乘法公式定理(题型扩展)
初中数学竞赛重要定理公式(代数篇)
初中数学竞赛重要定理、公式及结论代数篇【乘法公式】完全平方公式:(a±b)2=a2±2ab+b2,平方差公式:(a+b)(a-b)=a2-b2,立方和(差)公式:(a±b)(a2 ∓ab+b2)=a3±b3多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd二项式定理:(a±b)3=a3±3a2b+3ab2±b3(a±b)4=a4±4a3b+6a2b2±4ab3+b4)(a±b)5=a5±5a4b+10a3b2±10a2b3+5ab4±b5)…………在正整数指数的条件下,可归纳如下:设n为正整数(a+b)(a2n-1- a2n-2b+a2n-3b2- …+ab2n-2- b2n-1)=a2n-b2n(a+b)(a2n-a2n-1b+a2n-2b2n-…-ab2n-1+b2n)=a2n+1+b2n+1类似地:(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)=a n-b n公式的变形及其逆运算由(a+b)2=a2+2ab+b2得a2+b2=(a+b)2-2ab由(a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b)得a3+b3=(a+b)3-3ab(a+b)由公式的推广③可知:当n为正整数时a n-b n能被a-b 整除,a2n+1+b2n+1能被a+b整除,a2n-b2n能被a+b 及a-b整除。
重要公式(欧拉公式)(a+b+c)(a2+b2+c2+ab+ac+bc)=a3+b3+c3-3abc【综合除法】一个一元多项式除以另一个一元多项式,并不是总能整除。
当被除式f(x)除以除式g(x),(g(x)≠0) 得商式q(x)及余式r(x)时,就有下列等式:f(x)=g(x)q(x)-r(x)其中r(x)的次数小于g(x)的次数,或者r(x)=0。
初中数学定理公式定律大全
初中数学定理公式定律大全1.代数定理-同号两数相乘为正,异号两数相乘为负。
-分配率:a×(b+c)=a×b+a×c。
-同底数幂相除,指数相减:(a^m)÷(a^n)=a^(m-n)。
-幂的乘法:(a^m)×(a^n)=a^(m+n)。
2.平方根公式-设a≥0,则√a×√a=a。
-若a≥0,则√(a^2)=a。
3.线性方程- 设a ≠ 0,方程 ax + b = 0 的解是 x = -b/a。
- 形如 ax + b = cx + d 的一次方程,有唯一解 x = (d - b)/(a -c)。
4.角度定理-外角和定理:一个三角形的外角等于它的两个不相邻内角的和。
-三角形内角和定理:一个三角形的内角之和等于180°。
-同位角定理:如果两条直线被一条截线分成两个内交角和两个外交角,则这两个内交角互为同位角,两个外交角互为同位角。
5.平行线和三角形定理-同位角、内错角定理:当两条直线被一条截线分成两个内交角和两个外交角时,同位角相等,内错角相等。
-平行线截割定理:当两条平行线被一条截线截断时,同位角相等,内错角相等。
-三角形内角和定理:一个三角形的内角之和等于180°。
-等腰三角形定理:两边相等的三角形中,两个对应的内角也相等。
6.几何定理-直角三角形定理:一个三角形中,如果一些角是直角,则它是直角三角形。
-直角边定理:在直角三角形中,斜边的平方等于各直角边的平方和。
-勾股定理:在直角三角形中,斜边的平方等于两个直角边的平方和。
-相似三角形定理:如果两个三角形的对应角相等,则这两个三角形相似。
-正方形的对角线垂直定理:正方形的对角线互相垂直且相等。
7.百分数与比例-百分数换分数:将百分数转化为分数,百分数除以100即可得到对应的分数。
-百分数的四则运算:百分数的加减乘除运算,先转化为分数进行计算,最后再转化为百分数。
-比例:设a:b=c:d,称a和b为比例的两个项,c和d为比例的两个对应项。
2023年中考数学一轮复习满分突破专题04 整式的乘除-【题型方法解密】
专题04 整式的乘除【热考题型】【知识要点】 知识点一 幂的运算同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。
n m n m a a a +=·(其中m 、n 为正整数) 【注意事项】1)当底数为负数时,先用同底数幂乘法法则计算,再根据指数的奇偶来确定结果的正负,并且化简到底。
2)不能疏忽指数为1的情况。
例:a ·a 2=a1+2=a 33)乘数a 可能是有理数、单项式或多项式。
4)如果底数互为相反数时可先变成同底后再运算。
5)逆用公式:n m n m a a a ·=+(m,n 都是正整数) 【扩展】三个或三个以上同底数幂相乘时,也具有这一性质, 即p n m p n m a a a a ++=··(m ,n ,p 都是正整数) 考查题型一 同底数幂的乘法典例1.(2022·浙江嘉兴·中考真题)计算a 2·a ( ) A .aB .3aC .2a 2D .a 3变式1-1.(2022·河南·中考真题)《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿,则1兆等于( ) A .810B .1210C .1610D .2410变式1-2.(2022·内蒙古包头·中考真题)若42222m ⨯=,则m 的值为( )A .8B .6C .5D .2变式1-3.(2022·湖南邵阳·中考真题)5月29日腾讯新闻报道,2022年第一季度,湖南全省地区生产总值约为11000亿元,11000亿用科学记数法可表示为1210a ⨯,则a 的值是( ) A .0.11 B .1.1 C .11 D .11000易错点总结:幂的乘方法则:幂的乘方,底数不变,指数相乘.mnn m a a =)((其中m ,n 都是正整数).【注意事项】1)负号在括号内时,偶次方结果为正,奇次方为负,负号在括号外结果都为负。
2020高考培优拔高 整式与分式题型汇编
整式题型汇编【知识梳理】1、余式定理:多项式()x f 除以a x -所得的商式为()x Q ,余式为()a f ,即()()()()a f a x x Q x f +-=。
2、因式定理:如果多项式()x f 含有因式a x -,那么()0=a f ,反之亦然。
我们称a 为多项式()x f 的零点。
3、乘法公式:(1)立方和公式:()()3322b a b ab a b a +=+-+(2)立方差公式:()()3322b ab ab ab a -=++-(3)三数和平方公式:()()ac bc ab c b a c b a +++++=++22222(4)两数和立方公式:()3223333b ab b a a b a +++=+(5)两数差立方公式:()3223333b ab b a a b a -+-=-4、拆添项法:把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符号相反的项,前者称为拆项,后者称为添项。
拆项、添项的目的是使多项式能用分组分解法进行因式分解。
5、试根法:整系数多项式01a x a x a nn +++Λ,若sr是它的有理根(s r 、互素),那么s 整除n a ,r 整除0a 。
一些比较复杂的因式分解也可以利用试根法来解决(试根法使用于整系数多项式的因式分解)6、常见数学思想与方法:整体思想、降次法、消元法、待定系数法、赋值法等。
除了常规的因式分解法,还有拆添项法、双十字相乘法、待定系数法、试根法等。
【题型分析】例1:已知012=-+a a ,求2014223++a a 的值。
【解法一】(整体代入):由012=-+a a 得023=-+a a a所以201520151201420142222323=+-+=+++-+=++a a a a a a a a a【解法二】(降次):方程作为刻画现实世界相等关系的数学模型,还具有降次的功能。
由012=-+a a 得a a -=12,所以()201520151201420142120142201422222223=+-+=++=++⋅-=++⋅=++a a a a a a a a a a a a 【解法三】(降次、消元):12=+a a (消元、减项)()2015201412014201420142014222222323=+=++=+++=+++=++a a a a a a a a a a a说明:本题常用的方法是降次法,通过降次最后使2014223++a a 化为一个常数,但是用降次法,变形过程较为复杂且容易出错,而用零代换只要掌握变形的技巧,计算比较简便。
乘法的运算定律和公式
乘法的运算定律和公式乘法是数学中基本的四则运算之一,它有着广泛的应用。
乘法的运算定律和公式是我们在进行乘法运算时常用的规则和计算方法。
本文将详细介绍乘法的运算定律和公式,帮助读者更好地理解和掌握乘法运算。
一、乘法的运算定律乘法的运算定律包括交换律、结合律和分配律。
1. 交换律乘法的交换律指的是两个数相乘的结果与顺序无关,即a乘以b等于b乘以a。
例如,2乘以3等于3乘以2,都等于6。
这一定律可以用于简化计算和推导。
2. 结合律乘法的结合律指的是多个数相乘的结果与加法顺序无关,即(a乘以b)乘以c等于a乘以(b乘以c)。
例如,(2乘以3)乘以4等于2乘以(3乘以4),都等于24。
结合律可以用于简化多个数相乘的计算。
3. 分配律乘法的分配律是乘法运算与加法运算之间的关系。
它表明两个数相乘再加上第三个数的乘积,等于两个数分别与第三个数相乘再进行相加。
即a乘以(b加上c)等于(a乘以b)加上(a乘以c)。
例如,2乘以(3加上4)等于(2乘以3)加上(2乘以4),都等于14。
分配律在代数运算中经常被使用。
二、乘法的公式乘法的公式是一种特定的计算方法,可以用于求解一些常见的乘法运算。
1. 平方公式平方公式是乘法中的一种重要公式,用于求解一个数的平方。
平方公式表示为a的平方等于a乘以a。
例如,2的平方等于2乘以2,结果为4。
2. 乘方公式乘方公式是乘法中的另一种常用公式,用于求解一个数的乘方。
乘方公式表示为a的n次方等于a乘以a乘以...乘以a,其中a连乘n次。
例如,2的3次方等于2乘以2乘以2,结果为8。
3. 乘法逆元公式乘法逆元公式是用于求解乘法逆元的公式。
乘法逆元指的是一个数与其乘法逆元相乘等于1。
乘法逆元公式表示为a乘以a的乘法逆元等于1。
例如,2乘以1/2等于1,其中1/2是2的乘法逆元。
4. 乘法倍增公式乘法倍增公式是一种用于快速计算乘法的方法。
它利用了乘法的交换律和结合律,将一个乘法运算转化为多个乘法运算的相加。
专题1.3 乘法公式【十大题型】(举一反三)(北师大版)(原卷版)
专题1.3 乘法公式【十大题型】【北师大版】【题型1 判断运用乘法公式计算的正误】 (1)【题型2 利用完全平方式确定系数】 (2)【题型3 乘法公式的计算】 (2)【题型4 利用乘法公式求值】 (2)【题型5 利用面积法验证乘法公式】 (3)【题型6 乘法公式的应用】 (4)【题型7 平方差公式的几何背景】 (6)【题型8 完全平方公式的几何背景】 (8)【题型9 乘法公式中的新定义问题】 (10)【题型10 乘法公式的规律探究】 (11)【知识点乘法公式】平方差公式:(a+b)(a-b)=a2-b2。
两个数的和与这两个数的差的积,等于这两个数的平方差。
这个公式叫做平方差公式。
完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2。
两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们积的2倍。
这两个公式叫做完全平方公式。
