空间上有不同的屈服面,但是破坏面是屈服面的外限,破坏面的应力在屈服面上的最大值即为破坏面,超过此限值土体即破坏。
2.何谓曼代尔-克雷尔效应?答:土体在固结的初期,内部会出现孔隙水压力不消散而是上升,布局地区孔隙水压力超过初始值的现象。
此效应仅在三维固结中出现,而在一维固结试验中并没有出现,在Biot的“真三维固结”理论可以解释磁现象。
3.与剑桥模型相比,清华弹塑性模型可以反映土的由剪应力引起的体积膨胀(剪胀)。
说明它是如何做到这一点的。
答:清华模型的硬化参数是关于塑形体应变和塑形剪应变的函数,而剑桥模型不是;此外,清华模型的屈服面椭圆与强度包线的交点不是椭圆顶点,因此会有剪胀。
4.天然岩土边坡的滑坡大多在雨季发生,解释这是为什么。
答:天然岩土边坡的滑坡发生总结起来两个原因,其一抗滑力减小,其二下滑力增大。
在暴雨的天气中,因为地表雨水的下渗导致岩土体的含水率增加,从而提高了岩土体的重量,增大了下滑力;下雨天气因为雨水的下渗,岩土体遇水软化的特性导致抗滑力减小;另外在渗透性好的岩土体中,岩土体内部雨水沿坡面下渗,渗透力会降低岩土坡体的安全系数,因此一上几方面的原因导致了滑坡大部分发生在雨季。
5.比奥(Biot)固结理论与太沙基-伦杜立克(Terzaghi-Randulic)扩散方程之间主要区别是什么?后者不满足什么条件?二者在固结计算结果有什么主要不同?答:区别:扩散方程假设应力之和在固结和变形过程中保持常数,不满足变形协调条件。
结果:比奥固结理论可以解释土体受力之后的应力、应变和孔压的生成和消散过程,理论上是严密计算结果也精确。
比奥固结理论可以解释曼代尔-克雷效应,而扩散理论不能。
6. 在一种松砂的常规三轴排水压缩试验中,试样破坏时应力为:σ3=100kPa ,σ1-σ3=235kPa 。
高等土力学知识点
一、影响土的强度因素影响土强度的因素很多,土的抗剪强度及其影响因素的关系可以定性地用以下公式表示τf=f(e,ψ,C,σ’,c,H,T,ε,ε’,S)其中e为土的孔隙比,C为土的组成,H为应力历史,T为温度,ε和ε’分别为应变和应变率,S为土的结构,c和ψ分别为粘聚力和内摩擦角。
可分为两大类:内部因素(物理性质),外部因素(外界条件主要是应力应变条件)。
1、内部因素(1)影响土强度的一般物理性质:①颗粒矿物成分的影响。
不同矿物之间的滑动摩擦角是不同的②粗粒土颗粒的几何性质,当孔隙比相同及级配相似时,一方面大尺寸颗粒具有较强的咬合能力,可能增加土的剪胀,从而提高强度;另一方面,在单位体积中大尺寸颗粒间接触点少,接触点上应力加大,颗粒更容易破裂,从而减少剪胀,降低土的强度。
③土的组成的其他因素。
粗粒土的级配对于抗剪强度有较大影响,级配较好的砂,咬合作用也比较强,另一方面,单位体积中颗粒接触点多,接触应力小,颗粒破碎少,剪胀量加大,所以抗剪强度高④土的状态。
砂土的孔隙比和相对密度可能是影响其强度的最重要因素。
孔隙比小或者相对密度大的砂土有较高的抗剪强度。
孔隙比对黏土的影响通常变现为其应力历史的影响。
⑤土的结构。
土的结构对土的抗剪强度有很大影响,有时对于某些粘性土如区域土或特殊土,可以说是控制因素。
原状土的结构性使其强度高于重塑土或扰动土。
⑥剪切带的存在对土强度的影响。
剪切带处局部孔隙比很大,并且有很强烈的颗粒定向作用。
剪切带的生成会使土的强度降低。
(2)孔隙比与砂土抗剪强度的关系------临界孔隙比随着孔隙比减小,砂土的ψ将明显提高。
松砂与密砂在试验中的应力应变关系也有很大区别,松砂的应力应变曲线是应变硬化的,剪缩,孔隙比减小;密砂的应力应变曲线是应变软化的,剪胀,e增加。
两个式样加载到最后,其e接近相同,都达到临界孔隙比еcr,еcr是指在三轴试验加载过程中,轴向应力差几乎不变,轴向应变连续增加,最终式样体积几乎不变时的e。
高等土力学复习要点——土的性质
