平方差公式与完全平方公式试题(含答案)

合集下载

平方差公式和完全平方公式基础拔高练习(含答案)

平方差公式和完全平方公式基础拔高练习(含答案)

平方差公式◆基础训练1.(a2+b2)(a2-b2)=(____)2-(____)2=______.2.(-2x2-3y2)(2x2-3y2)=(____)2-(____)2=_____.3.20×19=(20+____)(20-____)=_____-_____=_____.4.9.3×10.7=(____-_____)(____+____)=____-_____.5.20062-2005×2007的计算结果为()A.1 B.-1 C.2 D.-26.在下列各式中,运算结果是b2-16a2的是()A.(-4a+b)(-4a-b) B.(-4a+b)(4a-b)C.(b+2a)(b-8a) D.(-4a-b)(4a-b)7.运用平方差公式计算.(1)102×98 (2)234×314(3)-2.7×3.3(4)1007×993 (5)1213×1123(6)-1945×2015(7)(3a+2b)(3a-2b)-b(a-b)(8)(a-1)(a-2)(a+1)(a+2)(9)(a+b)(a-b)+(a+2b)(a-2b)(10)(x+2y)(x-2y)-(2x+5y)(2x-5y)(11)(2m-5)(5+2m)+(-4m-3)(4m-3)(12)(a+b)(a-b)-(a-3b)(a+3b)+(-2a+3b)(-2a-3b)◆综合应用8.(3a+b)(____)=b2-9a2;(a+b-m)(____)=b2-(a-m)2.9.先化简,再求值:(3a+1)(3a-1)-(2a-3)(3a+2),其中a=-13.10.运用平方差公式计算:(1)220052005200042006-⨯;(2)99×101×10 001.11.解方程:(1)2(x+3)(x-3)=x2+(x-1)(x+1)+2x(2)(2x-1)(2x+1)+3(x+2)(x-2)=(7x-1)(x+1)12.计算:(4x-3y-2a+b)2-(4x+3y+2a-b)2.◆拓展提升13.若a+b=4,a2-b2=12,求a,b的值.完全平方公式◆基础训练1.完全平方公式:(a+b)2=______,(a-b)2=______.即两数的_____的平方等于它们的_____,加上(或减去)________.2.计算:(1)(2a+1)2=(_____)2+2·____·_____+(____)2=________;(2)(2x-3y)2=(_____)2-2·____·_____+(_____)2=_______.3.(____)2=a2+12ab+36b2;(______)2=4a2-12ab+9b2.4.(3x+A)2=9x2-12x+B,则A=_____,B=______.5.m2-8m+_____=(m-_____)2.6.下列计算正确的是()A.(a-b)2=a2-b2 B.(a+2b)2=a2+2ab+4b2C.(a2-1)2=a4-2a2+1 D.(-a+b)2=a2+2ab+b27.运算结果为1-2ab2+a2b4的是()A.(-1+ab2)2 B.(1+ab2)2 C.(-1+a2b2)2 D.(-1-ab2)2 8.计算(x+2y)2-(3x-2y)2的结果为()A.-8x2+16xy B.-4x2+16xy C.-4x2-16xy D.8x2-16xy 9.计算(a+1)(-a-1)的结果是()A.-a2-2a-1 B.-a2-1 C.a2-1 D.-a2+2a-1 10.运用完全平方公式计算:(1)(a+3)2(2)(5x-2)2(3)(-1+3a)2(4)(13a+15b)2(5)(-a-b)2(6)(-a+12)2(7)(xy+4)2(8)(a+1)2-a2(9)(-2m2-12n2)2(10)1012(11)1982(12)19.92 11.计算:(1)(a+2b)(a-2b)-(a+b)2(2)(x-12)2-(x-1)(x-2)12.解不等式:(2x-5)2+(3x+1)2>13(x2-10)+2.◆综合应用13.若(a+b)2+M=(a-b)2,则M=_____.14.已知(a-b)2=8,ab=1,则a2+b2=_____.15.已知x+y=5,xy=3,求(x-y)2的值16.一个圆的半径为rcm,当半径减少4cm后,这个圆的面积减少多少平方厘米?◆拓展提升17.已知x+1x=3,试x2+21x和(x-1x)2的值.平方差公式参考答案1.a2 b2 a4-b4 2.-3y2 2x2 9y4-4x43.2323202(23)2 399594.10 0.7 10 0.7 •100 0.49 5.A 6.D7.(1)9996 (2)81516(3)-8.91 (4)999 951(5)14389(6)-399.96 (7)9a2-ab-3b2(8)a4-5a2+4(9)2a2-5b2(10)21y2-3x2(11)-12m2-16 (12)4a2-b28.b-3a b-a+m9.3a2+5a+5 11310.(1)2005 (2)99 999 99911.(1)x=-172(2)x=-212.-48xy-32ax+16bx13.a=3.5,b=0.5完全平方公式参考答案1.a2+2ab+b2 a2-2ab+b2和(或差)平方和这两个数乘积的2倍2.(•1)•2a •2a 1 1 4a2+4a+1 (2)2x 2x 3y 3y 4x2-12xy+9y23.a+6b 2a-3b 4.-•2 •4 5.16 46.C 7.A 8.A 9.A10.(1)a2+6a+9 (2)25x2-20x+4 (3)9a2-6a+1 •(4)19a2+215ab+125b2(5)a2+2ab+b2(6)a4-a2+14(7)x2y4+8xy2+16 (8)2a+1 (9)4m4+2m2n2+14n4(10)10 201 (11)39 204 (12)396.0111.(1)-2ab-5b2(2)2x-7412.x<11 • •13.•-4ab14.1015.1316.(8r-16) cm217.7 5。