【题型1判断运用乘法公式计算的正误】【例1】(2023春·贵州毕节·七年级统考期末)计算(x−y+3)(x+y−3)时,下列变形正确的是()A.[(x−y)+3][(x+y)−3]B.[(x+3)−y][(x−3)+y]C.[x−(y+3)][x+(y−3)]D.[x−(y−3)][x+(y−3)]【变式1-2】(2023春·天津滨海新·七年级统考期末)在下列多项式的乘法中,不可以用平方差公式计算的是()A.(x+y)(x−y)B.(−x+y)(x+y)C.(−x−y)(−x+y)D.(x−y)(−x+y)【变式1-3】(2023春·广东茂名·七年级统考期中)下列多项式不是完全平方式的是().+m2+m C.a2+2ab+b2D.t2+4t+4A.x2−4x−4B.14【题型2利用完全平方式确定系数】【例2】(2023春·江苏扬州·七年级统考期末)若将多项式4a2−2a+1加上一个单项式成为一个完全平方式,则这个单项式可以是.(只要写出符合条件的一个)【变式2-1】(2023春·四川达州·七年级校考期中)若x2+2(m−3)x+1是完全平方式,x+n与x+2的乘积中不含x的一次项,则n m的值为.【变式2-2】(2023春·七年级课时练习)若9x2−(k−1)xy+25y2是关于x的完全平方式,则k=.【变式2-3】(2023春·福建泉州·七年级晋江市季延中学校考期中)已知B是含字母x的单项式,要使x2+B+14是完全平方式,那么B=.【题型3乘法公式的计算】【例3】(2023春·云南昭通·七年级校考期末)计算:(1)(2m−n+3p)(2m+3p+n);(2)化简求值:(x−3)(x+3)−(x2−2x+1),其中x=12.【变式3-1】(2023春·山东东营·六年级统考期末)利用整式乘法公式计算.(1)1002−98×102;(2)(a+b+3)(a+b−3);(3)(−2m+3)(−2m−3);x−2y 2.【变式3-2】(2023春·湖南永州·七年级校联考期中)1−1−=.【变式3-3】(2023春·江西抚州·七年级校联考期中)运用乘法公式计算:(1)(2m−3n)(−2m−3n)−(2m−3n)2(2)1002−992+982−972+…+22−12.【题型4利用乘法公式求值】【例4】(2023春·山东济南·七年级统考期末)设a=x−2022,b=x−2024,c=x−2023.若a2+b2 =16,则c2的值是( )A.5B.6C.7D.8【变式4-1】(2023春·广西贵港·七年级校考期末)若x−y−7=0,则代数式x2−y2−14y的值为.【变式4-2】(2023春·湖南永州·七年级校考期中)(1)已知a+1a =3,求a2+1a2的值;(2)已知(a−b)2=9,ab=18,求a2+b2的值.【变式4-3】(2023春·陕西西安·七年级校考期中)已知m满足(3m−2015)2+(2014−3m)2=5.(1)求(2015−3m)(2014−3m)的值.(2)求6m−4029的值.【题型5利用面积法验证乘法公式】【例5】(2023春·七年级课时练习)如图,阴影部分是在边长为a的大正方形中剪去一个边长为b的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形.给出下列2种割拼方法,其中能够验证平方差公式的是()A.①B.②C.①②D.①②都不能【变式5-1】(2023春·山东烟台·六年级统考期末)在下面的正方形分割方案中,可以验证(a+b)2=(a−b)2 +4ab的图形是()A.B.C.D.【变式5-2】(2023春·福建宁德·七年级校联考期中)下列等式不能用如图所示的方形网格验证的是()A.(a+b)2=a2+2ab+b2B.(a+b)(b+c)=ab+ac+b2+bcC.(a+b+c)2=a2+b2+c2+2ab+2ac+2bcD.(a+b)(a−b)=a2−b2【变式5-3】(2023春·江西抚州·七年级统考期末)(1)课本再现:如图1,2是“数形结合”的典型实例,应用“等积法”验证乘法公式.图1验证的是______,图2验证的是______;(2)应用公式计算:①已知x+y=5,xy=−1,求x2+y2的值;②求20222−2021×2023的值.【题型6乘法公式的应用】【例6】(2023春·浙江宁波·七年级校考期中)如图,为了美化校园,某校要在面积为30平方米长方形空地ABCD中划出长方形EBKR和长方形QFSD,若两者的重合部分GFHR恰好是一个边长为3米的正方形,现将图中阴影部分区域作为花圃,若长方形空地ABCD的长和宽分别为m和n,m>n,花圃区域AEGQ和HKCS 总周长为14米,则m-n的值为()A.4米B.7米C.5米D.3.5米【变式6-1】(2023春·陕西西安·七年级校考期中)我们知道,将完全平方公式(a±b)2=a2±2ab+b2适当的变形,可以解决很多数学问题.请你观察、思考,并解决以下问题:(1)若m+n=9,mn=10,求m2+n2的值;(2)如图,一农家乐准备在原有长方形用地(即长方形ABCD)上进行装修和扩建,先用长为120m的装饰性篱笆围起该长方形院子,再以AD、CD为边分别向外扩建正方形ADGH、正方形DCEF的空地,并在两块正方形空地上建造功能性花园,该功能性花园面积和为2000m2,求原有长方形用地ABCD的面积.【变式6-2】(2023春·湖南邵阳·七年级统考期中)如图,某校一块边长为2a m的正方形空地是七年级四个班的清洁区,其中分给七年级(1)班的清洁区是一块边长为(a−2b)m的正方形.(0<2b<a)(1)分别求出七年级(2)班、七年级(3)班的清洁区的面积.(2)七年级(4)班的清洁区的面积比七年级(1)班的清洁区的面积多多少?【变式6-3】(2023春·浙江温州·七年级期中)学校为迎接艺术节,准备在一个正方形空地ABCD上搭建一个表演舞台,如图所示,正中间是“红五月”三个正方形平台.其中“五”字正方形和“月”字正方形边长均为a 米,“红”字正方形边长为b米.Ⅰ号区域布置造型背景,Ⅱ号区域设置为乐队演奏席.(1)用含a,b的代数式表示阴影部分的面积(即Ⅰ和Ⅱ面积之和)并化简;(2)若阴影部分的面积(即Ⅰ和Ⅱ面积之和)为288平方米,且a+b=20米,求“红”字正方形边长b的值.【题型7平方差公式的几何背景】【例7】(2023春·安徽安庆·七年级统考期中)将边长为a的正方形的左上角剪掉一个边长为b的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,将①和②两部分拼成一个长方形(如图2),解答下列问题:(1)设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2,请用含a,b的式子表示:S1=______ ,S2=______ ;(不必化简)(2)由(1)中的结果可以验证的乘法公式是______ ;(3)利用(2)中得到的公式,计算:20232−2022×2024.【变式7-1】(2023春·全国·七年级期末)如图1的两个长方形可以按不同的形式拼成图2和图3两个图形.(1)在图2中的阴影部分的面积S1可表示为;(写成多项式乘法的形式);在图3中的阴影部分的面积S2可表示为;(写成两数平方差的形式);(2)比较图2与图3的阴影部分面积,可以得到的等式是;A.(a+b)2=a2+2ab+b2B.(a+b)(a﹣b)=a2﹣b2C.(a﹣b)2=a2﹣2ab+b2(3)请利用所得等式解决下面的问题:①已知4m2﹣n2=12,2m+n=4,则2m﹣n=;②计算(2+1)(22+1)(24+1)(28+1)×…×(232+1)+1的值,并直接写出该值的个位数字是多少.【变式7-2】(2023春·陕西咸阳·七年级咸阳市秦都中学校考阶段练习)【知识生成】(1)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式,例如:从边长为a的正方形中剪掉一个边长为b的正方形如图1,然后将剩余部分拼成一个长方形如图2.图1中剩余部分的面积为______,图2的面积为______,请写出这个代数恒等式;【知识应用】(2)应用(1)中的公式,完成下面任务:若m是不为0的有理数,已知P=(a+2m)(a−2m),Q=(a+m) (a−m),比较P、Q大小;【知识迁移】(3)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图3表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图3中图形的变化关系,通过计算写出一个代数恒等式.【变式7-3】(2023春·山西大同·七年级统考期中)【实践操作】(1)如图①,在边长为a的大正方形中剪去一个边长为b的小正方形(a>b),把图①中L形的纸片按图②剪拼,改造成了一个大长方形如图③,请求出图③中大长方形的面积;(2)请写出图①、图②、图③验证的乘法公式为:.【应用探究】(3)利用(2)中验证的公式简便计算:499×501+1;(4)计算:1−×1−×1−×…×1−×1−【知识迁移】(5)类似地,我们还可以通过对立体图形进行变换得到代数恒等式如图④,将一个棱长为a的正方体中去掉一个棱长为b的正方体,再把剩余立体图形切割分成三部分如图⑤,利用立体图形的体积,可得恒等式为:a3−b3=.(结果不需要化简)【题型8完全平方公式的几何背景】【例8】(2023春·浙江温州·七年级校联考期中)图1,是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的面积为;(2)观察图2,三个代数式(m+n)2,(m−n)2,mn之间的等量关系是;(3)若x+y=−6,xy=11,则x−y=;(直接写出答案)4【变式8-1】(2023春·七年级课时练习)完全平方公式:(a±b)2=a2±2ab+b2适当的变形,可以解决很多的数学问题.例如:若a+b=3,ab=1,求a2+b2的值.解:因为a+b=3,所以(a+b)2=9,即:a2+2ab+b2=9,又因ab=1,所以a2+b2=7根据上面的解题思路与方法,解决下列问题:(1)若x+y=8,x2+y2=40,则xy的值为______;(2)拓展:若(4−x)x=3,则(4−x)2+x2=______.(3)应用:如图,在长方形ABCD中,AB=20,BC=12,点E、F是BC、CD上的点,且BE=DF=x,分别以FC、CE为边在长方形ABCD外侧作正方形CFGH和正方形CEMN,若长方形CEPF的面积为160,求图中阴影部分的面积和.【变式8-2】(2023春·江苏·七年级期中)【知识生成】通常情况下,通过用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.如图1,在边长为a的正方形中剪掉一个边长为b的小正方形(a>b).把余下的部分沿虚线剪开拼成一个长方形(如图2).图1中阴影部分面积可表示为:a2-b2,图2中阴影部分面积可表示为(a+b)(a-b),因为两个图中的阴影部分面积是相同的,所以可得到等式:a2-b2=(a+b)(a-b);【拓展探究】图3是一个长为2a,宽为2b的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后按图4的形状拼成一个正方形.(1)用两种不同方法表示图4中阴影部分面积:方法1:,方法2:;(2)由(1)可得到一个关于(a+b)2、(a-b)2、ab的的等量关系式是;(3)若a+b=10,ab=5,则(a-b)2=;【知识迁移】(4)如图5,将左边的几何体上下两部分剖开后正好可拼成如右图的一个长方体.根据不同方法表示它的体积也可写出一个代数恒等式:.【变式8-3】(2023春·江苏·七年级期中)【知识生成】用两种不同方法计算同一图形的面积,可以得到一个等式,如图1,是用长为a,宽为b(a>b)的四个相同的长方形拼成的一个大正方形,用两种不同的方法计算阴影部分(小正方形)的面积,可以得到(a−b)2、(a+b)2、ab三者之间的等量关系式:________﹔【知识迁移】类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个等式,如图2,观察大正方体分割,可以得到等式:(a+b)3=a3+b3+3ab(a+b).利用上面所得的结论解答下列问题:(1)已知x+y=6,xy=11,求(x−y)2的值;4(2)已知a+b=6,ab=7,求a3+b3的值.【题型9乘法公式中的新定义问题】【例9】(2023春·河北石家庄·七年级统考期中)新定义:如果a,b都是非零整数,且a=4b,那么就称a 是“4倍数”.验证:嘉嘉说:232−212是“4倍数”,琪琪说:122−6×12+9也是“4倍数”,判断说得对(填“嘉嘉”、“琪琪”或“嘉嘉、琪琪”).【变式9-1】(2023春·浙江金华·七年级统考期末)定义:两个自然数的平方和加上这两个自然数乘积的两倍即可得到一个新的自然数,我们把这个新的自然数称为“完全数”,例如:22+32+2×2×3=25,其中“25”就是一个“完全数”,则任取两个自然数可得到小于200且不重复的“完全数”的个数有( )A.14个B.15个C.26个D.60个【变式9-2】(2023春·广东揭阳·七年级校联考期中)现定义一种运算“⊕”,对任意有理数m,n规定:m⊕n=mn(m−n),如:1⊕2=1×2(1−2)=−2,则(a+b)⊕(a−b)的值是.【变式9-3】(2023春·江苏徐州·七年级统考期中)对于任意有理数a、b、c、d,定义一种新运算:a cb d=a2+b2−cd.