土的性质一.土的定义、土按成因分类、土的工程分类土——土是连续、坚固的岩石在风化作用下形成的大小悬殊的颗粒,在原地残留或经过不同的搬运方式,在各种自然环境中形成的堆积物。
属第四纪沉积物。
根据地质成因类型划分,可将第四纪沉积物的土体分为:残积土、坡积土、洪积土、冲积土、湖积土、海积土、风积土及冰积土等。
土的工程分类:工程上是用某种最能反映土的工程特性的指标来进行系统的分类。
影响土的工程性质的三个主要因素是土的三相组成、土的物理状态和土的结构。
GB5007一2002 《建筑地基基础设计规范》将地基土分成六大类,即岩石、碎石土、砂土、粉土、粘性土和人工填土。
二.岩石按成因分类、按风化程度分类岩石按成因可分为岩浆岩、沉积岩和变质岩。
岩石按风化程度划分为微风化、中等风化和强风化三类。
三.土的颗粒级配:1.颗粒分析试验:分为筛分法和水分法二种。
筛分法适用于粒径大于0.074mm粒组的土。
水分法适用于分析粒径小于0.074mm的土。
2.颗粒级配曲线:综合上述筛分试验和比重计试验的全部结果,可以绘制如图所示的颗粒级配累积曲线。
3.颗粒级配曲线的应用:由土的颗粒级配曲线的坡度可以大致判断土的均匀程度。
如曲线较陡,则表示粒径大小相差不多,土粒较均匀,则级配不好;反之,如曲线平缓,则表示粒径大小相差悬殊,土粒不均匀,级配良好。
四.地下水1.地下水按埋藏条件可分为:毛细水,潜水,承压水地下水在土中的渗透属于层流现象,遵循达西渗透定律。
2.渗透性:地下水通过土颗粒之间的孔隙流动,土体可被水透过的性质。
3.达西渗透定律:水在砂土中的渗流速度与试样两端间的水头差成正比,而与渗流路径成反比。
其中i——水力梯度;k——渗透系数,即当i=1时的渗透速度,m/s;h1、h2——试样两端的水头;L——试样的长度,即渗流路径。
4.渗透系数k:单位水力坡降时的渗透速度。
K值的大小与土的名称、土粒粗细、粒径级配、孔隙比及水的温度等因素有关。
高等土力学(李广信)-期末总结
一般弹塑性模型
屈服与屈服准则 硬化规律 正交性(流动法则:相适应与不相适应) 刚塑性、弹性-理想(完全)塑性 (perfectly plastic)和增量弹塑性模型。
剑桥模型
物态边界面概念:正 常固结线、临界状态 f p 线、固结不排水试验 d ij d 有效应力路径。 ij q 剑桥模型与修正剑桥 M 模型的屈服面:物理 意义、公式推导、曲 线形式。 剑桥模型的硬化参数、 流动规则、增量应力 p0 应变关系式。 p0 /2 图1 剑桥模型的屈服面
土的强度理论
各强度理论的特点 参数 计算 优缺点 适用情况
第四章 土中水与土的 渗透及其计算
1. 渗透规律-达西定律 2. 有关渗流的工程问题 3. 渗透计算
渗透及达西定律
几种渗流势:重力、压力、基质势 渗透系数及其影响因素 渗流的基本方程,流网及其应用Leabharlann 有关渗流的工程问题p
第三章 土的强度
土的强度机理与影响因素 排水与不排水、饱和与不饱和土强度 土的强度理论
土的强度机理
土的强度-抗剪强度: 粘聚强度与摩擦强度: 粘聚力:机理,粘性土的微观结构; 假粘聚力:吸力、冰冻、机械咬和; 内摩擦角:表面摩擦与咬和-剪胀、破 碎与颗粒的重排列。
强度的影响因素
固结
(1)单向固结的普遍方程及一般条件下的单向 固结问题: 加载时间 分层土 厚度随时间变化 (2)砂井固结问题:井阻、涂抹、加载时间 (3)比奥固结理论与太沙基(Terzaghi)—伦杜 立克(Rendulic)准三维固结理论(扩散方程)
固结问题的简化计算
均匀加载、分期加载 不均匀土层与分层土 砂井:井阻与涂抹影响
第01章 高等土力学绪论
1857年Rankine提出极限平衡分析基础上的土压力理论;
