北师大版七年级数学下册代数部分复习题

合集下载

七年级下册数学代数题

七年级下册数学代数题

七年级下册数学代数题一、题目。

1. 若x + y = 7,xy = 12,求(x - y)^2的值。

- 解析:- 我们知道(x - y)^2=(x + y)^2-4xy。

- 已知x + y = 7,xy = 12。

- 把x + y = 7,xy = 12代入(x - y)^2=(x + y)^2 - 4xy中,得到(x - y)^2 = 7^2-4×12。

- 计算7^2 = 49,4×12 = 48。

- 则(x - y)^2=49 - 48 = 1。

2. 化简:(2x - 3y)(3x + 2y)- 解析:- 根据多项式乘法法则(a + b)(c + d)=ac+ad+bc+bd。

- 对于(2x-3y)(3x + 2y),a = 2x,b=-3y,c = 3x,d = 2y。

- 则(2x-3y)(3x + 2y)=2x×3x+2x×2y-3y×3x-3y×2y。

- 计算得6x^2+4xy - 9xy - 6y^2。

- 合并同类项得6x^2-5xy - 6y^2。

3. 已知A = 2x^2+3xy - 2x - 1,B=-x^2+xy - 1,求A - 3B的值。

- 解析:- 首先求出3B,因为B=-x^2+xy - 1,所以3B = 3(-x^2+xy - 1)=-3x^2+3xy - 3。

- 然后求A-3B,A = 2x^2+3xy - 2x - 1,则A - 3B=(2x^2+3xy - 2x - 1)-(-3x^2+3xy - 3)。

- 去括号得2x^2+3xy - 2x - 1 + 3x^2-3xy + 3。

- 合并同类项得(2x^2+3x^2)+(3xy - 3xy)-2x+( - 1 + 3)。

- 结果为5x^2-2x + 2。

4. 先化简,再求值:(a + b)(a - b)+(a + b)^2-2a^2,其中a = 3,b=(1)/(3)。

新北师大版七年级下册代数部分总复习

新北师大版七年级下册代数部分总复习

新北师大版七年级下册代数部分总复习一、填空1、计算(-2)2011+(-2)2012=_____2、若a m =2,a n =5,则a m+n=_____3、计算(-a 2)3+(-a 3)2=______4、计算-(-3a 2b 3)4=________5、若x+y=6,x-y=5,则x 2-y 2=_______6、若x 2-y 2=30,x-y=-5,则x+y=____7、若x 2+mx+4是一个完全平方式,则m=_____8、( )2=9a 2-______+16b 29、已知x 2+16x+k 是完全平方式,则常数k 等于( )10、x 2+10x+______=(x+_____)211、若 (x-4)2=x 2+8x+m 2成立,则m=____ 12、(-a-2b )2 =______13、已知x+x 1=5,则x 2+21x=_______14、若x+y=3,xy=1,则x 2+y 2=_______ 15、-(y 4)3=_____ 16、(-x 3)2(-x 2)3=_____ 17、 (-a 3)2·(-a 2)3·(-a)=_____18、 若(x+m )与(x+3)的乘积中不含x 的一次项,则m 的值为______. 二、计算2(a 5)2·(a 2)2-(a 2)4·(a 3)2 2x 3y ·(-2x 2y )2 (-x)2·(-x)3+2x ·(-x)4-(-x)·x 4(2x 2y)·(-4xy 3) (41a 2b )·(-2ab 2)2+(0.5a 4b 5) ()()22232b ab a ab ---(x 2)n (-y n )3+(-x n )2(y 3)n (-3×103)3×(2×108)÷(5×104) (-32)-2-(-4)2010×(-41)2011-π0+(-3)2 ()()()20422010321---+-⨯--π( -32)0+52+(-21)-2+(-2)3 (-21)0+(-2)3+(31)-1+|-2| (-0.125)15×(215)3+(135)2012·(-253)2011(3x+2)2-(x-1)(x+2) 5)1(3)12(2+--+a a a (2x-3y )(x+5y )()()y x y x y x y x 22246332427÷++- (x-2y)(x+2y)-(x+2y)2[(x+1)(x+2)-2]÷(-x )20022-2001×2003 4032×3931 5012899×901+1(a+b-c)2 (x+y-z) (x-y+z) (a-2b+3c) (a-2b-3c) (x+y-z)(x+y-z)(-2p-q+1)(-q+2p+1) -3x 2y 3(x 2-1)-(x 2+1)·5x 2y 3 (x-2y-m)(x-2y+m)(1-221)(1-231)(1-241)…(1-2101) (a+b)(a 2+b 2)(a 4+b 4)(a-b) 223333⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+x x(2x-1)2-(3x+1)(3x-1)+5x(x-1) (-3a 2)3-a(-a)5+5a 8÷a 2三、化简求值1、(3x+1)(2x-3)-2(x-1)(4x+1),其中x=-22、 x(x 2-4)-(x+3)(x 2-3x+2)-2x(x-2),其中x=23. 3、(3x-1)2-(2x+1)(2x-1)-5x(x-2),其中x=-214、先化简再求值:()()()()()y x y x y x y x y x ---+-+-3222,其中21=x ,31=y 5、已知3m =6,9n =2,求32m-4n+1的值6、已知a m =3,a n =5,求a 3m-2n的值7、已知x 2-4=0,求代数式x(x+1)2-x(x 2+x)-x-7的值8、[(y-2x )(-2x-y )-4(x-2y )2+y 2]÷(-2y )其中x=1.y=-29、()()()222210,24x y x y x y y x y y ⎡⎤-=+--+-÷⎣⎦已知:求的值 10、已知A=2x+y ,B=2x-y ,计算A 2-B 2. 四、整式拓展 1、已知x+x 1=4,求(1)x 2+21x;(2)(x-x 1)2. 请阅读下面的解题过程:已知x 2+x+1=0,求x+x 2+x 3+…+x 30. 解:x+x 2+x 3+…+x30=(x+x 2+x 3)+(x 4+x 5+x 6)+…+(x 28+x 29+x 30)=x (1+x+x 2)+x 4(1+x+x 2)+…+x 28(1+x+x 2) =0+0+…+0 =0仿照上面的解题过程完成下题已知1+x+x 2+x 3=0,求x+x 2+x 3+…+x 2012的值.2、某同学在计算3(4+1)(42+1)时,把3写成4-1后,发现可以连续运用平方差公式计算:3(4+1)(42+1)=(4-1)(4+1)(42+1)=(42-1)(42+1)=162-1.很受启发,后来在求(2+1)(22+1)(24+1)(28+1)…(22048+1)的值时,又改造此法,将乘积式前面乘以1,且把1写为2-1得(2+1)(22+1)(24+1)(28+1)…(22048+1)=(2-1)(2+1)(22+1)(24+1)(28+1)…(22048+1)=(22-1)(22+1)(24+1)(28+1)…(22048+1)=(24-1)(28+1)…(22048+1)=(22048-1)(22048+1)=24096-1 回答下列问题:(1)请借鉴该同学的经验,计算: (1+21)(1+221)(1+421)(1+821)+1521=________; (2)借用上面的方法,再逆用平方差公式计算: (1-221)(1-231)(1-421)…(1-2101)3、先观察下列各式,再解答后面问题:(x+5)(x+6)=x 2+11x+30;(x-5)(x-6)=x 2-11x+30;(x-5)(x+6)=x 2+x-30;(1)乘积式中的一次项系数、常数项与两因式中的常数项有何关系? (2)根据以上各式呈现的规律,用公式表示出来; (3)试用你写的公式,直接写出下列两式的结果; ①(a+99)(a-100)=________;②(y-500)(y-81)=__________.4、你能求(x-1)(x 99+x 98+x 97+…+x+1)的值吗遇到这样的问题,我们可以先思考一下,从简单的情形入手.先计算下列各式的值:(1)(x-1)(x+1)=_______;(2)(x-1)(x 2+x+1)=________;(3)(x-1)(x 3+x 2+x+1)=_______;…由此我们可以得到(x-1)(x 99+x 98+x 97+…+x+1)=_______; 请你利用上面的结论,完成下面两题的计算:(1)299+298+297+…+2+1; (2)(-2)50+(-2)49+(-2)48+…(-2)+1. 5、如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是,它是自然数的平方,第8行共有个数;(2)用含n 的代数式表示:第n 行的第一个数是,最后一个数是,第n 行共有个数; (3)求第n 行各数之和.6、观察下面的几个算式,你发现了什么规律? ①16×14=224=1×(1+1)×100+6×4 ②23×27=621=2×(2+1)×100+3×7 ③32×38=1216=3×(3+1)×100+2×8 ……(1)按照上面的规律,仿照上面的书写格式,迅速写出81×89的结果.(2)用公式(x +a )(x +b )=x 2+(a +b )x +ab 证明上面所发现的规律.(提示:可设这两个两位数分别是(10n +a )、(10n +b ),其中a +b =10) (3)简单叙述以上所发现的规律. 7、观察下面的几个算式,解答.1×2×3×4+1=24+1=25=52 ;2×3×4×5+1=120+1=121=1123×4×5×6+1=360+1=361=192….(1)4×5×6×7+1=______+1=______ =______ 2;7×8×9×10+1=_________+1=______=______2(2)试猜想(n+1)(n+2)(n+3)(n+4)+1=__________28、有足够多的长方形和正方形卡片,如下图:(1)如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙),请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是___________.(2)小明想用类似方法解释多项式乘法(a+3b )(2a+b )=2a 2+7ab+3b 2,那么需用2号卡片_________张,3号卡片_________张. 9、乘法公式的探究及应用.(1)如左图,可以求出阴影部分的面积是 (写成两数平方差的形式);(2)如右图,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式 (用式子表达). (4)运用你所得到的公式,计算下列各题:①7.93.10⨯ ② )2)(2(p n m p n m +--+ 10、图a 是一个长为2 m 、宽为2 n 的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按图b 的形状拼成一个正方形。

北师大版七年级数学下册期末复习练习题(含答案)

北师大版七年级数学下册期末复习练习题(含答案)

北师大版七年级数学下册期末复习练习题(含答案)期末复练题一、选择题1.(-4)的结果是()。

A。

-4B。

-40C。

0D。

42.下列图形中,是轴对称图形的是()。

A。

B。

C。

D。

3.某种秋冬流感病毒的直径约为0.xxxxxxxx3米,该直径用科学记数法表示为()米。

A。

2.03×10^-8B。

2.03×10^-7C。

2.03×10^-6D。

0.203×10^-64.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是()。

A。

30B。

20C。

60D。

405.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同,XXX通过多次摸球试验后发现,其中摸到白色球的频率稳定在85%左右,则口袋中红色球可能有()个。

A。

34B。

30C。

10D。

66.如图,可以判定AB∥CD的条件是()。

A。

∠1=∠2B。

∠3=∠4C。

∠D=∠5D。

∠BAD+∠B=180°7.如图,太阳光线AC和A' C'是平行的,在同一时刻,若两根木杆的影子一样长,则两根木杆高度相等。

这利用了全等图形的性质,其中判断△ABC≌△A' B' C'的依据是()。

A。

SASB。

ASAC。

SSSD。

AAS8.当x=1时,代数式ax^3-bx+4的值是7,则当x=-1时,代数式ax^3-bx+4的值是()。

A。

-7B。

7C。

3D。

19.如图,在△ABC中,已知BC=13,AB的中垂线交BC 于D,AC的中垂线交BC于E,则△ADE的周长等于()。

A。

11B。

13C。

14D。

1510.电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y(元)与通话时间t(分钟)之间的函数图象是图中的()。

A。

B。

C。

D。

11.如图,XXX,CD、BE分别是△XXX的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG=2∠ABF;②BA 平分∠XXX;③∠ABG=∠ACB;④∠CFB=135°。

北师大版七年级数学下册全册试卷及答案(含单元期中期末全套)

北师大版七年级数学下册全册试卷及答案(含单元期中期末全套)

七年级数学下册——第一章整式的乘除(复习)单项式整式多项式同底数幂的乘法幂的乘方积的乘方同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘整式运算平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式第1章整式的乘除单元测试卷一、选择题(共10小题,每小题3分,共30分)温馨提示:每小题四个答案中只有一个是正确的,请把正确的答案选出来!1.下列运算正确的是()A. 954aaa=+ B. 33333aaaa=⋅⋅C. 954632aaa=⨯ D. ()743aa=-=⎪⎭⎫⎝⎛-⨯⎪⎭⎫⎝⎛-20122012532135.2()A. 1- B. 1 C. 0 D. 19973.设()()Ababa+-=+223535,则A=()A. 30abB. 60abC. 15abD. 12ab4.已知,3,5=-=+xyyx则=+22yx()A. 25. B 25- C 19 D、19-5.已知,5,3==ba xx则=-bax23()A、2527B、109C、53D、526. .如图,甲、乙、丙、丁四位同学给出了四 种表示该长方形面积的多项式:①(2a +b )(m +n ); ②2a (m +n )+b (m +n ); ③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn , 你认为其中正确的有A 、①②B 、③④C 、①②③D 、①②③④ ( )7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -112 ,则a ²+b 2的值等于( )A 、84B 、78C 、12D 、6 9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 810.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为 ( )A 、Q P >B 、Q P =C 、Q P <D 、不能确定二、填空题(共6小题,每小题4分,共24分)温馨提示:填空题必须是将最简洁最正确的答案填在空格处! 11.设12142++mx x 是一个完全平方式,则m =_______。

北师大七年级数学下册代数部分复习题

北师大七年级数学下册代数部分复习题

代数部分复习题1.下列式子正确的是()A、 20=0B、C、 D、2. ()A、 B、 C、 D、3、下列多项式中是完全平方式的是 ( )A、 B、 C、 D、4. ,,你能计算出的值为()A、 B、 C、 D、5.(宿迁·中考题)下列事件中,随机事件是()A.太阳从东方升起; B.掷一枚骰子,出现6点朝上C.袋中有3个红球,从中摸出白球; D.若a是正数,则-a是负数6.给出下列结论①黑暗中小明从他的一大串钥匙中,随便选择一把,用它开门 , 不能开门的可能性大于能开门的可能性②小明上次的体育测试是“优秀”,这次测试它百分之百的为“优秀”③小明射中目标的概率为1/3,因此,小明连射三枪一定能够击中目标④随意掷一枚骰子,“掷得的数是奇数”的概率与“掷得的数是偶数”的概率相等其中正确的结论有( )个个个个7.如果一盒圆珠笔有12支,售价18元,用y(元)表示圆珠笔的售价,x表示圆珠笔的支数,那么y与x之间的关系应该是【】. A.y=12x =18x =x =x8. 向高为10厘米的容器中注水,注满为止,若注水量V(厘米3)与水深h(厘米)之间的关系的图象大致如图3所示,则这个容器是下列四个图中的【】.二.填空4.等腰三角形的周长为12厘米,底边长为厘米,腰长为厘米. 则与的之间的关系式是 y= .5. 一根弹簧原长13厘米,并且每挂1千克就伸长厘米,则当挂物体质量为10千克,弹簧长度为________厘米,挂物体X(千克)与弹簧长度y(厘米)的关系式为_______.(不考虑x的取值范围三.解答1.2、3.已知2x=3x+3,求代数式的值.4.从男女学生共36人的班级中,选一名班长,任何人都有同样的当选机会,如果选得男生的概率为,求男女生数各多少?5.星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在图8,画出符合他们行驶的路程S(千米)与行驶时间t(时)之间的图象.6.将若干张长为20厘米、宽为10厘米的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为2厘米.(1)求4张白纸粘合后的总长度;(2)设x张白纸粘合后的总长度为y厘米,写出y与x之间的关系式,并求当x=20时,y的值.8、(厦门·中考题)某商场为了吸引更多的顾客,安排了一个抽奖活动,并规定:顾客每购买100元商品,就能获得一次抽奖的机会。

期末复习(压轴题49题)—2023-2024学年七年级数学下学期期末考点(北师大版)(解析版)

期末复习(压轴题49题)—2023-2024学年七年级数学下学期期末考点(北师大版)(解析版)

