统计热力学复习题
(完整word版)热力学与统计物理期末复习题

热力学统计物理1、请给出熵、焓、自由能和吉布斯函数的定义和物理意义解:熵的定义:S B−S A=∫dQT ⟹B A dS=dQT沿可逆过程的热温比的积分,只取决于始、末状态,而与过程无关,与保守力作功类似。
因而可认为存在一个态函数,定义为熵。
焓的定义:H=U+pV焓的变化是系统在等压可逆过程中所吸收的热量的度量。
自由能的定义:F=U−TS自由能的减小是在等温过程中从系统所获得的最大功。
吉布斯函数的定义:G =F+pV= U – TS + pV在等温等压过程中,系统的吉布斯函数永不增加。
也就是说,在等温等压条件下,系统中发生的不可逆过程总是朝着吉布斯函数减少的方向进行的。
2、请给出热力学第零、第一、第二、第三定律的完整表述解:热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。
热力学第一定律:自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递过程中能量的总和不变。
热力学第二定律:克氏表述:不可能把热量从低温物体传到高温物体而不引起其他变化;开氏表述:不可能从单一热源吸热使之完全变成有用的功而不引起其他变化。
热力学第三定律:能氏定理:凝聚系的熵在等温过程中的改变随热力学温度趋于零,即limT→0(∆S)T=0绝对零度不能达到原理:不肯能通过有限的步骤使一个物体冷却到热力学温度的零度。
通常认为,能氏定理和绝对零度不能达到原理是热力学第三定律的两种表述。
3、请给出定压热容与定容热容的定义,并推导出理想气体的定压热容与定容热容关系式:C p−C V=nR解:定容热容: C V=(ðUðT )V表示在体积不变的条件下内能随温度的变化率;定压热容:C p=(ðUðT )p−p(ðVðT)P=(ðHðT)P表示在压强不变的情况下的熵增;对于理想气体,定容热容C V的偏导数可以写为导数,即C V=dUdT(1)定压热容C p的偏导数可以写为导数,即C P=dHdT(2)理想气体的熵为 H=U+pV=U+nRT(3)由(1)(2)(3)式可得理想气体的定压热容与定容热容关系式:C p−C V=nR4、分别给出体涨系数α,压强系数β和等温压缩系数κT的定义,并证明三者之间的关系:α=κTβp解:体涨系数:α=1V (ðVðT)P,α 给出在压强不变的条件下,温度升高1 K所引起的物体的体积的相对变化;压强系数:β=1p (ðp ðT )v ,β 给出在体积不变的条件下,温度升高1 K 所引起的物体的体积的相对变化;等温压缩系数:κT =−1V (ðV ðp )T ,κT 给出在温度不变的条件下,增加单位压强所引起的物体的体积的相对变化;由于p 、V 、T 三个变量之间存在函数关系f (p ,T ,V )=0,其偏导数存在以下关系:(ðV ðp )T (ðp ðT )v (ðT ðV )P =−1 因此α, β, κT 满足α=κT βp5、分别给出内能,焓,自由能,吉布斯函数四个热力学基本方程及其对应的麦克斯韦关系式解:内能的热力学基本方程:dU =TdS −pdV对应的麦克斯韦关系式:(ðT ðV )S =−(ðp ðS )V 焓的热力学基本方程:dH =TdS +Vdp对应的麦克斯韦关系式:(ðT ðp )s =(ðV ðS )p 自由能的热力学基本方程:dF =−SdT +Vdp对应的麦克斯韦关系式:(ðS ðV )T =(ðp ðT )V 吉布斯函数的热力学基本方程:dG =−SdT −pdV对应的麦克斯韦关系式: (ðS ðp )T =−(ðV ðT )p 6、选择T ,V 为独立变量,证明:C V =T (ðS ðT )V ,(ðU ðV )T = T (ðp ðT )V −p 证明:选择T ,V 为独立变量,内能U 的全微分为dU =(ðU ðT )V dT +(ðU ðV )T dV (1) 又已知内能的热力学基本方程 dU =TdS −pdV (2)以T ,V 为自变量时,熵S 的全微分为dS =(ðS ðT )V dT +(ðS ðV )T dV (3) 将(3)式代入(2)式可得dU =T (ðS ðT )V dT +[T (ðS ðV )T −P]dV (4) 将(4)式与(1)式比较可得C V =(ðU ðT )V =T (ðS ðT )V (5) (ðU ðV )T = T (ðp ðT )V −p (6) 7、简述节流过程制冷,气体绝热膨胀制冷,磁致冷却法的原理和优缺点解:节流过程制冷:原理:让被压缩的气体通过一绝热管,管子的中间放置一多孔塞或颈缩管。
第七章 统计热力学

298 800 2000 ()11/V m C He J K mol --g g , 12.48 12.48 12.48 ()112/V m C H J K mol --g g , 20.81 23.12 27.68 ()112/V m C Cl J K mol --g g , 25.53 28.89 29.99 ()112/V m C CO J K mol --g g ,28.8143.1152.02【解析】(1)单原子气体V m C ,值不随T 地升高而变化,多原子气体对于随T 地升高而增大;(2)同温下,分子中原子数越多,V m C ,越大;(3)分子中原子数越多,V m C ,值随温度地升高变化越明显。
10.在同温,同压下,根据下面的表值判断:那种气体的S m ,t 了;了最大?那种气体的S m.r 最大?那种分子的振动频率最小?分 子r M/r K Θ/v K Θ2H2 87.5 5976 HBr81 12.2 3682 2N 28 2.89 3353 2Cl710.35801能级能量 12h ν 32h ν 52h ν 72h ν 92h ν 112h ν 微态数()i t方式1 1 2 3 方式2 1 1 1 6 方式3 2 1 3 方式4213能级上的微粒数0N 1N 2N 3N 4N 5N15i it Ω==∑11mol -g222H I HI(g )+(g )= (g ) 已知298K 时,22HI H I 、、的有关数据如下:物质(),011/m T m KG H TJ K molθ---g g,(),011/m T m KH H TJ K molθ---g g,11f m THJ K molθ--∆g g,2H-101.34 29.099 0 2I-226.61 33.827 62.438 HI-177.67 29.101 26.5222H D HD (g)+(g)= (g)物理量2HHD2D()21/10cm σ--⨯4.371 3.786 3.092 ()472/10I kg m ⨯g0.4850.6130.919物理量H 2O (g ) CO (g ) CO 2(g ) CH 4(g ) H 2(g ) (),011/m Tm K G H TJ K molθ----g g ,155.56168.41182.26152.55102.1711f m H J K molθ--∆g g ,0-238.9 113.81 -393.17 -66.90 0函 数CO (g )H 2O (g ) CO 2(g ) H 2(g )11f m TH J K molθ--∆g g ,-110.52-241.83-393.51(),011/m Tm K HU TJ K mol θθ---g g ,29.09 33.20 31.41 28.48(),011/m Tm K G U TJ K molθ----g g ,168.82 155.53 182.23 102.19分子 ()1/M kg mol -g/r K Θ/v K ΘH 2(g ) I 2(g ) 2.0R ×10-3 