完全平方公式和平方差公式法习题(内含答案)

完全平方公式和平方差公式法习题(内含答案)

完全平方和平方差公式习题一. 选择题:1. 下列四个多项式:22b a +,22b a -,22b a +-,22b a --中,能用平方差公式分解因式的式子有( )A. 1个B. 2个 C 。

3个 D 。

4个2. )23)(23(y x y x -+-是下列哪个多项式分解因式的结果( )A 。

2249y x -B 。

2249y x +C 。

2249y x -- D. 2249y x +-3. 下列各式中,能运用完全平方公式分解因式的是( ) A. 22b a + B. 2242b ab a ++ C 。

422b ab a +- D 。

22412b ab a +- 4。

如果k x x +-322是一个完全平方公式,则k 的值为( ) A 。

361 B. 91 C. 61 D 。

31 5. 如果22259b kab a ++是一个完全平方式,则k 的值( )A. 只能是30B. 只能是30- C 。

是30或30- D. 是15或15-6。

把9)6(6)6(222+---x x 分解因式为( )A 。

)3)(3(-+x x B. 92-x C. 22)3()3(-+x x D 。

2)3(-x 7. 162-a 因式分解为( )A. )8)(8(+-a a B 。

)4)(4(+-a a C 。

)2)(2(+-a a D. 2)4(-a8. 1442+-a a 因式分解为( )A 。

2)2(-aB 。

2)22(-a C. 2)12(-a D 。

2)2(+a 9. 2222)(4)(12)(9y x y x y x ++-+-因式分解为( )A 。

2)5(y x - B. 2)5(y x + C. )23)(23(y x y x +- D. 2)25(y x -10. 把2222)())((2)(c a b c b c a ab c b a -++--+分解因式为( )A. 2)(b a c +B. 22)(b a c -C. 2)(b a c + D 。

平方差与完全平方专题(含答案)

平方差与完全平方专题(含答案)

乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2(a+b)(a 2-ab+b 2)=a 3+b 3(a-b)(a 2+ab+b 2)=a 3-b 3归纳小结公式的变式,准确灵活运用公式: ① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m ) =x 2y 2-(z 2+zm +zm +m 2) =x 2y 2-z 2-2zm -m 2⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2=(x -y )(x -y )-z 2=x 2-xy -xy +y 2-z 2 =x 2-2xy +y 2-z 2⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2) =x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

(完整word版)平方差公式与完全平方公式试题(含答案)1[1]2,推荐文档

(完整word版)平方差公式与完全平方公式试题(含答案)1[1]2,推荐文档

乘法公式的复习一、复习 :(a+b)(a-b)=a 2-b 2(a+b)2 =a2+2ab+b2(a-b)2=a2-2ab+b2 (a+b)(a 2 -ab+b2)=a 3+b3(a-b)(a2+ab+b2)=a 3-b3概括小结公式的变式,正确灵巧运用公式:①地点变化, x y y x x2y2②符号变化, x y x y x 2 y2 x 2 y2③指数变化, x2 y2x2 y2x4y4④系数变化, 2a b2a b4a2b2⑤换式变化, xy z m xy z mxy 2z m2x2y2z m z mx 2y2z22zm zm mx 2y2z222zm m⑥增项变化, x y z x y zx y 2z2x y x y z2x2xy xy y2 z2x22xy y2 z2⑦连用公式变化, x y x y x2 y2x2 y2 x2 y2x4 y4⑧逆用公式变化,x y z 2x y z 2x y z x y z x y z x y z2x2y 2z4xy 4xz例 1.已知a b 2 , ab1,求a2b2的值。