z 期末复习(压轴题49题20个考点)一.规律型:数字的变化类(共1小题)1.为了求1+2+22+23+…+22011+22012的值,可令S =1+2+22+23+…+22011+22012,则2S =2+22+23+24+…+22012+22013,因此2S ﹣S =22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是( )A .52013﹣1B .52013+1C .D . 【答案】D【解答】解:令S =1+5+52+53+ (52012)则5S =5+52+53+…+52012+52013,5S ﹣S =﹣1+52013,4S =52013﹣1,则S =.故选:D .二.同底数幂的乘法(共1小题) 2.阅读材料:求1+2+22+23+24+…+22013的值.解:设S =1+2+22+23+24+…+22012+22013,将等式两边同时乘2得:2S =2+22+23+24+25+…+22013+22014 将下式减去上式得2S ﹣S =22014﹣1即S =22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n (其中n 为正整数).【答案】见试题解答内容【解答】解:(1)设S =1+2+22+23+24+ (210)将等式两边同时乘2得:2S =2+22+23+24+…+210+211,将下式减去上式得:2S ﹣S =211﹣1,即S =211﹣1,则1+2+22+23+24+…+210=211﹣1;z (2)设S =1+3+32+33+34+…+3n ①,两边同时乘3得:3S =3+32+33+34+…+3n +3n +1②,②﹣①得:3S ﹣S =3n +1﹣1,即S =(3n +1﹣1),则1+3+32+33+34+…+3n =(3n +1﹣1).三.多项式乘多项式(共1小题)3.如图,正方形卡片A 类,B 类和长方形卡片C 类若干张,如果要拼一个长为(a +2b ),宽为(a +b )的大长方形,则需要C 类卡片 张.【答案】见试题解答内容【解答】解:(a +2b )(a +b )=a 2+3ab +2b 2.则需要C 类卡片3张.故答案为:3.四.完全平方公式(共3小题)4.已知a ﹣b =b ﹣c =,a 2+b 2+c 2=1,则ab +bc +ca 的值等于 .【答案】见试题解答内容【解答】解:∵a ﹣b =b ﹣c =,∴(a ﹣b )2=,(b ﹣c )2=,a ﹣c =, ∴a 2+b 2﹣2ab =,b 2+c 2﹣2bc =,a 2+c 2﹣2ac =, ∴2(a 2+b 2+c 2)﹣2(ab +bc +ca )=++=, ∴2﹣2(ab +bc +ca )=, ∴1﹣(ab +bc +ca )=, ∴ab +bc +ca =﹣=﹣. 故答案为:﹣.z 5.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a +b )6= .【答案】见试题解答内容【解答】解:(a +b )6=a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6故本题答案为:a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 66.回答下列问题(1)填空:x 2+=(x +)2﹣ =(x ﹣)2+(2)若a +=5,则a 2+= ;(3)若a 2﹣3a +1=0,求a 2+的值. 【答案】见试题解答内容【解答】解:(1)2、2.(2)23. (3)∵a =0时方程不成立,∴a ≠0,∵a 2﹣3a +1=0两边同除a 得:a ﹣3+=0,移项得:a +=3,∴a 2+=(a +)2﹣2=7. 五.平方差公式的几何背景(共1小题)7.如图,边长为m +4的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.z【答案】见试题解答内容【解答】解:设拼成的矩形的另一边长为x ,则4x =(m +4)2﹣m 2=(m +4+m )(m +4﹣m ),解得x =2m +4.故答案为:2m +4.六.整式的混合运算(共1小题)8.7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .a =bB .a =3bC .a =bD .a =4b 【答案】B 【解答】解:左上角阴影部分的长为AE ,宽为AF =3b ,右下角阴影部分的长为PC ,宽为a ,∵AD =BC ,即AE +ED =AE +a ,BC =BP +PC =4b +PC ,∴AE +a =4b +PC ,即AE ﹣PC =4b ﹣a ,∴阴影部分面积之差S =AE •AF ﹣PC •CG =3bAE ﹣aPC =3b (PC +4b ﹣a )﹣aPC =(3b ﹣a )PC +12b 2﹣3ab ,则3b ﹣a =0,即a =3b .解法二:既然BC 是变化的,当点P 与点C 重合开始,然后BC 向右伸展,设向右伸展长度为X ,左上阴影增加的是3bX ,右下阴影增加的是aX ,因为S 不变,∴增加的面积相等,z ∴3bX =aX ,∴a =3b .故选:B .七.函数的图象(共4小题)9.如图,某电信公司提供了A ,B 两种方案的移动通讯费用y (元)与通话时间x (分)之间的关系,则下列结论中正确的有( )(1)若通话时间少于120分,则A 方案比B 方案便宜20元;(2)若通话时间超过200分,则B 方案比A 方案便宜12元;(3)若通讯费用为60元,则B 方案比A 方案的通话时间多;(4)若两种方案通讯费用相差10元,则通话时间是145分或185分.A .1个B .2个C .3个D .4个【答案】C【解答】解:依题意得A :(1)当0≤x ≤120,y A =30, (2)当x >120,y A =30+(x ﹣120)×[(50﹣30)÷(170﹣120)]=0.4x ﹣18;B :(1)当0≤x <200,y B =50,当x >200,y B =50+[(70﹣50)÷(250﹣200)](x ﹣200)=0.4x ﹣30,所以当x ≤120时,A 方案比B 方案便宜20元,故(1)正确;当x ≥200时,B 方案比A 方案便宜12元,故(2)正确;z 当y =60时,A :60=0.4x ﹣18,∴x =195,B :60=0.4x ﹣30,∴x =225,故(3)正确;当B 方案为50元,A 方案是40元或者60元时,两种方案通讯费用相差10元,将y A =40或60代入,得x =145分或195分,故(4)错误;故选:C .10.在物理实验课上,小明用弹簧秤将铁块A 悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧秤的读数y (单位N )与铁块被提起的高度x (单位cm )之间的函数关系的大致图象是( )A .B .C .D . 【答案】C 【解答】解:因为小明用弹簧秤将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度.则露出水面前读数y 不变,出水面后y 逐渐增大,离开水面后y 不变.故选:C .11.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x 表示乌龟从起点出发所行的时间,y 1表示乌龟所行的路程,y 2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;z ④兔子在途中750米处追上乌龟.其中正确的说法是 .(把你认为正确说法的序号都填上)【答案】见试题解答内容【解答】解:根据图象可知:龟兔再次赛跑的路程为1000米,故①正确;兔子在乌龟跑了40分钟之后开始跑,故②错误;乌龟在30﹣﹣40分钟时的路程为0,故这10分钟乌龟没有跑在休息,故③正确;y 1=20x ﹣200(40≤x ≤60),y 2=100x ﹣4000(40≤x ≤50),当y 1=y 2时,兔子追上乌龟,此时20x ﹣200=100x ﹣4000,解得:x =47.5,y 1=y 2=750米,即兔子在途中750米处追上乌龟,故④正确.综上可得①③④正确.故答案为:①③④.12.小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是 分钟.【答案】见试题解答内容【解答】解:先算出平路、上坡路和下坡路的速度分别为、和(千米/分),z 所以他从单位到家门口需要的时间是(分钟).故答案为:15.八.二次函数的图象(共1小题) 13.如图,正方形ABCD 的边长为4,点P 、Q 分别是CD 、AD 的中点,动点E 从点A 向点B 运动,到点B 时停止运动;同时,动点F 从点P 出发,沿P →D →Q 运动,点E 、F 的运动速度相同.设点E 的运动路程为x ,△AEF 的面积为y ,能大致刻画y 与x 的函数关系的图象是( )A .B .C .D .【答案】A 【解答】解:当F 在PD 上运动时,△AEF 的面积为y =AE •AD =2x (0≤x ≤2),当F 在AD 上运动时,△AEF 的面积为y =AE •AF =x (6﹣x )=﹣x 2+3x (2<x ≤4),图象为:故选:A .z 九.平行线的性质(共2小题)14.如图,将长方形ABCD 沿线段EF 折叠到EB 'C 'F 的位置,若∠EFC '=100°,则∠DFC '的度数为( )A .20°B .30°C .40°D .50°【答案】A【解答】解:由翻折知,∠EFC =∠EFC '=100°,∴∠EFC +∠EFC '=200°,∴∠DFC '=∠EFC +∠EFC '﹣180°=200°﹣180°=20°,故选:A .15.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC =120°,∠BCD =80°,则∠CDE = 度. 【答案】见试题解答内容【解答】解:过点C 作CF ∥AB ,已知珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,∴AB ∥DE ,∴CF ∥DE ,∴∠BCF +∠ABC =180°,∴∠BCF =60°,∴∠DCF =20°,∴∠CDE =∠DCF =20°.故答案为:20.z十.三角形的面积(共4小题)16.在如图的方格纸中,每个小方格都是边长为1的正方形,点A 、B 是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C 使△ABC 的面积为2个平方单位,则满足条件的格点C 的个数是( )A .5B .4C .3D .2【答案】A【解答】解:满足条件的C 点有5个,如图平行于AB 的直线上,与网格的所有交点就是.故选:A . 17.如图,△ABC 三边的中线AD 、BE 、CF 的公共点为G ,若S △ABC =12,则图中阴影部分的面积是 .【答案】见试题解答内容【解答】方法1解:∵△ABC 的三条中线AD 、BE ,CF 交于点G ,∴S △CGE =S △AGE =S △ACF ,S △BGF =S △BGD =S △BCF ,∵S △ACF =S △BCF =S△ABC=×12=6,z ∴S △CGE =S △ACF =×6=2,S △BGF =S △BCF =×6=2,∴S 阴影=S △CGE +S △BGF =4.故答案为4.方法2设△AFG ,△BFG ,△BDG ,△CDG ,△CEG ,△AEG 的面积分别为S 1,S 2,S 3,S 4,S 5,S 6,根据中线平分三角形面积可得:S 1=S 2,S 3=S 4,S 5=S 6,S 1+S 2+S 3=S 4+S 5+S 6①,S 2+S 3+S 4=S 1+S 5+S 6② 由①﹣②可得S 1=S 4,所以S 1=S 2=S 3=S 4=S 5=S 6=2,故阴影部分的面积为4.故答案为:4.18.如图,A 、B 、C 分别是线段A 1B ,B 1C ,C 1A 的中点,若△ABC 的面积是1,那么△A 1B 1C 1的面积 .【答案】见试题解答内容【解答】解:如图,连接AB 1,BC 1,CA 1,∵A 、B 分别是线段A 1B ,B 1C 的中点,∴S △ABB 1=S △ABC =1,S △A 1AB 1=S △ABB 1=1,∴S △A 1BB 1=S △A 1AB 1+S △ABB 1=1+1=2,同理:S △B 1CC 1=2,S △A 1AC 1=2,∴△A 1B 1C 1的面积=S △A 1BB 1+S △B 1CC 1+S △A 1AC 1+S △ABC =2+2+2+1=7.故答案为:7.z 19.如图,对面积为s 的△ABC 逐次进行以下操作:第一次操作,分别延长AB 、BC 、CA 至点A 1、B 1、C 1,使得A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1,记其面积为S 1;第二次操作,分别延长A 1B 1、B 1C 1、C 1A 1至点A 2、B 2、C 2,使得A 2B 1=2A 1B 1,B 2C 1=2B 1C 1,C 2A 1=2C 1A 1顺次连接A 2、B 2、C 2,得到△A 2B 2C 2,记其面积为S 2;…;按此规律继续下去,可得到△A n B n ∁n ,则其面积S n = .【答案】见试题解答内容【解答】解:连接A 1C ;S △AA 1C =3S △ABC =3S ,S △AA 1C 1=2S △AA 1C =6S ,所以S △A 1B 1C 1=6S ×3+1S =19S ;同理得S △A 2B 2C 2=19S ×19=361S ; S △A 3B 3C 3=361S ×19=6859S ,S △A 4B 4C 4=6859S ×19=130321S , S △A 5B 5C 5=130321S ×19=2476099S ,从中可以得出一个规律,延长各边后得到的三角形是原三角形的19倍,所以延长第n 次后,得到△A n B n ∁n , 则其面积Sn =19n •S .十一.三角形内角和定理(共3小题)20.已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°﹣∠A;(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°﹣∠A.上述说法正确的个数是( )A.0个B.1个C.2个D.3个【答案】C【解答】解:(1)若P点是∠ABC和∠ACB的角平分线的交点,则∠PBC=∠ABC,∠PCB=∠ACB则∠PBC+∠PCB=(∠ABC+∠ACB)=(180°﹣∠A)z在△BCP中利用内角和定理得到:∠P=180﹣(∠PBC+∠PCB)=180﹣(180°﹣∠A)=90°+∠A,故成立;(2)当△ABC是等腰直角三角形,∠A=90°时,结论不成立;(3)若P点是外角∠CBF和∠BCE的角平分线的交点,则∠PBC=∠FBC=(180°﹣∠ABC)=90°﹣∠ABC,∠BCP=∠BCE=90°﹣∠ACB∴∠PBC+∠BCP=180°﹣(∠ABC+∠ACB)又∵∠ABC+∠ACB=180°﹣∠Az 在△BCP 中利用内角和定理得到:∠P =180﹣(∠PBC +∠PCB )=180﹣(180°+∠A )=90°﹣∠A ,故成立.∴说法正确的个数是2个.故选:C .21.已知△ABC 中,∠A =α.在图(1)中∠B 、∠C 的角平分线交于点O 1,则可计算得∠BO 1C =90°+;在图(2)中,设∠B 、∠C 的两条三等分角线分别对应交于O 1、O 2,则∠BO 2C = ;请你猜想,当∠B 、∠C 同时n 等分时,(n ﹣1)条等分角线分别对应交于O 1、O 2,…,O n ﹣1,如图(3),则∠BO n ﹣1C = (用含n 和α的代数式表示).【答案】见试题解答内容【解答】解:在△ABC 中,∵∠A =α,∴∠ABC +∠ACB =180°﹣α,∵O 2B 和O 2C 分别是∠B 、∠C 的三等分线,∴∠O 2BC +∠O 2CB =(∠ABC +∠ACB )=(180°﹣α)=120°﹣α;∴∠BO 2C =180°﹣(∠O 2BC +∠O 2CB )=180°﹣(120°﹣α)=60°+α;在△ABC 中,∵∠A =α,∴∠ABC +∠ACB =180°﹣α,∵O n ﹣1B 和O n ﹣1C 分别是∠B 、∠C 的n 等分线,∴∠O n ﹣1BC +∠O n ﹣1CB =(∠ABC +∠ACB )=(180°﹣α)=﹣. ∴∠BO n ﹣1C =180°﹣(∠O n ﹣1BC +∠O n ﹣1CB )=180°﹣(﹣)=+.z 故答案为:60°+α;+.22.如图,在△ABC 中,∠A =m °,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…∠A 2012BC 和∠A 2012CD 的平分线交于点A 2013,则∠A 2013= 度.【答案】见试题解答内容【解答】解:∵A 1B 平分∠ABC ,A 1C 平分∠ACD ,∴∠A 1BC =∠ABC ,∠A 1CA =∠ACD ,∵∠A 1CD =∠A 1+∠A 1BC ,即∠ACD =∠A 1+∠ABC ,∴∠A 1=(∠ACD ﹣∠ABC ),∵∠A +∠ABC =∠ACD ,∴∠A =∠ACD ﹣∠ABC ,∴∠A 1=∠A ,∴∠A 1=m °,∵∠A 1=∠A ,∠A 2=∠A 1=∠A , …以此类推∠A 2013=∠A =°. 故答案为:.十二.全等图形(共1小题)23.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A.150°B.180°C.210°D.225°【答案】B【解答】解:在△ABC与△EDC中,,∴△ABC≌△EDC(SAS),∴∠BAC=∠1,∠1+∠2=180°.故选:B.z十三.全等三角形的判定(共3小题)24.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是( )A.1对B.2对C.3对D.4对【答案】D【解答】解:∵AB=AC,D为BC中点,在△ABD和△ACD中,,∴△ABD≌△ACD;(SSS)∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE(SSS;在△BOD和△COD中,,∴△BOD≌△COD(SAS);在△AOC和△AOB中,,∴△AOC≌△AOB(SSS);故选:D.25.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有 ①②③(填序z号).【答案】见试题解答内容【解答】解:∵∠B+∠BAE=90°,∠C+∠CAF=90°,∠B=∠C∴∠1=∠2(①正确)∵∠E=∠F=90°,∠B=∠C,AE=AF∴△ABE≌△ACF(ASA)∴AB=AC,BE=CF(②正确)z ∴△ACN ≌△ABM (ASA )(③正确)∴CN =BM (④不正确).所以正确结论有①②③.故填①②③.26.如图所示,在△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,如图①,然后将△ADE 绕A 点顺时针旋转一定角度,得到图②,然后将BD 、CE 分别延长至M 、N ,使DM =BD ,EN =CE ,得到图③,请解答下列问题:(1)若AB =AC ,请探究下列数量关系:①在图②中,BD 与CE 的数量关系是 ;②在图③中,猜想AM 与AN 的数量关系、∠MAN 与∠BAC 的数量关系,并证明你的猜想; 【答案】见试题解答内容【解答】解:(1)①BD =CE ;②AM =AN ,∠MAN =∠BAC ,∵∠DAE =∠BAC ,∴∠CAE =∠BAD ,在△BAD 和△CAE 中∵∴△CAE ≌△BAD (SAS ),∴∠ACE =∠ABD ,z ∵DM =BD ,EN =CE ,∴BM =CN ,在△ABM 和△ACN 中,∵∴△ABM ≌△ACN (SAS ),∴AM =AN ,∴∠BAM =∠CAN ,即∠MAN =∠BAC ;十四.全等三角形的判定与性质(共12小题) 27.如图,AE ⊥AB 且AE =AB ,BC ⊥CD 且BC =CD ,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是( )A .50B .62C .65D .68 【答案】A【解答】解:∵AE ⊥AB 且AE =AB ,EF ⊥FH ,BG ⊥FH ,∴∠EAB =∠EF A =∠BGA =90°,∵∠EAF +∠BAG =90°,∠ABG+∠BAG=90°,z ∴∠EAF =∠ABG ,在△EF A 和△AGB 中,,∴△EF A ≌△AGB (AAS ),∴AF =BG ,AG =EF .同理证得△BGC ≌△CHD 得GC =DH ,CH =BG .故FH =F A +AG +GC +CH =3+6+4+3=16故S =(6+4)×16﹣3×4﹣6×3=50.故选:A .28.如图,点E 在正方形ABCD 的对角线AC 上,且EC =2AE ,直角三角形FEG 的两直角边EF 、EG 分别交BC 、DC 于点M 、N .若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( )A .a 2B .a 2C .a 2D .a 2【答案】D【解答】解:过E 作EP ⊥BC 于点P ,EQ⊥CD 于点Q ,∵四边形ABCD是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ,∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,∴EP=EQ,四边形PCQE是正方形,在△EPM和△EQN中,,∴△EPM≌△EQN(ASA)∴S△EQN=S△EPM,∴四边形EMCN的面积等于正方形PCQE的面积,∵正方形ABCD的边长为a,∴AC=a,z∵EC=2AE,∴EC=a,∴EP=PC=a,∴正方形PCQE的面积=a×a=a2,∴四边形EMCN的面积=a2,故选:D.29.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB 平分∠AMC ,其中结论正确的有( )zA .1个B .2个C .3个D .4个 【答案】D【解答】解:∵△ABD 、△BCE 为等边三角形,∴AB =DB ,∠ABD =∠CBE =60°,BE =BC ,∴∠ABE =∠DBC ,∠PBQ =60°,在△ABE 和△DBC 中,, ∴△ABE ≌△DBC (SAS ),∴①正确;∵△ABE ≌△DBC ,∴∠BAE =∠BDC ,∵∠BDC +∠BCD =180°﹣60°﹣60°=60°,∴∠DMA =∠BAE +∠BCD =∠BDC +∠BCD =60°,∴②正确;在△ABP 和△DBQ 中,, ∴△ABP ≌△DBQ (ASA ),∴BP =BQ ,∴△BPQ 为等边三角形,∴③正确;∵∠DMA =60°,∴∠AMC =120°,∴∠AMC +∠PBQ =180°,∴P 、B 、Q 、M 四点共圆,z ∵BP =BQ ,∴,∴∠BMP =∠BMQ ,即MB 平分∠AMC ;∴④正确;综上所述:正确的结论有4个;故选:D .30.