(1)12−13=______;(2)对于有理数x、y,若x ky xy是一个完全平方式,则k______;(3)对于有理数x、y,若x+y=10,xy=22.①求2x−y 3x−yy x−y的值;②将长方形ABCD和长方形CEFG按照如图方式进行放置,其中点B、C、G在同一条直线上,点E在边CD上,连接BD、BF.若AD=x,AB=nx,FG=y,EF=ny,图中阴影部分的面积为45,求n的值.【题型10乘法公式的规律探究】【例10】(2023·上海·七年级假期作业)杨辉是我国南宋时著名的数学家,他发现了著名的三角系数表,它的其中一个作用是指导按规律写出形如(a+b)n(其中n为正整数)展开式的系数,请你仔细观察下表中的规律,填出(a+b)4展开式中所缺的系数.=a3+3a2(−b)+3a(−b)2+(−b)3(a+b)1=a+b(a−b)1=a−b(a+b)2=a2+2ab+b2(a−b)2=a2+2a(−b)+(−b)2=a2−2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a−b)3=a3+3a2(−b)+3a(−b)2+(−b)3(1)仔细观察上边的图和下边的式子,写出(a−b)3=___________;(2)直接在横线上填数字:(a+b)4=a4+___________a3b+___________a2b2+___________ab3+___________ b4;(3)请根据你找到的规律写出下列式子的结果:(x−y)5=___________;(2x−y)5=___________.【变式10-1】(2023·安徽合肥·统考模拟预测)观察下列等式:第1个等式:1×2+1=22−1;第2个等式:2×3+2=32−1;第3个等式:3×4+3=42−1;第4个等式:4×5+4=52−1;…按照以上规律,解决下列问题:(1)写出第5个等式: ;(2)写出你猜想的第n个等式(用含n的等式表示,n≥1,且n为整数),并加以证明.【变式10-2】(2023春·安徽合肥·七年级中国科技大学附属中学校考期中)观察下列等式:①32−124=1+1;②42−224=1+2;③52−324=1+3;④62−424=1+4;⑤72−524=1+5……(1)请按以上规律写出第⑥个等式______;(2)猜想并写出第n个等式______;并证明猜想的正确性【变式10-3】(2023春·全国·七年级专题练习)仔细观察下列等式:第1个:52﹣12=8×3第2个:92﹣52=8×7第3个:132﹣92=8×11第4个:172﹣132=8×15…(1)请你写出第6个等式: ;(2)请写出第n个等式,并加以验证;(3)运用上述规律,计算:8×7+8×11+…+8×399+8×403.。
专题1.3 乘法公式【九大题型】(举一反三)(北师大版)(解析版)
专题1.3 乘法公式【九大题型】【北师大版】【题型1 乘法公式的基本运算】 (1)【题型2 利用完全平方式确定系数】 (3)【题型3 乘法公式的运算】 (4)【题型4 利用乘法公式求值】 (6)【题型5 利用面积法验证乘法公式】 (7)【题型6 乘法公式的应用】 (9)【题型7 平方差公式、完全平方公式的几何背景】 (12)【题型8 整式乘法中的新定义问题】 (17)【题型9 整式乘法中的规律探究】 (20)【题型1 乘法公式的基本运算】【例1】(2022春•青川县期末)下列各式中计算正确的是( )A.(a+2b)(a﹣2b)=a2﹣2b2B.(﹣a+2b)(a﹣2b)=a2﹣4b2C.(﹣a﹣2b)(a﹣2b)=﹣a2+4b2D.(﹣a﹣2b)(a+2b)=a2﹣4b2【分析】根据平方差公式对各选项分析判断后利用排除法求解.【解答】解:A、应为(a+2b)(a﹣2b)=a2﹣(2b)2,故本选项错误;B、应为(﹣a+2b)(a﹣2b)=﹣a2+4ab﹣4b2,故本选项错误;C、(﹣a﹣2b)(a﹣2b)=﹣a2+4b2,正确;D、应为(﹣a﹣2b)(a+2b)=﹣a2﹣4ab﹣4b2,故本选项错误.故选:C .【变式1-1】(2022春•六盘水期中)下列各式中能用平方差公式计算的是( )A .(﹣x +2y )(x ﹣2y )B .(3x ﹣5y )(﹣3x ﹣5y )C .(1﹣5m )(5m ﹣1)D .(a +b )(b +a )【分析】根据平方差公式的特征:(1)两个两项式相乘,(2)有一项相同,另一项互为相反数,对各选项分析判断后利用排除法求解.【解答】解:A 、不存在相同的项,不能运用平方差公式进行计算;B 、﹣5y 是相同的项,互为相反项是3x 与﹣3x ,符合平方差公式的要求;C 、不存在相同的项,不能运用平方差公式进行计算;D 、不存在互为相反数的项,不能运用平方差公式进行计算;故选:B .【变式1-2】(2022春•巴中期末)下列运算正确的是( )A .(x +y )(y ﹣x )=x 2﹣y 2B .(﹣x +y )2=﹣x 2+2xy +y 2C .(﹣x ﹣y )2=﹣x 2﹣2xy ﹣y 2D .(x +y )(﹣y +x )=x 2﹣y 2【分析】根据完全平方公式和平方差公式逐个判断即可.【解答】解:A 、结果是y 2﹣x 2,故本选项不符合题意;B 、结果是x 2﹣2xy +y 2,故本选项不符合题意;C 、结果是x 2+2xy +y 2,故本选项不符合题意;D 、结果是x 2﹣y 2,故本选项符合题意.【变式1-3】(2022秋•天心区校级期中)下列各式中,能用完全平方公式计算的是( )A .(a ﹣b )(﹣b ﹣a )B .(﹣n 2﹣m 2)(m 2+n 2)C .(−12p +q)(q +12p)D .(2x ﹣3y )(2x +3y )【分析】A 、原式利用平方差公式化简得到结果,不合题意;B 、原式第一个因式提取﹣1变形后利用完全平方公式计算得到结果,符合题意;C 、原式利用平方差公式化简得到结果,不合题意;D 、原式利用平方差公式化简得到结果,不合题意.【解答】解:A 、原式=b 2﹣a 2,本选项不合题意;B 、原式=﹣(m 2+n 2)2,本选项符合题意;C、原式=q2−1p2,本选项不合题意;4D、原式=4x2﹣9y2,本选项不合题意,故选:B.【题型2 利用完全平方式确定系数】【例2】(2022秋•望城区期末)若二项式x2+4加上一个单项式后成为一个完全平方式,则这样的单项式共有( )A.1个B.2个C.3个D.5个【分析】本题考查运用完全平方式进行因式分解的能力,式子x2和4分别是x和2的平方,可当作首尾两项,根据完全平方公式可得中间一项为加上或减去x和2的乘积的2倍,即±4x,同时还应看到x2+4加上﹣4或﹣x2或x4后也可分别构成完全平方式,所以可加的单项式共有5个.16等5个.【解答】解:可添加±4x,﹣4,﹣x2或x416故选:D.【变式2-1】(2022•南通模拟)如果多项式x2+2x+k是完全平方式,则常数k的值为( )A.1B.﹣1C.4D.﹣4【分析】根据完全平方公式的乘积二倍项和已知平方项先确定出另一个数是1,平方即可.【解答】解:∵2x=2×1•x,∴k=12=1,故选A.【变式2-2】(2022秋•青县期末)若9x2﹣(K﹣1)x+1是关于x的完全平方式,则常数K的值为( )A.0B.﹣5或7C.7D.9【分析】根据完全平方式的定义解决此题.【解答】解:9x2﹣(K﹣1)x+1=(3x)2﹣(K﹣1)x+12.∵9x2﹣(K﹣1)x+1是关于x的完全平方式,∴9x2﹣(K﹣1)x+1=(3x)2±2•3x•1+12=(3x)2±6x+12.∴﹣(K﹣1)=±6.当﹣(K﹣1)=6时,K=﹣5.当﹣(K﹣1)=﹣6时,K=7.综上:K=﹣5或7.故选:B .【变式2-3】(2022秋•崇川区校级月考)(x +a )(x +b )+(x +b )(x +c )+(x +c )(x +a )是完全平方式,则a ,b ,c 的关系可以写成( )A .a <b <cB .(a ﹣b )2+(b ﹣c )2=0C .c <a <bD .a =b ≠c【分析】先把原式展开,合并,由于它是完全平方式,故有3x 2+2(a +b +c )x +(ab +bc +ac )=(a +b +c )]2,化简有ab +bc +ac =a 2+b 2+c 2,那么就有(a ﹣b )2+(b ﹣c )2+(c ﹣a )2=0,三个非负数的和等于0,则每一个非负数等于0,故可求a =b =c .故选答案B .【解答】解:原式=3x 2+2(a +b +c )x +(ab +bc +ac ),∵(x +a )(x +b )+(x +b )(x +c )+(x +c )(x +a )是完全平方式,∴3x 2+2(a +b +c )x +(ab +bc +ac )=+a +b +c )]2,∴ab +bc +ac =13(a +b +c )2=13(a 2+b 2+c 2+2ab +2ac +2bc ),∴ab +bc +ac =a 2+b 2+c 2,∴2(ab +bc +ac )=2(a 2+b 2+c 2),即(a ﹣b )2+(b ﹣c )2+(c ﹣a )2=0,∴a ﹣b =0,b ﹣c =0,c ﹣a =0,∴a =b =c .故选:B .【题型3 乘法公式的运算】【例3】(2022春•龙胜县期中)计算:(1−152)×(1−162)×(1−172)×…×(1−1992)×(1−11002)的结果是( )A .101200B .101125C .101100D .1100【分析】根据a 2﹣b 2=(a ﹣b )(a +b )展开,中间的数全部约分,只剩下第一个数和最后一个数相乘,从而得出答案.【解答】解:原式=(1−15)×(1+15)×(1−16)×(1+16)×(1−17)×(1+17)×…×(1−199)×(1+199)×(1−1100)×(1+1100)=45×65×56×76×67×87×⋯×9899×10099×99100×101100=45×101100=101125.故选:B.【变式3-1】(2022秋•碾子山区期末)先化简,再求值:(2x﹣y)(y+2x)﹣(2y+x)(2y﹣x),其中x =1,y=2.【分析】利用平方差公式展开并合并同类项,然后把x、y的值代入进行计算即可得解.【解答】解:(2x﹣y)(y+2x)﹣(2y+x)(2y﹣x),=4x2﹣y2﹣(4y2﹣x2),=4x2﹣y2﹣4y2+x2,=5x2﹣5y2,当x=1,y=2时,原式=5×12﹣5×22=5﹣20=﹣15.【变式3-2】(2022春•乳山市期末)用乘法公式进行计算:(1)20192﹣2018×2020;(2)112+13×66+392.【分析】平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差;完全平方公式:(a+b)2=a2+2ab+b2.【解答】解:(1)20192﹣2018×2020=20192﹣(2022﹣1)×(2022+1)=20192﹣(20222﹣1)=1;(2)112+13×66+392=112+13×2×3×11+392=112+2×11×39+392=(11+39)2=502=2500.【变式3-3】(2022春•顺德区校级月考)计算:(2+1)(22+1)(24+1)…(264+1)【分析】原式变形后,利用平方差公式计算即可得到结果.【解答】解:原式=(2﹣1)(2+1)(22+1)(24+1)…(264+1)=(22﹣1)(22+1)(24+1)…(264+1)=(24﹣1)(24+1)…(264+1)=…=(264﹣1)(264+1)=2128﹣1.【题型4 利用乘法公式求值】【例4】(2022秋•九龙坡区校级期中)若a 2﹣b 2=16,(a +b )2=8,则ab 的值为( )A .−32B .32C .﹣6D .6【分析】根据a 2﹣b 2=16得到(a +b )2(a ﹣b )2=256,再由(a +b )2=8,求出(a ﹣b )2=32,最后根据ab 【解答】解:∵a 2﹣b 2=16,∴(a +b )(a ﹣b )=16,∴(a +b )2(a ﹣b )2=256,∵(a +b )2=8,∴(a ﹣b )2=32,∴ab ==8−324=−6,故选:C .【变式4-1】(2022春•姜堰区校级月考)已知4m +n =90,2m ﹣3n =10,求(m +2n )2﹣(3m ﹣n )2的值.【分析】原式利用平方差公式分解,变形后将已知等式代入计算即可求出值.【解答】解:∵4m +n =90,2m ﹣3n =10,∴(m +2n )2﹣(3m ﹣n )2=[(m +2n )+(3m ﹣n )][(m +2n )﹣(3m ﹣n )]=(4m +n )(3n ﹣2m )=﹣900.【变式4-2】(2022春•双峰县期中)若x 、y 满足x 2+y 2=54,xy =−12,求下列各式的值.