解:∵ (a b)2a22ab b2∴ a 2b2=(a b) 22ab ∵ a b 2 , ab 1∴ a 2b2=22 2 1 2例 2.已知a b 8 , ab 2 ,求(a b)2的值。

解:∵ (a b) 2 a 22ab b 2(a b)2a22ab b 2∴∵(a b) 2(a b) 24ab∴ (a b) 24ab =(a b) 2 a b 8, ab 2∴ ( a b) 282 4 2 56例 3:计算 19992-2000 ×1998〖分析〗本题中 2000=1999+1,1998=1999-1,正好切合平方差公式。

解: 19992 -2000 ×1998 =1999 2- (1999+1)×( 1999-1 )=19992- (19992-1 2)=19992-1999 2+1 =1例 4:已知 a+b=2,ab=1,求 a2+b2和(a-b) 2的值。

平方差公式与完全平方公式试题(含答案)1

平方差公式与完全平方公式试题(含答案)1

乘法公式的复习一、复习:(a+b)(a-b)=a2-b2(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2(a+b)(a2-ab+b2)=a3+b3(a-b)(a2+ab+b2)=a3-b3归纳小结公式的变式,准确灵活运用公式:①位置变化,x y y x x2y2②符号变化,x y x y x2y2x2y2③指数变化,x2y2x2y2x4y4④系数变化,2a b2a b4a2b2⑤换式变化,xy z m xy z mxy2z m2x2y2z m z mx2y2z2zm zm m2x2y2z22zm m2⑥增项变化,x y z x y zx y2z2x y x y z2x2xy xy y2z2x 22xy y 2z 2⑦ 连用公式变化,xy x y x 2y 2x 2y 2x 2y 2x 4y 4⑧ 逆用公式变化,x y z2x y z2x y z x y zx y zx y z2x2y 2z4xy 4xz例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

解:19992-2000×1998 =19992-(1999+1)×(1999-1)=19992-(19992-12)=19992-19992+1 =1例4:已知a+b=2,ab=1,求a2+b2和(a-b)2的值。

平方差公式与完全平方公式试题含答案

平方差公式与完全平方公式试题含答案

乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2归纳小结公式的变式,准确灵活运用公式:① 位置变化,?x ?y ???y ?x ??x 2?y 2 ② 符号变化,??x ?y ???x ?y ????x ?2?y 2? x 2?y 2 ③ 指数变化,?x 2?y 2??x 2?y 2??x 4?y 4 ④ 系数变化,?2a ?b ??2a ?b ??4a 2?b 2⑤ 换式变化,?xy ??z ?m ???xy ??z ?m ????xy ?2??z ?m ?2? x 2y 2??z 2?2zm +m 2??x 2y 2?z 2?2zm ?m 2 ⑥ 增项变化,?x ?y ?z ??x ?y ?z ???x ?y ?2?z 2 ?x 2?2xy ?y 2?z 2⑦ 连用公式变化,?x ?y ??x ?y ??x 2?y 2???x 2?y 2??x 2?y 2??x 4?y 4⑧ 逆用公式变化,?x ?y ?z ?2??x ?y ?z ?2???x ?y ?z ???x ?y ?z ????x ?y ?z ???x ?y ?z ???2x ??2y ?2z ? ??4xy ?4xz例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

平方差公式和完全平方公式(含参一)(人教版)(含答案)

平方差公式和完全平方公式(含参一)(人教版)(含答案)

平方差公式和完全平方公式(含参一)(人教版)一、单选题(共10道,每道10分)1.若,则的值为( )A.-1B.1C.±1D.2答案:B解题思路:试题难度:三颗星知识点:平方差公式2.若,则的值为( )A.-4B.±4C.±4yD.4答案:C解题思路:试题难度:三颗星知识点:平方差公式3.若,则的值为( )A.3B.-3C.±3D.±9答案:C解题思路:试题难度:三颗星知识点:平方差公式4.若,则的值为( )A.7B.±7C.-7D.以上都不对答案:B解题思路:试题难度:三颗星知识点:平方差公式5.若是完全平方式,则的值为( )A.2B.-2C.±2D.±1答案:C解题思路:试题难度:三颗星知识点:完全平方公式6.若是完全平方式,则的值为( )A.36B.9C.-9D.±9答案:B解题思路:试题难度:三颗星知识点:完全平方公式7.若是完全平方式,则的值为( )A.-6B.-12C.±6D.±12答案:D解题思路:试题难度:三颗星知识点:完全平方公式8.若是完全平方式,则的值为( )A.-4B.4C.-16D.16答案:A解题思路:试题难度:三颗星知识点:完全平方公式9.若,则的值为( )A.2B.-2C.±2D.4答案:B解题思路:试题难度:三颗星知识点:完全平方公式10.若,则的值为( )A.-1B.1C.±1D.-4答案:A解题思路:试题难度:三颗星知识点:完全平方公式。