如图,在正方形ABCD 中,如果AF =BE ,那么∠AOD 的度数是 .【答案】见试题解答内容【解答】解:由ABCD 是正方形,得AD =AB ,∠DAB =∠B =90°.在△ABE 和△DAF 中,, ∴△ABE ≌△DAF (SAS ),∴∠BAE =∠ADF .∵∠BAE +∠EAD =90°,∴∠OAD +∠ADO =90°,∴∠AOD =90°,故答案为:90°.31.如图,△ABC 和△EBD 中,∠ABC =∠DBE =90°,AB =CB ,BE =BD ,连接AE ,CD ,AE 与CD 交于点M ,AE 与BC 交于点N .(1)求证:AE =CD ;(2)求证:AE ⊥CD ;(3)连接BM ,有以下两个结论:①BM 平分∠CBE ;②MB 平分∠AMD .其中正确的有 ② (请写序号,少选、错选均不得分).z【答案】见试题解答内容【解答】(1)证明:∵∠ABC =∠DBE ,∴∠ABC +∠CBE =∠DBE +∠CBE ,即∠ABE =∠CBD ,在△ABE 和△CBD 中,,∴△ABE ≌△CBD ,∴AE =CD .(2)∵△ABE ≌△CBD ,∴∠BAE =∠BCD , ∵∠NMC =180°﹣∠BCD ﹣∠CNM ,∠ABC =180°﹣∠BAE ﹣∠ANB ,又∠CNM =∠ANB ,∵∠ABC =90°,∴∠NMC =90°,∴AE ⊥CD .(3)结论:②理由:作BK ⊥AE 于K ,BJ ⊥CD 于J .z∵△ABE ≌△CBD ,∴AE =CD ,S △ABE =S △CDB ,∴•AE •BK =•CD •BJ ,∴BK =BJ ,∵作BK ⊥AE 于K ,BJ ⊥CD 于J ,∴BM 平分∠AMD .不妨设①成立,则△CBM ≌△EBM ,则AB =BD ,显然不可能,故①错误.故答案为②.32.(1)如图1,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,E 、F 分别是边BC 、CD 上的点,且∠EAF =∠BAD .求证:EF =BE +FD ;(2)如图2,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF =∠BAD ,(1)中的结论是否仍然成立? (3)如图3,在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,且∠EAF =∠BAD ,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.【答案】见试题解答内容【解答】证明:(1)延长EB 到G ,使BG =DF ,连接AG .z∵∠ABG =∠ABC =∠D =90°,AB =AD ,∴△ABG ≌△ADF .∴AG =AF ,∠1=∠2.∴∠1+∠3=∠2+∠3=∠EAF =∠BAD .∴∠GAE =∠EAF .又∵AE =AE ,∴△AEG ≌△AEF .∴EG =EF .∵EG =BE +BG .∴EF =BE +FD(2)(1)中的结论EF =BE +FD 仍然成立.(3)结论EF =BE +FD 不成立,应当是EF =BE ﹣FD . 证明:在BE 上截取BG ,使BG =DF ,连接AG .∵∠B +∠ADC =180°,∠ADF +∠ADC =180°,∴∠B =∠ADF .∵AB =AD ,∴△ABG≌△ADF.∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=∠BAD.∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF.∴EG=EF∵EG=BE﹣BG∴EF=BE﹣FD.33.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为 ,线段CF、BD的数量关系为 ;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.【答案】见试题解答内容【解答】证明:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,又∵AB=AC ,∴△DAB≌△F AC,∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.②当点D在BC的延长线上时①的结论仍成立.由正方形ADEF得AD=AF,∠DAF=90度.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠F AC,又∵AB=AC,∴△DAB≌△F AC,∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90度.即CF⊥BD.(2)当∠ACB=45°时,CF⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,∵∠DAG=∠F AC(同角的余角相等),AD=AF,∴△GAD≌△CAF,∴∠ACF=∠AGC=45°,∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.z34.(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.) 在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE =AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE =AD ﹣BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.【答案】见试题解答内容【解答】证明:(1)①∵∠ADC =∠ACB =∠BEC =90°,∴∠CAD +∠ACD =90°,∠BCE +∠CBE =90°,∠ACD +∠BCE =90°. ∴∠CAD =∠BCE .∵AC =BC ,∴△ADC ≌△CEB (AAS ).②∵△ADC ≌△CEB ,∴CE =AD ,CD =BE .∴DE =CE +CD =AD +BE .解:(2)∵∠ADC =∠CEB =∠ACB =90°,∴∠ACD =∠CBE.又∵AC =BC ,∴△ACD ≌△CBE (AAS ).∴CE =AD ,CD =BE .∴DE =CE ﹣CD =AD ﹣BE .(3)当MN 旋转到图3的位置时,AD 、DE 、BE 所满足的等量关系是DE =BE ﹣AD (或AD =BE ﹣DE ,BE =AD +DE 等).∵∠ADC =∠CEB =∠ACB =90°,∴∠ACD =∠CBE ,又∵AC =BC ,∴△ACD ≌△CBE (AAS ),∴AD =CE ,CD =BE ,∴DE =CD ﹣CE =BE ﹣AD .35.(1)如图1,已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .证明:DE =BD +CE .(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图3,D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA =∠AEC =∠BAC ,试判断△DEF 的形状.【答案】见试题解答内容【解答】证明:(1)∵BD ⊥直线m ,CE ⊥直线m ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)成立.∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,z∴DE=AE+AD=BD+CE;(3)△DEF是等边三角形.由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠F AE,∵BF=AF在△DBF和△EAF中,,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DF A+∠AFE=∠DF A+∠BFD=60°,∴△DEF为等边三角形.36.在课外小组活动时,小慧拿来一道题(原问题)和小东、小明交流.原问题:如图1,已知△ABC,∠ACB=90°,∠ABC=45°,分别以AB、BC为边向外作△ABD与△BCE,且DA=DB,EB=EC,∠ADB=∠BEC=90°,连接DE交AB于点F.探究线段DF与EF的数量关系.小慧同学的思路是:过点D作DG⊥AB于G,构造全等三角形,通过推理使问题得解.小东同学说:我做过一道类似的题目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.小明同学经过合情推理,提出一个猜想,我们可以把问题推广到一般情况.请你参考小慧同学的思路,探究并解决这三位同学提出的问题:(1)写出原问题中DF与EF的数量关系;(2)如图2,若∠ABC=30°,∠ADB=∠BEC=60°,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明;(3)如图3,若∠ADB=∠BEC=2∠ABC,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明.【答案】见试题解答内容【解答】解:(1)DF=EF.(2)猜想:DF=FE.证明:过点D作DG⊥AB于G,则∠DGB=90°.∵DA=DB,∠ADB=60°.∴AG=BG,△DBA是等边三角形.z ∴DB =BA .∵∠ACB =90°,∠ABC =30°,∴AC =AB =BG .在Rt △DBG 和Rt △BAC 中,∴Rt △DBG ≌Rt △BAC (HL ).∴DG =BC .∵BE =EC ,∠BEC =60°,∴△EBC 是等边三角形.∴BC =BE ,∠CBE =60°.∴DG =BE ,∠ABE =∠ABC +∠CBE =90°.∵∠DFG =∠EFB ,∠DGF =∠EBF ,在△DFG 和△EFB 中,∴△DFG ≌△EFB (AAS ).∴DF =EF .(3)猜想:DF =FE .过点D 作DH ⊥AB 于H ,连接HC ,HE ,HE 交CB 于K ,则∠DHB =90°.∵DA =DB , ∴AH =BH ,∠1=∠HDB .∵∠ACB =90°,∴HC =HB .在△HBE 和△HCE 中,∴△HBE ≌△HCE (SSS ).∴∠2=∠3,∠4=∠BEH .∴HK ⊥BC .∴∠BKE =90°.∵∠ADB =∠BEC =2∠ABC ,z ∴∠HDB =∠BEH =∠ABC .∴∠DBC =∠DBH +∠ABC =∠DBH +∠HDB =90°,∠EBH =∠EBK +∠ABC =∠EBK +∠BEK =90°.∴DB ∥HE ,DH ∥BE .∴四边形DHEB 是平行四边形.∴DF =EF .37.(1)操作发现:如图①,D 是等边△ABC 边BA 上一动点(点D 与点B 不重合),连接DC ,以DC 为边在BC 上方作等边△DCF ,连接AF .你能发现线段AF 与BD 之间的数量关系吗?并证明你发现的结论.(2)类比猜想:如图②,当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,猜想AF 与BD 在(1)中的结论是否仍然成立?(3)深入探究:Ⅰ.如图③,当动点D 在等边△ABC 边BA 上运动时(点D 与点B 不重合)连接DC ,以DC 为边在BC上方、下方分别作等边△DCF 和等边△DCF ′,连接AF 、BF ′,探究AF 、BF ′与AB 有何数量关系?并证明你探究的结论.Ⅱ.如图④,当动点D 在等边△ABC 边BA 的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.【答案】见试题解答内容z 【解答】解:(1)AF =BD ;证明如下:∵△ABC 是等边三角形(已知),∴BC =AC ,∠BCA =60°(等边三角形的性质);同理知,DC =CF ,∠DCF =60°;∴∠BCA ﹣∠DCA =∠DCF ﹣∠DCA ,即∠BCD =∠ACF ;在△BCD 和△ACF 中,, ∴△BCD ≌△ACF (SAS ),∴BD =AF (全等三角形的对应边相等);(2)证明过程同(1),证得△BCD ≌△ACF (SAS ),则AF =BD (全等三角形的对应边相等),所以,当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,AF =BD 仍然成立;(3)Ⅰ.AF +BF ′=AB ;证明如下:由(1)知,△BCD ≌△ACF (SAS ),则BD =AF ;同理△BCF ′≌△ACD (SAS ),则BF ′=AD ,∴AF +BF ′=BD +AD =AB ;Ⅱ.Ⅰ中的结论不成立.新的结论是AF =AB +BF ′;证明如下:在△BCF ′和△ACD 中,,∴△BCF ′≌△ACD (SAS ), ∴BF ′=AD (全等三角形的对应边相等);又由(2)知,AF =BD ;∴AF =BD =AB +AD =AB +BF ′,即AF =AB+BF ′.z 38.操作:如图①,△ABC 是正三角形,△BDC 是顶角∠BDC =120°的等腰三角形,以D 为顶点作一个60°角,角的两边分别交AB 、AC 边于M 、N 两点,连接MN .探究:线段BM 、MN 、NC 之间的关系,并加以证明.说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明.注意:选取①完成证明得10分;选取②完成证明得5分.AN =NC (如图②);②DM ∥AC (如图③).附加题:若点M 、N 分别是射线AB 、CA 上的点,其它条件不变,再探线段BM 、MN 、NC 之间的关系,在图④中画出图形,并说明理由.【答案】见试题解答内容【解答】解:(1)BM +CN =MN证明:如图,延长AC 至M 1,使CM 1=BM ,连接DM 1由已知条件知:∠ABC =∠ACB =60°,∠DBC =∠DCB =30°,∴∠ABD =∠ACD =90°.∵BD =CD ,∴Rt △BDM ≌Rt △CDM 1,∴∠MDB =∠M 1DC ,DM =DM 1∴∠MDM 1=(120°﹣∠MDB )+∠M 1DC =120°.又∵∠MDN =60°,∴∠M 1DN =∠MDN =60°.∴△MDN ≌△M 1DN .∴MN =NM 1=NC+CM 1=NC +MB .z (2)附加题:CN ﹣BM =MN证明:如图,在CN 上截取CM 1,使CM 1=BM ,连接MN ,DM 1∵∠ABC =∠ACB =60°,∠DBC =∠DCB =30°,∴∠DBM =∠DCM 1=90°.∵BD =CD ,∴Rt △BDM ≌Rt △CDM 1,∴∠MDB =∠M 1DC ,DM =DM 1∵∠BDM +∠BDN =60°,∴∠CDM 1+∠BDN =60°.∴∠NDM 1=∠BDC ﹣(∠M 1DC +∠BDN )=120°﹣60°=60°.∴∠M 1DN =∠MDN . ∵ND =ND ,∴△MDN ≌△M 1DN . ∴MN =NM 1=NC ﹣CM 1=NC ﹣BM,即MN =NC ﹣BM .z 十五.角平分线的性质(共1小题)39.如图,△ABC 的三边AB 、BC 、CA 长分别为40、50、60.其三条角平分线交于点O ,则S △ABO :S △BCO :S △CAO = .【答案】见试题解答内容【解答】解:过点O 作OD ⊥AB 于点D ,作OE ⊥AC 于点E ,作OF ⊥BC 于点F ,∵OA ,OB ,OC 是△ABC 的三条角平分线,∴OD =OE =OF ,∵△ABC 的三边AB 、BC 、CA 长分别为40、50、60,∴S △ABO :S △BCO :S △CAO =(AB •OD ):(BC •OF ):(AC •OE )=AB :BC :AC =40:50:60=4:5:6.故答案为:4:5:6.十六.线段垂直平分线的性质(共1小题) 40.如图,△ABC 中,AB =AC ,∠BAC =54°,点D 为AB 中点,且OD ⊥AB ,∠BAC 的平分线与AB 的垂直平分线交于点O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,则∠OEC 为度.【答案】见试题解答内容z 【解答】解:法一:如图,连接OB 、OC ,∵∠BAC =54°,AO 为∠BAC 的平分线,∴∠BAO =∠BAC =×54°=27°,又∵AB =AC ,∴∠ABC =(180°﹣∠BAC )=(180°﹣54°)=63°,∵DO 是AB 的垂直平分线,∴OA =OB ,∴∠ABO =∠BAO =27°,∴∠OBC =∠ABC ﹣∠ABO =63°﹣27°=36°,∵AO 为∠BAC 的平分线,AB =AC ,∴△AOB ≌△AOC (SAS ),∴OB =OC ,∴点O 在BC 的垂直平分线上,又∵DO 是AB 的垂直平分线,∴点O 是△ABC 的外心,∴∠OCB =∠OBC =36°,∵将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,∴OE =CE , ∴∠COE =∠OCB =36°, 在△OCE 中,∠OEC =180°﹣∠COE ﹣∠OCB =180°﹣36°﹣36°=108°.法二:证明点O 是△ABC 的外心,推出∠BOC =108°,根据OB =OC ,推出∠OCE =36°可得结论.故答案为:108.z 十七.等腰三角形的性质(共4小题)41.如图,在△ABC 中,AB =20cm ,AC =12cm ,点P 从点B 出发以每秒3cm 的速度向点A 运动,点Q 从点A 同时出发以每秒2cm 的速度向点C 运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )A .2.5秒B .3秒C .3.5秒D .4秒 【答案】D【解答】解:设运动的时间为x cm ,在△ABC 中,AB =20cm ,AC =12cm ,点P 从点B 出发以每秒3cm 的速度向点A 运动,点Q 从点A 同时出发以每秒2cm 的速度向点C 运动, 当△APQ 是等腰三角形时,AP =AQ ,AP =20﹣3x ,AQ =2x即20﹣3x =2x ,解得x =4(cm ).故选:D .42.如图,∠BOC =9°,点A 在OB 上,且OA =1,按下列要求画图: 以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1; 再以A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2;再以A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3;…这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n = 9 .【答案】见试题解答内容【解答】解:由题意可知:AO =A 1A ,A 1A =A 2A 1,…,则∠AOA 1=∠OA 1A ,∠A 1AA 2=∠A 1A 2A,…,∵∠BOC =9°,z ∴∠A 1AB =18°,∠A 2A 1C =27°,∠A 3A 2B =36°,∠A 4A 3C =45°,…,∴9°n <90°,解得n <10.由于n 为整数,故n =9.故答案为:9.43.如图所示,AOB 是一钢架,且∠AOB =10°,为了使钢架更加坚固,需在其内部添加一些钢管EF ,FG ,GH …,添加的钢管长度都与OE 相等,则最多能添加这样的钢管 根.【答案】见试题解答内容【解答】解:∵添加的钢管长度都与OE 相等,∠AOB =10°,∴∠GEF =∠FGE =20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个.故答案为:8.44.如图,△ABC 中AB =AC ,BC =6,点P 从点B 出发沿射线BA 移动,同时,点Q 从点C 出发沿线段AC 的延长线移动,已知点P 、Q 移动的速度相同,PQ 与直线BC 相交于点D .(1)如图①,当点P 为AB 的中点时,求CD 的长;(2)如图②,过点P 作直线BC 的垂线垂足为E ,当点P 、Q 在移动的过程中,线段BE 、DE 、CD 中是否存在长度保持不变的线段?请说明理由.【答案】见试题解答内容【解答】解:(1)如图,过P 点作PF ∥AC 交BC 于F ,∵点P 和点Q 同时出发,且速度相同,∴BP =CQ ,∵PF∥AQ,∴∠PFB=∠ACB,∠DPF=∠CQD,又∵AB=AC,∴∠B=∠ACB,∴∠B=∠PFB,∴BP=PF,∴PF=CQ,又∠PDF=∠QDC,∴证得△PFD≌△QCD,∴DF=CD=CF,又因P是AB的中点,PF∥AQ,∴F是BC的中点,即FC=BC=3,∴CD=CF=;(2)分两种情况讨论,得ED为定值,是不变的线段,如图,如果点P在线段AB上,过点P作PF∥AC交BC于F,z∵△PBF为等腰三角形,∴PB=PF,BE=EF,∴PF=CQ,∴FD=DC,∴ED=EF+FD=BE+DC=BC=3,∴ED为定值,同理,如图,若P 在BA的延长线上,z作PM ∥AC 的延长线于M ,∴∠PMC =∠ACB ,又∵AB =AC ,∴∠B =∠ACB ,∴∠B =∠PMC ,∴PM =PB ,根据三线合一得BE =EM ,同理可得△PMD ≌△QCD ,所以CD =DM ,∵BE =EM ,CD =DM ,∴ED =EM ﹣DM =﹣DM =+﹣DM =3+DM ﹣DM =3, 综上所述,线段ED 的长度保持不变.十八.等边三角形的性质(共1小题)45.图①是一块边长为1,周长记为P 1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉如图正三角形纸板边长的)后,得图③,④,…,记第n (n ≥3)块纸板的周长为P n ,则P n﹣P n ﹣1的值为( )zA .B .C .D . 【答案】C【解答】解:P 1=1+1+1=3,P 2=1+1+=,P 3=1+++×3=,P 4=1+++×2+×3=, …∴P 3﹣P 2=﹣==, P 4﹣P 3=﹣==,则Pn ﹣Pn ﹣1==.故选:C .十九.轴对称-最短路线问题(共3小题)46.如图,点P 是∠AOB 内任意一点,OP =5cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm ,则∠AOB 的度数是( )。