(1)(x +y )2(2)x 4+y 4.【分析】(1)原式利用完全平方公式化简,将各自的值代入计算即可求出值;(2)原式利用完全平方公式变形,将各自的值代入计算即可求出值.【解答】解:(1)∵x 2+y 2=54,xy =−12,∴原式=x 2+y 2+2xy =54−1=14;(2)∵x 2+y 2=54,xy =−12,∴原式=(x 2+y 2)2﹣2x 2y 2=2516−12=1716.【变式4-3】(2022春•包河区期中)已知(2022﹣m )(2022﹣m )=2021,那么(2022﹣m )2+(2022﹣m )2的值为( )A .4046B .2023C .4042D .4043【分析】利用完全平方公式变形即可.【解答】解:∵(a ﹣b )2=a 2﹣2ab +b 2,∴a 2+b 2=(a ﹣b )2+2ab .∴(2022﹣m )2+(2022﹣m )2=[(2022﹣m )﹣(2022﹣m )]2+2×(2022﹣m )(2022﹣m )=4+2×2021=4046.故选:A .【题型5 利用面积法验证乘法公式】【例5】(2022春•新泰市期末)将图甲中阴影部分的小长方形变换到图乙位置,你能根据两个图形的面积关系得到的数学公式是( )A.(a﹣b)(a+b)=a2﹣b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(2a﹣b)2=4a2﹣4ab+b2【分析】利用两个图形面积之间的关系进行解答即可.【解答】解:如图,图甲中①、②的总面积为(a+b)(a﹣b),图乙中①、②的总面积可以看作两个正方形的面积差,即a2﹣b2,因此有(a+b)(a﹣b)=a2﹣b2,故选:A.【变式5-1】(2022春•乐平市期末)如图所示,两次用不同的方法计算这个图的面积,可验证整式乘法公式是( )A.(a+b)(a﹣b)=a2﹣b2B.(a+b)(a+2b)=a2+3ab+2b2C.(a+b)2=a2+2ab+b2D.(a﹣b)2=a2﹣2ab+b2【分析】用代数式表示各个部分以及总面积即可得出答案.【解答】解:大正方形的边长为a+b,因此面积为(a+b)2,四个部分的面积分别为a2、ab、ab、b2,由面积之间的关系得,(a+b)2=a2+2ab+b2,故选:C.【变式5-2】(2022春•锦州期末)如图1,在边长为a的大正方形中,剪去一个边长为3的小正方形,将余下的部分按图中的虚线剪开后,拼成如图2所示的长方形,根据两个图形阴影部分面积相等的关系,可验证的等式为( )A.(a﹣3)2=a2﹣6a+9B.(a+3)2=a2+6a+9C.a(a+3)=a2+3a D.(a+3)(a﹣3)=a2﹣9【分析】用代数式分别表示图1、图2中阴影部分的面积即可.【解答】解:图1中,阴影部分的面积可以看作是两个正方形的面积差,即a2﹣32=a2﹣9,图2是长为a+3,宽为a﹣3的长方形,因此面积为(a+3)(a﹣3),所以有(a+3)(a﹣3)=a2﹣9,故选:D.【变式5-3】(2022•郫都区模拟)如图,在边长为(x+a)的正方形中,剪去一个边长为a的小正方形,将余下部分对称剪开,拼成一个平行四边形,由左右两个阴影部分面积,可以得到一个恒等式是( )A.(x+a)2﹣a2=x(x+2a)B.x2+2ax=x(x+2a)C.(x+a)2﹣x2=a(a+2x)D.x2﹣a2=(x+a)(x﹣a)【分析】根据阴影部分面积相等得到恒等式即可.【解答】解:第一幅图阴影部分面积=(x+a)2﹣a2,第二幅图阴影部分面积=(x+a+a)x=x(x+2a),∴(x+a)2﹣a2=x(x+2a),故选:A.【题型6 乘法公式的应用】【例6】(2022春•榆次区期中)如图1,从边长为(a+5)cm的大正方形纸片中剪去一个边长为(a+2)cm 的小正方形,剩余部分(如图2)沿虚线剪开,按图3方式拼接成一个长方形(无缝隙不重合)则该长方形的面积为( )A.9cm2B.(6a﹣9)cm2C.(6a+9)cm2D.(6a+21)cm2【分析】由图形可知长方形的长为两正方形的和,宽为两长方形的差,据此可得答案.【解答】解:根据题意,长方形的面积为[(a+5)+(a+2)][(a+5)﹣(a+2)]=3(2a+7)=(6a+21)cm,故选:D.【变式6-1】(2022秋•西峰区期末)如图,正方形ABCD和正方形和MFNP重叠,其重叠部分是一个长方形,分别延长AD、CD,交NP和MP于H、Q两点,构成的四边形NGDH和MEDQ都是正方形,四边形PQDH是长方形.若正方形ABCD的边长为x,AE=10,CG=20,长方形EFGD的面积为200.求正方形MFNP的面积(结果必须是一个具体数值).【分析】设DE=a,DG=b,则a=x﹣10,b=x﹣20,a﹣b=10,又由ab=200,所以正方形MFNP的面积为(a+b)2=(a﹣b)2+4ab=900.【解答】解:)设DE=a,DG=b,则a=x﹣10,b=x﹣20,a﹣b=10,又由ab=200,∴正方形MFNP的面积为:(a+b)2=(a﹣b)2+4ab=102+4×200=900.【变式6-2】(2022春•湖州期末)如图,把一块面积为100的大长方形木板被分割成2个大小一样的大正方形①,1个小正方形②和2个大小一样的长方形③后,如图摆放,且每个小长方形③的面积为16,则标号为②的正方形的面积是( )A.16B.14C.12D.10【分析】设标号为①的正方形的边长为x,标号为②的正方形的边长为y,根据图形及已知条件可将③长方形的长和宽表示出来,再根据每个小长方形的面积均为16及大长方形的面积为100,得出x2与y2的数量关系,然后解得y2即可.【解答】解:设标号为①的正方形的边长为x,标号为②的正方形的边长为y,则标号为③的长方形长为(x+y),宽为(x﹣y),∵每个小长方形③的面积均为16,∴(x+y)(x﹣y)=16,∴x2﹣y2=16,∴x2=16+y2∵大长方形的长等于标号为③的小长方形的长与标号为①的正方形的边长的和,宽等于标号为③的小长方形的宽与标号为①的正方形的边长的和,∴大长方形的长为:[(x+y)+x]=2x+y,宽为:[(x﹣y)+x]=2x﹣y,∵大长方形的面积为100,∴(2x+y)(2x﹣y)=100,∴4x2﹣y2=100,∴4(16+y2)﹣y2=100,∴y2=12,即标号为②的正方形的面积为y2=12.故选:C.【变式6-3】(2022秋•香坊区校级期中)如图,我校一块边长为2x米的正方形空地是八年级1﹣4班的卫生区,学校把它分成大小不同的四块,采用抽签的方式安排卫生区,下图是四个班级所抽到的卫生区情况,其中1班的卫生区是一块边长为(x﹣2y)米的正方形,其中0<2y<x.(1)分别用x、y的式子表示八年3班和八年4班的卫生区的面积;(2)求2班的卫生区的面积比1班的卫生区的面积多多少平方米?【分析】(1)结合图形、根据平方差公式计算即可;(2)根据图形分别表示出2班的卫生区的面积和1班的卫生区,根据平方差公式和完全平方公式化简、求差即可.【解答】解:(1)八年3班的卫生区的面积=(x﹣2y)[2x﹣(x﹣2y)]=x2﹣4y2;八年4班的卫生区的面积=(x﹣2y)[2x﹣(x﹣2y)]=x2﹣4y2;(2)[2x﹣(x﹣2y)]2﹣(x﹣2y)2=8xy.答:2班的卫生区的面积比1班的卫生区的面积多8xy平方米.【题型7 平方差公式、完全平方公式的几何背景】【例7】(2008秋•上海校级期中)我们已经知道利用图形中面积的等量关系可以得到某些数学公式,如图一,我们可以得到两数差的完全平方公式:(a﹣b)2=a2﹣2ab+b2(1)请你在图二中,标上相应的字母,使其能够得到两数和的完全平方公式(a+b)2=a2+2ab+b2,(2)图三是边长为a的正方形中剪去一个边长为b的小正方形,剩下部分拼成图四的形状,利用这两幅图形中面积的等量关系,能验证公式 a2﹣b2=(a+b)(a﹣b) ;(3)除了拼成图四的图形外还能拼成其他的图形能验证公式成立,请试画出一个这样的图形,并标上相应的字母.【分析】(1)此题只需将大正方形的边长表示为a,小正方形的边长表示为b即可,(2)此题只需将两个图形的面积表示出来写成等式即可;(3)此题还可以拼成一个矩形来验证公式的成立.【解答】解:(1).(2a+2b)(a﹣b)=(a+b)(a﹣b)(2)根据两图形求得两图形的面积分别为:S1=a2﹣b2;S2=12(3)拼成的图形如下图所示:【变式7-1】(2022春•西城区校级期中)阅读学习:数学中有很多恒等式可以用图形的面积来得到.如图1,可以求出阴影部分的面积是a2﹣b2;如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的长是a+b,宽是a﹣b,比较图1,图2阴影部分的面积,可以得到恒等式(a+b)(a﹣b)=a2﹣b2.(1)观察图3,请你写出(a+b)2,(a﹣b)2,ab之间的一个恒等式 (a﹣b)2=(a+b)2﹣4ab .(2)观察图4,请写出图4所表示的代数恒等式: (2a+b)(a+b)=2a2+3ab+b2 .(3)现有若干块长方形和正方形硬纸片如图5所示,请你用拼图的方法推出一个恒等式(a+b)2=a2+2ab+b2,仿照图4画出你的拼图并标出相关数据.【分析】(1)利用完全平方公式找出(a+b)2、(a﹣b)2、ab之间的等量关系即可;(2)根据面积的两种表达方式得到图4所表示的代数恒等式;(3)由已知的恒等式,画出相应的图形即可.【解答】解:(1)(a+b)2,(a﹣b)2,ab之间的一个恒等式(a﹣b)2=(a+b)2﹣4ab.(2)图4所表示的代数恒等式:(2a+b)(a+b)=2a2+3ab+b2.(3)如图所示:故答案为:(a﹣b)2=(a+b)2﹣4ab;(2a+b)(a+b)=2a2+3ab+b2.【变式7-2】(2022春•武侯区校级期中)[知识生成]通常,用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.例如:如图①是一个长为2a,宽为2b的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的形状拼成一个正方形.请解答下列问题:(1)观察图②,请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是 (a+b)2﹣(a﹣b)2=4ab ;(2)根据(1)中的等量关系解决如下问题:若x+y=6,xy=11,求(x﹣y)2的值;[知识迁移]类似地,2用两种不同的方法计算同一几何体的体积,也可以得到一个恒等式.(3)根据图③,写出一个代数恒等式: (a+b)3=a3+3a2b+3ab2+b3 ;(4)已知a+b=3,ab=1【分析】(1)观察图②大正方形面积减中间小正方形面积等于4个长方形面积;(2)灵活利用上题得出的结论,灵活计算求解.(3)利用两种方式求解长方体的体积,得出关系式.(4)利用上题得出得关系式,进行变换,最终求出答案.【解答】解:(1)用两种方法表示出4个长方形的面积:即大正方形面积减中间小正方形面积等于4个长方形面积,可得:(a+b)2﹣(a﹣b)2=4ab,(2)由题(1)可知:(x+y)2﹣(x﹣y)2=4xy,=14.∴﹣(x﹣y)2=(x+y)2﹣4xy=36﹣4×112(3)利用两种方式求解长方体得体积,即可得出关系式:(a+b)3=a3+3a2b+3ab2+b3.(4)由(3)可知a3+b3=(a+b)3﹣3a2b﹣3ab2=(a+b)3﹣3ab(a+b),把a+b=3,ab=1代入得:a3+b3=33﹣3×1×3=18.9.【变式7-3】(2022春•贺兰县期中)在前面的学习中,我们通过对同一面积的不同表达和比较,利用图①和图②发现并验证了平方差公式和完全平方公式,不仅更清晰地“看到”公式的结构,同时感受到这样的抽象代数运算也有直观的背景.这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.请你利用上述方法解决下列问题:(1)请写出图(1)、图(2)、图(3)所表示的代数恒等式(2)试画出一个几何图形,使它的面积能表示(x+y)(x+3y)=x2+4xy+3y2【拓展应用】提出问题:47×43,56×54,79×71,……是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?几何建模:用矩形的面积表示两个正数的乘积,以47×43为例:(1)画长为47,宽为43的矩形,如图③,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形的上面.