1856年Darcy通过室内试验建立水的渗透理论; 1885年 Boussinesq提出各向同性半无限体表面在竖直集中力作用下的 位移和应力分布理论; 1892年Flamant提出线荷载作用下位移和应力分布理论; 20世纪初,Prandtl根据塑性平衡原理,导出极限承载力公式; Fellenius提出瑞典圆弧法分析土坡稳定性; 1963年,Roscoe发表了著名的剑桥模型,标志着现代土力学的开端。
高等土力学
一、高等土力学研究对象
土力学研究的基本对象是土体(三相体系:气、液、 固)。土体的基本物理力学特征: 不连续性,如孔隙、裂隙、结构面 各向异性 不均匀性 土颗粒的可移动性 赋存地质因子,如地下水、地应力等 土体的可压缩性或体积变化特性 土体的固结特性 应力历史 应力路径
对土力学发展作出重大贡献的科学家
太沙基 Terzaghi K
朗金 Rankine, W.J.M
库仑 Coulomb,C.A 毕肖普 Bishop, A.W
布辛奈斯克 Boussinesq, J
费尔纽斯 Fellenius, W 斯开普顿 Skepmton,A.W 杰克 Jack,J 简布 Janbu,N
与土有关的工程事故包括:
地基沉降与不均匀沉降 地基失去稳定性 滑坡
绪 论
沉降过大
上海工业展览馆中央大厅
上海工业展览馆中央大厅 1954年建 地基约14m厚淤泥质软粘土,采用 7.27m箱基,建后当年下沉600mm。 1957年6月大厅四角下沉: 最大1465.5mm,最小1228.0mm。 1957年7月,苏联专家及清华大学陈 希哲、陈梁生教授观察分析,认为对 裂缝修补后可继续使用(均匀沉降)。
土力学复习提纲
土力学复习提纲土力学复习提纲第一章土的物理性质指标与工程分类一、基本概念1、土是松散颗粒的堆积物,是岩石风化的产物。
2、饱和土:土骨架的孔隙全部被水占满时,这种土称为饱和土。
干土、湿土都可以在(P6)找到。
3、常见的粘土矿物:高岭石、伊利石、蒙脱石及其对比粘土矿物高岭石伊利石蒙脱石粒径大中小外表面积小(10-20m2/g)中(80-100m2/g)大(800m2/g)胀缩性小中大渗透性大中小强度大中小压缩性小中大4、土的粒组划分,详见表1-1(P8)漂石(块石)组d>200 单位(mm)卵石(碎石)组200≥d>60砾粒60≥d>2砂粒2≥d>0.075粉粒0.075≥d>0.005粘粒d≤0.0055、土的级配曲线(1)粒径分布曲线:以土粒粒径为横坐标,小于某粒径土质量占试样总质量的百分数为纵坐标绘制而成的曲线。
(2)粒组频率曲线以各3粒组的平均粒径为横坐标,以各粒组的土粒含量为纵坐标绘得。
6、土的结构:单粒结构、分散结构、絮状结构(P17-18)当粒团及粒团内的土粒都是任意排列时,土体是各向同性的。
当粒团任意排列,而粒团内的土粒是定向排列时,土体在主体上是各向同性的。
当粒团是定向排列,而粒团内的土粒是任意排列时,土体在主体上是各向异性的。
当粒团及粒团内的土粒都是定向排列时,土体是各向异性的。
7、土的物理性质指标可分为两类:一类是必须通过试验测定的,如含水率、密度和土粒比重,称为直接指标;另一类是根据直接指标换算的,如孔隙比、孔隙率、饱和度等,称为间接指标。
具体定义见课本P19-228、土的干密度不等于烘干土(干土)的密度,因为土烘干后体积要减小。
9、无粘性土的划分0<Dr≤1/3 疏松的1/3<Dr≤2/3 中密的2/3<Dr≤1 密实的10、稠度:指粘性土的干湿程度或在某一含水率下抵抗外力作用而变形或破坏的能力,是粘性土最主要的物理状态指标。
粘性土的稠度状态常用流动、软、可塑、硬等描述。
(P28图1-17好好理解)11、界限含水率液限、塑限、缩限(详见课本P29) 12、粘性土的状态可用液性指数来判别。
高等土力学第一章补充思考题
第一章 土工试验及测试1.砂土的内摩擦角为φ'。
若以M=q/p '表示其强度。