(完整版)北师大版七年级下期末总复习代数部分

(完整版)北师大版七年级下期末总复习代数部分

望子成龙学校 七年级〔下〕 数学资料 Jump for the sun, at least you may land on the moon.期末复习之代数篇知识要点平方差公式: ( a b)( a b)完满平方和: (a b) 2完满平方差: (a b) 2专题复习专题一:整式的运算一、选择题2mn ,π,21、代数式- 7x 2+ 1,4xy ,21 1中,单项式的个数是〔〕5232、以下运算正确的选项是〔 〕A. 3x 2x 1B. ( 2 a 1) 24 a 24a123a 6( a 2 )3a 6C. ( a)·a D. 3、以下运算正确的选项是〔〕A . y 7· y= y 7B. (2ab) 2 4a 2 2ab b 2C . ( 3ab) 26a 2b 2 D . ( 2a 3)( 2a 3) 9 4a 24、如图〔一〕,在边长为 a 的正方形中,挖掉一个边长为b 的小正方形 (a b) ,把余下的局部剪成一个矩形 〔如图 〔二〕〕,经过计算两个图形 〔阴影局部〕 的面积, 考据了一个等式,那么这个等式是〔〕A . a2b 2(a b)(a b)aB . (ab)2a 2 2ab b2abC . (a b)2 a 22ab b 2D . (a2b)( a b)a 2 ab 2b 2b第4题图2图一图二5、1 的相反数是 ( )3A.1B.1 C. 9D.9996、多项式2a 2 b3x 25的项数和次数分别为〔〕A.3 ,2B. 3, 5 , 3D. 2,37、以下计算正确的选项是〔 〕A. 2a 2a 22a 4B.2a 1 12aC. ( x 1)( x 1)x 2 1D.( ab) 2a 2 2ab b 21望子成龙学校七年级〔下〕数学资料Jump for the sun, at least you may land on the moon.8、假设x4y43x2 y b 4x a y3是一个二项式,那么 a b等于〔〕A. 1B.8C.8D.1 889、以下计算中正确的选项是〔〕A.2m? 3n6m n B. (a - b)2 a 2 - b2 C. (-3a4)26a8 D. (a - b)3(b - a)2(a - b)510、假设a = (-3)- 2-1π0,那么 a 、b、 c 的大小关系是〔〕2, b = (-1), c = (-)2A、 a>b> cB、a> c> bC、 c> a>bD、c>b>a11、以下各式能用平方差公式计算的是〔〕A、〔 2a+ b〕〔 2b- a〕B11、〔 x+1〕〔-x- 1〕22C、〔 3x- y〕〔- 3x+ y〕D、〔- x- y〕〔- x+ y〕12、如图,长方形的长为a,宽为 b,横向阴影局部为长方形,纵向阴影部分为平行四边形,它们的宽都为c,那么空白局部的面积为〔〕cA、bc ab ac c 2B、 ab bc ac c 2bcC、a2ab bc acD、 b2bc a 2aba13、3m n4 , 35,那么 33m 2n=〔〕A、 39B、 2C64D4、25、514、在数轴上,大于- 2.5 且小于的整数有〔〕A.3 个个个个15、以下关于-23的说法中,正确的选项是〔〕A. 三个- 2 相乘B.–2 的三次幂的–3 次幂 D.2 的三次幂的相反数二、填空题1、单项式m2 n,次数是.的系数是52、计算:(-2xy3z2)4=.3、假设3m 4 ,9n= 5,那么33m 4 n = . 4、假设 2x 3y4 ,那么4x8 y的值为2望子成龙学校七年级〔下〕 数学资料 Jump for the sun, at least you may land on the moon.5、若是 x 23x 3 0 ,那么代数式x 3 5x 2 3x 10 的值为6、假设 x 2 mx 15 x 3 x n ,那么 m =, n =.7、 假设(2x1)(3 x) ax 2bx c ,那么 a=,b=,c=.8、: a + 1= 3,那么 a 2+1=aa 29、假设 a+b=3,ab=3, 那么 a2b 2.10、 (x+y) 2-2x-2y+1=0 ,那么 x+y= .11、 x y 6且 xy4,那么 (x y)2=; x 4y 4 =.12、 a1999x 2000, b1999x 2001 , c1999x2002,那么多项式a 2 +b 2 +c 2 - ab - ac - bc 的值13、假设 x22m 5 xy9 y 2 是一个完满平方式,那么m=.14、若是多项式 x 2+ 8x+ k 是一个完满平方式,那么 k 的值是15、在多项式 4x 2 1 中,增加一个单项式,使其成为一个完满平方式,那么增加的单项式是.〔只写出一个即可〕16、假设 x23x 4 x 2 ax 1 的张开式中,含 x 2 项的系数为1,那么 a 的值是.17、长方形面积是 3a 2- 3ab + 6a ,一边长为 3a ,那么它周长是.三、计算题1、解答以下各题 .①a 3 a 3a 4 =; ②771 = ; ③2711 20219 π 0=.22132 、计算:2m 2 n3 3m 3 n4 mn 223 、先化简 , 再求值 : x y2x y x y 2 y 2y x1y , 其中 x1 ,220211 y202134、计算 .(1) (2021 )0-2 2+ ( 1) 211(2)(9x3 y 26x 2 y 3xy 2 ) ( 3xy )23(3) (a2) 2(2a 1)(a 4)〔4〕用乘法公式计算:x 2y 3 x 2 y3〔5〕(1x2)(1x 2) ( 3 x)( x 3)〔 6〕(9x3y2 6 x2 y 3xy 2 ) (3xy) 225. 解关于 x 的方程:(x2)2( x 2)( x 2) 26. 先化简,再求值[(2 x+y) 2-y( y+ 4x) - 8x]÷ 2x.其中 x=2, y=-14专题二:生活中的数据1、以下数据中,是精确值的有〔〕个〔 1〕在 5· 12大地震中,估计有12000人死亡;〔 2〕某细胞的直径为百万分之一米;〔 3〕中国的国土面积约为960 万 km2〔 4〕我家有3 口人〔 5〕七〔 2〕班有 53 人A、 1B、 2C、 3D、 42、课上老师给出了下面的数据,请问哪一个数据是精确的〔〕A、 2003 年美国发动的伊拉克战争每个月耗资约40 亿美元B、地球上煤储量为 5 万亿吨左右C、人的大脑约有1× 1010亿个细胞D、某次期中考试中小颖的数学成绩是98 分3、〔台州·中考题〕关于四舍五入获取的近似数3.20 × 105,以下说法正确的选项是〔〕A、有 3 个有效数字,精确到百分位B、有 6 个有效数字,精确到个位C、有 2 个有效数字,精确到万位D、有 3 个有效数字,精确到千位4、关于近似数的说法错误的选项是〔〕A.它有三个有效数字B.它可表示为 5.30 × 10-1C.它精确到百分位D.它精确到5、关于由四舍五入获取的近似数和,以下说法正确的选项是〔〕关于由四舍五入获取的近似数和,以下说法正确的选项是〔〕A. 有效数字和精确度都相同B.有效数字相同,精确度不相同C. 有效数字不相同,精确度相同D.有效数字和精确度都不相同6、以下说法正确的选项是〔〕A、近似数与 6.40 的精确度相同B、近似数有两个有效数字C、近似数 2 万与 20000 的有效数字都是2D、近似数9.03 × 104精确到百位,有效数字是9,0,37、我校操场面积大体是2500 平方米,他的百万分之一能容纳以下哪一种动物〔〕A、蝉B、小狗C、公鸡D、鸽子8、一种细胞的直径约为 1.56 × 10-6米,那么它的一百万倍相当于〔〕A、玻璃跳棋棋子的直径B、数学课本的宽度C、初中学生小丽的身高D、五层楼房的高度9、梵帝岗的国土面积约为0.44 平方千米,它的百万分之一相当于〔〕A、一个操场B、一间房子C、一张桌子D、一本书的封面10、用科学记数法表示0.0000907 ,并保存两个有效数字得〔〕A、 9.1 × 10-4B、 9.1 × 10-5C、 9.0 × 10-5D、 9.0 × 10-411、纳米是一种长度单位, 1 纳米 =10 -9米,某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉直径为〔〕5望子成龙学校七年级〔下〕 数学资料 Jump for the sun, at least you may land on the moon.A.3.5 ×10 4 米×10 -4 米× 10 -5米× 10 -9米12、 2006 年我国自行研制的第三代战机歼— 10 横空出生,其翱翔速度高出倍音速,达到千米 / 小时,该数据用科学计数法表示为〔〕〔保存两个有效数字〕A 、 3×103B、3.0 ×103C 、2.9 × 103D 、2.9 ×10413、某原子的直径约为 0.000 000 000 196米,保存两个有效数字,用科学记数法表示为 。

北师大版七年级数学下册第四章专题复习试题及答案全套.doc

北师大版七年级数学下册第四章专题复习试题及答案全套.doc

最新北师大版七年级数学下册第四章专题复习试题及答案全套专训1三角形三边关系的巧用名师点金:三角形的三边关系应用广泛,利用三边关系可以判断三条线段能否组成三角形、已知两边求第三边的长或取值范围、证明线段不等关系、化简绝对值、求解等腰三角形的边长及周长等问题.1类戈丄判断三条线段能否组成三角形1•下列长度的三条线段能组成三角形的是()A・ 1, 2, 3 B• 1, 7T, 5C. 3, 4, 8D. 4, 5, 62.下列长度的三条线段,不能组成三角形的是()A. 3, 8, 4B. 4, 9, 6C. 15, 20, 9D. 9, 15, 83.已知下列三条线段的长度比,则能组成三角形的是()&・ 1 : 2 : 3 B・ 1 : 1 : 2C・ 1 : 3 : 4 D・ 2 : 3 : 4•奏更2求三角形第三边的长或取值范围4.若a, b, c为三角形的三边,且a, b满足|a2—9| +(b—2)2=0,则第三边c的取值范围是_________ -5.如果三角形的两边长分别为3和5,则周长I的取值范围是()4・ 6<l<15 B. 6<1<16C. 1KK13 D・ 10<1<166.一个三角形的两边长分别为5 cm和3 cm,第三边的长是整数,且周长是偶数,则第三边的长是()A. 2 cm 或 4 cmB. 4 cm 或 6 cmC・ 4 cm D・ 2 cm 6 cmD解答等腰三角形相关问题7.(2015-宿迁)若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()9 B. 12C・7或9 D. 9或128.(2015-衡阳)己知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()4・ 11 B. 16C. 17 D・ 16 或179.已知在AABC中,AB = 5, BC = 2,且AC的长为奇数.⑴求AABC的周长;⑵判断AABC的形状.选勲:三角形的三边关系在代数中的应用10.已知a, b, c是AABC的三边长,b, c满足(b —2)2+ |c —3| =0,且a为方程|x—4| =2的解,求AABC 的周长.巻甕5利用三角形的三边关系说明边的不等关系11.如图,已知D, E为Z\ABC内两点,试说明:AB + AOBD + DE + CE.专训2三角形的三种重要线段的应用名师点金:三角形的高、中线和角平分线是三角形中三种重要的线段,它们提供了重要的线段或角的关系,为我们以后深入研究三角形的一些特征起到了很大的帮助作用,因此我们需要从不同的角度认识这三种线段.应用!三角形的高的应用类型1找三角形的高1・如图,已知AB丄BD于点B, AC丄CD于点C, AC与BD交于点E.AADE的边DE上的高为,边AE上的高为・类型2作三角形的高 2.(动手操作题)画出图中AABC 的三条高.(要标明字母,不写画法)类型3求与高相关线段的问题3.如图,在AABC 中,BC = 4, AC = 5,若BC 边上的高AD = 4・ 求⑴AABC 的面积及AC 边上的高BE 的长;(2)AD : BE 的值.类型4说明与高相关线段和的问题4・女口图,在AABC 中,AB = AC, DE1AB, DF1AC, BG1AC,垂足分别为点 E, F, G.(第4题)试说明:DE + DF = BG.(第2题)AD(第3题)1应用么三角形的中线的应用类型1求与中线相关线段问题5.如图,己知AE是AABC的中线,EC = 4, DE = 2,则BD的长为()A・ 2 B. 3 C. 4 D. 66・如图,已知BE = CE, ED为AEBC的中线,BD = 8, AAEC的周长为24,则Z^ABC的周长为()A・ 40 B. 46 C. 50 D. 567.在等腰三角形ABC中,AB = AC, —腰上的中线BD将这个三角形的周长分成15 cm和6 cm两部分,求这个等腰三角形的三边长.(第9题)类型2求与中线相关的面积问题8. (2015•广东)如图,AABC的三边的中线AD, BE, CF的公共点为G,且AG : GD = 2 : 1,若S AABC~ 12,则图中阴影部分的面积是____________ ・⑴如图①,延长AABC的边BC到点D,使CD = BC,连接DA,若AACD的面积为Si,则_______ (用含a的代数式表示);(2)如图②,延长AABC的边BC到点D,延长边CA到点E,使CD = BC, AE = CA,连接DE,若ADEC的面积为S2,则S2= _____________ (用含a的代数式表示),请说明理由;⑶如图③,在图②的基础上延长AB到点F,使BF = AB,连接FD, FE,得到ADEF,若阴影部分的面积为S3,则S3= ____________ 佣含a的代数式表示).:燙月工三角形的角平分线的应用类型1三角形角平分线定义的直接应用10.⑴如图,在AABC中,D, E, F是边BC ±的三点,且Z1=Z2=Z3=Z4,以AE为角平分线的三角形有__________ :(2)如图,已知AE平分ZBAC,且Z1=Z2=Z4 = 15。