(2)分析:几何建模步骤原矩形面积可以有两种不同的表达方式,47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.请你参照上述几何建模步骤,计算57×53.要求画出示意图,写出几何建模步骤(标注有关线段)归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述): 十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果 证明上述速算方法的正确性.【分析】(1)利用面积法即可解决问题;(2)模仿例题,构建几何模型,利用面积法计算即可;拓展应用:模仿例题计算57×53即可;探究规律,利用规律解决问题即可;【解答】解:(1)图(1)所表示的代数恒等式:(x+y)•2x=2x2+2xy,图(2)所表示的代数恒等式:(x+y)(2x+y)=2x2+3xy+y2图(3)所表示的代数恒等式:(x+2y)(2x+y)=2x2+5xy+2y2.(2)几何图形如图所示:拓展应用:(1)①几何模型:②用文字表述57×53的速算方法是:十位数字5加1的和与5相乘,再乘以100,加上个位数字3与7的积,构成运算结果;即57×53=(50+10)×50+3×7=6×5×100+3×7=3021;十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;故答案为十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;【题型8 整式乘法中的新定义问题】【例8】(2022春•嘉兴期中)定义:对于三个不是同类项的单项式A,B,C,若A+B+C可以写成(a+b)2的形式,则称这三项为“完全搭配项”,若单项式x2,4和m是完全搭配项,则m可能是 4x或﹣4x或116x 4 .(写出所有情况)【分析】分为三种情况:①m 为第二项时,②当m 为第一项时,根据完全平方式求出m 即可.【解答】解:①x 2±4x +4,此时m =±4x ,②(14x 2)2+x 2+4,此时m =(14x 2)2=116x 4,故答案为:4x 或﹣4x 或116x 4.【变式8-1】(2022春•成华区月考)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4、12、20都是这种“神秘数”.(1)28和2012这两个数是“神秘数”吗?试说明理由;(2)试说明神秘数能被4整除;(3)两个连续奇数的平方差是神秘数吗?试说明理由.【分析】(1)根据“神秘数”的定义,只需看能否把28和2012这两个数写成两个连续偶数的平方差即可判断;(2)运用平方差公式进行计算,进而判断即可;(3)运用平方差公式进行计算,进而判断即可.【解答】解:(1)是,理由如下:∵28=82﹣62,2012=5042﹣5022,∴28是“神秘数”;2012是“神秘数”;(2)“神秘数”是4的倍数.理由如下:(2k +2)2﹣(2k )2=(2k +2+2k )(2k +2﹣2k )=2(4k +2)=4(2k +1),∴“神秘数”是4的倍数;(3)设两个连续的奇数为:2k +1,2k ﹣1,则(2k +1)2﹣(2k ﹣1)2=8k ,而由(2)知“神秘数”是4的奇数倍,不是偶数倍,但8不是4的偶数倍,所以两个连续的奇数的平方差不是神秘数.【变式8-2】(2022春•博山区期末)定义:如果一个正整数能表示为两个连续正奇数的平方差,那么称这个正整数为:“奇异数”.如8,16,24都是“奇异数”.(1)写出两个奇异数(8,16,24除外);(2)试问偶数6050是不是奇异数?为什么?【分析】(1)根据奇异数的定义判断即可;(2)偶数6050不是奇异数,根据两个连续正奇数的平方差,即(n+2)2﹣n2=6050,求出n的值,判断即可.【解答】解:(1)奇异数可以为32,40;(2)不是奇异数,理由为:假设偶数6050为奇异数,即为两个连续正奇数的平方差,可设(n+2)2﹣n2=6050,分解因式得:2(2n+2)=6050,解得:n=1511.5,可得n不是奇数,不符合题意,则偶数6050不是奇异数.【变式8-3】(2022•永川区模拟)如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”,否则称这个正整数为“非智慧数”.例如:22﹣12=3;32﹣22=5;32﹣12=8;42﹣32=7;42﹣22=12;42﹣12=15;…,等等.因此3,5,8,…,都是“智慧数”;而1,2,4,…,都是“非智慧数”.对于“智慧数”,有如下结论:①设k为正整数(k≥2),则k2﹣(k﹣1)2=2k﹣1.∴除1以外,所有的奇数都是“智慧数”;②设k为正整数(k≥3),则k2﹣(k﹣2)2= 4(k﹣1) .∴都是“智慧数”.(1)补全结论②中的空缺部分;并求出所有大于5而小于20的“非智慧数”;(2)求出从1开始的正整数中从小到大排列的第103个“智慧数”.【分析】(1)由平方差公式即可得出答案,根据①②的结论除去奇数及4的正整数倍数,即可得所有大于5而小于20的“非智慧数”;(2)根据①②可判断出在1,2,3,4四个数中,只有1个“智慧数”3;k为正整数时,则4k+1,4k+3是奇数,4k+2,4k+4是偶数,而4k+2是“非智慧数”,4k+1,4k+3,4k+4是“智慧数“.从而根据循环规律判断出结果.【解答】解:(1)k2﹣(k﹣2)2=(k+k﹣2)(k﹣k+2)=2(2k﹣2)=4(k﹣1);智慧数是除4以外,所有4的正整数倍数.根据①,除去奇数:7,9,11,13,15,17,19;根据②,除去4的正整数倍数:8,12,16.则所有大于5而小于20的“非智慧数”有:6,10,14,18.(2)在1,2,3,4四个数中,只有1个“智慧数”3.当k为正整数时,则4k+1,4k+3是奇数,4k+2,4k+4是偶数,而4k+2是“非智慧数”,4k+1,4k+3,4k+4是“智慧数”.∴在从1开始的正整数中前4个正整数只有3为“智慧数”,此后每连续4个数中有3个“智慧数”.∵100=1+3×33,∴4×(33+1)=136.又∵136后面的3个“智慧数”为137,139,140,∴从1开始的正整数中从小到大排列的第103个“智慧数”是140.【题型9 整式乘法中的规律探究】【例9】(2022春•江阴市期中)观察下列各式(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1……根据规律计算:(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1的值为( )DA.22019﹣1B.﹣22019﹣1C.22019−13【分析】先计算(﹣2﹣1)[(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1]=(﹣2)2019﹣1,然后再计算所给式子.【解答】解:∵(﹣2﹣1)[(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1],=(﹣2)2019﹣1,=﹣22019﹣1,∴(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1=故选:D.【变式9-1】(2022•丰顺县校级开学)解答下列问题.(1)观察下列各式并填空:32﹣12=8×1;52﹣32=8×2;①72﹣52=8× 3 ;②92﹣ 7 2=8×4;③ 112 ﹣92=8×5;④132﹣ 11 2=8× 6 ;…(2)通过观察、归纳,请你用含字母n(n为正整数)的等式表示上述各式所反映的规律;(3)你能运用平方差公式来说明(2)中你所写规律的正确性吗?【分析】(1)观察算式,补全空白即可;(2)观察算式,归纳总结得到一般性规律,写出即可;(3)利用平方差公式证明即可.【解答】解:(1)观察下列算式:32﹣12=8×1;52﹣32=8×2;①72﹣52=8×3;②92﹣72=8×4;③112﹣92=8×5;④132﹣112=8×6;…故答案为:3,7,112,11,6;(1)通过观察归纳,猜想第n个式子为(2n+1)2﹣(2n﹣1)2=8n;(2)证明:(2n+1)2﹣(2n﹣1)2=[(2n+1)+(2n﹣1)][(2n+1)﹣(2n﹣1)]=4n•2=8n,所以(2n+1)2﹣(2n﹣1)2=8n得证.【变式9-2】(2022秋•肥城市期中)我们知道,1+2+3+…+n=n(n1),关于这个公式的推导方法,有很多,2比如说小高斯的故事.下面我们利用以前学过的公式,给出另外一种推导方法:首先,我们知道:(n+1)2=n2+2n+1,变形一下,就是(n+1)2﹣n2=2n+1,依次给n一些特殊的值:1,2,3,…,我们就能得到下面一列式子:22﹣12=2×1+1;32﹣22=2×2+1;42﹣32=2×3+1;…(n+1)2﹣n2=2×n+1;观察这列式子,如果把它们所有的等式两端左右相加,抵消掉对应的项,我们可以得到(n+1)2﹣12=2×(1+2+3+…+n)+n,观察这个式子,等式右边小括号内的式子,不就是我们要求的吗?把它记为S就是:(n+1)2﹣12=2×S+n,.把S表示出来,得到:S=1+2+3+…+n=n(n1)2用这个思路,可以求很多你以前不知道的和,请你仿照这个推导思路,推导一下S=12+22+32+…+n2的值.【分析】根据已知等式得到n3﹣(n﹣1)3=3n2﹣3n+1公式的n的式子,相加推导出12+22+32+42+…+n2的公式.【解答】解:∵n3﹣(n﹣1)3=3n2﹣3n+1,∴当式中的n从1、2、3、依次取到n时,就可得下列n个等式:13﹣03=3﹣3+1,23﹣13=3×22﹣3×2+1,33﹣23=3×32﹣3×3+1,…,n3﹣(n﹣1)3=3n2﹣3n+1,将这n个等式的左右两边分别相加得:n3=3×(12+22+32+…+n2)﹣3×(1+2+3+…+n)+n,n(n+1)(2n+1).即12+22+32+42+…+n2==16【变式9-3】(2022春•漳浦县期中)你能化简(a﹣1)(a99+a98+a97+…+a2+a+1)吗?我们不妨先从简单情况入手,发现规律,归纳结论.(1)先填空:(a﹣1)(a+1)= a2﹣1 ;(a﹣1)(a2+a+1)= a3﹣1 ;(a﹣1)(a3+a2+a+1)= a4﹣1 ;…由此猜想:(a﹣1)(a99+a98+a97+…+a2+a+1)= a100﹣1 (2)利用这个结论,你能解决下面两个问题吗?①求2199+2198+2197+…+22+2+1的值;②若a5+a4+a3+a2+a+1=0,则a6等于多少?【分析】(1)利用多项式乘以多项式法则计算得到结果,归纳总结得到一般性规律,即可确定出结果;(2)利用得出的结果将原式变形,计算即可得到结果.【解答】解:(1)a2﹣1;a3﹣1;a4﹣1;a100﹣1;故答案为:a2﹣1;a3﹣1;a4﹣1;a100﹣1;(2)①(2﹣1)(2199+2198+2197+…+22+2+1)=2200﹣1,由于2﹣1=1,则2199+2198+2197+…+22+2+1=2200﹣1;②∵a6﹣1=(a﹣1)(a5+a4+a3+a2+a+1)=0,∴a6=1.。
乘法公式定理(题型扩展)
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 (a+b)(a 2-ab+b 2)=a 3+b 3 (a-b)(a 2+ab+b 2)=a 3-b 3归纳小结公式的变式,准确灵活运用公式: ① 位置变化,x y y x x 2y 2 ② 符号变化,x y x y x 2y 2 x 2y 2③ 指数变化,x 2y 2x 2y 2x 4y 4 ④ 系数变化,2a b 2a b 4a 2b 2 ⑤ 换式变化,xy z m xy z mxy 2z m 2 x 2y 2z m z m x 2y 2z 2zm zm m 2 x 2y 2z 22zm m 2⑥ 增项变化,x y z x y zx y 2z 2 x y x y z 2 x 2xy xy y 2z 2 x 22xy y 2z 2⑦ 连用公式变化,x y x y x 2y 2x 2y 2x 2y 2 x 4y 4⑧ 逆用公式变化,x y z 2x y z 2x y zx y zx y z x y z2x 2y 2z 4xy 4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
乘法公式的应用与推导
乘法公式的应用与推导乘法是数学中基本的运算之一,而乘法公式则是在乘法运算中常被用到的一些特殊公式。