253.8×10-3 -385.4 0.054 6100 310【解析】对N 2对N :()()323323232333433214102 3.14 1.381050008.31450006.02106.626101013251.42610N B t m k T RTq h p θθπ---=⎛⎫⨯⨯⨯⨯⨯⨯⨯⨯ ⎪⨯⎝⎭=⨯⨯=⨯ 4e q θ=33331.426104 5.7010N t e q q q θθθ==⨯⨯=⨯()3233708.3510148.314500036235.710 1.868107.27106.0210e -⨯-⨯⨯==⨯⨯⨯⨯。
(完整版)热力学与统计复习题

复习提纲一、填空题:1.特性函数是指在________选择自变量的情况下,能够表达系统_________的函数。
2.能量均分定理说:对于处在温度为T 的平衡状态的经典系统,粒子能量函数中的每一个________的平均值等于___________。
3.自然界的一切实际宏观过程都是_________过程,无摩擦的准静态过程是______ _过程。
4.熵增加原理是说,对于绝热过程,系统的熵_____________。
5.卡诺定理指出:工作于相同的高温热源和相同的低温热源之间的一切可逆机,其效率都____________, 与______________无关。
6.绝对零度时电子的最大能量称为___________________。
7.孤立系统经过足够长时间,其 不随时间改变,其所处的状态为热力学平衡态。
8.内能是 函数。
9.一般工作于两个一定温度热源之间的热机效率不大于 。
10.TH V P ∂⎛⎫= ⎪∂⎝⎭ 。
11.三维自由粒子的μ空间是 维空间。
12.体积V 内,能量在d εεε-+范围内自由粒子的可能状态数为 。
13.多元单相系的化学反应平衡条件是 。
14.克拉伯龙方程的表达式为 。
15.玻色系统中粒子的最概然分布为 。
二、选择题:1. 假设全同近独立子系统只有2个粒子,3个个体量子态。
那么下面说法错误的是:( )A. 如果该系统是玻尔兹曼系统,那么该系统共有9个系统微观状态。
B. 如果该系统是费米系统,那么该系统共有6个系统微观状态。
C. 如果该系统是费米系统,那么该系统共有3个系统微观状态。
D. 如果该系统是玻色系统,那么该系统共有6个系统微观状态。
2.关于热力学和统计物理平衡态说法错误的是: ( )A. 一个宏观的平衡状态包含了大量的系统的微观状态。
B. 它是一个动态的平衡,宏观量存在涨落,但是热力学理论不能够考虑涨落。
C. 宏观量都有对应的微观量。
D. 虽然系统的宏观量不随时间发生变化,但是它不一定就是一个平衡态。
统计热力学基础复习整理版汇总

统计热力学基础一、单选题1) 统计热力学主要研究(A )。
(A) 平衡体系(B) 近平衡体系(C) 非平衡体系(D) 耗散结构(E) 单个粒子的行为2) 体系的微观性质和宏观性质是通过( C)联系起来的。
(A) 热力学(B) 化学动力学(C) 统计力学(D) 经典力学(E) 量子力学3) 统计热力学研究的主要对象是:( D)(A) 微观粒子的各种变化规律(B) 宏观体系的各种性质(C) 微观粒子的运动规律(D) 宏观系统的平衡性质(E) 体系的宏观性质与微观结构的关系4) 下述诸体系中,属独粒子体系的是:(D )(A) 纯液体(B) 理想液态溶液(C) 理想的原子晶体(D) 理想气体(E) 真实气体5) 对于一个U,N,V确定的体系,其微观状态数最大的分布就是最可几分布,得出这一结论的理论依据是:(B )(A) 玻兹曼分布定律(B) 等几率假设(C) 分子运动论(D) 统计学原理(E) 能量均分原理6) 在台称上有7个砝码,质量分别为1g、2g、5g、10g、50g、100g,则能够称量的质量共有:(B )(A) 5040 种(B) 127 种(C) 106 