七年级下册超难代数数学题

七年级下册超难代数数学题

北师大版七年级数学(下)巩固训练一、选择题1.以下各组线段长能组成三角形的是()A.1,5,6B.4,3,5C.2,5,8D.5,5,122.下列式子不能用平方差公式计算的是()A.(a﹣b)(b﹣a)B.(﹣x+y)(﹣x﹣y)C.(a﹣b)(a+b)D.(﹣x﹣1)(x﹣1)3.下列各式中计算结果为x5的是()A.x3+x2B.x3•x2C.x•x3D.x7﹣x24.下列说法正确的是()A.明天会下雨是必然事件B.随机事件发生的概率为C.概率很小的事件不可能发生D.不可能事件发生的概率为05.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃﹣20﹣100102030声速/m/s318324330336342348下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s6.如图,能判定DE∥AC的条件是()A.∠3=∠C B.∠1=∠3C.∠2=∠4D.∠1+∠2=180°7.电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y(元)与通话时间t(分钟)之间的函数图象是图中的()A.B.C.D.8.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE的延长线于点E,则DE的长为()A.B.C.D.9.若一个等腰三角形的两边长分别为4和10,则这个三角形的周长为()A.18B.22C.24D.18或2410.如图,把一张长方形纸片ABCD折叠后,点C、点D的对应点分别为点C′和点D′,若∠1=48°,则∠2的度数为()A.138°B.132°C.121°D.111°二、填空题11.蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度y厘米与燃烧时间x小时(0≤x≤4)的关系式可以表示为.12.在一个不透明的盒子中装有n个小球,他们只有颜色上的区别,其中有3个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复实验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是.13.如图,AB∥CE,BF交CE于点D,DE=DF,∠F=30°,则∠B=.14.如果a+b=8,a2﹣b2=24,那么a﹣b=.15.如图,∠A=∠D,∠1=∠2,要得到△ABC≌△DEF,添加一个条件可以是.16.如图,在△ABC中,AB=AC=10cm,BC=8cm,AB的垂直平分线交AB于点M,交AC于点N,在直线MN上存在一点P,使P、B、C三点构成的△PBC的周长最小,则△PBC的周长最小值为.三、解答题:17.计算:22﹣(π﹣3.14)0﹣|﹣4|+()﹣118.先化简:(2x﹣1)2﹣(3x+1)(3x﹣1)+5x(x﹣1),再选取一个你喜欢的数代替x求值.19.小红和小明做游戏:在一个不透明口袋中装有6个红球,9个黄球,3个绿球,这些球除颜色外没有任何区别,从中任意摸出一个球,摸到黄球小明胜,摸到的球不是黄球小红胜,这个游戏公平吗?请说明详细理由.20.如图,在△ABC中,AB=AC,D是BC边上的一点,以AD为边在AD右侧作△ADE,使AE=AD,连接CE,∠BAC=∠DAE=100°.(1)试说明△BAD≌△CAE;(2)若DE=DC,求∠CDE的度数.21.某车间甲、乙两名工人分别生产同种零件,他们生产的零件数量y(个)与生产时间t(小时)之间的关系如图所示(其中实线表示甲,虚线表示乙,且甲因机器故障停产了一段时间).(1)甲、乙中,先完成40个零件的生产任务.(2)甲在因机器故障停产之前,每小时生产个零件.(3)甲故障排除之后以原来速度的两倍重新开始生产,则甲停产了小时.(4)在第一次甲乙生产零件总数在同一时刻相同到甲完工这段时间,什么时候甲乙生产的零件总数相差3个?22.已知A=(4x4﹣x2)÷x2,B=(2x+5)(2x﹣5)+1.(1)求A和B;(2)若变量y满足y﹣A=B,求y与x的关系式;(3)在(2)的条件下,当y=7时,求8x2+(8x2﹣y)2﹣30的值.23.如图1,在△ABC中,∠BAC=90°,AB=AC,直线MN过点A,且MN∥BC,点D 是直线MN上一点,不与点A重合.若点E是线段AB上一点,且DE=DA.(1)请说明线段DE⊥DA.(2)如图2,连接BD,过点D作DP⊥DB交线段AC于点P,请判断线段DB与DP的数量关系,并说明理由.24.数形结合是解决数学问题的一种重要的思想方法,借助图的直观性,可以帮助理解数学问题.(1)请写出图1、图2、图3分别能解释的乘法公式.(2)用4个全等的长和宽分别为a、b的长方形拼摆成一个如图4的正方形,请你写出这三个代数式(a+b)2、(a﹣b)2、ab之间的等量关系.(3)根据(2)中你探索发现的结论,完成下列问题:①当a+b=5,ab=﹣6时,则a﹣b的值为.②设,B=x﹣2y﹣3,计算:(A+B)2﹣(A﹣B)2的结果.25.在△ABC中,AB=BC=12,∠ABC=90°.如图1,过点A作AH⊥AB,点D、E是从点A同时出发的两个动点,分别在射线AH和线段AB上运动,速度都为每秒2个单位.连接BD、DE,延长DE交直线BC于点M.当E到达点B时两点停止运动,设运动时间为t.(1)如图1,请直接写出AC与DM的位置关系和数量关系;(2)如图2,若改为在线段AB的上方作AH⊥AB,其它条件保持不变.①写出AC与DM的关系;当t=3时,判断△AEC和△MBD是否是全等三角形?并说明判断的理由;②连接CD和CE,求△CDE的面积y与t的关系式,并写出当t=3时y的值.参考答案一、选择题1.解:根据三角形任意两边的和大于第三边.A、1+5=6,不能组成三角形,故本选项错误;B、4+3=7>5,能组成三角形,故本选项正确;C、5+2=7<8,不能够组成三角形,故本选项错误;D、5+5=10<12,不能组成三角形,故本选项错误.故选:B.2.解:A、不能用平方差公式计算,故此选项正确;B、能用平方差公式计算,故此选项错误;C、能用平方差公式计算,故此选项错误;D、能用平方差公式计算,故此选项错误;故选:A.3.解:A.不是同类项不能合并,所以A选项不符合题意;B.x3•x2=x5.符合题意;C.x•x3=x4,不符合题意;D.不是同类项不能会并,不符合题意.故选:B.4.解:A.明天会下雨是随机事件,故此选项错误;B.随机事件发生的概率为0到1之间;故此选项错误;C.概率很小的事件也有可能发生,故此选项错误;D.不可能事件发生的概率为0,此选项正确;故选:D.5.解:∵在这个变化中,自变量是温度,因变量是声速,∴选项A正确;∵根据数据表,可得温度越高,声速越快,∴选项B正确;∵342×5=1710(m),∴当空气温度为20℃时,声音5s可以传播1710m,∴选项C错误;∵324﹣318=6(m/s),330﹣324=6(m/s),336﹣330=6(m/s),342﹣336=6(m/s),348﹣342=6(m/s),∴当温度每升高10℃,声速增加6m/s,∴选项D正确.故选:C.6.解:A、当∠3=∠C时,DE∥AC,符合题意;B、当∠1=∠3时,EF∥BC,不符合题意;C、当∠2=∠4时,无法得到DE∥AC,不符合题意;D、当∠1+∠2=180°时,EF∥BC,不符合题意;故选:A.7.解:由题意可知:当通话时间为0时,余额为4元;当通话时间为10时,余额为0元.∴y=4﹣0.4t(0≤t≤10),故只有选项D符合题意.故选:D.8.解:设CE=x,连接AE.∵DE是线段AB的垂直平分线,∴AE=BE=BC+CE=3+x,∴在Rt△ACE中,AE2=AC2+CE2,即(3+x)2=42+x2,解得x=.在Rt△ABC中,AB=5,∴BD=AD=,在Rt△BDE中,DE=,故选:B.9.解:∵一个等腰三角形的两边长分别为4和10,∴当4为腰时,三边长分别为4,4,10,∵4+4=8<10,∴不成立;当10为腰时,三边长分别为4,10,10,∴三角形的周长为24cm.10.解:如图所示:∵四边形ABCD是长方形,∴AD∥BC,∴∠3=∠6,∵把一张长方形纸片ABCD折叠后,点C、点D的对应点分别为点C′和点D′,∴∠3=∠4=∠6,∵∠1=48°,∴∠5=132°,∴∠6=∠4==69°,∴∠2=180°﹣69°=111°.故选:D.二、填空题11.解:y=20﹣5x(0≤x≤4).故答案为:y=20﹣5x(0≤x≤4).12.解:由题意可得,=0.2,解得,n=15.故估计n大约有15个.故答案为:15.13.解:∵DE=DF,∠F=30°,∴∠E=∠F=30°,∴∠CDF=∠E+∠F=60°,∵AB∥CE,∴∠B=∠CDF=60°.故答案为:60°.14.解:∵a+b=8,a2﹣b2=24,∴(a+b)(a﹣b)=24,∴8(a﹣b)=24,故答案为:3.15.解:∵∠1=∠2,∠D=∠A,∴要得到△ABC≌△DEF,必须添加条件DF=AC或CD=AF.故答案为:DF=AC或CD=AF.16.解:如图,连接P A.∵△PBC的周长=BC+PB+PC,BC=8cm,∴PB+PC的值最小时,△PBC的周长最小,∵MN垂直平分线段AB,∴P A=PB,∴PB+PC=P A+PC≥AC=10cm,∴PB+PC的最小值为10cm,∴△PBC的周长的最小值为18cm.故答案为18cm三、解答题:17.解:22﹣(π﹣3.14)0﹣|﹣4|+()﹣1=4﹣1﹣4+3=218.解:(2x﹣1)2﹣(3x+1)(3x﹣1)+5x(x﹣1),=4x2﹣4x+1﹣(9x2﹣1)+5x2﹣5x,=4x2﹣4x+1﹣9x2+1+5x2﹣5x,=﹣9x+2,任选一数,代入求值即可.比如x=1,原式=﹣7.19.解:∵共有18种等可能的结果,其中摸到黄球有9种,摸不到黄球有9种,∴P(小明胜)==,P(小红胜)=,∵=,∴游戏公平.20.(1)证明:∵∠BAC=∠DAE=100°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)解:∵AB=AC,∠BAC=100°,∴∠B=∠ACB=40°,∵△BAD≌△CAE,∴∠B=∠ACE=40°,∴∠DCE=∠BCA+∠ACE=80°,∵DE=DC,∴∠DEC=∠DCE=80°,∴∠EDC=180°﹣80°﹣80°=20°.21.解:(1)由图象知,甲在t=7时完成生产任务,而乙在t=8时完成生产任务,故答案为:甲;(2)∵10÷2=5(个/小时),∴甲在因机器故障停产之前,每小时生产5个零件,故答案为:5;(3)由题意知,甲完成剩余30个零件的生产任务需要用时(40﹣10)÷10=3(小时),∴甲停产时间为7﹣2﹣3=2(小时),故答案为:2;(4)当2≤t≤4时,y=10;当4<t≤7时,设y=kt+b,将(4,10)、(7,40)代入,得:,解得:,∴y=10t﹣30,即y甲=,设y乙=mt+n,将(2,4)、(8,40)代入,得:,解得:,∴y乙=6t﹣8,①若6t﹣8﹣10=3,解得t=;②若6t﹣8﹣(10t﹣30)=3,解得t=;③若(10t﹣30)﹣(6t﹣8)=3,解得t=;④当6t﹣8=40﹣3时,解得t=7.5>7(舍);综上,t=、、时,甲乙生产的零件总数相差3个.22.解:(1)A=(4x4﹣x2)÷x2=4x2﹣1,B=(2x+5)(2x﹣5)+1=4x2﹣25+1=4x2﹣24;(2)由y﹣A=B,得到y=A+B=4x2﹣1+4x2﹣24=8x2﹣25;(3)把y=7代入(2)中关系式得:8x2﹣25=7,即x2=4,则原式=8×4+(8×4﹣7)2﹣30=32+625﹣30=627.23.解:(1)∵∠BAC=90°,AB=AC,∴∠B=∠C=45°.∵MN∥BC,∴∠DAE=∠B=45°.∵DA=DE,∴∠DEA=∠DAE=45°.∴∠ADE=180°﹣∠DEA﹣∠DAE=90°,∴DE⊥DA.(2)DB=DP.理由如下:∵DP⊥DB,∴∠BDE+∠EDP=90°.由(1)知DE⊥DA,∴∠ADP+∠EDP=90°,∴∠BDE=∠ADP.∵∠DEA=∠DAE=45°,∴∠BED=180°﹣45°=135°,∠DAP=∠DAE+∠BAC=135°,∴∠BED=∠DAP.在△DEB和△DAP中,∴△DEB≌△DAP(ASA),∴DB=DP.24.解:(1)图1:(a+b)2=a2+2ab+b2;图2:(a﹣b)2=a2﹣2ab+b2;图3:(a+b)(a﹣b)=a2﹣b2,(2)图4:(a+b)2﹣(a﹣b)2=4ab;(3)①由(2)知:(a+b)2﹣(a﹣b)2=4ab,∵a+b=5,ab=﹣6,∴52﹣(a﹣b)2=4×(﹣6),(a﹣b)2=25+24=49,∴a﹣b=±7,故答案为:±7;②∵,B=x﹣2y﹣3,∴(A+B)2﹣(A﹣B)2=4×A×B=4××(x﹣2y﹣3)=(x+2y﹣3)(x﹣2y ﹣3)=[(x﹣3)+2y][(x﹣3)﹣2y]=x2﹣6x+9﹣4y2.25.(1)解:AC与DM的位置关系和数量关系是:AC∥DM,AC=DM;理由如下:∵点D、E是从点A同时出发的两个动点,分别在射线AH和线段AB上运动,速度都为每秒2个单位,∴AD=AE,∵AH⊥AB,∴△DAE是等腰直角三角形,∴∠DAE=90°,∠AED=45°,∵∠ABC=90°,AB=BC,∴△ABC是等腰直角三角形,∴∠BAC=∠ACB=45°,∴∠BAC=∠AED,∴AC∥DM,过点D作DN⊥CB交CB延长线于N,如图1所示:则DN∥AB,∴∠ABD=∠NDB,∵∠DAE=90°,∠ABC=90°,∴AD∥CN,∴∠ADB=∠NBD,在△ADB和△NBD中,,∴△ADB≌△NBD(ASA),∴DN=AB,∵AC∥DM,∴∠DMN=∠ACB=45°,在△ABC和△DNM中,,∴△ABC≌△DNM(ASA),∴AC=DM,故答案为:AC∥DM,AC=DM;(2)①AC与DM的关系为:AC⊥DM,AC=DM,理由如下:设AC与DM交于点F,如图2所示:∵△ABC是等腰直角三角形,∴∠BAC=∠BCA=45°,∵HA⊥AB,∴∠DAE=90°,∴∠DAF=90°﹣45°=45°,同(1)得:△DAE是等腰直角三角形,∴∠ADE=45°,∴∠DF A=180°﹣∠DAF﹣∠ADF=180°﹣45°﹣45°=90°,∴AC⊥DM,△DF A是等腰直角三角形,∴DF=AF,∴∠CFM=∠DF A=90°,∵∠ACB=45°,∴△CFM是等腰直角三角形,∴CF=MF,∴AF+CF=DF+MF,即AC=DM;当t=3时,△AEC和△MBD是全等三角形,如图3所示,理由如下:当t=3时,AE=AD=2×3=6,∴BE=AB﹣AE=12﹣6=6,∴AD=AE=BE,∵∠BEM=∠AED=45°,∴△EBM是等腰直角三角形,∴BM=BE,∠BME=45°,∴BM=AE,∵∠BAC=45°,∴∠EAC=∠BMD,在△AEC和△MBD中,,∴△AEC≌△MBD(SAS);②如图4所示:∵∠AED=45°,∴△AFE是等腰直角三角形,∴AF=AE=×2t=t,∵AC=AB=12,∴CF=AC﹣AF=12﹣t,∵△DAE是等腰直角三角形,∴DE=AE=2t,∵S△CDE=DE•CF,∴y=×2t×(12﹣t)=24t﹣2t2(0≤t≤6),当t=3时,y=24×3﹣2×32=54.解法二:∵AH⊥AB,BC⊥AB,∴AH∥BC,∴四边形ABCD是梯形,∵S△CDE=S梯形ABCD﹣S△ADC﹣S△BCE,∴y=(2t+12)×12﹣×2t×2t﹣(12﹣2t)×12=24t﹣2t2,即△CDE的面积y与t的关系式为y=24t﹣2t2(0≤t≤6),当t=3时,y=24×3﹣2×32=54.。

北师大版七年级下册数学第1-5章试题

北师大版七年级下册数学第1-5章试题

第三章《生活中的数据》复习一、知识点:1、百万分之一:对较小数据的感受,用科学计数法表示绝对值较小数及单位的换算。

如:1微米= 米,1纳米= 米,4纳米= 微米= 毫米= 厘米= 米200千米的百万分之一是米.用科学计数法表示:0.00000368=2、近似数和有效数字:一般地,通过测量的结果都是近似的。

对于一个近似数从边第个不是的数字起,到的数位止,所有的数字都叫做这个数的有效数字.如:0.03296精确到万分位是,有个有效数字,它们是3、世界新生儿图:会从给出的信息图中得到有用信息;会画生动形象的统计图。

二、巩固练习:(一)填空选择题:1、下列数据中,是精确值的有()个(1)在9·11恐怖事件中,估计有5000人死亡;(2)某细胞的直径为百万分之一米;(3)中国的国土面积约为960万km2(4)我家有3口人(5)一(1)班有53人(A)1 (B)2 (C)3 (D)42、下列各组数据中,()是精确的。

(A)小明的身高是183.5米(B)小明家买了100斤大米(C)小明买笔花了4.8元(D)小明的体重是70千克3、某学生测量长度用的刻度尺的最小单位是厘米现测量一物品的结果为6.7cm ,那么位是精确值,位是估计值。

4、1纳米相当于一根头发丝直径的六万分之一,那么一根头发丝的半径为米(用科学计数法表示)5、一只蚂蚁的重量约为0.0002㎏,用科学计数法记为用科学计数法表示的数3.02×10-8,其原数为6、小东买了12.65kg苹果,精确到0.1kg,则所买苹果约为 kg7、数0.8050精确到位,有个有效数字,是8、数4.8×105精确到位,有个有效数字,是9、数5.31万精确到位,有个有效数字,是10、一箱雪梨的质量为20.95㎏,按下面的要求分别取值:(1)精确到10㎏是㎏,有个有效数字,它们是(2)精确到1㎏是㎏,有个有效数字,它们是(3)精确到0.1㎏是㎏,有个有效数字,它们是11、我国普通高校招生2756300人,若精确到万位是人有个有效数字,它们是米,12、九届人大一次会议上,李鹏同志所作的政府工作报告中指出:1997年我国粮食总产量达到492500000t,按要求填空:(1)精确到百万位是(用科学计数法表示),有个有效数字,它们是(2)精确到亿位是(用科学计数法表示),有个有效数字,它们是13、数0.000125保留两个有效数字记为14、北冰洋的面积是1475.0万平方千米,精确到()位,有()个有效数字(A)十分位,四(B)十分位,五(C)千位,四(D)千位,五15、下表是中国奥运会奖牌回眸统计表及历届奖牌总数折线图届数金牌银牌铜牌总计第23届15 8 9第24届11 12 28第25届22 12 54第26届16 16 50第27届28 16 59(1)完成上表(2)把第23届奖牌总数在统计图上标出,并完成此折线统计图7035G H I J K2324252627(二)解答题1、举例说明哪些是近似数,哪些是准确数,哪些是有效数字?2、、如图,(1)写出图中阴影部分的面积;(2)当a=3, b=2时,计算阴影部分的面积( =3.1415,保留3个有效数字,单位:cm)3、随机抽取城市30天的空气质量状况统计图如下:污染指数(w)40 70 90 110 120 140天数(t) 3 5 10 7 4 1其中:w≤50时,空气质量为优;50<w≤100时,空气质量为良;100<w≤150时,空气质量为轻微污染。

北师大七年级数学下册--期末复习(代数部分)(含答案)

北师大七年级数学下册--期末复习(代数部分)(含答案)

北师大七年级下期末复习(代数部分)第一部分----整 式1、计算:()322-b a = ; (-x 2)(-x)2·(-x)3= ;( )3=-(7×7×7)(m ·m ·m)[-a 2(b 4)3]2= ; (a-b)2=(a+b)2+ 。

2、如果实数a ,b 满足a+b=6,ab=8,那么a 2+b 2= 。

3、已知:a m =3,b n =3,则n m +3= ;已知a m =3,a n =2,则a 2m -n 的值为________。

4、已知(9n )2=38,则n =_______;若2x+y=3,则4x ·2y =________。

5、(x+2)(3x-a)的一次项系数为-5,则a =_____。

6、下列计算错误的是( )A.4x 2·5x 2=20x 4B.5y 3·3y 4=15y 12C.(ab 2)3=a 3b 6D.(-2a 2)2=4a 47、若a +b =-1,则a 2+b 2+2ab 的值为( )A.1B.-1C.3D.-38、下列多项式中是完全平方式的是( )A.2x 2+4x -4B.16x 2-8y 2+1C.9a 2-12a +4D.x 2y 2+2xy +y 29、下列计算正确的是( )A.10a 10÷5a 5=2a 2B.x 2n +3÷x n -2=x n +1C.(a -b )2÷(b -a )=a -bD.-5a 4b 3c ÷10a 3b 3=-21ac 10、对于任意的整数m ,能整除代数式)2)(2()3)(3(+---+m m m m 的整数是( ) A 、4 B 、3 C 、5 D 、2 11、(101)2+(101)0+(101)-2计算后其结果为( ) A.1B.201C.1011001 D.100100112、计算题3b -2a 2-(-4a +a 2+3b )+a 2 2019×2021-20002(x -3y )(x +3y )-(x -3y )2 -12x 3y 4÷(-3x 2y 3)·(-31xy )13、先化简,再求值:(2+x)(2-x)+(x -1)(x +5),其中x =2。