在本文中,我们将探讨乘法公式的应用以及推导过程。
一、乘法公式的应用乘法公式在数学中的应用非常广泛,尤其是在代数、几何和物理等领域。
以下是一些常见的乘法公式应用:1. 二项式定理二项式定理是乘法公式的一个重要应用,在代数中经常被使用。
它可以用来展开二项式的幂,形式如下:(a + b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b + C(n, 2)a^(n-2)b^2 + ... + C(n, n)b^n其中,C(n, k)表示从n个元素中选取k个元素的组合数。
2. 高中数学中的三角函数公式在高中数学中,我们经常会遇到一些三角函数的乘法公式,如正弦定理、余弦定理等。
这些公式的应用可以帮助我们解决与三角函数相关的各种问题,如计算角度、边长等。
3. 几何中的面积和体积计算在几何学中,我们常常需要计算各种图形的面积和体积。
乘法公式可以帮助我们计算复杂图形的面积和体积,如长方体、圆柱体等。
通过将长度、宽度和高度相乘,我们能够得到物体的体积。
二、乘法公式的推导过程乘法公式的推导通常基于递归关系或组合数学的原理。
以下是一些常见的乘法公式的推导过程:1. 二项式定理的推导二项式定理的推导可以通过使用组合数学中的组合公式来完成。
假设我们要将一个二项式展开成多项式,我们可以使用组合公式来求解每一项的系数。
具体来说,我们可以使用组合数来表示每一项的系数,然后将它们与相应的幂相乘,最终得到展开后的多项式。
2. 正弦和余弦的乘法公式的推导正弦和余弦的乘法公式可以通过使用欧拉公式和复数的表示来推导。
具体来说,我们可以将正弦和余弦用欧拉公式表示,然后将它们相乘并使用欧拉公式的性质进行变换,最终得到乘法公式。
3. 长方体体积的推导长方体体积的推导可以通过将长度、宽度和高度相乘来获得。
这个推导过程非常直观,我们可以将长方体看作由多个小立方体组成,每个小立方体的体积都是边长的乘积,最终将它们相加即可得到长方体的体积。
整式乘法(学生版)知识点+经典例题+题型归纳
1 / 2整式的乘法基础知识22222()(,,)()()()():()()()2m n m n m n mn n n n a a a a a m n a b ab a b m a b ma mb m n a b ma mb na nb a b a b a b a b a ab b +⎧⎫⋅⎪⎪=⎨⎬⎪⎪=⋅⎩⎭⨯⎧⎪⨯+=+⨯++=+++⎨⎧+-=-⎪−−−→⎨±=±+⎪⎩特殊的=幂的运算法则为正整数,可为一个单项式或一个式项式单项式单项式单项式多项式:多项式多项式:整式的乘法平方差公式 乘法公式完全平方公式:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩互逆 22222()():2()a b a b a b a ab b a b ⎧⎪⎧⎪⎪⎪⎧-=+-⎨⎨⎪⎨⎪⎪±+=±⎪⎩⎩⎪⎪⎩因式分解的意义提公因式法因式分解因式分解的方法平方差公式:运用公式法完全平方公式因式分解的步骤一、幂的运算经典例题【例1】(正确处理运算中的“符号”)【例2】下列各式计算正确的是( ) A 、()66322b a b a =- B 、()5252b a b a -=-C 、124341b a ab =⎪⎭⎫ ⎝⎛-D 、462239131b a b a =⎪⎭⎫⎝⎛-【例3】()()1333--⋅+-m m的值是( )A 、1B 、-1C 、0D 、()13+-m【例4】(1)m m 8812÷+; (2)252m÷(51)1-2m二、整式的乘法【例1】(1)()()25434x y xy -= 。
(2)()2004200324-⨯= 。
【例2】()()22323225x yx y z xy z -⨯+= 。
【例3】a 2 (a +b)(a -2) 。
【例4】()72=+b a ,()42=b a —,求22b a +和ab 的值.【例5】计算()()11a b a b +-++的值【例6】已知:15a a +=,则221a a+= 。
小学数学公式定理大全
小学数学公式定理大全加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a±b)×c=a×c±b×c除法的性质:a÷b÷c=a÷(b×c)(b≠0,c≠0)商不变规律:a÷b=(a×c)÷(b×c)(b≠0,c≠0)a÷b=(a÷c)÷(b÷c)(b≠0,c≠0)等式的性质:如果a=b那么a±c=b±ca×c=b×ca÷c=b÷c(c≠0)分数的基本性质:a b =a×c b×c (b ≠0,c ≠0) a b =a÷c b÷c(b ≠0,c ≠0)比的意义:a : b =c (b ≠0)前项 比号 后项 比值比的基本性质:a:b=(a ×c):(b ×c )(b ≠0,c ≠0) a:b=(a ÷c):(b ÷c )(b ≠0,c ≠0) 比、除法、分数的关系:a:b=a ÷b=ab (b ≠0,c ≠0) 比例的意义:a :b=c :d (b ≠0,d ≠0)比例的性质:a :b=c :d →ad=bc (b ≠0,d ≠0) a b =cd →ad=bc (b ≠0,d ≠0)正方形的周长=边长×4C=4a正方形的面积=边长×边长S =a2长方形的周长=(长+宽)×2C=2(a+b)长方形的面积=长×宽S= ab 平行四边形的面积=底×高S=ah 三角形的面积=底×高÷2S=ah ÷2梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2正方体的表面积=棱长×棱长×6S= 6a2长方体的表面积=(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)正方体的体积=棱长×棱长×棱长V=a3长方体的体积=长×宽×高=底面积×高V=abh =Sh圆的周长=直径×圆周率=半径×2×圆周率C=πd=2πr圆的面积=圆周率×半径2S = πr2圆环的面积=大圆面积 - 小圆面积S =πR2- πr2=π(R²-r2)圆柱的表面积=侧面积 +2×底面积S表=S侧+2×S底=Ch+2πr2=2πrh+2πr2圆柱的体积=底面积×高V=Sh=πr2h圆锥的体积= ⅓底面积×高V=⅓sh= ⅓πr2h最大的一位数是9最小的两位数是10最大的两位数是99最小的三位数是100最大的三位数是999最小的自然数是0最小的质数是2最小的合数是41 既不是质数也不是合数所有质数中,只有2是偶数2和任意奇数都互质1的倒数是它本身平方等于它本身的数是0和1求总数:部分数 + 另一部分数 = 总数求剩余数:总数 - 部分数 = 另一部分数求两数的差:较大数 - 较小数 = 相差数求比一个数少几的数: 较大数 - 相差数 = 较小数求比一个数多几的数: 较小数 + 相差数 = 较大数求几个相同加数的和:相同加数×个数 = 和把一个数平均分成几份,求每份是多少:总数÷份数 = 每份数求一个数是另一个数的几倍:几倍数÷1倍数 = 倍数求1倍数:几倍数÷倍数 = 1倍数和差问题:较大数=(和+差)÷2或较大数=和-较小数较小数 =(和-差)÷2或较小数=和-较大数和倍问题:1倍数 = 和÷(倍数 +1)几倍数 = 和 - 1倍数差倍问题:1倍数=差÷(倍数 -1)几倍数 = 1倍数 +差平均数问题:平均数 = 总数量÷总份数归一与归总问题:总量÷数量 = 单一量总量÷单一量 = 数量单一量×数量 = 总量植树问题:不封闭的植树问题:一端植树:棵数 = 间隔数 = 全长÷株距全长 = 株距×棵数株距 = 全长÷棵数两端都植树:棵数 = 间隔数 +1= 全长÷株距 +1全长 = 株距×(棵数 -1)株距 = 全长÷(棵数 - 1)两端都不植树:棵数 = 间隔数 - 1= 全长÷株距 - 1全长=株距×(棵数 +1)株距 = 全长÷(棵数 + 1)封闭的植树问题:棵数 = 间隔数 = 全长÷株距全长 = 株距×棵数株距 = 全长÷棵数等差数列:和 =(首项 + 末项)×项数÷ 2S n=(a1+a n)×n÷2项数 =(末项 - 首项)÷公差+1n=(a n-a1)÷d+1末项 = 首项 +(项数 - 1)×公差a n=a1+(n-1)×d公差 =(末项-首项)÷(项数-1)d =(a n-a1)÷(n-1)鸡兔同笼问题:兔数 =(实际脚数-2×鸡兔总数)÷(4-2)盈亏问题:“两盈”:分配对象总数 =(大盈-小盈)÷两次分配之差“两亏”:分配对象总数 =(大亏-小亏)÷两次分配之差“一盈一亏”:分配对象总数=(盈+亏)÷两次分配之差行程问题:路程 = 速度×时间速度 = 路程÷时间时间 = 路程÷速度相遇问题:路程和 = 速度和×相遇时间相遇时间 = 路程和÷速度和速度和 = 路程和÷相遇时间追及问题:路程差 = 速度差×追及时间追及时间 = 路程差÷速度差速度差 = 路程差÷追及时间流水行船问题:顺水速度 = 船速 + 水速逆水速度 = 船速 - 水速船速 =(顺水速度 + 逆水速度)÷2水速 =(顺水速度 - 逆水速度)÷ 2 浓度问题:浓度=溶质质量/ 溶液质量 x100%工程问题:工作效率×工作时间 = 工作总量工作总量÷工作效率 = 工作时间工作总量÷工作时间 = 工作效率储蓄问题与利润问题:利息=本金×利率×存期利润 = 售价 - 成本利润率=利润/成本×100%“几折”表示十分之几,百分之几十比例尺图上距离:实际距离 = 比例尺100以内平方表。
专题04 整式的乘除【知识点清单】-2022年中考数学一轮复习精讲+热考题型(全国通用)
专题04 整式的乘除【知识要点】知识点一 幂的运算同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。
n m n m aa a +=·(其中m 、n 为正整数) 【注意事项】1)当底数为负数时,先用同底数幂乘法法则计算,再根据指数的奇偶来确定结果的正负,并且化简到底。
2)不能疏忽指数为1的情况。
例:a ·a 2=a 1+2=a 33)乘数a 可能是有理数、单项式或多项式。
4)如果底数互为相反数时可先变成同底后再运算。
5)逆用公式:n m n m a a a ·=+(m,n 都是正整数) 【扩展】三个或三个以上同底数幂相乘时,也具有这一性质, 即p n m p n m a a a a ++=··(m ,n ,p 都是正整数) 幂的乘方法则:幂的乘方,底数不变,指数相乘.mn n m aa =)((其中m ,n 都是正整数).【注意事项】 1)负号在括号内时,偶次方结果为正,奇次方为负,负号在括号外结果都为负。
2)逆用公式:m n n m mn a a a )()(==【扩展】mnp p n m a a =))(( (m ,n ,p 均为正整数)积的乘方:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
n n n b a ab ·)(=(其中n 是正整数)。
【注意事项】逆用公式:nn n ab b a )(·= 【扩展】 n n n n c b a abc ·)(= (n 为正整数) 同底数幂的除法法则:同底数幂相除,底数不变,指数减。
n m n m a a a -=÷(a ≠0,m 、n 都是正整数,且m >n )【注意事项】1)0不能做除数的底数。
2)运用同底数幂除法法则关键:看底数是否相同,而指数相减是指被除式的指数减去除式的指数。
3)注意指数为1的情况,如x 8÷x=x 7 ,计算时候容易遗漏将除数x 的指数忽略。
乘法公式(题型拓展)
A. 4x 2x2 3x 1 8x3 12x2 4x
C. 4a 14a 1 1 16a 2
B. x y x 2 y 2 x3 y3
D. x 2 y2 x 2 2xy 4 y 2
例 2:多项式 4x 2 1 加上一个单项式后,使它能成为一个整式的完全平方,则加上的多项式可以是
(A)a4-1 (B)a4+1 (C)a4+2a2+1 (D)1-a4
2、若(x+m)(x-8)中不含 x 的一次项,则 m 的值为………………………( )
(A)8
(B)-8
(C)0
(D)8 或-8
3、下列计算正确的是( )
A、 3 2 3 3 2 3 9
B、 a b2 a 2 b2
例 6:已知 a b 3 , ab 1 ,求: 2
(1)a2+b2
(2)a2+ab+b2
(3)a4+b4
(二)思维重点突破
例 7 观察下列各式(x-1)(x+1)=x2-1,(x-1)(x2+x+l)=x3-l.(x-l)(x3+x2+x+l)=x4-1,
根据前面各式的规律可得(x-1)(xn+xn-1+…+x+1)=
4、已知
x+
1 x
=2,求
x2+
1 x2
的值.