种(D) 126 种7) 在节目单上共有20个节目序号,只知其中独唱节目和独舞节目各占10个,每人可以在节目单上任意挑选两个不同的节目序号,则两次都选上独唱节目的几率是:(A )(A) 9/38 (B) 1/4 (C) 1/180 (D) 10/388) 以0到9这十个数字组成不重复的三位数共有(A )(A) 648个(B) 720个(C) 504个(D) 495个9) 各种不同运动状态的能级间隔是不同的,对于同一种气体分子,其平动、转动、振动和电子运动的能级间隔的大小顺序是:(B )(A)∆ε t > ∆ε r > ∆ε v > ∆ε e(B)∆ε t < ∆ε r < ∆ε v < ∆ε e(C) ∆ε e > ∆ε v > ∆ε t > ∆ε r(D)∆ε v > ∆ε e > ∆ε t > ∆ε r(E)∆ε r > ∆ε t > ∆ε e > ∆ε v10) 在统计热力学中,对物系的分类按其组成的粒子能否被分辨来进行,按此原则:(C )(A) 气体和晶体皆属定域子体系(B) 气体和晶体皆属离域子体系(C) 气体属离域子体系而晶体属定域子体系(D) 气体属定域子体系而晶体属离域子体系11) 对于定域子体系分布X所拥有的微观状态t x为:( B)(A)!!i g i x i i N t N N ⎛⎫= ⎪⎝⎭∏ (B) !!i N i x i i g t N N ⎛⎫= ⎪⎝⎭∏ (C) !i g i x i i N t N ⎛⎫= ⎪⎝⎭∏ (D) !i N i x i i g t N ⎛⎫= ⎪⎝⎭∏ 12) 对给定的热力学体系,任何分布应满足:( D )(A) ∑N i =N (B) ∑N i εi =U (C) N 及V 一定 (D) ∑N i =N 及 ∑N i εi =U13) 当体系的U ,N ,V 确定后,则:(D )(A) 每个粒子的能级ε1, ε2, ....., εi 一定,但简并度g 1, g 2, ....., g i 及总微观状态数Ω 不确定。
热力学统计训练题.doc

一、填空题1.热力学与统计物理的研究任务是。
2.热力学的研究方法是。
3.统计物理认为,热现象是,而实际观测到的宏观热力学量则是。
4.描写热力学系统平衡状态参量按与系统的扩展性关系分有、二大类,而是热力学系统特有的状态参量。
5.对于一个P、V、T系统,其α,β,κT之间存在关系。
6.1摩尔范德瓦耳斯气体的状态方程是,其压强系数为。
7.对于简单系统(,,)0f p V T=,则这三个变量的领导数之间存在一个循环关系是。
8.理想气体的压强系数为, 等温压缩系数κ=。
T9.对于表面张力系数为σ液体表面系统,当表面积增加dA时,外界所做的功为。
10.一对于电介质系统,使其极化,外界所作的功是。
11.般情况下,准静态过程中,外界对系统做功为。
12.一个单间的固体或液体系统,其状态方程可表为。
13.热力学第一定律的数学表达式是其实质是。
14.对于平衡热辐射,斯特藩-玻耳兹曼定律的表达式为。
15.对于一个普遍的循环过程,克芝修斯的等式和不等式为。
16.热力学第二定律的数学表达式是。
17.热力学第二定律的开氏表述为、第二定律的实质是指出。
18.卡诺定理的表述是。
19. 麦氏关系 TS p ⎛⎫∂= ⎪∂⎝⎭ ,S T V ∂⎛⎫= ⎪∂⎝⎭ 。
20. 已知系统的特征函数F(T,V),则系统的S = ,系统的压强p= 。
21. 对于孤立系统,以S ,p 为独立变量,其特征函数的全微分是 。
22. 对一个均匀系,选S 、V 作为独立变量时,其特征函数是 ,选T 、p 作为独立变量时,其特征函数是 。
23. 取T 、V 为状态参量,已知系统的状态方程,则()T U V∂=∂ 。
24. T, p 为独立变量,温度不变时焓随压强的变化率与物态方程的关系是TH P ∂⎛⎫= ⎪∂⎝⎭ 。