最新北师大版七年级数学下册各章经典练习题汇总

最新北师大版七年级数学下册各章经典练习题汇总

北师大版七年级数学下册各章经典练习题汇总第一章 整式的乘除1.下列计算错误的是( B ) A .(-b )3·(-b )5=b 8B .(-a )4·(-a )=a 5C .(a -b )3·(b -a )2=(a -b )5D .(-m )5·(-m 2)=m 72.计算(2a 2)3的结果是( C ) A .2a 6B .6a 6C .8a 6D .8a 53.计算(x -2y )4÷(x -2y )2÷(2y -x )的结果是( D ) A .x -2y B .-x -2y C .x +2yD .-x +2y4.若x m=9,x n=6,x k=4,则x m -2n +2k的值为( C )A .0B .1C .4D .85.将⎝ ⎛⎭⎪⎫16-1,(-2 019)0,(-3)2按从小到大的顺序排列: (-2 019)0<⎝ ⎛⎭⎪⎫16-1<(-3)2.6.已知两个单项式13a m +2n b 与-2a 4b k 是同类项,则2m ×22n ×23k的值是 128 .7.计算:(1)[(x +y )2]6= (x +y )12. (2)a 8+(a 2)4= 2a 8. 8.计算:(1)(-a 3b 6)2-(-a 2b 4)3; (2)2(a n b n )2+(a 2b 2)n.解:(1)原式=a 6b 12-(-a 6b 12)=a 6b 12+a 6b 12=2a 6b 12. (2)原式=2a 2n b 2n+a 2n b 2n=3a 2n b 2n.9.一种微粒的半径是0.000 04米,这个数据用科学记数法表示为( C ) A .4×106B .4×10-6C .4×10-5D .4×10510.将5.18×10-4化为小数是( A ) A .0.000 518 B .0.005 18 C .0.051 8D .0.51811.下列计算中,错误的有( C ) ①(3a +4)(3a -4)=9a 2-4; ②(2a 2-b )(2a 2+b )=4a 4-b 2;③(x +3)(3-x )=x 2-9;④(-x +y )(x +y )=-(x -y )(x +y )=-x 2-y 2. A .1个 B .2个 C .3个 D .4个12.已知a +b =3,则a 2-b 2+6b 的值为( B ) A .6 B .9 C .12 D .1513.方程(4x +5)2-(4x +5)(4x -5)=0的解是( A ) A .x =-54B .x =-45C .x =-1D .x =114.为了运用乘法公式计算(x +3y -z )(x -3y +z ),下列变形正确的是( C ) A .[x -(3y +z )]2B .[(x -3y )+z ][(x -3y )-z ]C .[x -(3y -z )][x +(3y -z )]D .[(x +3y )-z ][(x +3y )+z ]15.若⎝ ⎛⎭⎪⎫x +1x 2=9,则⎝ ⎛⎭⎪⎫x -1x 2的值为 5 . 16.观察下列各式,探索发现规律: 1×3=1=22-1;3×5=15=42-1; 5×7=35=62-1;7×9=63=82-1; 9×11=99=102-1;….用含正整数n 的等式表示你所发现的规律为 (2n -1)(2n +1)=(2n )2-1 . 17.计算:(1)⎝ ⎛⎭⎪⎫-2x 2+14⎝ ⎛⎭⎪⎫-2x 2-14;(2)⎝ ⎛⎭⎪⎫13a -b ⎝⎛⎭⎪⎫-b -13a ;(3)⎝ ⎛⎭⎪⎫-xy 4+y ⎝ ⎛⎭⎪⎫xy4+y ;(4)(2a -b )(2a +b )(4a 2+b 2); (5)(a +3)(a -3)+a (4-a ).解:(1)原式=(-2x 2)2-⎝ ⎛⎭⎪⎫142=4x 4-116.(2)原式=⎝ ⎛⎭⎪⎫-b +13a ⎝ ⎛⎭⎪⎫-b -13a =(-b )-19a 2.(3)原式=⎝ ⎛⎭⎪⎫y +14xy ⎝ ⎛⎭⎪⎫y -14xy =y 2-⎝ ⎛⎭⎪⎫14xy 2=y 2-116x 2y 2.(4)原式=(4a 2-b 2)(4a 2+b 2)=16a 4-b 4. (5)原式=a 2-9+4a -a 2=4a -9.18.如果(2m +3n +1)(2m +3n -1)=48,求2m +3n 的值. 解:因为(2m +3n +1)(2m +3n -1)=48, 所以[(2m +3n )+1][(2m +3n )-1]=48, 所以(2m +3n )2-1=48, 所以(2m +3n )2=49, 所以2m +3n =±7.19.下列计算正确的是( B ) A .3x 3·2x 2y =6x 5 B .2a 2·3a 3=6a 5C .(2x )3·(-5x 2y )=-10x 5y D .(-2xy )·(-3x 2y )=6x 3y20.当m =25时,代数式m 2(m +4)+2m (m 2-1)-3m ·(m 2+m -1)的值为 1425 .21.要使多项式(x 2+px +2)(x -q )不含关于x 的二次项,则p 与q 的关系是 p =q . 22.计算:(1)(-2x 2y )2·⎝ ⎛⎭⎪⎫-12xyz ·35x 3z 3;(2)(-2a 2)(3ab 2-5ab 3); (3)xy (-x 2y +xy 5-x 3y 2). 解:(1)(-2x 2y )2·⎝ ⎛⎭⎪⎫-12xyz ·35x 3z 3=4x 4y 2·⎝ ⎛⎭⎪⎫-12xyz ·35x 3z 3=⎣⎢⎡⎦⎥⎤4×⎝ ⎛⎭⎪⎫-12×35(x 4·x ·x 3)(y 2·y )(z ·z 3) =-65x 8y 3z 4.(2)(-2a 2)(3ab 2-5ab 3)=(-2a 2)·3ab 2+(-2a 2)·(-5ab 3) =-6a 3b 2+10a 3b 3.(3)xy (-x 2y +xy 5-x 3y 2)=xy ·(-x 2y )+xy ·xy 5+xy ·(-x 3y 2) =-x 3y 2+x 2y 6-x 4y 3.23.化简求值:[4(xy -1)2-(xy +2)(2-xy )]÷14xy ,其中x =-2,y =15.解:原式=[4(x 2y 2-2xy +1)-(4-x 2y 2)]÷14xy=(4x 2y 2-8xy +4-4+x 2y 2)÷14xy=(5x 2y 2-8xy )÷14xy =20xy -32.把x =-2,y =15代入上式,得原式=20×(-2)×15-32=-40.24.若a ,b ,k 均为整数且满足等式(x +a )(x +b )=x 2+kx +36,写出符合条件的k 的值. 解:因为(x +a )(x +b )=x 2+kx +36, 所以x 2+(a +b )x +ab =x 2+kx +36,根据等式的对应项的系数相等,得⎩⎪⎨⎪⎧k =a +b ,ab =36.又因为a ,b ,k 均为整数,36=1×36=2×18=3×12=4×9=6×6=(-1)×(-36)=(-2)×(-18)=(-3)×(-12)=(-4)×(-9)=(-6)×(-6),所以a ,b 对应的值共有10对,从而求出a +b 的值,即k 的值有10个,分别为±37,±20,±15,±13,±12.第二章 相交线与平行线1.(2018·湖南益阳中考)如图,直线AB ,CD 相交于点O ,EO ⊥CD .下列说法错误的是( C )A .∠AOD =∠BOCB .∠AOE +∠BOD =90°C .∠AOC =∠AOED .∠AOD +∠BOD =180°2.(2019 ·湖南株洲荷塘区期末)如图,在三角形ABC 中,∠ACB =90°,AB =5 cm ,AC =4 cm ,BC =3 cm ,则点C 到AB 的距离为( C )A .4 cmB .3 cmC .2.4 cmD .2.5 cm3.如图所示,直线AB ,CD ,EF 两两相交,若∠1=30°,∠2=60°,则∠3= 30° ,∠4= 60° ,∠5= 150° ,∠6= 120° . 4.(2019·广东二模)若∠1与∠2是对顶角,∠2的邻补角(有一条公共边且互补的角)是∠3,∠3=45°,则∠1的度数为 135° .5.(2019·江苏泰州月考)若∠A 和∠B 的两边分别垂直,且∠A 比∠B 的两倍少30°,则∠B 的度数是 30°或70° .6.(2019·辽宁大连甘井子区期中)如图,直线AB 与CD 相交于点O ,OP 是∠BOC 的平分线,OF ⊥CD ,∠AOD =50°,求∠DOP 的度数.解:因为∠AOD =∠BOC ,∠AOD =50°,所以∠BOC =50°.因为OP 平分∠BOC ,所以∠POB =∠POC =12∠BOC =12×50°=25°,所以∠DOP =180°-∠POC =180°-25°=155°.7.如图,直线AB ,CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COE ,∠AOD ∶∠BOD =2∶1.(1)求∠DOE 的度数; (2)求∠AOF 的度数.解:(1)因为∠AOD ∶∠BOD =2∶1,∠AOD +∠BOD =180°,所以∠BOD =13×180°=60°.因为OE 平分∠BOD ,所以∠DOE =12∠BOD =12×60°=30°.(2)∠COE =180°-∠DOE =180°-30°=150°.因为OF 平分∠COE ,所以∠COF =12∠COE =12×150°=75°.因为∠AOC =∠BOD =60°,所以∠AOF =∠AOC +∠COF =60°+75°=135°.8.如图,直线EF ,CD 相交于点O ,OA ⊥OB ,且OC 平分∠AOF . (1)若∠AOE =40°,求∠BOD 的度数;(2)若∠AOE =α,求∠BOD 的度数;(用含α的式子表示) (3)从(1)(2)的结果中能看出∠AOE 和∠BOD 有何关系?解:(1)因为∠AOE +∠AOF =180°,∠AOE =40°,所以∠AOF =140°. 又因为OC 平分∠AOF , 所以∠FOC =12∠AOF =70°.所以∠EOD =∠FOC =70°(对顶角相等). 又∠BOE =∠AOB -∠AOE =50°, 所以∠BOD =∠EOD -∠BOE =20°.(2)因为∠AOE +∠AOF =180°,∠AOE =α, 所以∠AOF =180°-α.又因为OC 平分∠AOF , 所以∠FOC =12∠AOF =90°-12α.所以∠EOD =∠FOC =90°-12α(对顶角相等).又∠BOE =∠AOB -∠AOE =90°-α, 所以∠BOD =∠EOD -∠BOE =12α.(3)从(1)(2)的结果中能看出∠AOE =2∠BOD .9.(2019·陕西中考)如图,OC 是∠AOB 的平分线,l ∥OB ,若∠1=52°,则∠2的度数为( C )A.52° B.54° C.64° D.69°10.(2019·贵州安顺中考)如图,三角尺的直角顶点落在长方形纸片的一边上.若∠1=35°,则∠2的度数是( C )A.35° B.45° C.55° D.65°11.(2019·山东菏泽中考)如图,AD∥CE,∠ABC=100°,则∠2-∠1的度数是80° .12.(2019·广东惠州惠阳区期末)如图,EF∥AD,EF∥BC,CE平分∠BCF,∠DAC=120°.(1)求∠ACB的度数;(2)若∠ACF=20°,求∠FEC的度数.解:(1)因为EF∥AD,EF∥BC,所以AD∥BC,所以∠ACB+∠DAC=180°.因为∠DAC=120°,所以∠ACB=60°.(2)因为∠ACF=20°,所以∠BCF=∠ACB-∠ACF=40°.因为CE平分∠BCF,所以∠BCE=20°.因为EF∥BC,所以∠FEC=∠BCE=20°.13.(2019 ·广西贵港覃塘区期末)如图,BE平分∠ABC,∠ABC=2∠E,∠ADE+∠BCF=180°.(1)请说明AB∥EF;(2)若AF平分∠BAD,判断AF与BE的位置关系,并说明理由.解:(1)因为BE 平分∠ABC ,所以∠ABE =12∠ABC .又因为∠ABC =2∠E ,所以∠E =12∠ABC ,所以∠E =∠ABE ,所以AB ∥EF .(2)结论:AF ⊥BE .理由如下:因为∠ADE +∠ADF =180°,∠ADE +∠BCF =180°, 所以∠ADF =∠BCF ,所以AD ∥BC , 所以∠DAB +∠CBA =180°. 因为AF 平分∠BAD ,BE 平分∠ABC , 所以∠OAB =12∠DAB ,∠OBA =12∠CBA ,所以∠OAB +∠OBA =90°,所以∠AOB =90°, 所以AF ⊥BE .14.(2019·四川成都郫都区期中)如图,直线a ∥b ,直线c 和直线a ,b 分别交于点C 和D ,在C ,D 之间有一点P .(1)判断图中∠PAC ,∠APB ,∠PBD 之间有什么关系,并说明理由;(2)如果点P 在C ,D 之间运动,∠PAC ,∠APB ,∠PBD 之间的关系是否发生变化?(3)若点P 在直线c 上C ,D 两点的外侧运动(点P 与点C ,D 不重合),试探究∠PAC ,∠APB ,∠PBD 之间的关系又是如何?分别画出图形并说明理由. 解:(1)∠APB =∠PAC +∠PBD .理由如下:如图1,过点P 作PE ∥a .因为a ∥b ,所以PE ∥b ∥a , 所以∠PAC =∠1,∠PBD =∠2, 所以∠APB =∠1+∠2=∠PAC +∠PBD .(2)当点P在C,D之间运动时,仍为∠APB=∠PAC+∠PBD.(3)如图2,当点P在C,D两点的外侧运动,且在直线a的上方时,∠PBD=∠PAC+∠APB.理由如下:因为a∥b,所以∠PEC=∠PBD.因为∠PEC+∠PEA=180°,∠PAC+∠APB+∠PEA=180°,所以∠PEC=∠PAE+∠APB,所以∠PBD=∠PAC+∠APB.如图3,当点P在C,D两点的外侧运动,且在直线b的下方时,∠PAC=∠PBD+∠APB.理由如下:因为a∥b,所以∠PED=∠PAC.因为∠PED+∠BEP=180°,∠EBP+∠BPA+∠BEP=180°,所以∠PED=∠PBD+∠APB,所以∠PAC=∠PBD+∠APB.第三章变量之间的关系1.圆柱的高h为10 cm,当圆柱的底面半径r由小到大变化时,圆柱的体积V也发生了变化,在这个变化过程中( B )A.r是因变量,V是自变量B.r是自变量,V是因变量C.r是自变量,h是因变量D.h是自变量,V是因变量2.某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中销售量是自变量,销售收入是因变量.3.某公司产品的销售收入与销售量的关系如下表:销售量/吨1234…万元时,销售量为 5 吨.4.(2019·四川成都期末)声音在空气中传播的速度简称音速,实验测得音速与气温的一些数据如下表:(1)此表反映的是变量 音速 随 气温 变化的情况;(2)请直接写出y 与x 的关系式: y =0.6x +331 ;(3)当气温为22 ℃时,某人看到烟花燃放5 s 后才听到声响,求此人与烟花燃放所在地的距离.解:(3)因为当x =22时,y =0.6×22+331=344.2, 所以距离为344.2×5=1 721(m), 即此人与烟花燃放所在地的距离为1 721 m.5.设W =当月的500克猪肉价格当月的500克玉米价格.如果W <6,则下个月要采取措施防止“猪贱伤农”.已知2~5月玉米、猪肉价格统计表如下:(1)若33月的猪肉价格m ;(2)若6月及以后月份,玉米价格增长的规律不变,而每月的猪肉价格按照5月的猪肉价格比上月下降的百分数继续下降,请你预测6月是否要采取措施防止“猪贱伤农”. 解:(1)由题意,得7.5-m 7.5=6.25-66.25,解得m =7.2.(2)从2~5月玉米的价格变化知,后一个月总是比前一个月价格每500克增长0.1元,所以6月玉米的价格是1.1元/500克.因为5月猪肉价格的下降率为6.25-66.25=125,所以6月的猪肉价格为6×⎝ ⎛⎭⎪⎫1-125=5.76(元/500克). 所以W =5.761.1≈5.24<6,要采取措施防止“猪贱伤农”.6.变量x 与y 之间的关系式是y =12x 2-1,当自变量x =2时,因变量y 的值是( C )A .-2B .-1C .1D .27.(2019·四川宜宾期末)如图,在长方形ABCD 中,AB =4,BC =2,P 为BC 上的一点,设BP =x (0<x <2),则三角形APC 的面积S 与x 之间的关系式是( D )A .S =12x 2B .S =2xC .S =2(x -2)D .S =2(2-x )8.某厂2019年1月份新产品的研发资金为a 元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂2019年3月份新产品的研发资金y (元)关于x 的关系式为y = a (1+x )2 .9.“十一”黄金周期间,欢欢一家随团到某风景区旅游,集体门票的收费标准是20人以内(含20人),每人25元;超过20人的,超过的部分每人10元. (1)写出应收门票费y (元)与游览人数x (人)(x ≥20)之间的关系式;(2)利用(1)中的关系式计算:若欢欢一家所在的旅游团共54人,那么他们为购门票花了多少钱?解:(1)由题意,得y =25×20+10(x -20)=10x +300(x 为整数,且x ≥20). (2)当x =54时,y =10×54+300=840,即他们为购门票花了840元.10.正常人的体温一般在37 ℃左右,但一天中的不同时刻不尽相同.下图反映了一天(24小时)内小明体温的变化情况,下列说法错误的是( D )A .清晨5时体温最低B .下午5时体温最高C .这一天中小明体温的范围是36.5≤T ≤37.5D .从5时至24时,小明体温一直是升高的11.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末学习计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y 与时间t 之间的大致图象是( B )12.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米;②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;④隧道的长度为750米.其中正确的结论是②③ .(把你认为正确结论的序号都填上)13.2019年夏天,某省由于持续高温和连日无雨,水库蓄水量普遍下降.某水库的蓄水量V(万立方米)与干旱持续时间t(天)之间的关系图如图所示,请根据此图,回答下列问题:(1)该水库原蓄水量为多少万立方米?持续干旱10天后,水库蓄水量为多少万米?(2)当水库的蓄水量小于400万立方米时,将发出严重干旱警报,请问:持续干旱多少天后,将发出严重干旱警报?(3)按此规律,持续干旱多少天时,水库将干涸?解:(1)当t=0时,V=1 000,所以水库原蓄水量为1 000万立方米;当t=10时,V=800,所以持续干旱10天后蓄水量为800万立方米.(2)当V=400时,t=30,所以持续干旱30天后将发出严重干旱警报.(3)从第10天到第30天,水库蓄水量下降了800-400=400(万立方米),一天下降40030-10=20(万立方米),根据此规律可求出30+40020=50(天),故持续干旱50天水库将干涸.三角形1.如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为( C )A .120° B.180° C.240° D.300°2.如图,在△ABC 中,∠1=∠2,G 为AD 的中点,延长BG 交AC 于点E .F 为AB 上的一点,CF ⊥AD 于点H .下列判断正确的有( A )(1)AD 是△ABE 的角平分线. (2)BE 是△ABD 边AD 上的中线. (3)CH 为△ACD 边AD 上的高. A .1个 B .2个 C .3个 D .0个3.如图,图中有 5 个三角形,把它们用符号分别表示为 △ABD ,△CED ,△BCD ,△ABC ,△EBC .4.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为 30° .5.如图,在△ABC 中,∠B =60°,∠C =20°,AD 为△ABC 的高,AE 为△ABC 的角平分线. (1)求∠EAD 的度数;(2)试确定∠DAE 与∠B ,∠C 的关系并说明理由.解:(1)因为AD 为△ABC 的高,所以∠ADB =∠ADC =90°.因为∠B =60°,所以∠BAD =30°.在△ABC 中,∠CAB +∠B +∠C =180°,所以∠CAB =100°.又因为AE 是△ABC 的角平分线,所以∠BAE =∠CAE =12∠CAB =50°,所以∠DAE =∠BAE -∠BAD =20°.(2)由(1)得∠DAE =∠BAE -∠BAD =12∠BAC -(90°-∠B )=12(180°-∠B -∠C )-(90°-∠B )=90°-12∠B -12∠C -90°+∠B =12∠B -12∠C ,所以2∠DAE =∠B -∠C .6.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有( C ) A .1种 B .2种 C .3种D .4种7.△ABC 的边长均为整数,且最大边的边长为7,那么这样的三角形共有 16 个. 8.一个等腰三角形的周长为30 cm ,它有一条边长是另一条边长的一半,它的底边长为 6 cm ,一腰长为 12 cm.9.如图所示,△ABC ≌△CDA ,并且AB =CD ,小胡同学写了四个结论,其中有一个不正确,这个结论是( D )A .∠1=∠2B .AD ∥BC C .∠D =∠BD .AC =BC10.如图,△ADF ≌△BDF ,△BDE ≌△CDE ,AC =10 cm ,那么AD =( D )A.2 cm B.3 cmC.4 cm D.5 cm11.已知△ABC≌△DEF,且△ABC的周长为12,AB=5,BC=4,则DF= 3 .12.△ABC与△A′B′C′是一对全等的三角形,其中△ABC中,AB=6,AB边上的高为5,则△A′B′C′的面积为 15 .13.如图,OA=OB,∠A=∠B,有下列3个结论:①△AOD≌△BOC;②△ACE≌△BDE;③点E在∠O的平分线上.其中正确结论的个数是( D )A.0 B.1C.2 D.314.如图所示,AB=DB,∠ABD=∠CBE,请你添加一个适当的条件∠BDE=∠BAC(答案不唯一) ,使△ABC≌△DBE.(只需添加一个即可)15.如图所示,赵刚站在楼顶B处看一烟囱,当看到烟囱顶A时,视线与水平方向成的角是45°;当看到烟囱底部D时,视线与水平方向成的角也是45°.如果楼高15米,那么烟囱大约高 30 米.16.要测量圆形工件的外径,工人师傅设计了如图所示的卡钳,O 为卡钳两柄交点,且有OA =OB =OC =OD ,如果圆形工件恰好通过卡钳AB ,则此工件的外径必是CD 的长,你能说明其中的道理吗?解:由OA =OD ,OB =OC ,∠AOB =∠DOC ,可知△AOB ≌△DOC ,从而AB =CD .17.(2019·辽宁鞍山月考)在△ABC 中,D 是AB 的中点,E 是CD 的中点.过点C 作CF ∥AB 交AE 的延长线于点F ,连接BF .试说明DB =CF .解:因为E 为 CD 的中点,所以CE =DE .因为∠AED 和∠CEF 是对顶角,所以∠AED =∠CEF . 因为CF ∥AB ,所以∠EDA =∠ECF . 在△EDA 和△ECF 中,⎩⎪⎨⎪⎧∠EDA =∠ECF ,ED =EC ,∠AED =∠CEF ,所以△EDA ≌△ECF (ASA),所以AD =FC . 因为D 为AB 的中点,所以AD =BD .所以DB =CF .18.如图,AB =DC ,∠A =∠D ,点M 和点N 分别是BC ,AD 的中点.试说明∠ABC =∠DCB .解:点M 和点N 分别是BC ,AD 的中点,所以AN =DN ,BM =CM .在△ABN 和△DCN 中,⎩⎪⎨⎪⎧AN =DN ,∠A =∠D ,AB =DC ,所以△ABN ≌△DCN (SAS),所以BN =CN ,∠ABN =∠DCN .在△BMN 和△CMN 中,⎩⎪⎨⎪⎧BN =CN ,MN =MN ,BM =CM ,所以△BMN ≌△CMN (SSS), 所以∠MBN =∠MCN ,所以∠ABN +∠MBN =∠DCN +∠MCN , 即∠ABC =∠DCB .19.如图,在Rt△ABC 中,∠ACB =90°,点D ,F 分别在AB ,AC 上,CF =CB .连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CE ,连接EF . (1)试说明△BCD ≌△FCE ; (2)若EF ∥CD ,求∠BDC 的度数.解:(1)因为CD 绕点C 顺时针方向旋转90°得CE ,所以CD =CE ,∠DCE =90°.因为∠ACB =90°,所以∠BCD =90°-∠ACD =∠FCE .在△BCD 和△FCE 中,⎩⎪⎨⎪⎧CB =CF ,∠BCD =∠FCE ,CD =CE ,所以△BCD ≌△FCE .(2)由△BCD ≌△FCE 得∠BDC =∠E . 因为EF ∥CD ,所以∠E =180°-∠DCE =90°.所以∠BDC =90°.20.在△ABC 中,AB =AC ,点E ,F 分别在AB ,AC 上,AE =AF ,BF 与CE 相交于点P .试说明PB =PC ,并直接写出图中其他相等的线段.解:在△ABF 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠BAF =∠CAE ,AF =AE ,所以△ABF ≌△ACE (SAS),所以∠ABF =∠ACE (全等三角形的对应角相等), 所以BF =CE (全等三角形的对应边相等). 因为AB =AC ,AE =AF ,所以BE =CF . 在△BEP 和△CFP 中,⎩⎪⎨⎪⎧∠BPE =∠CPF ,∠PBE =∠PCF ,BE =CF ,所以△BEP ≌△CFP (AAS),所以PB =PC . 因为BF =CE ,所以PE =PF .所以图中其他相等的线段为PE =PF ,BE =CF ,BF =CE .21.如图,小勇要测量家门前河中浅滩B 到对岸A 的距离,他先在岸边定出C 点,使C ,A ,B 在同一直线上,再沿AC 的垂直方向在岸边画线段CD ,取它的中点O ,又画DF ⊥CD ,观测到E ,O ,B 在同一直线上,F ,O ,A 也在同一直线上,那么EF 的长就是浅滩B 到对岸A 的距离,你能说出这是为什么吗?解:因为DF ⊥CD ,AC ⊥CD ,所以∠D =∠C =90°. 又因为OC =OD ,∠COA =∠DOF , 所以△AOC ≌△FOD (ASA), 所以∠A =∠F ,OA =OF . 又因为∠AOB =∠FOE , 所以△AOB ≌△FOE (ASA),所以AB =EF ,所以EF 的长就是浅滩B 到对岸A 的距离.22.如图,AB ∥CD ,以点A 为圆心,小于AC 的长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E ,F 为圆心,大于12EF 的长为半径作圆弧,两条圆弧交于点P ,作射线AP ,交CD 于点M .(1)若∠ACD =114°,求∠MAB 的度数; (2)若CN ⊥AM ,垂足为N ,试说明△ACN ≌△MCN .解:(1)因为AB ∥CD ,所以∠ACD +∠CAB =180°.又因为∠ACD =114°,所以∠CAB =66°.由作法,知AM 是∠CAB 的平分线,所以∠MAB =12∠CAB =33°.(2)因为AM 平分∠CAB ,所以∠CAM =∠MAB . 因为AB ∥CD ,所以∠MAB =∠CMA , 所以∠CAM =∠CMA .又因为CN ⊥AM ,所以∠ANC =∠MNC .在△ACN 和△MCN 中,因为∠ANC =∠MNC ,∠CAM =∠CMA ,CN =CN ,所以△ACN ≌△MCN . 23.已知线段a ,b ,∠α,如图所示.求作:△ABC ,使其有一个内角等于∠α,且∠α的对边等于a ,另一边等于b .解:作法:(1)作∠MBH =∠α. (2)在边BM 上截取AB =b .(3)以点A 为圆心,a 的长为半径作弧,交BC 于点C (或C ′). (4)连接AC (或AC ′).则△ABC 或△ABC ′就是所求作的三角形,如图所示.生活中的轴对称1.下列四个图形中,是轴对称图形,且对称轴的条数为2的图形的个数是( C )A.1 B.2 C.3 D.42.下列标志中,可以看作是轴对称图形的是( D )3.下列图形中,所有轴对称图形的对称轴条数之和为( B )A.13 B.11 C.10 D.84.图中的六边形ABCDEF是轴对称图形,CF所在的直线是对称轴,若∠AFC+∠BCF=150°,则∠AFE+∠BCD的大小为( B )A.150° B.300° C.210° D.330°5.如图,把长方形中的∠A沿某条直线对折,使点A与BC上的点A′重合,折痕交AB于点E,若∠CDA′=70°,则∠AED的度数为( D )A.70° B.20° C.35° D.80°6.如图,△ABC中,∠A=60°,将△ABC沿DE翻折后,点A落在BC边上的点A′处,如果∠A′EC=70°,那么∠A′DE的度数为65° .7.如图,直线l是四边形ABCD的对称轴,且AD∥BC.(1)试写出图中三组相等的线段;(2)试写出图中三组相等的角;(3)欢欢认为从图中还能得到以下结论:AB∥CD,AB=CD,AB⊥BC,OA=OC,你认为这些结论都正确吗?说明你的理由.解:(1)AB=AD,BC=DC,OB=OD.(答案不唯一)(2)∠BAC=∠DAC,∠BCA=∠DCA,∠ABC=∠ADC.(答案不唯一)(3)AB∥CD,AB=CD,OA=OC正确,但AB⊥BC不正确.因为直线l是四边形ABCD的对称轴,所以OB=OD.因为AD∥BC,所以∠BCA=∠DAC,∠ADO =∠CBO,所以△ADO≌△CBO,所以OA=OC.因为∠AOB=∠COD,所以△ABO≌△CDO,所以AB=CD,∠BAC=∠ACD,所以AB∥CD.8.点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,点P1,O,P2正好在同一条直线上,请求出∠AOB的大小.解:因为OA和OB分别是点P和点P1,点P2和点P的对称轴,所以∠1=∠2,∠3=∠4.又因为点P1,O,P2在同一条直线上,所以∠AOB=180°÷2=90°.9.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为( B )A.30° B.40° C.45° D.60°10.如图,在△ABC中,AB=AC,CD平分∠ACB交AB于D点,AE∥DC交BC的延长线于点E,已知∠E=36°,则∠B= 72 度.11.如图,在△ABC中,AB=AC,BC=BD,AD=DE=BE,求∠A的度数.解:因为AB=AC,所以∠ABC=∠C.因为BC=BD,所以∠BDC=∠C.所以∠ABC=∠BDC=∠C.又因为AD=DE=BE,所以∠A=∠DEA,∠EBD=∠EDB.设∠EBD=∠EDB=x,则∠A=∠DEA=2x,∠ABC=∠BDC=∠C=3x.在△ABC中,∠A+∠ABC +∠C=180°,即2x+3x+3x=180°,解得x=22.5°.所以2x =45°,即∠A 的度数是45°.12.如图,四边形ABCD 中,AC 垂直平分BD ,垂足为E ,下列结论不一定成立的是( C )A .AB =AD B .AC 平分∠BCD C .AB =BDD .△BEC ≌△DEC13.在△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD ,若CD =AC ,∠B =25°,则∠ACB 的度数为 105° .14.如图,AD ⊥BC 于点D ,D 为BC 的中点,连接AB ,∠ABC 的平分线交AD 于点O ,连接OC ,若∠AOC =125°,则∠ABC = 70 °.15.如图,在△ABC 中,AB =AC ,∠BAC =120°,D ,F 分别为AB ,AC 的中点,DE ⊥AB ,GF ⊥AC ,点E ,G 均在BC 上,BC =15 cm ,求EG 的长.解:如图,连接AE ,AG ,则AE =BE ,AG =CG . 因为AB =AC ,∠BAC =120°,所以∠B =∠C =30°.所以∠AEG =∠AGE =60°.所以△AEG 为等边三角形.所以AE =EG =AG =BE =CG .所以EG =13BC =5 cm.16.如图,在Rt△ABC 中,∠C =90°,BD 平分∠ABC 交AC 于点D ,若CD =m ,AB =n ,则△ABD 的面积是( B )A .mm B.12mm C.13mm D .2mm17.如图,AD ∥BC ,∠ABC 的平分线BP 与∠BAD 的平分线AP 相交于点P ,作PE ⊥AB 于点E .若PE =2,则两平行线AD 与BC 间的距离为 4 .18.如图,AD 是∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,DF ⊥BD ,且BD =CD ,那么BE 与CF 相等吗?说明理由.解:相等.理由如下:因为AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC , 所以DE =DF ,∠DEB =∠DFC =90°. 因为DF ⊥BD ,所以∠BDE +∠FDC =90°. 又因为∠BDE +∠DBE =90°, 所以∠FDC =∠DBE .又因为BD =CD ,所以△BED ≌△DFC , 所以BE =CF .19.李老师布置了一道题:在田字格中涂上几个阴影,要求整个图形必须是轴对称图形,下图各种作法中,符合要求的是( C )20.要在一块长方形的空地上修建一个花坛,要求花坛图案为轴对称图形,下图中的设计符合要求的有( A )A.4个 B.3个 C.2个 D.1个21.在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有 13 种.22.如图,在2×2的正方形方格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有 5 个.第六章概率初步1.下列事件中,是不可能事件的是( D )A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°2.“368人中一定有2人的生日是相同的”是( B )A.随机事件B.必然事件C.不可能事件D.以上都不对3.下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100 ℃;③掷一次骰子,向上一面的点数是2.其中是随机事件的是 ①③ .(填序号)4.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( D ) A .3个 B .不足3个 C .4个D .5个或5个以上5.七年级(6)班共有学生54人,其中男生有30人,女生有24人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性 大 (填“大”或“小”).6.给出以下四个事件:①电灯通电时“发热”;②某人射击一次“中靶”;③掷一枚硬币“出现正面”;④在常温下“铁熔化”. 你认为可能性最大的是 ① ,最小的是 ④ .7.下表记录了一名球员在罚球线上投篮的结果,这名球员投篮一次,投中的概率约是( C )8.某人在做掷硬币试验时,抛掷m 次,正面朝上有n 次⎝⎛⎭⎪⎫即正面朝上的频率是P =n m ,则下列说法中正确的是( D ) A .P 一定等于12B .P 一定不等于12C .多投一次,P 更接近12D .随着抛掷次数逐渐增加,P 稳定在12附近9.在一个不透明的布袋中有除颜色外其他都相同的红、黄、蓝球共200个,某位同学经过多次摸球试验后发现,其中摸到红球和蓝球的频率分别稳定在35%和55%,则口袋中可能有黄球 20 个.10.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题: (1)这种树苗成活的频率稳定在 0.9 ,成活的概率估计值为 0.9 . (2)该地区已经移植这种树苗5万棵. ①估计这种树苗成活 4.5 万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?解:(2)②18÷0.9-5=15(万棵). 答:该地区还需移植这种树苗约15万棵.11.一个不透明的盒子里装有只有颜色不同的黑、白两种颜色的球共40个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,活动进行中的一组统计数据如下所示:摸球的次数n 200 300 400 500 800 1 000 摸到白球的次数m 116 192 232 295 484 601 摸到白球的频率m n0.580.640.580.590.6050.601(1)(2)如果你从盒子中任意摸出一球,那么摸到白球的概率约是多少? (3)试估算盒子中黑、白两种颜色的球各有多少个?(4)请你应用上面频率与概率的关系的思想解决下面的问题:一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计口袋中白球的个数(可以借助其他工具及用品)?请写出解决这个问题的主要步骤及估算方法. 解:(1)0.60. (2)0.60.(3)盒子中白球的个数约为40×0.60=24(个), 则黑球的个数为40-24=16(个).(4)①添加:向口袋中添加一定数目的黑球,并充分搅匀;②试验:进行次数很多的摸球试验(有放回),记录摸到黑球和白球的次数,分别计算频率,由频率估计概率;③估算:黑球个数摸到黑球的概率=球的总个数,球的总个数×摸到白球的概率=白球的个数(答案不唯一).12.小军旅行箱的密码是一个六位数,但他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( A )A.110B.19C.16D.1513.如图,某农民在A ,B ,C ,D 四块田里插秧时,不慎将手表丢入田里,直到收工时才发现,则手表丢在哪一块田里的可能性大些( D )A .AB .BC .CD .D14.向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小正三角形是等可能的,扔沙包一次,击中阴影区域的概率等于( C )A.16B.14C.38D.5815.5张分别写有-1,2,0,-4,5的卡片(除数字不同以外其余都相同),现从中任意取出1张卡片,则该卡片上的数字是负数的概率是 25.16.小兰和小青两人做游戏,有一个质量分布均匀的正六面体骰子,骰子的六面分别标有1,2,3,4,5,6.如果掷出的骰子的点数是质数,则小兰赢;如果掷出的骰子的点数是3的倍数,则小青赢.该游戏规则对 小兰 有利.17.掷一个骰子,观察向上一面的点数,求下列事件的概率: (1)点数为偶数; (2)点数大于2且小于5.解:掷一个骰子,向上一面的点数可能为1,2,3,4,5,6,共6种情况,这些点数出现的可能性相等.(1)点数为偶数有3种可能,即点数为2,4,6, 所以P (点数为偶数)=36=12.(2)点数大于2且小于5有2种可能,即点数为3,4, 所以P (点数大于2且小于5)=26=13.18.如图,小明家里的阳台地面铺设着黑、白两种颜色的18块方砖(除颜色不同外其余都相同),他从房间里向阳台抛小皮球,小皮球最终随机停留在某块方砖上. (1)求小皮球分别停留在黑色方砖与白色方砖上的概率;(2)上述哪个概率较大?要使这两个概率相等,应改变第几行第几列的哪块方砖的颜色?怎样改变?解:(1)由图可知,阳台地面共铺有18块方砖,其中白色方砖8块,黑色方砖10块,故小皮球停留在黑色方砖上的概率是59,停留在白色方砖上的概率是49.(2)因为59>49,所以小皮球停留在黑色方砖上的概率大于停留在白色方砖上的概率.要使这两个概率相等,可将任意一块黑色方砖改为白色方砖.。