5、已知 a2+6a+b2-10b+34=0,求代数式(2a+b)(3a-2b)+4ab 的值.
AB=4a,MP=b,正方形 APCD 与正方形 PBEF 的面积之差为 S。 (1)用 a,b 的代数表示 S。 (2)当 a=4、b=1/2 时,S 的值是多少?当 a=S,b=1/4 时呢?
D
C
F
E
A
MP B
A 类作业:
乘法公式的拓展及常见题型
乘法公式的拓展及常见题型一.公式拓展:拓展一:ab b a b a 2)(222-+=+ab b a b a 2)(222+-=+拓展二:ab b a b a 4)()(22=--+()()222222a b a b a b ++-=+拓展三:bc ac ab c b a c b a 222)(2222---++=++拓展四:辉三角形拓展五: 立方和与立方差 二.根本考点例1::32a b +=,1ab =,化简(2)(2)a b --的结果是. 例2:化简与计算练习:1、〔a+b -1〕〔a -b+1〕=。
2.假设*2-y 2=30,且*-y=-5,则*+y 的值是〔 〕A .5B .6C .-6D .-53、 2()16,4,a b ab +==求223a b +与2()a b -的值.4、试说明不管*,y 取何值,代数式226415x y x y ++-+的值总是正数。
5、(a -2b +3c )2-(a +2b -3c )2=。
6、0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。
7、2200720092008⨯-〔运用乘法公式〕题型一:乘法公式在解方程和不等式组中的应用解方程:()()()()()()2x 12x 13x 2x 27x 1x 1+-+-+=+-题型二:应用完全平方公式求值设m+n=10,mn=24,求()222m n m n +-和的值。
题型三:巧用乘法公式简算计算:〔1〕()()()24832121211++++; 〔2〕9910110001⨯⨯题型四:利用乘法公式证明对任意整数n ,整式()()()()3n 13n 13n 3n +---+是不是10的倍数?为什么? 题型五:乘法公式在几何中的应用△ABC 的三边长a ,b ,c 满足222a b c ab bc ac 0++---=,试判断△ABC 的形状。
三.常见题型:〔一〕公式倍比例题:b a +=4,求ab b a ++222。
乘积定理公式
乘积定理公式嘿,咱们今天来好好聊聊乘积定理公式!要说这乘积定理公式啊,那可是数学里相当重要的一部分。
就拿咱们日常生活来说,你去买苹果,一个苹果 3 块钱,你买了 5 个,那一共多少钱?这其实就是在运用乘积定理公式呀。
咱们先从最简单的整数乘法说起。
比如说 2×3 = 6 ,这谁都知道。
但这里面就藏着乘积定理公式的影子。
你看,2 个 3 相加是 6 ,3 个 2 相加也是 6 ,这就是乘法的本质。
再说说小数乘法。
比如 0.5×0.6 ,这可就有点小复杂啦。
但别怕,咱们还是可以用乘积定理公式来搞定。
先把它们当成整数相乘,5×6 = 30 ,然后再看因数一共有几位小数,这里一共两位,那就从 30 的右边数出两位点上小数点,结果就是 0.3 。
然后是分数乘法。
比如说 1/2×3/4 ,分子乘分子,分母乘分母,得到 3/8 。
这其实也是乘积定理公式的一种应用。
我记得之前有一次,我去菜市场买菜。
我想买点西红柿,西红柿2.5 元一斤,我买了 3 斤。
我就在心里默默算着,2.5×3 ,按照乘积定理公式,先算 25×3 = 75 ,然后因为有一位小数,那结果就是 7.5 元。
算对了价格,我心里那叫一个美。
在学习乘积定理公式的时候,很多同学一开始可能会觉得有点难。
但只要多做几道题,多琢磨琢磨,就会发现其中的规律。
比如说,乘法交换律 a×b = b×a ,这就很有趣。
就像你和朋友交换礼物,不管谁先给谁,最后的结果都是一样的开心。
还有乘法结合律 (a×b)×c = a×(b×c) ,这在计算的时候能让咱们省不少事儿呢。
比如计算 2×(3×4) 和 (2×3)×4 ,结果都是 24 。
在实际应用中,乘积定理公式的用处可大了去了。
比如计算房间的面积,长乘以宽;计算做一件衣服需要多少布料,也是各种长度和宽度的乘积。
初中数学竞赛重要定理公式(代数篇)
初中数学竞赛重要定理公式(代数篇)初中数学竞赛重要定理、公式及结论代数篇【乘法公式】完全平方公式:(a±b)2=a2±2ab+b2,平方差公式:(a+b)(a-b)=a2-b2,立方和(差)公式:(a±b)(a2 ?ab+b2)=a3±b3多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd 二项式定理:(a±b)3=a3±3a2b+3ab2±b3(a±b)4=a4±4a3b+6a2b2±4ab3+b4)(a±b)5=a5±5a4b+10a3b2±10a2b3+5ab4±b5)…………在正整数指数的条件下,可归纳如下:设n为正整数(a+b)(a2n-1- a2n-2b+a2n-3b2- …+ab2n-2- b2n-1)=a2n-b2n(a+b)(a2n-a2n-1b+a2n-2b2n-…-ab2n-1+b2n)=a2n+1+b2n+1类似地:(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)=a n-b n公式的变形及其逆运算由(a+b)2=a2+2ab+b2得a2+b2=(a+b)2-2ab由(a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b) 得a3+b3=(a+b)3-3ab(a+b) 由公式的推广③可知:当n为正整数时a n-b n能被a-b 整除,a2n+1+b2n+1能被a+b整除,a2n-b2n能被a+b 及a-b整除。
重要公式(欧拉公式)(a+b+c)(a2+b2+c2+ab+ac+bc)=a3+b3+c3-3abc【综合除法】一个一元多项式除以另一个一元多项式,并不是总能整除。
当被除式f(x)除以除式g(x),(g(x)≠0) 得商式q(x)及余式r(x)时,就有下列等式:f(x)=g(x)q(x)-r(x)其中r(x)的次数小于g(x)的次数,或者r(x)=0。
乘法公式的综合应用课件
• 乘法公式基础 • 乘法公式在数学中的应用 • 乘法公式在实际生活中的应用 • 乘法公式的扩展应用 • 乘法公式的注意事项与陷阱
01
乘法公式基础
乘法交换律
总结词
乘法交换律是指两个数的乘积不改变,只改变它们的排列顺 序。
详细描述
乘法交换律是基本的数学定理之一,表示乘法满足交换律, 即无论两个数的排列顺序如何,它们的乘积都是相同的。例 如,a × b = b × a。
概率问题
概率的基本性质
在概率论中,乘法公式可以用来计算两个事件同时发生的概率。例如,A和B同时发生的概率是$P(A cap B) = P(A) times P(B | A)$。
贝叶斯定理
在贝叶斯定理中,乘法公式是一个重要的工具,它可以用来计算条件概率。例如,在给定事件A发生的条件下, 事件B发生的概率是$P(B | A) = frac{P(A cap B)}{P(A)}$。
矩阵乘法的本定义
矩阵乘法是线性代数中的一种基本运算,它按照一定的规则将两个矩阵
相乘,得到一个新的矩阵。
02
矩阵乘法的规则
矩阵乘法需要满足结合律、交换律和分配律,并且要求第一个矩阵的列
数等于第二个矩阵的行数。
03
矩阵乘法的计算方法
矩阵乘法需要按照一定的顺序逐步计算,首先计算前两行第一列的元素
,然后计算前两行第二列的元素,以此类推,直到得到整个结果矩阵。
乘法公式在资源分配中也有着重要的应用, 它可以用来计算每个项目或部门所需的资源 量,从而实现资源的合理分配。
详细描述
在资源分配中,需要将有限的资源合理地分 配给各个项目或部门。利用乘法公式,可以 更准确地计算出每个项目或部门所需的资源 量,从而实现资源的合理分配。
乘法公式
第 1 页 共 16 页乘法公式概念总汇1、平方差公式平方差公式:两个数的和与这两个数的差的乘积等于这两个数的平方差,即 (a +b )(a -b )=a 2-b 2说明:(1)几何解释平方差公式如右图所示:边长a 的大正方形中有一个边长为b 的小正方形。
第一种:用正方形的面积公式计算:a 2-b 2;第二种:将阴影部分拼成一个长方形,这个长方形长为(a +b ),宽为(a -b ), 它的面积是:(a +b )(a -b )结论:第一种和第二种相等,因为表示的是同一块阴影部分的面积。
所以:a 2-b 2=(a +b )(a -b )。
(2)在进行运算时,关键是要观察所给多项式的特点,是否符合平方差公式的形式,即只有当这两个多项式它们的一部分完全相同,而另一部分只有符合不同,才能够运用平方差公式。
平方差公式的a 和b ,可以表示单项式,也可以表示多项式,还可以表示数。
应用平方差公式可以进行简便的多项式乘法运算,同时也可以简化一些数字乘法的运算 2、完全平方公式完全平方公式:两个数和(或差)的平方,等于它们的平方和,加上(或减去)它们积的两倍,即(a +b )2=a 2+2ab +b 2,(a -b )2=a 2-2ab +b 2这两个公式叫做完全平方公式。
平方差公式和完全平方公式也叫做乘法公式 说明:(1)几何解释完全平方(和)公式 如图用多种形式计算右图的面积 第一种:把图形当做一个正方形来看,所以 它的面积就是:(a +b )2第二种:把图形分割成由2个正方形和2个相同的第 2 页 共 16 页长方形来看,其中大正方形的的边长是a ,小正方形 的边长是b ,长方形的长是a ,宽是b ,所以它的面积就是:a 2+ab +ab +b 2=a 2+2ab +b 2 结论:第一种和第二种相等,因为表示的是同一个图形的面积 所以:(a +b )2=a 2+2ab +b 2(2)几何解释完全平方(差)公式 如图用多种形式计算阴影部分的面积 第一种:把阴影部分当做一个正方形来看,所以 它的面积就是:(a -b )2第二种:把图形分割成由2个正方形和2个相同的 长方形来看,长方形小正方形大正方形阴影S S S S ⨯=2--其中大正方形的的边长是a ,小正方形的边长是b ,长方形的长是(a -b ),宽是b ,所以 它的面积就是:()222222b ab a b b a b a +-=⋅-⋅--结论:第一种和第二种相等,因为表示的是同一个图形的面积所以:()2222b ab a b a +-=-(3)在进行运算时,防止出现以下错误:(a +b )2=a 2+b 2,(a -b )2=a 2-b 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乘法公式的复习一、复习:(a+b)(a-b)=a2-b2(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2 (a+b)(a2-ab+b2)=a3+b3(a-b)(a2+ab+b2)=a3-b3归纳小结公式的变式,准确灵活运用公式:①位置变化,(x+y)(-y+x)=x2-y2②符号变化,(-x+y)(-x-y)=(-x)2-y2= x2-y2③指数变化,(x2+y2)(x2-y2)=x4-y4④系数变化,(2a+b)(2a-b)=4a2-b2⑤换式变化,[xy+(z+m)][xy-(z+m)]=(xy)2-(z+m)2=x2y2-(z+m)(z+m)=x2y2-(z2+zm+zm+m2)=x2y2-z2-2zm-m2⑥增项变化,(x-y+z)(x-y-z)=(x-y)2-z2=(x-y)(x-y)-z2=x2-xy-xy+y2-z2=x2-2xy+y2-z2⑦连用公式变化,(x+y)(x-y)(x2+y2)=(x2-y2)(x2+y2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
解:19992-2000×1998 =19992-(1999+1)×(1999-1) =19992-(19992-12)=19992-19992+1 =1例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。
〖解析〗此题可用完全平方公式的变形得解。
解:a 2+b 2=(a+b)2-2ab=4-2=2 (a-b)2=(a+b)2-4ab=4-4=0例5:已知x-y=2,y-z=2,x+z=14。
求x 2-z 2的值。