25. 对于简单系统,定压热容量与定容热容量之差与物态方程的关系式是p V C C -= 。
26. 熵增加原理的表述是: 。
27. 气体节流膨胀,其焦汤系数μ的定义是 ,在T 、P 图上μ 的区域是致冷区。
热力学与统计物理_试题

热⼒学与统计物理_试题热⼒学部分第⼀章热⼒学的基本规律1、热⼒学与统计物理学所研究的对象:由⼤量微观粒⼦组成的宏观物质系统其中所要研究的系统可分为三类孤⽴系:与其他物体既没有物质交换也没有能量交换的系统;闭系:与外界有能量交换但没有物质交换的系统;开系:与外界既有能量交换⼜有物质交换的系统。
2、热⼒学系统平衡状态的四种参量:⼏何参量、⼒学参量、化学参量和电磁参量。
3、⼀个物理性质均匀的热⼒学系统称为⼀个相;根据相的数量,可以分为单相系和复相系。
4、热平衡定律(热⼒学第零定律):如果两个物体各⾃与第三个物体达到热平衡,它们彼此也处在热平衡.5、符合玻意⽿定律、阿⽒定律和理想⽓体温标的⽓体称为理想⽓体。
6、范德⽡尔斯⽅程是考虑了⽓体分⼦之间的相互作⽤⼒(排斥⼒和吸引⼒),对理想⽓体状态⽅程作了修正之后的实际⽓体的物态⽅程。
7、准静态过程:过程由⽆限靠近的平衡态组成,过程进⾏的每⼀步,系统都处于平衡态。
8、准静态过程外界对⽓体所作的功:,外界对⽓体所作的功是个过程量。
9、绝热过程:系统状态的变化完全是机械作⽤或电磁作⽤的结果⽽没有受到其他影响。
绝热过程中内能U 是⼀个态函数:A B U U W -= 10、热⼒学第⼀定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造,只能从⼀种形式转换成另⼀种形式,在转换过程中能量的总量保持恒定;热⼒学表达式:Q W U U A B +=-;微分形式:W Q U d d d +=11、态函数焓H :pV U H +=,等压过程:V p U H ?+?=?,与热⼒学第⼀定律的公式⼀⽐较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。
12、焦⽿定律:⽓体的内能只是温度的函数,与体积⽆关,即)(T U U =。
13.定压热容⽐:p p T H C=;定容热容⽐:V V T U C= 迈耶公式:nR C C V p =- 14、绝热过程的状态⽅程:const =γpV ;const =γTV ;const 1=-γγTp 。
热力学与统计物理试题

热力学与统计物理试题一、选择题1. 热力学第一定律表明,一个系统内能的微小改变等于它与周围环境交换的热量与它做的功之和。
若一个气体绝热膨胀,其内能的变化量为:A. 正值B. 负值C. 零D. 无法确定2. 理想气体状态方程为 \( pV = nRT \),其中 \( p \) 代表压力,\( V \) 代表体积,\( n \) 代表物质的量,\( R \) 是气体常数,\( T \) 代表温度。
若温度和物质的量保持不变,而压力增加,则体积的变化为:A. 增加B. 减小C. 不变D. 先增加后减小3. 熵是热力学中用来描述系统无序度的物理量。
在一个孤立系统中,熵的变化趋势是:A. 持续增加B. 持续减少C. 保持不变D. 在特定条件下增加或减少4. 麦克斯韦关系是热力学中描述状态函数之间关系的一组方程。
对于一个理想气体,其等体过程中的温度与熵的关系是:A. 正比B. 反比C. 无关D. 非线性关系5. 统计物理中,微观状态与宏观状态之间的关系是通过什么原理来描述的?A. 能量均分原理B. 等概率原理C. 熵最大原理D. 能量最小原理二、填空题1. 热力学第二定律可以表述为,在一个自发的过程中,熵总是倾向于增加,这个过程是________的。
2. 理想气体的内能只与温度有关,与体积和压力________。
3. 在热力学循环中,卡诺循环的效率是由两个热库的温度决定的,其效率公式为 \( \eta = 1 - \frac{T_{c}}{T_{h}} \),其中 \( T_{c} \) 是________的温度,\( T_{h} \) 是________的温度。