平方差公式与完全平方公式试题含答案

平方差公式与完全平方公式试题含答案

乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2 ② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2= x 2y 2-(z 2+2zm +m 2)=x 2y 2-z 2-2zm -m 2 ⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2 =x 2-2xy +y 2-z 2 ⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz 例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+ ∵2=+b a ,1=ab ∴22b a +=21222=⨯- 例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a - ∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯- 例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

平方差,完全平方公式练习(有答案)

平方差,完全平方公式练习(有答案)
(2)(x+3)(x-5)=x2-2x-15.(3)(2a+1)(a-2)=2a2-4a+a-2=2a2-3a-2.
(4)(x+2)(x2-x-4)=x·x2+x(-x)+x·(-4)+2x2+2·(-x)+2×(-4)=x3-x2-4x+2x2-2x-8=x3+x2-6x-8.
7.解:(2x-y)(2x+y)+(2x-y)(y-4x)+2y(y-3x)=4x2+2xy-2xy-y2+2xy-8x2-y2+4xy+2y2-6xy=-4x2.
=a2-9 =4a2-9b2
3. (1+2c)(1-2c) 4. (-x+2)(-x-2)
=1-4C2=x2-42
5. (2x+ )(2x- ) 6. (a+2b)(a-2b)
=4x2- 1/4 =a2-4b2
7. (2a+5b)(2a-5b) 8. (-2a-3b)(-2a+3b)
=4a2-25b2=4a2-9b2
1、(a+b)(a-b)(a2+b2)
=(a2-b2)(a2+b2)
=a4-b4
2、(a+2)(a-2)(a2+4)
=(a2-4)(a2+4)
=a4-16
3、(x- )(x2+ )(x+ )
=(x2-1/4)((x2+ )=x4-1/16
第四种情况:需要先变形再用平方差公式
1、(-2x-y)(2x-y) 2、(y-x)(-x-y)
10.在(ax2+bx-3)(x2- x+8)的结果中不含x3和x项,则a=,b=

(完整word版)平方差公式与完全平方公式试题(含答案)1[1]2,推荐文档

(完整word版)平方差公式与完全平方公式试题(含答案)1[1]2,推荐文档

乘法公式的复习一、复习:(a+b)(a-b)=a2-b2 (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 (a+b)(a2-ab+b2)=a3+b3 (a-b)(a2+ab+b2)=a3-b3归纳小结公式的变式,准确灵活运用公式:①位置变化,(x+y)(-y+x)=x2-y2②符号变化,(-x+y)(-x-y)=(-x)2-y2= x2-y2③指数变化,(x2+y2)(x2-y2)=x4-y4④系数变化,(2a+b)(2a-b)=4a2-b2⑤换式变化,[xy+(z+m)][xy-(z+m)]=(xy)2-(z+m)2=x2y2-(z+m)(z+m)=x2y2-(z2+zm+zm+m2)=x2y2-z2-2zm-m2⑥增项变化,(x-y+z)(x-y-z)=(x-y)2-z2=(x-y)(x-y)-z2=x2-xy-xy+y2-z2=x2-2xy+y2-z2⑦连用公式变化,(x+y)(x-y)(x2+y2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z )=-4xy +4xz例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

初中数学平方差完全平方公式练习题(附答案)

初中数学平方差完全平方公式练习题(附答案)