北师大数学七年级下册第一章知识点及习题

北师大数学七年级下册第一章知识点及习题

第一章:整式的运算一, 概念1, 整式:单项式和多项式统称为整式.2, 单项式: 由数字与字母或字母与字母的相乘组成的代数式叫做单项式。

单项式不含加减运算,分母中不含字母。

(单独的字母;单独的数字;数字与字母的乘积) 3, 多项式:几个单项式的和叫做多项式。

多项式含加减运算。

代数式:用运算符导(指加, 减, 乘, 除, 乘方, 开方)把数或表示数的字母连接而成的式子叫做代数式。

数的一切运算规律也适用于代数式。

单独的一个数或者一个字母也是代数式乘方:求n 个相同因数乘积的运算叫做乘方幂:假如把a^n 看作乘方的结果,则读作a 的n 次幂二, 公式, 法则:(1)同底数幂的乘法:a m ﹒a n =a m+n (同底,幂乘,指加)逆用: a m+n =a m ﹒a n (指加,幂乘,同底)(2)同底数幂的除法:a m ÷a n =a m-n (a ≠0)。

(同底,幂除,指减)逆用:a m-n = a m ÷a n (a ≠0)(指减,幂除,同底)(3)幂的乘方:(a m )n =a mn (底数不变,指数相乘)逆用:a mn =(a m )n(4)积的乘方:(ab )n =a n b n 推广:逆用, a n b n =(ab )n (当ab=1或-1时常逆用)(5)零指数幂:a 0=1(留意考底数范围a ≠0)。

(6)负指数幂:11()(0)p p p a a a a-==≠(底倒,指反) (7)单项式与多项式相乘:m(a+b+c)=ma+mb+mc 。

(8)多项式与多项式相乘:(m+n)(a+b)=ma+mb+na+nb 。

(9)平方差公式:(a+b )(a-b)=a 2-b 2(10)完全平方公式: 222222()2,()2,a b a ab b a b a ab b +=++-=-+逆用:2222222(),2().a ab b a b a ab b a b ++=+-+=-完全平方公式变形(知二求一):例如:229x +mxy+4y 是一个完全平方和公式,则m =;是一个完全平方差公式,则m =;是一个完全平方公式,则m =;(11)多项式除以单项式的法则:().a b c m a m b m c m ++÷=÷+÷+÷(12)常用变形:221((n n x y x y +--2n 2n+1)=(y-x), )=-(y-x)第一单元习题一, 填空1, 代数式4xy 3是__项式,次数是__2, 代数式x x a x a 5154323+-是__项式,次数是__ 3, (2x 2y+3xy 2)-(6x 2y -3xy 2)=________________4, 43)()(b a b a -⋅-=__________________5, (3x+7y)·(3x -7y)=________________6, (x+2)2-(x+1)(x -1)=______________7, ⑴, 251010-⨯=; ⑵, =⋅32a a ; ⑶, ()=535;二, 选择题(2×4=8)1, 下列计算正确的是 () A, 2a-a=2 B, x 3+x 3=x 6 C, 3m 2+2n=5m 2n D, 2t 2+t 2=3t 22, 下列语句中错误的是 ( ) A, 数字 0 也是单项式 B, 单项式 a 的系数与次数都是 1 C, 21x 2 y 2是二次单项式 C, -32ab 的系数是 -32 3, 下列计算正确的是 ()A, (-a 5)5=-a 25 B, (4x 2)3=4x 6 C, y 2·y 3-y 6=0 D, (ab 2c)3=ab 2c 3 4, (x+5)(x-3)等于 ( )A, x 2 -15 B, x 2 + 15 C, x 2 + 2x -15 D, x 2 - 2x - 15 5, 下列计算正确的是( )A, 422a a a =+ B, 632a a a =⋅ C, ()532a a = D, ()()123223a a a =⋅ 6, 下列计算正确的是( )A, ()623mn mn =;B, ()24222n m m n =;C, ()422293n m mn =-;D, ()51052n m n m =- 7, 8m 可以写成( )A, 42m m ⋅ B, 44m m + C, ()42m D, ()44m8, 计算()()1 52+--x x x 的结果,正确的是( ) A, 54+x B, 542+-x x C, 54--x D, 542+-x x 三, 计算 2, xy y xy y x 322122⋅⎪⎭⎫ ⎝⎛+- 3, (3a+2b )2-b 2 4, 用完全平方公式计算20012 5, 用平方差公式计算2004×19966, (3x+9)(6x+8) 7, (a-b+2)(a-b-2) 8, ⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-+5353b a b a 9, (3mn+1)(3mn-1)-8m 2n 2 10, (2x 2)3-6x 3(x 3+2x 2+x)11, 已知8b a =+,5ab -=,求下列各式的值。