〖解析〗此题若想根据现有条件求出x、y、z的值,比较麻烦,考虑到x2-z2是由x+z和x-z的积得来的,所以只要求出x-z的值即可。
解:因为x-y=2,y-z=2,将两式相加得x-z=4,所以x2-z2=(x+z)(x-z)=14×4=56。
例6:判断(2+1)(22+1)(24+1)……(22048+1)+1的个位数字是几?〖解析〗此题直接计算是不可能计算出一个数字的答案,故有一定的规律可循。
观察到1=(2-1)和上式可构成循环平方差。
解:(2+1)(22+1)(24+1)……(22048+1)+1=(2-1)(22+1)(24+1)……(22048+1)+1=24096=161024因为当一个数的个位数字是6的时候,这个数的任意正整数幂的个位数字都是6,所以上式的个位数字必为6。
例7.运用公式简便计算(1)1032(2)1982解:(1)1032=(100+3)2 =1002+2⨯100⨯3+32=10000+600+9 =10609(2)1982=(200-2)2 =2002-2⨯200⨯2+22=40000-800+4 =39204例8.计算(1)(a+4b-3c)(a-4b-3c)(2)(3x+y-2)(3x-y+2)解:(1)原式=[(a-3c)+4b][(a-3c)-4b]=(a-3c)2-(4b)2=a2-6ac+9c2-16b2(2)原式=[3x +(y -2)][3x -(y -2)]=9x 2-( y 2-4y +4)=9x 2-y 2+4y -4例9.解下列各式(1)已知a 2+b 2=13,ab =6,求(a +b )2,(a -b )2的值。
(2)已知(a +b )2=7,(a -b )2=4,求a 2+b 2,ab 的值。
(3)已知a (a -1)-(a 2-b )=2,求222a b ab +-的值。
(4)已知13x x-=,求441x x +的值。
分析:在公式(a +b )2=a 2+b 2+2ab 中,如果把a +b ,a 2+b 2和ab 分别看作是一个整体,则公式中有三个未知数,知道了两个就可以求出第三个。
解:(1)∵a 2+b 2=13,ab =6∴(a +b )2=a 2+b 2+2ab =13+2⨯6=25 (a -b )2=a 2+b 2-2ab =13-2⨯6=1 (2)∵(a +b )2=7,(a -b )2=4∴ a 2+2ab +b 2=7 ① a 2-2ab +b 2=4 ② ①+②得 2(a 2+b 2)=11,即22112a b += ①-②得 4ab =3,即34ab =(3)由a (a -1)-(a 2-b )=2 得a -b =-2()22221222a b ab a b ab +∴-=+-()()22112222a b =-=⨯-=(4)由13x x -=,得19x x 2⎛⎫-= ⎪⎝⎭ 即22129x x +-= 22111x x ∴+= 221121x x 2⎛⎫∴+= ⎪⎝⎭ 即4412121x x ++= 441119x x +=例10.四个连续自然数的乘积加上1,一定是平方数吗?为什么? 分析:由于1⨯2⨯3⨯4+1=25=522⨯3⨯4⨯5+1=121=1123⨯4⨯5⨯6+1=361=192……得猜想:任意四个连续自然数的乘积加上1,都是平方数。
解:设n,n+1,n+2,n+3是四个连续自然数则n(n+1)(n+2)(n+3)+1 =[n(n+3)][(n+1)(n+2)]+1 =(n2+3n)2+2(n2+3n)+1=(n2+3n)(n2+3n+2)+1 =(n2+3n+1)2∵n是整数,∴ n2,3n都是整数∴ n2+3n+1一定是整数∴(n2+3n+1)是一个平方数∴四个连续整数的积与1的和必是一个完全平方数。
例11.计算(1)(x2-x+1)2(2)(3m+n-p)2解:(1)(x2-x+1)2=(x2)2+(-x)2+12+2⋅x2⋅(-x)+2⋅x2⋅1+2⋅(-x)⋅1=x4+x2+1-2x3+2x2-2x=x4-2x3+3x2-2x+1(2)(3m+n-p)2=(3m)2+n2+(-p)2+2⋅3m⋅n+2⋅3m⋅(-p)+2⋅n⋅(-p)=9m2+n2+p2+6mn-6mp -2np分析:两数和的平方的推广(a+b+c)2=[(a+b)+c]2=(a+b)2+2(a+b)⋅c+c2=a2+2ab+b2+2ac+2bc+c2=a2+b2+c2+2ab+2bc+2ac 即(a+b+c)2=a2+b2+c2+2ab+2bc+2ac 几个数的和的平方,等于它们的平方和加上每两个数的积的2倍。
二、乘法公式的用法(一)、套用:这是最初的公式运用阶段,在这个环节中,应弄清乘法公式的来龙去脉,准确地掌握其特征,为辨认和运用公式打下基础,同时能提高学生的观察能力。
例1. 计算:()()53532222x y x y +- 解:原式()()=-=-53259222244x y x y(二)、连用:连续使用同一公式或连用两个以上公式解题。
例2. 计算:()()()()111124-+++a a a a 解:原式()()()=-++111224a a a()()=-+=-111448a a a例3. 计算:()()32513251x y z x y z +-+-+-- 解:原式()()[]()()[]=-++--+25312531y z x y z x()()=--+=-+---25314925206122222y z x y x z yz x三、逆用:学习公式不能只会正向运用,有时还需要将公式左、右两边交换位置,得出公式的逆向形式,并运用其解决问题。
例4. 计算:()()57857822a b c a b c +---+解:原式()()[]()()[]=+-+-++---+578578578578a b c a b c a b c a b c()=-=-101416140160a b c ab ac四、变用: 题目变形后运用公式解题。
例5. 计算:()()x y z x y z +-++26解:原式()[]()[]=++-+++x y z z x y z z 2424()()=++-=+-+++x y z z x y z xy xz yz241224422222五、活用: 把公式本身适当变形后再用于解题。
这里以完全平方公式为例,经过变形或重新组合,可得如下几个比较有用的派生公式:()()()()()()()12223244222222222222....a b ab a b a b ab a b a b a b a ba b a b ab+-=+-+=+++-=++--=灵活运用这些公式,往往可以处理一些特殊的计算问题,培养综合运用知识的能力。
例6. 已知a b ab -==45,,求a b 22+的值。
解:()a b a b ab 2222242526+=-+=+⨯=例7. 计算:()()a b c d b c d a ++-+++-22解:原式()()[]()()[]=++-++--b c a d b c a d 22()()[]=++-=++++-2222244222222b c a d a b c d bc ad例8. 已知实数x 、y 、z 满足x y z xy y +==+-592,,那么x y z ++=23( ) 解:由两个完全平方公式得:()()[]ab a b a b =+--1422 从而 ()[]z x y y 2221459=--+- ()()()=--+-=-+-=--+=--25414529696932222y y y y y y y()∴∴,∴∴z y z y x x y z 22300322322308+-====++=+⨯+=三、学习乘法公式应注意的问题(一)、注意掌握公式的特征,认清公式中的“两数”.例1 计算(-2x2-5)(2x2-5)分析:本题两个因式中“-5”相同,“2x2”符号相反,因而“-5”是公式(a+b)(a-b)=a2-b2中的a,而“2x2”则是公式中的b.解:原式=(-5-2x2)(-5+2x2)=(-5)2-(2x2)2=25-4x4.例2 计算(-a2+4b)2分析:运用公式(a+b)2=a2+2ab+b2时,“-a2”就是公式中的a,“4b”就是公式中的b;若将题目变形为(4b-a2)2时,则“4b”是公式中的a,而“a2”就是公式中的b.(解略)(二)、注意为使用公式创造条件例3 计算(2x+y-z+5)(2x-y+z+5).分析:粗看不能运用公式计算,但注意观察,两个因式中的“2x”、“5”两项同号,“y”、“z”两项异号,因而,可运用添括号的技巧使原式变形为符合平方差公式的形式.解:原式=〔(2x+5)+(y-z)〕〔(2x+5)-(y-z)〕=(2x+5)2-(y-z)2=4x2+20x+25-y+2yz-z2.例4 计算(a-1)2(a2+a+1)2(a6+a3+1)2分析:若先用完全平方公式展开,运算十分繁冗,但注意逆用幂的运算法则,则可利用乘法公式,使运算简便.解:原式=[(a-1)(a2+a+1)(a6+a3+1)]2=[(a3-1)(a6+a3+1)]2=(a9-1)2=a18-2a9+1例5 计算(2+1)(22+1)(24+1)(28+1).分析:此题乍看无公式可用,“硬乘”太繁,但若添上一项(2-1),则可运用公式,使问题化繁为简.解:原式=(2-1)(2+1)(22+1)(24+1)(28+1)=(22-1)(22+1)(24+1)(28+1)=(24-1)(24+1)(28+1)=(28-1)(28+1)=216-1(三)、注意公式的推广计算多项式的平方,由(a+b)2=a2+2ab+b2,可推广得到:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.可叙述为:多项式的平方,等于各项的平方和,加上每两项乘积的2倍.例6 计算(2x+y-3)2解:原式=(2x)2+y2+(-3)2+2·2x·y+2·2x(-3)+2·y(-3)=4x2+y2+9+4xy-12x-6y.(四)、注意公式的变换,灵活运用变形公式例7 (1)已知x+y=10,x3+y3=100,求x2+y2的值;(2)已知:x+2y=7,xy=6,求(x-2y)2的值.分析:粗看似乎无从下手,但注意到乘法公式的下列变形:x2+y2=(x+y)2-2xy,x3+y3=(x+y)3-3xy(x+y),(x+y)2-(x-y)2=4xy,问题则十分简单.解:(1)∵x3+y3=(x+y)3-3xy(x+y),将已知条件代入得100=103-3xy·10,∴xy=30 故x2+y2=(x+y)2-2xy=102-2×30=40.(2)(x-2y)2=(x+2y)2-8xy=72-8×6=1.例8 计算(a+b+c)2+(a+b-c)2+(a-b+c)+(b-a+c)2.分析:直接展开,运算较繁,但注意到由和及差的完全平方公式可变换出(a+b)2+(a-b)2=2(a2+b2),因而问题容易解决.解:原式=[(a+b)+c]2+[(a+b)-c]2+[c+(a-b)]2+[c-(a-b)]2=2[(a+b)2+c2]+2[c2+(a-b)2]=2[(a+b)2+(a-b)2]+4c2=4a2+4b2+4c2(五)、注意乘法公式的逆运用例9 计算(a-2b+3c)2-(a+2b-3c)2.分析:若按完全平方公式展开,再相减,运算繁杂,但逆用平方差公式,则能使运算简便得多.解:原式=[(a-2b+3c)+(a+2b-3c)][(a-2b+3c)-(a+2b-3c)]=2a(-4b+6c)=-8ab+12ac.例10 计算(2a+3b)2-2(2a+3b)(5b-4a)+(4a-5b)2分析:此题可以利用乘法公式和多项式的乘法展开后计算,但逆用完全平方公式,则运算更为简便.解:原式=(2a+3b)2+2(2a+3b)(4a-5b)+(4a-5b)2=[(2a+3b)+(4a-5b)]2=(6a-2b)2=36a2-24ab+4b2.四、怎样熟练运用公式:(一)、明确公式的结构特征这是正确运用公式的前提,如平方差公式的结构特征是:符号左边是两个二项式相乘,且在这四项中有两项完全相同,另两项是互为相反数;等号右边是乘式中两项的平方差,且是相同项的平方减去相反项的平方.明确了公式的结构特征就能在各种情况下正确运用公式.(二)、理解字母的广泛含义乘法公式中的字母a 、b 可以是具体的数,也可以是单项式或多项式.理解了字母含义的广泛性,就能在更广泛的范围内正确运用公式.如计算(x +2y -3z )2,若视x +2y 为公式中的a ,3z 为b ,则就可用(a -b )2=a 2-2ab +b 2来解了。