初中数学平方差完全平方公式练习题一、单选题1.下列各式添括号正确的是( )A. B. C. D.2.( )A. B. C. D.3.下列计算结果为的是( )A. B. C. D.4.,括号内应填( )A. B. C. D.5.下列计算正确的是( )A. B.C. D.6.多项式各项的公因式是( )A. B. C. D.7.下列多项式中,能用平方差公式分解因式的是( )A. B. C. D.8.化简的结果为( )A. B. C.9 D.9.下列多项式能用完全平方公式分解的是( )A. B. C. D.10.计算的结果是( )A. B. C. D.11.如果是一个完全平方式,那么的值是( )A.7B.C.或7D.或512.若是三角形的三边之长,则代数式的值( )A.小于0B.大于0C.等于0D.以上三种情况均有可能二、解答题13.计算:(1);(2).14.因式分解.(1)(2)15.用提公因式法将下列各式分解因式:(1);(2);(3).16.分解因式:(1);(2);(3);(4).17.分解因式:(1);(2);(3).18.先化简,再求值:a(a﹣2)﹣(a+1)(a﹣1),其中19.先阅读下列因式分解的过程,再回答所提出的问题:(1)上述分解因式的方法是________,共应用__________了次;(2)若分解,则需应用上述方法________次,结果是___ ________;(3)分解因式:(为正整数).三、填空题20.已知,则代数式的值是_________.21.若,则 , .22.已知,则的值是___________.23.已知,则的值为 .24.计算的结果等于 .25.计算: .参考答案1.答案:D解析:,故A错误;,故B错误;易知C错误.故选D.2.答案:C解析:本题考查平方差公式.由平方差公式可得,故选C.3.答案:D解析:.故选D.4.答案:C解析:括号内应填.故选C.5.答案:D解析:,故A错误;,故B错误;,故C错误;,故D正确.故选D.6.答案:C解析:多项式中,各项系数的最大公约数是5,各项都含有的相同字母是,字母的最低次数是2,字母的最低次数是1,所以各项的公因式是.故选C.7.答案:D解析:A选项,与符号相同,不能用平方差公式分解因式,故A选项错误;B选项,,不能用平方差公式分解因式,故B选项错误;C选项,与符号相同,不能用平方差公式分解因式,故C选项错误;D选项,,两项符号相反,能用平方差公式分解因式,故D选项正确.故选D.8.答案:C解析:.故选C.9.答案:B解析:A,C,D项不符合完全平方式的形式,故不能用完全平方公式分解因式;B项,,能用完全平方公式分解因式.故选B.10.答案:D解析:.故选D.11.答案:C解析:是一个完全平方式,,,,故选:C.12.答案:B解析:,因为三角形的任意两边之和大于第三边,所以,因此原式大于0.故选B.13.答案:(1)(2)解析:14.答案:(1)(2)略解析:15.答案:(1)(2)(3)解析:16.答案:(1).(2).(3)(4)解析:17.答案:(1)(2)(3)解析:18.答案:化简得-2a+1;2解析:19.答案:(1)提公因式法;2(2)2018;(3)解析:20.答案:-6解析:因为,所以.21.答案:-2 1解析:,,22.答案:2020解析:,两等式相加,得,所以.23.答案:4解析:,,.故答案为4.24.答案:9解析:根据平方差公式得,原式.25.答案:解析:原式.。

八年级数学平方差公式和完全平方公式(含参)(人教版)(含答案)

八年级数学平方差公式和完全平方公式(含参)(人教版)(含答案)

学生做题前请先回答以下问题问题1:已知,求的值.你是怎么思考的?问题2:已知,求的值.你是怎么思考的?平方差公式和完全平方公式(含参)(人教版)一、单选题(共12道,每道8分)1.若,则的值为( )A.-2B.2C.±4D.4答案:D解题思路:试题难度:三颗星知识点:平方差公式2.若,则的值为( )A.-4B.±4C.±4yD.4答案:C解题思路:试题难度:三颗星知识点:平方差公式3.若,则的值为( )A.3B.-3C.±3D.±9答案:C解题思路:试题难度:三颗星知识点:平方差公式4.若,则的值为( )A.7B.±7C.-7D.以上都不对答案:B解题思路:试题难度:三颗星知识点:平方差公式5.若是完全平方式,则的值为( )A.2B.-2C.±2D.±1答案:C解题思路:试题难度:三颗星知识点:完全平方公式6.若是完全平方式,则的值为( )A.36B.9C.-9D.±9答案:B解题思路:试题难度:三颗星知识点:完全平方公式7.若是完全平方式,则的值为( )A.-6B.-12C.±6D.±12答案:D解题思路:试题难度:三颗星知识点:完全平方公式8.若,则的值为( )A.2B.-2C.±2D.4答案:B解题思路:试题难度:三颗星知识点:完全平方公式9.若,则的值为( )A.-1B.1C.±1D.-4答案:A解题思路:试题难度:三颗星知识点:完全平方公式10.若,则的值分别为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:完全平方公式11.计算的结果是( )A.0B.1C.-1D.2 004答案:B解题思路:试题难度:三颗星知识点:平方差公式12.计算的结果为( )A.27 501B.29 501C.39 601D.49 501答案:C解题思路:试题难度:三颗星知识点:完全平方公式。

八年级数学上册平方差公式和完全平方公式(习题及答案)