北师大版七年级数学下册-应用代数题100题训练

北师大版七年级数学下册-应用代数题100题训练

北师大版七年级数学下册-应用代数题100题训练概述这份文档旨在提供100个应用代数题的训练题目,适用于北师大版七年级数学下册。

这些题目旨在帮助学生巩固和应用他们在代数方面的知识和技能。

目标通过完成这100个应用代数题,学生将能够:- 理解代数概念并有效应用;- 培养解决实际问题的能力;- 提升逻辑思维和推理能力;- 加强对数学的兴趣和自信心。

题目示例以下是一些示例题目,这些题目涵盖了不同的概念和应用场景:1. 用代数式表示一个数字的平方减去5;2. 已知一个正整数的平方与它本身的和是30,求这个正整数;3. 求一个数和它的两倍之和的代数表达式;4. 某数的平方与它自身之和的两倍等于24,求这个数;5. 解方程3(x + 2) = 27;6. 某数字的平方与它自身的和是20,找出这个数字。

请参考文档中的其他题目进行练。

使用建议以下是一些建议,帮助学生有效使用这份训练题目:1. 每个题目都应该认真阅读,并明确问题的要求;2. 尝试在纸上将问题转换为代数表达式;3. 在解决问题时,可以利用已知的数学知识和技巧;4. 如果遇到困难,可以寻求老师或同学的帮助;5. 通过校对答案来检查自己的解答。

总结这份文档提供了100个应用代数题的训练题目,适合北师大版七年级数学下册的学生使用。

通过解决这些问题,学生可以巩固和应用他们在代数方面的知识和技能。

建议学生认真阅读题目并尝试用代数表达式解决问题。

如果遇到困难,可以寻求他人的帮助。

通过这些训练题目,学生将提高解决实际问题的能力,并加强对数学的兴趣和自信心。

北师大版七年级数学下册第一章整式的运算复习及其整理(带练习)

北师大版七年级数学下册第一章整式的运算复习及其整理(带练习)

第一章 整式的运算第一节 整式1.整式的有关概念:(1)单项式的定义:像1.5V ,28n π,h r 231π等,都是数与字母的乘积,这样的代数式叫做单项式.(2)单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.(3)多项式的概念:几个单项式的和叫做多项式.(4)多项式的次数:一个多项式中,次数最高项的次数,叫做这个多项式的次数.(5)整式的概念:单项式和多项式统称为整式.2.定义的补充: (1)单项式的系数:单项式中的数字因数叫做单项式的系数.(2)多项式的项数:多项式中单项式的个数叫做多项式的项数.(3)区别是否是整式:关键:分母中是否含有字母?分母有字母的为分式,如a 分之3是分式。

3.例题讲解:例1:下列代数式中,哪些是整式?单项式?多项式?并指出它们的系数和次数? (!)ab +c (2)ax 2+bx +c (3)-5(4)π.2y x - (5)12-x x 例2:求多项式363222+--b ab a 的各项系数之和?第二节 整式的加减一、 知识点复习:1、填空:整式包括单项式和多项式.2、整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.3、所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。

4、括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。

二、练习: 例1:下列各式,是同类项的一组是( ) (A )y x 222与231yx (B )n m 22与22m n 例2、计算:(1))134()73(22+-++k k k k (2))2()2123(22x xy x x xy x +---+例3:先化简,再求值:()[],673235222x x x x x x +++--其中x=21 例4、已知:A=x 3-x 2-1,B=x 2-2,计算:(1)B -A (2)A -3B第三节 同底数幂的乘法一、复习提问2.指出下列各式的底数与指数:(1)34;(2)a 3;(3)(a+b)2;(4)(-2)3;(5)-23.3、同底数幂的乘法法则: m n m n a a a += (,m n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为 m n p m n p a a a a++=(其中m 、n 、p 均为正数);⑤公式还可以逆用: m n m n aa a +=(m 、n 均为正整数)二、巩固练习(1)107×104; (2)x 2·x 5;(3)10·102·104;(4)-a ·(-a)3;(5)(-a)2·(-a)3三、小结1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.2.解题时要注意a 的指数是1.3.解题时,是什么运算就应用什么法则.同底数幂相乘,就应用同底数幂的乘法法则;整式加减就要合并同类项,不能混淆.4.-a 2的底数a ,不是-a .计算-a 2·a 2的结果是-(a 2·a 2)=-a 4,而不是(-a)2+2=a 4.5.若底数是多项式时,要把底数看成一个整体进行计算第四节 幂的乘方与积的乘方一、知识点复习:1. 幂的乘方法则:()m n mn a a =(,m n 都是正整数)幂的乘方,底数不变,指数相乘。

专题一 代数计算-2020春北师大版七年级数学下册习题课件(共30张PPT)

专题一 代数计算-2020春北师大版七年级数学下册习题课件(共30张PPT)

8.计算: (1) ( 1) -1 +(π-3)0-∣-3∣+(-1)2019;
2
解:原式=2+1-3-1 =-1;
(2) 2 0192-2 018×2 020; 解:原式=2 0192-(2 019-1)(2 019+1) =2 0192-(2 0192-1) =1;
(3) (x+3)2-(x+1)(x-1); 解:原式=x2+9+6x-(x2-1) =x2+9+6x-x2+1 =6x+10;
的值.
解:原式=2(2ab-4b2)-3(-3ab+2b2) =4ab-8b2+9ab-6b2 =13ab-14b2.
9.先化简,再求值:
(1) (2x-3)2-(2x+1)(2x-1),其中x=2;
解:原式=4x2-12x+9-4x2+1 =-12x+10,
当x=2时,原式=-24+10 =-14;
解:因为a+b=3,ab=1 所以(a+b)2=9,2ab=2 所以a2+b2+2ab=9,2ab=2 得a2+b2=7 根据上面的解题思路与方法,解决下列问题: (1)若(7-x)(x-4)=1,求(7-x)2+(x-4)2的值; (2)如图,点C是线段AB上的一点,以AC,BC为边向两边作 正方形,设AB=5,两正方形的面积和S1+S2=17,求图中阴 影部分面积.
10.你能求(x-1)(x2019+x2018+x2017+…+x+1)的值吗? 遇到这样的问题,我们可以先思考一下,从简单的情
形入手. 先分别计算下列各式的值: (1)(x-1)(x+1)=x2-1; (2)(x-1)(x2+x+1)=x3-1; (3)(x-1)(x3+x2+x+1)=x4-1; ……
(2)若x2-y2=16,x+y=8,求x-y的值;

北师大版初一代数练习

北师大版初一代数练习

【考点13 利用有理数相关性质求值】【方法点拨】解决此类问题需熟知两个互为相反数的数和为0,两个互为倒数的数乘积为1,值得注意的是已知一个数的绝对值为非0的数,那么这个数应该有两个,此时应注意分类讨论,结果往往有两个.【例13】(2019秋•海淀区校级期中)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,求x 3+cdx 2−a+b2的值.【变式13-1】(2019秋•青羊区校级期中)若a 与b 互为相反数,c 与d 互为负倒数,|m |=2,求代数式a+b 3−2cb +2m 3的值.【变式13-2】(2019秋•邹城市期中)已知a ,b 互为倒数,c ,d 互为相反数,|m |=2,求代数式2m ﹣ab +3(c +d ﹣1)的值.【变式13-3】(2019秋•越秀区校级期中)若a 、b 互为相反数,b 、c 互为倒数,并且m 的立方等于它本身.求2a+2b m+2+ac 值.【考点14 有理数的计算】【方法点拨】解决此类问题需熟练掌握有理数混合运算的先后顺序,先算乘方,再算乘除,最后算加减,有括号的先算括号里,值得注意有些题可能会运用运算律进行简便运算. 【例14】(2019秋•昂昂溪区期中)计算:(1)﹣5﹣(﹣4)+(﹣3)﹣[﹣(﹣2)] (2)2×(﹣5)+23﹣3÷12(3)(14−59−13+712)÷(−136) (4)﹣12﹣2×(﹣3)2﹣(﹣2)2+[313÷(−23)×15]4【变式14-1】(2019秋•海淀区校级期中)计算(1)(−6.5)−(−414)+834−(+312)+5 (2)﹣312×(−67)−(−10)÷(−23)(3)﹣1﹣48×(425−316+16) (4)−22−[(−3)×(−43)−(−2)3]【变式14-2】(2019秋•越秀区校级期中)计算题: (1)[−34−214×(−4)]÷(14913−16913)(2)−16−(0.5−23)÷13×[−2−(−3)3]−|18−0.52|【变式14-3】(2019秋•沙坪坝区校级期中)计算:(1)6﹣(﹣14)+(﹣16)+18 (2)(−12)×(﹣8)÷(−23)(3)﹣3573435÷17 (4)0.7×1311−6.6×37−3.2÷73+0.7×911(5)﹣12019−{(−3)3−[6−|−512÷119−72|÷(−2)]}【考点7 代数式求值(整体代入法)】【例7】(2019秋•福田区期中)已知代数式x ﹣2y 的值是3,则代数式4y +1﹣2x 的值是( ) A .﹣5B .﹣3C .﹣1D .0【变式7-1】(2019秋•郾城区期中)当x =2时,代数式px 3+qx +1的值为﹣2019,求当x =﹣2时,代数式的px 3+qx +1值是( ) A .2018B .2019C .2020D .2021【变式7-2】(2019春•海阳市期中)已知1﹣a 2+2a =0,则14a 2−12a +54的值为( )A .32B .14C .1D .5【变式7-3】(2019秋•甘井子区期末)(1)【探究】若a 2+2a =1,则代数式2a 2+4a +4=2( )+4=2×( )+4= .【类比】若x 2﹣3x =2,则x 2﹣3x ﹣5的值为 .(2)【应用】当x =1时,代数式px 3+qx +1的值是5,求当x =﹣1时,px 3+qx +1的值; (3)【推广】当x =2020时,代数式ax 5+bx 3+cx ﹣5的值为m ,当x =﹣2020时,ax 5+bx 3+cx ﹣5的值为 (含m 的式子表示) 【考点9 单项式的系数与次数】【方法点拨】解题关键:①单项式中的数字因数称为这个单项式的系数;②一个单项式中,所有字母的指数的和叫做这个单项式的次数 【例9】(2019秋•海淀区校级期中)4πx 2y 4z9的系数是 ,次数是 .【变式9-1】(2019秋•淅川县期中)单项式﹣3πx a +1y 2与−102x 2y 39的次数相同,则a 的值为 .【变式9-2】(2019秋•永吉县期末)若单项式﹣x 3y n +5的系数是m ,次数是9,则m +n 的值为 .【变式9-3】(2019秋•鄂城区期中)已知(m ﹣3)x 3y |m |+1是关于x ,y 的七次单项式,求m 2﹣2m +2= . 【考点14 同类项的定义】【方法点拨】解题关键是掌握同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【例14】(2019秋•西城区校级期中)下列各组式子中是同类项的是()A.2x3与3x2B.12ax与8bx C.x4与a4D.23与32【变式14-1】(2020春•淇县期中)﹣2a2m+3b5与3a5b m﹣2n是同类项,则(m+n)2020的值是()A.1B.﹣1C.2D.4【变式14-2】(2019秋•路南区期中)如果单项式﹣3x a y5与x3y a+b的和是单项式,那么a与b的值分别是()A.a=3,b=5B.a=5,b=3C.a=3,b=2D.a=2,b=3【变式14-3】(2019秋•牡丹江期中)如果2x3y|n|与−13xm+1y的和是单项式,则m+n的值是()A.1B.﹣1C.±1D.3或1【考点15 合并同类项(不含某项)】【方法点拨】解题关键是首先进行合并同类项,不含某项,则该项的系数为0,从而求得结果.【例15】(2019秋•九龙坡区期中)若代数式x2﹣2kxy+y2﹣6xy+9不含xy项,则k的值为()A.3B.−12C.0D.﹣3【变式15-1】(2019秋•西城区校级期中)若关于x的多项式x4﹣ax3+x3﹣5x2﹣bx﹣3x﹣1不存在含x的一次项和三次项,则a+b=.【变式15-2】(2019秋•海淀区校级期中)若关于x,y的多项式my3+nx2y+2y3﹣x2y+y中不含三次项,则2m+3n=.【变式15-3】(2019秋•东台市期中)已知代数式2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1的值与字母x的取值无关,求a b的值.【考点17 整式的加减】【例17】(2019秋•雅安期末)一个多项式加上12y+7x+z2等于5y+3x﹣15z2,则这个多项式是()A.﹣7y﹣4x﹣16z2B.7y+4x+16z2C.17y+10x﹣14z2D.7y+4x﹣16z2【变式17-1】(2019秋•东阿县期末)设M=x2﹣8x﹣4,N=2x2﹣8x﹣3,那么M与N的大小关系是()A.M>N B.M=N C.M<N D.无法确定【变式17-2】(2019秋•潍坊期末)一个多项式M减去多项式﹣2x2+5x﹣3,小马虎同学却误解为先加上这个多项式,结果得x2+3x+7,则多项式M是()A.3x2﹣2x+10B.﹣x2+8x+4C.3x2﹣x+10D.x2﹣8x﹣4【变式17-3】(2019秋•石城县期末)在整式的加减练习课中,已知A=3a2b﹣2ab2+abc,小江同学错将“2A﹣B”看成“2A+B”,算得错误结果是4a2b﹣3ab2+4abc,已知.请你解决以下问题:(1)求出整式B;(2)求正确计算结果;(3)若增加条件:a、b满足|a﹣4|+(b+1)2=0,你能求出(2)中代数式的值吗?如果能,请求出最后的值;如果不能,请说明理由.【考点19 整式的化简求值(化繁为简再求值)】【例19】(2019秋•沙坪坝区期末)先化简,再求值:2ab +6(12a 2b +ab 2)﹣[3a 2b ﹣2(1﹣ab ﹣2ab 2)],其中a 为最大的负整数,b 为最小的正整数.【变式19-1】(2019秋•渝中区校级期末)先化简再求值:3a 2b ﹣[2ab 2﹣2(ab −32a 2b )+ab ]+3ab 2,其中a ,b 满足(a +4)2+|b −12|=0.【变式19-2】(2019秋•呼和浩特期末)已知代数式A =﹣6x 2y +4xy 2﹣2x ﹣5,B =﹣3x 2y +2xy 2﹣x +2y ﹣3.(1)先化简A ﹣B ,再计算当x =1,y =﹣2时A ﹣B 的值; (2)请问A ﹣2B 的值与x ,y 的取值是否有关系?试说明理由.【变式19-3】(2019秋•南开区期末)已知A =a 2﹣2b 2+2ab ﹣3,B =2a 2﹣b 2−25ab −15. (1)求2(A +B )﹣3(2A ﹣B )的值(结果用化简后的a 、b 的式子表示); (2)当|a +12|与b 2互为相反数时,求(1)中式子的值.【考点4 解一元一次方程】【方法点拨】解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化. 【例4】(2020春•内乡县期中)解方程:(1)3(2x +5)=2(4x +3)+1; (2)x−32−2x+13=1.【变式4-1】(2020秋•南岗区校级月考)解方程: (1)2x−13−x+56=2x +1; (2)13[x −12(x ﹣1)]=23(x ﹣2).【变式4-2】(2019秋•潍坊期末)解方程 (1)(x ﹣4)−(x−4)−12=3−(x−4)+23(2)x−0.20.4−0.37x+10.2=1【变式4-3】(2019秋•嘉祥县期末)解方程:(1)15(3x ﹣1)﹣2=110(3x +2)−12(2x ﹣3); (2)0.3x−0.50.3+1.5=0.5+0.4x0.6.【考点1 幂的基本运算】【方法点拨】同底数幂的乘法法则:nm nmaa a +=•(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

代数部分复习题
1.下列式子正确的是()
A、 20=0
B、
C、 D、
2. ()
A、 B、 C、 D、
3、下列多项式中是完全平方式的是 ( )
A、 B、 C、 D、
4. ,,你能计算出的值为()
A、 B、 C、 D、
5.(宿迁·中考题)下列事件中,随机事件是()
A.太阳从东方升起; B.掷一枚骰子,出现6点朝上
C.袋中有3个红球,从中摸出白球; D.若a是正数,则-a是负数
6.给出下列结论①黑暗中小明从他的一大串钥匙中,随便选择一把,用它开门 , 不能开门的可能性大于能开门的可能性②小明上次的体育测试是“优秀”,这次测试它百分之百的为“优秀”③小明射中目标的概率为1/3,因此,小明连射三枪一定能够击中目标④随意掷一枚骰子,“掷得的数是奇数”的概率与“掷得的数是偶数”的概率相等其中正确的结论有( )
A.1个
B.2个
C.3个
D.4个
7.如果一盒圆珠笔有12支,售价18元,用y(元)表示圆珠笔的售价,x表示圆珠笔的支数,那么y与x之间的关系应该是
【】. A.y=12x B.y=18x C.y=x D.y=x
8. 向高为10厘米的容器中注水,注满为止,若注水量V(厘米3)与水深h(厘米)之间的关系的图象大致如图3所示,则这个容器是下列四个图中的【】.
二.填空
4.等腰三角形的周长为12厘米,底边长为厘米,腰长为厘米. 则与的之间的关系式是 y= .
5. 一根弹簧原长13厘米,并且每挂1千克就伸长0.5厘米,则当挂物体质量为10千克,弹簧长度为________厘米,挂物体X(千克)与弹簧长度y(厘米)的关系式为_______.(不考虑x的取值范围
三.解答
1.
2、
3.已知2x=3x+3,求代数式的值.
4.从男女学生共36人的班级中,选一名班长,任何人都有同样的当选机会,如果选得男生的概率为,求男女生数各多少?
5.星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在图8,画出符合他们行驶的路程S(千米)与行驶时间t(时)之间的图象.
6.将若干张长为20厘米、宽为10厘米的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为2厘米.
(1)求4张白纸粘合后的总长度;
(2)设x张白纸粘合后的总长度为y厘米,写出y与x之间的关系式,并求当x=20时,y的值.
8、(厦门·中考题)某商场为了吸引更多的顾客,安排了一个抽奖活动,并规定:顾客每购买100元商品,就能获得一次抽奖的机会。

抽奖规则如下:在抽奖箱内,有100个牌子,分别写有1、2、3、……、100这100个数字,抽到末位数是8的可获20元购物券,抽到数字是88的可获200元购物券,抽到66或99这两个数字的可获100元购物券。

(1)某顾客购物130元,他获得20元、100元、200元购物券的概率分别是多少
(2)他获得购物券的概率是多少?。

相关文档
最新文档