4. 统计物理中,一个系统的宏观状态可以通过多个不同的________来实现。
5. 按照玻尔兹曼熵的定义,一个系统的熵与它的微观状态数目的对数成正比,数学表达式为 \( S = k_B \ln W \),其中 \( k_B \) 是________常数。
热力学与统计物理期末题库

热力学与统计物理期末习题一、简答题1.什么是孤立系?什么是热力学平衡态?2.请写出熵增加原理?并写出熵增加原理的数学表达式?3.说明在S ,V 不变的情形下,平衡态的U 最小。
4.试解释关系式 ∑∑+=l l l l l l da d a dU εε 的物理意义?5.什么是玻色-爱因斯坦凝聚,理想玻色气体出现凝聚体的条件是什么?6.什么是热力学系统的强度量?什么是广延量?7.什么是热动平衡的熵判据?什么是等概率原理?请写出单元复相系的平衡条件。
8.写出吉布斯相律,并判断盐的水溶液的最大自由度数。
9.写出玻耳兹曼关系,并说明熵的统计意义。
10.请分别写出正则分布的量子表达式和经典表达式?11.简述卡诺定理及其推论。
12.什么是特性函数?若自由能F为特性函数,其自然变量是什么?13.说明一般情况下,不考虑电子对气体热容量贡献的原因。
14.写出热力学第二定律的数学表述,并简述其物理意义。
15.试讨论分布与微观状态之间的关系?16.请写出麦克斯韦关系。
17.什么是统计系综?18.利用能量均分定理,写出N个CO分子理想气体的内能与热容量(不考虑振动),并简要说明在常温范围,振动自由度对热容量贡献接近于零的原因。
19.简述经典统计理论在理想气体中遇到的困难。
20.理想玻色气体出现凝聚体的条件是什么?凝聚体有哪些性质?21.试给出热力学第一定律的语言描述和数学描述。
22.试给出热力学第二定律的语言描述和数学描述。
二、填空题1.均匀系统中与系统的质量或物质的量成正比的热力学量,称为 。
2.在等温等容过程中,系统的自由能永不 。
(填增加、减少或不变)3.体在节流过程前后,气体的 不变;理想气体经一节流过程,其焦汤系数=⎪⎪⎭⎫ ⎝⎛∂∂Hp T 。
4.一级相变的特点是 。
5.在满足经典极限条件1>>αe 时,玻色系统、费米系统以及玻耳兹曼系统的微观状态数满足关系 。
6.玻尔兹曼分布的热力学系统的内能U 的统计表达式是 。
热力学与统计物理期末复习题

热⼒学与统计物理期末复习题热⼒学与统计物理期末复习题热⼒学统计物理1、请给出熵、焓、⾃由能和吉布斯函数的定义和物理意义解:熵的定义:沿可逆过程的热温⽐的积分,只取决于始、末状态,⽽与过程⽆关,与保守⼒作功类似。
因⽽可认为存在⼀个态函数,定义为熵。
焓的定义:焓的变化是系统在等压可逆过程中所吸收的热量的度量。
⾃由能的定义:⾃由能的减⼩是在等温过程中从系统所获得的最⼤功。
吉布斯函数的定义:在等温等压过程中,系统的吉布斯函数永不增加。
也就是说,在等温等压条件下,系统中发⽣的不可逆过程总是朝着吉布斯函数减少的⽅向进⾏的。
2、请给出热⼒学第零、第⼀、第⼆、第三定律的完整表述解:热⼒学第零定律:如果两个热⼒学系统中的每⼀个都与第三个热⼒学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。
热⼒学第⼀定律:⾃然界⼀切物体都具有能量,能量有各种不同形式,它能从⼀种形式转化为另⼀种形式,从⼀个物体传递给另⼀个物体,在转化和传递过程中能量的总和不变。
热⼒学第⼆定律:克⽒表述:不可能把热量从低温物体传到⾼温物体⽽不引起其他变化;开⽒表述:不可能从单⼀热源吸热使之完全变成有⽤的功⽽不引起其他变化。
热⼒学第三定律:能⽒定理:凝聚系的熵在等温过程中的改变随热⼒学温度趋于零,即绝对零度不能达到原理:不肯能通过有限的步骤使⼀个物体冷却到热⼒学温度的零度。