八年级数学上册平方差公式和完全平方公式(习题及答案)
平方差公式和完全平方公式(习题)
例题示范
例 1:计算: 3( a 1)( a 1) 2(a 1)2 . 【操作步骤】 ( 1)观察结构划部分: 3( a 1)( a 1) 2(a 1) 2


( 2)有序操作依法则:辨识运算类型,依据对应的法则运算.
第一部分: a 和 a 符号相同,是公式里的“ a”, 1 和- 1 符号相反,是公式里
⑥ 1012 992 .
思考小结
1. 在利用平方差公式计算时要找准公式里面的
a 和 b,我们把完全相同的
第2页 共4页
“项”看作公式里的“ _____”,只有符号不同的“项”看作公式里的 “ _____”,比如 ( x y z)( x y z) , _______是公式里的“ a”, _______ 是公式里的“ b”;同样在利用完全平方公式的时候,如果底数首项前面有 负号,要把底数转为它的 ______去处理,比如 ( a b)2 (_______)2 2. 根据两大公式填空:
(a- b)2 +(_______) a2+b2 +(_______) (a+b)2
+(_______)
【参考答案】 巩固练习
1. C 2. B
第3页 共4页
的“ b”,可以用平方差公式;
第二部分:可以用完全平方公式,利用口诀得出答案.( Fra bibliotek)每步推进一点点.
【过程书写】
解:原式 3 ( a)2 12 2( a2 2a 1)
3(a2 1) 2a2 4a 2
3a2 3 2a2 4a 2 a2 4a 5
巩固练习
1. 下列多项式乘法中,不能用平方差公式计算的是(

A . ( x y)( y x)

最新平方差公式与完全平方公式试题(含答案)1[1]-2

最新平方差公式与完全平方公式试题(含答案)1[1]-2

乘法公式的复习一、复习:(a+b)(a-b)=a2-b2 (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 (a+b)(a2-ab+b2)=a3+b3 (a-b)(a2+ab+b2)=a3-b3归纳小结公式的变式,准确灵活运用公式:①位置变化,(x+y)(-y+x)=x2-y2②符号变化,(-x+y)(-x-y)=(-x)2-y2= x2-y2③指数变化,(x2+y2)(x2-y2)=x4-y4④系数变化,(2a+b)(2a-b)=4a2-b2⑤换式变化,[xy+(z+m)][xy-(z+m)]=(xy)2-(z+m)2=x2y2-(z+m)(z+m)=x2y2-(z2+zm+zm+m2)=x2y2-z2-2zm-m2⑥增项变化,(x-y+z)(x-y-z)=(x-y)2-z2=(x-y)(x-y)-z2=x2-xy-xy+y2-z2=x2-2xy+y2-z2⑦连用公式变化,(x+y)(x-y)(x2+y2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z )=-4xy +4xz例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2= x 2y 2-(z 2+2zm +m 2)=x 2y 2-z 2-2zm -m 2⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2=x 2-2xy +y 2-z 2⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

解:19992-2000×1998 =19992-(1999+1)×(1999-1) =19992-(19992-12)=19992-19992+1 =1 例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。

〖解析〗此题可用完全平方公式的变形得解。

解:a 2+b 2=(a+b)2-2ab=4-2=2 (a-b)2=(a+b)2-4ab=4-4=0例5:已知x-y=2,y-z=2,x+z=14。

求x 2-z 2的值。

〖解析〗此题若想根据现有条件求出x 、y 、z 的值,比较麻烦,考虑到x 2-z 2是由x+z 和x-z 的积得来的,所以只要求出x-z 的值即可。

解:因为x-y=2,y-z=2,将两式相加得x-z=4,所以x 2-z 2=(x+z )(x-z)=14×4=56。

例6:判断(2+1)(22+1)(24+1)……(22048+1)+1的个位数字是几?〖解析〗此题直接计算是不可能计算出一个数字的答案,故有一定的规律可循。

观察到1=(2-1)和上式可构成循环平方差。

解:(2+1)(22+1)(24+1)……(22048+1)+1=(2-1)(22+1)(24+1)……(22048+1)+1=24096=161024因为当一个数的个位数字是6的时候,这个数的任意正整数幂的个位数字都是6,所以上式的个位数字必为6。