根据莫尔-库仑强度理论,推导三轴伸长(σ1=σ2>σ3)与三轴压缩(σ2=σ3<σ1)的强度之比M e /M c =?2. 有人认为平面应变条件下,εy =0方向上的应力σy 为中主应力。
试用弹性理论分析在σz /σx =k 的平面应变情况下, 泊松比为ν=0.33时,在什么条件下σy 为中主应力,什么条件下σy 为小主应力?3.说明土工离心模型试验的基本原理。
如果原型土层固结度达到94%,(U=94%)所需要的时间是12个月,问当模型比为50(n =50)时,达到同样固结度需要多少时间?4.在HDPE(高密度聚乙烯)土工格栅的蠕变试验中,如果加载时间为120年,应变达到5%时,每米宽的的荷载是30kN (一般以这个30kN/m 为其蠕变强度)。
如果在土工离心机中利用原型格栅进行蠕变试验,离心力达到50g 。
问在30kN 荷载作用下,应变达到5%需要多少时间?5.计算对于下列的应力状态,三个主应力各为多少?100,120,0p kPa q kPa θ===︒。
6.下面哪些试验膜嵌入对于体应变(或孔压)的量测有影响?CTC ,HC ,CTE, TC ,TE ,RTC, RTE ,PL .7.对一种砂土试样进行围压3100kPa σ=的三轴常规压缩试验(CTC ),在13320kPa σσ-=时试样破坏。
根据莫尔-库仑强度准则,预测对该砂土试样在初始各向等压为200c kPa σ=下固结,然后进行平均主应力p 为常数的三轴压缩(TC )与三轴伸长(TE )试验,破坏时的大小主应力各为多少?(313196.9,406.3;64,269;kPa kPa σσσσ====)8.画出直剪试验中,剪切面处的土单元剪切前和剪切破坏时的莫尔圆。
9.通过砂雨法(即将干砂通过几层筛子均匀撒下)将砂土撒满在一个大槽子中,z 方向为竖向。
高等土力学复习要点——土体的变形
土体的变形第一部分 影响因素一. 土的压缩性1.定义:土在压力作用下体积缩小的特性称为土的压缩性。
土的压缩——土中孔隙体积的减少,在这一过程中,颗粒间产生相对移动,重新排列并互相挤紧,同时,土中一部分孔隙水和气体被挤出。
土体完成压缩过程所需的时间与土的透水性有很大的关系。
土的固结——土的压缩随时间增长的过程,称为土的固结。
2.土的侧限压缩试验:不允许土样产生侧向变形(侧限条件)的室内压缩试验3.侧限条件:侧向限制不能变形,只有竖向单向压缩的条件。
侧限条件的适用性:自然界广阔土层上作用着大面积均布荷载的情况;土体的天然土的自重应力作用下的压缩性。
4.侧限压缩试验的方法:试验方法:加荷载,让土样在50、100、200和400kpa 压力作用下只可能发生竖向压缩,而无侧向变形。
测定各级压力作用下土样高度的稳定值,即压缩量。
将压缩量换算成每级荷载后土样的孔隙比e 。
则可整理的压缩试验的结果,压缩曲线e-p 、e-logp 。
)1(000e H s e e +-=5.侧限压缩性指标压缩系数——e-p 曲线上任一点的切线斜率a ,即 dp de a -= 物理意义:压缩系数a 越大,曲线愈陡,说明随着压力的增加,土孔隙比的减小愈显著,因而土的压缩性愈高。
为了便于应用和比较,通常采用压力间隔由p 1=100kpa 增加到p 2=200kpa 时所得的压缩系数a 1-2来评定土的压缩性如下:当 a 1-2 < 0.1Mpa -1时,属于低压缩性土0. 1≤a 1-2 < 0.5Mpa -1时,属于中压缩性土a 1-2 ≥ 0.5Mpa -1时,属于高压缩性土。
压缩指数——土的e-p 线改绘成半对教压缩曲线e-logp 曲线时,它的后段接近直线,其斜率Cc 称为土的压缩指数。
同压缩系数a 一样,压缩指数Cc 值越大,土的压缩性越高压缩模量(侧限压缩模量)——土在完全侧限条件下的竖向附加压应力σz 与相应的应变εz 之比值。
高等土力学复习资料(最终版)
为水密度,则式左可化为
nwdxdydz
t
dt
w
1
n
1 w
u t