通常认为,能⽒定理和绝对零度不能达到原理是热⼒学第三定律的两种表述。
3、请给出定压热容与定容热容的定义,并推导出理想⽓体的定压热容与定容热容关系式:解:定容热容:表⽰在体积不变的条件下内能随温度的变化率;定压热容:表⽰在压强不变的情况下的熵增;对于理想⽓体,定容热容的偏导数可以写为导数,即(1)定压热容的偏导数可以写为导数,即(2)理想⽓体的熵为(3)由(1)(2)(3)式可得理想⽓体的定压热容与定容热容关系式:4、分别给出体涨系数,压强系数和等温压缩系数的定义,并证明三者之间的关系:解:体涨系数:,给出在压强不变的条件下,温度升⾼1 K所引起的物体的体积的相对变化;压强系数:,给出在体积不变的条件下,温度升⾼1 K所引起的物体的体积的相对变化;等温压缩系数:,给出在温度不变的条件下,增加单位压强所引起的物体的体积的相对变化;由于p、V、T三个变量之间存在函数关系f(p,T,V)=0,其偏导数存在以下关系:因此,,满⾜5、分别给出内能,焓,⾃由能,吉布斯函数四个热⼒学基本⽅程及其对应的麦克斯韦关系式解:内能的热⼒学基本⽅程:对应的麦克斯韦关系式:焓的热⼒学基本⽅程:对应的麦克斯韦关系式:⾃由能的热⼒学基本⽅程:对应的麦克斯韦关系式:吉布斯函数的热⼒学基本⽅程:对应的麦克斯韦关系式:6、选择T,V为独⽴变量,证明:,证明:选择T,V为独⽴变量,内能U的全微分为(1)⼜已知内能的热⼒学基本⽅程(2)以T,V为⾃变量时,熵S的全微分为(3)将(3)式代⼊(2)式可得(4)将(4)式与(1)式⽐较可得(5)(6)7、简述节流过程制冷,⽓体绝热膨胀制冷,磁致冷却法的原理和优缺点解:节流过程制冷:原理:让被压缩的⽓体通过⼀绝热管,管⼦的中间放置⼀多孔塞或颈缩管。
统计热力学习题集

1、用简介的语言并尽量用图像和公式,回答下列问题:(1)原子和分子系统的什么性质呈现概率分布?请列出至少三条。
(2)分子运动的平均值、方均根值、最可几值有何区别?(3)什么叫系统的宏观态和微观态?它们之间有何联系?(4)当你走在太阳底下,或者摸着热水杯时,你感觉到热量。
上述热量分别从何而来?从微观上解释什么是热量??(5)统计热力学是基于大量分子的无规则热运动,它为何能够应用到固体?它主要基于什么假设?(6)一容器中装有两种气体:H2和O2。
它们在点燃后发生爆炸反应,其温度、压强、浓度都发生变化。
试描述气体从准平衡态到平衡态过程的焓变、熵变和吉布斯自由能变化?(7)从微观的角度说明热量在气体和固体中分别是如何传递的。
当温度升高时,分子热运动加快,它对气体和固体的传热有何影响?(8)什么是麦克斯韦速度分布?什么是波耳兹曼分布?二者有何异同?(9)两种理想气体由隔板分隔在容器的两部分,体积分别为Va和Vb。
当隔板抽走后,气体混合,温度保持不变。
推导气体混合过程的熵变。
(10)如图,温度以不寻常的方式影响橡皮筋的弹性。
加热使橡皮筋收缩,冷却使橡皮筋膨胀。
拉伸橡皮筋会使其释放热量,而拉伸后释放会使其吸收热量,使周围环境变冷。
分析上述过程橡皮筋和环境熵的变化。
(11)什么叫热力学概率?它与熵与有何关系;(12)随着温度升高,固体变为液体和气体,热力学概率发生什么变化?(13)粒子有三种统计分布。
它们的区别有哪些?它们分别在什么条件下适用?(14)什么是统计热力学的斯特林近似,它有何用途?应用条件是什么?(15)什么叫热力学平衡?系统达到热力学平衡的条件是什么?(16) 热量从高温传到低温,污染物从源头向周边扩散,这两种现象有何联系?微观机制是什么?(17)平衡态时气体分子能量按自由度均分的原因是什么?(18)气体分子的宏观可测量-压强和温度与微观统计平均量-碰撞频率和平均自由程有何联系?如何相互影响?(19)从微观的角度说明半导体温差电池如何将电子和晶格的无规则热运动转化为电子的定向运动。
热力学统计物理期末复习试题