例7.运用公式简便计算(1)1032(2)1982解:(1)1032=(100+3)2=1002+2⨯100⨯3+32=10000+600+9 =10609 (2)1982=(200-2)2=2002-2⨯200⨯2+22=40000-800+4 =39204例8.计算(1)(a +4b -3c )(a -4b -3c ) (2)(3x +y -2)(3x -y +2)解:(1)原式=[(a -3c )+4b ][(a -3c )-4b ]=(a -3c )2-(4b )2=a 2-6ac +9c 2-16b 2(2)原式=[3x +(y -2)][3x -(y -2)]=9x 2-( y 2-4y +4)=9x 2-y 2+4y -4例9.解下列各式(1)已知a 2+b 2=13,ab =6,求(a +b )2,(a -b )2的值。

(2)已知(a +b )2=7,(a -b )2=4,求a 2+b 2,ab 的值。

(3)已知a (a -1)-(a 2-b )=2,求222a b ab +-的值。

(4)已知13x x -=,求441x x+的值。

分析:在公式(a +b )2=a 2+b 2+2ab 中,如果把a +b ,a 2+b 2和ab 分别看作是一个整体,则公式中有三个未知数,知道了两个就可以求出第三个。

解:(1)∵a 2+b 2=13,ab =6∴(a +b )2=a 2+b 2+2ab =13+2⨯6=25 (a -b )2=a 2+b 2-2ab =13-2⨯6=1 (2)∵(a +b )2=7,(a -b )2=4∴ a 2+2ab +b 2=7 ① a 2-2ab +b 2=4 ② ①+②得 2(a 2+b 2)=11,即22112a b += ①-②得 4ab =3,即34ab =(3)由a (a -1)-(a 2-b )=2 得a -b =-2()22221222a b ab a b ab +∴-=+-()()22112222a b =-=⨯-=(4)由13x x -=,得19x x 2⎛⎫-= ⎪⎝⎭ 即22129x x +-= 22111x x ∴+=221121x x 2⎛⎫∴+= ⎪⎝⎭ 即4412121x x ++= 441119x x +=例10.四个连续自然数的乘积加上1,一定是平方数吗?为什么?分析:由于1⨯2⨯3⨯4+1=25=522⨯3⨯4⨯5+1=121=1123⨯4⨯5⨯6+1=361=192…… 得猜想:任意四个连续自然数的乘积加上1,都是平方数。

解:设n ,n +1,n +2,n +3是四个连续自然数则n (n +1)(n +2)(n +3)+1 =[n (n +3)][(n +1)(n +2)]+1 =(n 2+3n )2+2(n 2+3n )+1=(n 2+3n )(n 2+3n +2)+1 =(n 2+3n +1)2∵n 是整数,∴ n 2,3n 都是整数 ∴ n 2+3n +1一定是整数∴(n 2+3n +1)是一个平方数 ∴四个连续整数的积与1的和必是一个完全平方数。

二、乘法公式的用法(一)、套用:这是最初的公式运用阶段,在这个环节中,应弄清乘法公式的来龙去脉,准确地掌握其特征,为辨认和运用公式打下基础,同时能提高学生的观察能力。

例1. 计算:()()53532222x y x y +- 解:原式()()=-=-53259222244xy x y(二)、连用:连续使用同一公式或连用两个以上公式解题。

例2. 计算:()()()()111124-+++a a a a 解:原式()()()=-++111224a a a()()=-+=-111448a a a例3. 计算:()()32513251x y z x y z +-+-+-- 解:原式()()[]()()[]=-++--+25312531y z x y z x()()=--+=-+---25314925206122222y z x y x z yz x三、逆用:学习公式不能只会正向运用,有时还需要将公式左、右两边交换位置,得出公式的逆向形式,并运用其解决问题。

例4. 计算:()()57857822a b c a b c +---+解:原式()()[]()()[]=+-+-++---+578578578578a b c a b c a b c a b c()=-=-101416140160a b c ab ac四、变用: 题目变形后运用公式解题。

例5. 计算:()()x y z x y z +-++26 解:原式()[]()[]=++-+++x y z z x y z z 2424()()=++-=+-+++x y z z x y z xy xz yz241224422222五、活用: 把公式本身适当变形后再用于解题。

这里以完全平方公式为例,经过变形或重新组合,可得如下几个比较有用的派生公式:()()()()()()()ab b a b a b a b a b a b a ab b a b a ab b a 4.42.32.22.1222222222222=--++=-+++=+-+=-+灵活运用这些公式,往往可以处理一些特殊的计算问题,培养综合运用知识的能力。