dxdydz
(1)
由u
w
g
h
z
代入可得:
vx x
vy y
vz z
w
g
1
n 1 w
h
t
(u
wg h
z)
vx x
vy y
vz z
Ss
h t
(定义 Ss
w
g
1
n 1 w
为单位储存量)
2、渗流原理的基本假定:连续介质假定(P150) 液体(如地下水、石油)在土孔隙或其他透水性介质(如水工建筑)中的流动问题称为渗流。 土体的渗透特性表现为非均质和非连续性。但为了研究问题方便,常将水假想成充满整个介质空
二、发生曼德尔-克雷尔效应的机理是什么?为什么拟三维固结理论不能描述这一效应?(P339)
曼德尔效应:按比奥理论求解饱和土的固结问题时会出现一种现象:在不变的荷重施加于土体上 后的某时段内,土体内的孔隙水压力不是下降,而是继续上升,而且超过应有的压力值。即中心部位 孔隙压力高于外压力。同样的边界条件,用太沙基理论(扩散理论)分析时不会出现该现象。
vzdxd y
w
vx
vx x
dx
d
y
d
z
vy
vy y
dy
dxdz
vz
vz z
dz
d
x
d
y
nwd x d y d z t
dt
化简得:
w
vx x
vy y
vz z
dxdydz
nwd x d y d z t
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等土力学复习
一、概念
1.屈服准则、屈服面
(1)屈服准则:
A.受力物体内质点处于单向应力状态时,只要单向应力大到材料的屈服点时,则该质点开始由弹性状态进入塑性状态,即处于屈服。
B.受力物体内质点处于多向应力状态时,必须同时考虑所有的应力分量。
在一定的变形条件(变形温度、变形速度等)下,只有当各应力分量之间符合一定关系时,质点才开始进入塑性状态,这种关系称为屈服准则,也称塑性条件。
它是描述受力物体中不同应力状态下的质点进入塑 性状态并使塑性变形继续进行所必须遵守的力学条件,这种力学条件一般可表示为()ij
f C σ=,又称为屈服函数,式中 C 是与材料性质有关而与应力状态无关的常数,可通过试验求得。
屈服准则是求解塑性成形问题必要的补充方程。
(2)屈服面:在应力空间或应变空间中,每一个点都代表一个应力状态或一个应变状态。
应力或应变状态的变化,可以在相应空间中绘出一条相应的曲线,这样的曲线称为应力路径或应变
路径。
根据不同路径所进行的实验,可以确定从弹性阶段进入塑性阶段的界限,即确定 屈服点,这些屈服点连结起来后形成一个曲面,这样的曲面称为屈服面。
屈服面的数学 表达式称为屈服函数。
2.流动法则
MISES 提出的塑性势理论认为,经过应力空间()123,,σσσ任何一点,必有一塑性位势等势性存在,它可以表示为:(),H 0ij g σ=,而塑性应变增量,其变形方向与塑性位势正交,即()'/'p ij d d g ελσ=∂∂。
这个法则与理想流体的流动问题类似,因而称为流动法则(由于是一个梯度的表示,也称为正交法则)。
用于确定非线性阶段材料的塑性增量的大小、方向、与应力关系的问题。
3.硬化规律
当材料达到屈服后,屈服的标准要改变,即k 要变化。
k 的变化情况即硬化规律。
k 的3种变化规律:①屈服后k 增加,材料硬化;②k 减小,材料软化;③k 不变,理想塑性变形。
4.破坏准则、破坏面
土体达到破坏后,变形会不断发展,与破坏前是截然不同的。
建立土的应力—应变关系,不能不弄清在什么情况下土体达到破坏,这个标准称为破坏准则,即()*ij f f k σ=。
5.瞬时沉降
是指加载后地基瞬时发生的沉降。
由于基础加载面积为有限尺寸,加载后地基中会有剪应变产生,剪应变会引起侧向变形而造成瞬时沉降。
6.固结沉降
是指饱和与接近饱和的粘性土在基础荷载作用下,随着超静孔隙水压力的消散,土骨架产生变形所造成的沉降(固结压密)。
固结沉降速率取决于孔隙水的排出速率。
