影响戒烟成功因素的分析--数学建模

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

影响戒烟成功因素的分析

高利

(理学院11信科1班)

摘要:为了分析影响戒烟成功的主要因素,原题提供了包括234人的调查数据。

涉及的影响因素包括年龄、性别、每日抽烟只数、CO浓度和调整的CO浓度。本文就是以234人的调查数据为基础,对数据进行处理和分析,利用计算机编程和数学模型的方法,探寻影响戒烟成功的主要因素,并在最后根据文本的相关研究结果对广大烟民提出建议。

问题一主要分析了不同年龄和不同性别的累加发病率分布情况,主要利用计算机编程,对原始数据进行分组、筛选和统计,并作出分布直方图。经过分析得知男性的累加发病率为84.55%,女性的累加发病率为87.10%,略高于男性,青年人(18---40岁)累加发病率最高,为87.72%,中年人(41---65岁)次之,为84.68%,老年人(66岁)以后很少,为77.78%。

问题二是判断年龄、性别、每日抽烟支数、调整的CO浓度等因素哪些对戒烟时间有影响,并要求给出定量的分析。针对此问题,本文只取戒烟天数小于365天的被调查者为研究对象,并把原始数据中空缺的数据行排除,首先画出个因素与戒烟天数的散点图,直接观察数据间的关系,再通过计算两组数据的相关,比较其绝对值的大小,定量的给个影响因素对戒烟天数的影响程度初系数ρ

xy

步排序,处理结果为影响程度有大到小排序:CO浓度,每日抽烟支数,调整CO 浓度,年龄。

问题三利用建立适当的数学模型,讨论影响戒烟成功的主要因数,并对模型进行可靠性分析。在这里主要建立了统计回归模型。由于原始数据散点图比较散乱,不容易直接看出两组数据间的关系,也不方便直接处理,所以首先对原始数据做了预处理,等距分组,并求出每组戒烟天数的均值,以减小数据的波动,方便观察数据之间的宏观关系,再利用处理后的数据建模分析,通过建立统计回归模型对处理后的数据做了二次函数拟合,再进行回归分析,比较回归方程的决定系数R2等,进一步量化和判断不同因素对戒烟成功影响程度的大小,得到的结论是每天抽烟支数和CO浓度是影响戒烟成功的最主要因素。

关键词:累加发病率;相关系数;分组平均;二次函数拟合;Mathematica。

1问题的提出

吸烟不仅危害自身健康,而且由此引起的被动吸烟更是危害公众身心健康的主要原因,因此为了帮助烟民尽快摆脱烟瘾的困扰,有必要深入调查分析一下影响戒烟成功的主要因素。影响戒烟成功的因素很多,可能的因素包括年龄、性别、每日抽烟的支数、烟民体内的CO浓度等,但影响烟民戒烟成功的主要因素有哪些?各个因素的影响程度如何?对于有意愿戒烟的烟民如何更好地把握这些因素,更有效的戒烟?原题给出了涉及234人的相关调查数据,用以分析影响戒烟成功的主要因素,本文主要以这些数据为依据,进行相关的处理与分析。

2问题的分析

2.1问题一

由题意知,累加发病率是原吸烟者戒烟一段时间后又再次吸烟的比例。前面假设原戒烟者在研究截止时间内没有再吸烟为戒烟成功,即在研究期限一年内如果再吸烟,戒烟失败,为再犯者。对于问题一,把各因素的调查数据进行分组。如把年龄分成不同的年龄段,以上述判断标准对每个年龄段分别计算相应的累加发病率,并作出分布直方图,进行比较。

2.2问题二

原题定时,戒烟天数是从0到他(她)退出戒烟或研究截止时间的天数,所以数据中戒烟天数是365天的戒烟者,其戒烟天数是不确定的。对于问题二,本文采取把戒烟天数是365天的数据排除,只对戒烟天数小于365天的数据进行处理和分析。首先通过编程对数据进行筛选,并可视化——以各影响因素的数据值为横坐标,以纵坐标为戒烟天数,作出散点图。再根据散点图分析影响因素与戒烟天数之间的关系。至于定量分析,通过计算两组数据的相关系数ρ

,由相关

XY

系数ρ

来衡量影响因素与戒烟天数之间关系的大小。

XY

2.3问题三

对于问题三,本文主要采用了统计回归模型,在处理问题二的时候发现,各影响因素与戒烟天数之间的关系并不非常的明显,散点图不是很集中,不便于直接处理。本文采取的方案是在建立模型之前先对原始数据做一个转化,首先利用Mathematica编制一个统一的数据处理程序,把每个可能影响因素都做等距分组,分组数在程序调用时输入,在对每一组的所有戒烟天数求平均值,得到一个统计平均的结果,这样可以有效的减小数据的波动,有利于看清数据之间的关系,对于关系比较明显的影响因素,建立统计回归模型,进行回归分析,深入探讨各影响因素对戒烟天数及戒烟成功的影响的大小。

3条件的假设

(1)假设在研究截止时间(一年)内没有再吸烟(戒烟天数为365天)的原戒烟者戒烟成功。

(2)假设原烟民戒烟的可信度是很低,有些调查数据可能不真实,在数据处理的过程中给予以排除。

(3)假定全部被调查者中没有人中途退出研究。

4符号的约定

:年龄;

X

A

:性别(1表示男,2表示女);

X

G

:每日抽烟支数;

X

Cig

X

:CO浓度;

CO

:调整的CO浓度;

X

LC

Y:戒烟天数;

ρXY:两组数据的相关系数。

5模型的建立与求解

5.1问题一

为了直观得了解所有234人的总体戒烟情况,作出如下散点图:

由图1看出,被调查的234人中大多数经过很短时间后又再次抽烟,只有少数人戒烟天数达到365天,只占总人数的14.10%,本文假设在研究截止时间内没有再抽烟的烟民戒烟成功,所以累加发病率的具体定义为戒烟天数小于365的烟民数量占研究样本总人数的比例,据此,本文分别对不同年龄段和不同性别的累加发病率进行计算和比较。

不同性别。经过简单的统计计算,可以得到不同性别的累加发病率的分布情况:

相关文档
最新文档