例6. 已知a b ab -==45,,求a b 22+的值。

解:()a b a b ab 2222242526+=-+=+⨯= 例7. 计算:()()a b c d b c d a ++-+++-22解:原式()()[]()()[]=++-++--b c a d b c a d 22()()[]=++-=++++-2222244222222b c a d a b c d bc ad三、学习乘法公式应注意的问题(一)、注意掌握公式的特征,认清公式中的“两数”. 例1 计算(-2x 2-5)(2x 2-5)分析:本题两个因式中“-5”相同,“2x 2”符号相反,因而“-5”是公式(a +b )(a -b )=a 2-b 2中的a ,而“2x 2”则是公式中的b .解:原式=(-5-2x 2)(-5+2x 2)=(-5)2-(2x 2)2=25-4x 4.例2 计算(-a 2+4b )2分析:运用公式(a +b )2=a 2+2ab +b 2时,“-a 2”就是公式中的a ,“4b ”就是公式中的b ;若将题目变形为(4b -a 2)2时,则“4b ”是公式中的a ,而“a 2”就是公式中的b .(解略) (二)、注意为使用公式创造条件 例3 计算(2x +y -z +5)(2x -y +z +5).分析:粗看不能运用公式计算,但注意观察,两个因式中的“2x ”、“5”两项同号,“y ”、“z ”两项异号,因而,可运用添括号的技巧使原式变形为符合平方差公式的形式.解:原式=〔(2x +5)+(y -z )〕〔(2x +5)-(y -z )〕=(2x +5)2-(y -z )2=4x 2+20x +25-y +2yz -z 2.例5 计算(2+1)(22+1)(24+1)(28+1).分析:此题乍看无公式可用,“硬乘”太繁,但若添上一项(2-1),则可运用公式,使问题化繁为简.解:原式=(2-1)(2+1)(22+1)(24+1)(28+1) =(22-1)(22+1)(24+1)(28+1)=(24-1)(24+1)(28+1)=(28-1)(28+1)=216-1(三)、注意公式的推广计算多项式的平方,由(a+b)2=a2+2ab+b2,可推广得到:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.可叙述为:多项式的平方,等于各项的平方和,加上每两项乘积的2倍.例6 计算(2x+y-3)2解:原式=(2x)2+y2+(-3)2+2·2x·y+2·2x(-3)+2·y(-3)=4x2+y2+9+4xy-12x-6y.(四)、注意公式的变换,灵活运用变形公式例7 (2)已知:x+2y=7,xy=6,求(x-2y)2的值.分析:粗看似乎无从下手,但注意到乘法公式的下列变形:x2+y2=(x+y)2-2xy,x3+y3=(x+y)3-3xy(x+y),(x+y)2-(x-y)2=4xy,问题则十分简单.解:(2)(x-2y)2=(x+2y)2-8xy=72-8×6=1.例8 计算(a+b+c)2+(a+b-c)2+(a-b+c)+(b-a+c)2.分析:直接展开,运算较繁,但注意到由和及差的完全平方公式可变换出(a+b)2+(a-b)2=2(a2+b2),因而问题容易解决.解:原式=[(a+b)+c]2+[(a+b)-c]2+[c+(a-b)]2+[c-(a-b)]2=2[(a+b)2+c2]+2[c2+(a-b)2]=2[(a+b)2+(a-b)2]+4c2=4a2+4b2+4c2(五)、注意乘法公式的逆运用例9 计算(a-2b+3c)2-(a+2b-3c)2.分析:若按完全平方公式展开,再相减,运算繁杂,但逆用平方差公式,则能使运算简便得多.解:原式=[(a-2b+3c)+(a+2b-3c)][(a-2b+3c)-(a+2b-3c)]=2a(-4b+6c)=-8ab+12ac.例10 计算(2a+3b)2-2(2a+3b)(5b-4a)+(4a-5b)2分析:此题可以利用乘法公式和多项式的乘法展开后计算,但逆用完全平方公式,则运算更为简便.解:原式=(2a+3b)2+2(2a+3b)(4a-5b)+(4a-5b)2=[(2a+3b)+(4a-5b)]2=(6a-2b)2=36a2-24ab+4b2.四、怎样熟练运用公式:(一)、明确公式的结构特征这是正确运用公式的前提,如平方差公式的结构特征是:符号左边是两个二项式相乘,且在这四项中有两项完全相同,另两项是互为相反数;等号右边是乘式中两项的平方差,且是相同项的平方减去相反项的平方.明确了公式的结构特征就能在各种情况下正确运用公式.(二)、理解字母的广泛含义乘法公式中的字母a、b可以是具体的数,也可以是单项式或多项式.理解了字母含义的广泛性,就能在更广泛的范围内正确运用公式.如计算(x+2y-3z)2,若视x+2y为公式中的a,3z为b,则就可用(a-b)2=a2-2ab+b2来解了。

相关文档
最新文档