7.次固结沉降
是指主固结过程(超静孔隙水压力消散过程)结束后,在有效应力不变的情况下,土的骨架仍随时间继续发生变形。
这种变形的速率取决于土骨架本身的蠕变性质。
8.达西定律
流量Q 与断面面积A 成正比,且与水头损失(h 1-h 2)成正比,与渗流长度L 。
()12KA h h dh Q KA KAJ L dL -==-=或Q v KJ A
== 式中v 为断面上的平均流速;J 为渗透坡降(水力梯度);w
p h z γ=+,为测压管水头,即压力水头与位置高度之和;K 为渗透系数。
9.有效应力原理
饱和土中任意点的总应力总是等于有效应力加上空隙水压力;或有效应力总是等于总应力减去孔隙水压力。
'u σσ=+
式中σ为平面上法向总应力,kPa ;'σ为平面上有效法向应力,kPa ;u 为孔隙水压力,kPa 。
10.应力路径
应力路径是指在应力空间内代表应力状态的点所移动的轨迹。
11.p-q 应力空间、破坏线
p-q 应力空间:如果忽略第三应力不变量或应力Lode 角,对变形的影响,则可以只用p 、q 两个分量构成二维的应力空间。
12.σ1-σ3、破坏线
13.Ko 固结
天然土体通常是在没有侧向变形的条件下固结形成的,竖向应力一般不等于水平向应力,即静止土压力系数K 0不等于1。
14.土的本构关系
是指反映物质内在结构变化的普遍的应力—应变关系,也包括随时间变化的关系,即所谓的应力—应变—强度—时间变化的关系。
二、强度理论:
15.摩尔-库伦强度理论?
土力学广泛采用的强度理论:土的破坏是剪切破坏,一旦土体内任一平面上的剪切应力达到了土的抗剪强度,土就发生破坏,而任一平面上的抗剪强度f τ只是该面上法向应力σ的函
数()f f τσ=。
库仑定律:c tg τσϕ=+ f τ:土的抗剪强度;tg σϕ:摩擦强度-正比于压力σ;ϕ:土的内摩擦;c :粘聚强度-与所受压力无关。
摩尔-库仑强度理论:
231tan 452tan 4522c ϕϕσσ⎛⎫⎛⎫=--⋅- ⎪ ⎪⎝
⎭⎝⎭ 213tan 452tan 4522c ϕϕσσ⎛
⎫⎛⎫=+
-⋅+ ⎪ ⎪⎝⎭⎝⎭ 破坏面与大主应力1σ作用面的夹角:452f
ϕα=+ 破坏面与小主应力3σ作用面的夹角:452f ϕ
α=+
16.摩尔库伦强度理论在p-q 、σ1-σ3应力空间如何表现?
17.如何用摩尔-库伦强度理论判断土中一点是否发生破坏?
18.土中某点的应力状态由静止土压力状态到朗肯土压力状态发展的应力路径?
19.正常固结土沉积过程的应力路径?
20、土的变形特性?
非线性、非弹性、塑性体积应变、剪胀性、塑性剪应变、硬化和软化。
四、本构理论:
21.如何推导土的弹塑性本构关系中弹塑性矩阵的一般表达式?P70-74
22.邓肯张模型的思路?
土体常规三轴试验是在保持σ3的情况下,加轴向应力(σ1-σ3),只在一个方向上施加应力增量,而其他方向上无应力增量。
因此可根据常规三轴试验确定增量胡克定律中的弹性常数。
五、沉降计算:
23.粘性土地基沉降的构成,及其原因或实质?各构成部分的计算方法(各举一种)?
六、固结理论:
24.太沙基一维、二维、三维固结理论的假设?
(1)土质是均匀、各向同性和完全饱和的;
(2)土粒和水都是不可压缩的;
(3)土中附加应力沿水平面是均匀分布的,因此土层的压缩和渗流都是竖向的;
(4)土中水的渗流服从达西定律;
(5)在渗透固结中,土的渗透系数k和压缩系数a都是不变的常数;
(6)外荷载是一次骤然十佳的,在固结过程中保持不变的;
(7)土体变形完全是空隙水压力消散引起的。
25.太沙基一维、二维、三维固结微分方程的推导?(用到了哪些理论、定理或定律、思想?推导具体过程,方程中各符号含义)P200-201
七、知识应用:
会用所学土力学知识分析具体工程实例中存在的岩土问题,并能提出治理和防治措施及对策。