一. 填空题1. 设一多元复相系有个ϕ相,每相有个k 组元,组元之间不起化学反响。
此系统平衡时必同时满足条件: T T T αβϕ=== 、 P P P αβϕ=== 、 (,)i i i1,2i k αβϕμμμ====2. 热力学第三定律的两种表述分别叫做: 能特斯定律 和 绝对零度不能到达定律 。
3.假定一系统仅由两个全同玻色粒子组成,粒子可能的量子态有4种。
那么系统可能的微观态数为:10 。
4.均匀系的平衡条件是T T = 且P P = ;平衡稳定性条件是V C > 且()0TP V∂<∂ 。
5玻色分布表为1aeαβεω+=- ;费米分布表为1a eαβεω+=+ ;玻耳兹曼分布表为a e αβεω--= 。
当满足条件 e 1α-<< 时,玻色分布和费米分布均过渡到玻耳兹曼分布。
6 热力学系统的四个状态量V P T S 、、、所满足的麦克斯韦关系为()()TVSP V T ∂∂∂∂=,()()PSV TS P ∂∂∂∂=,()()TPSVPT ∂∂∂∂=-, ()()VSP TSV ∂∂∂∂=-。
7. 玻耳兹曼系统粒子配分函数用1Z 表示,内能统计表达式为1ln Z U Nβ∂=-∂ 广义力统计表达式为1ln Z N Y yβ∂=-∂,熵的统计表达式为11ln (ln )Z S Nk Z ββ∂=-∂ ,自由能的统计表达式为1ln F NkT Z =- 。
8.单元开系的内能、自由能、焓和吉布斯函数所满足的全微分是: , , , 。
9. 均匀开系的克劳修斯方程组包含如下四个微分方程:dU TdS pdV dn μ=-+ ,dH TdS Vdp dn μ=++ , dG SdT Vdp dn μ=-++ ,dF SdT pdV dn μ=--+10. 等温等容条件下系统中发生的自发过程,总是朝着自由能减小方向进行,当自由能减小到极小值时,系统到达平衡态;处在等温等压条件下的系统中发生的自发过程,总是朝着吉布斯函数减小的方向进行,当吉布斯函数减小到极小值时,系统到达平衡态。
统计热力学基础经典习题

选择题1. 下面有关统计热力学的描述,正确的是:( )A. 统计热力学研究的是大量分子的微观平衡体系B. 统计热力学研究的是大量分子的宏观平衡体系C. 统计热力学是热力学的理论基础D. 统计热力学和热力学是相互独立互不相关的两门学科 B2.在研究N、V、U有确定值的粒子体系的统计分布时,令∑ni = N,∑niεi = U,这是因为所研究的体系是:( )A. 体系是封闭的,粒子是独立的 B 体系是孤立的,粒子是相依的C. 体系是孤立的,粒子是独立的D. 体系是封闭的,粒子是相依的 C3.假定某种分子的许可能级是 0、ε、2ε和 3ε,简并度分别为 1、1、2、3 四个这样的分子构成的定域体系,其总能量为3ε时,体系的微观状态数为:( )A. 40B. 24C. 20D. 28 A4. 使用麦克斯韦-波尔兹曼分布定律,要求粒子数N 很大,这是因为在推出该定律时:( ) . 假定粒子是可别的 B. 应用了斯特林近似公式C. 忽略了粒子之间的相互作用D. 应用拉氏待定乘因子法 A5.对于玻尔兹曼分布定律ni =(N/q)·gi·exp( -εi/kT)的说法:(1) n i是第i 能级上的粒子分布数; (2) 随着能级升高,εi 增大,ni 总是减少的; (3) 它只适用于可区分的独立粒子体系; (4) 它适用于任何的大量粒子体系其中正确的是:( )A. (1)(3)B. (3)(4)C. (1)(2)D. (2)(4) C6.对于分布在某一能级εi上的粒子数ni,下列说法中正确是:( )A. n i与能级的简并度无关B. εi 值越小,ni 值就越大C. n i称为一种分布D.任何分布的ni 都可以用波尔兹曼分布公式求出 B7. 15.在已知温度T时,某种粒子的能级εj = 2εi,简并度gi = 2gj,则εj 和εi 上分布的粒子数之比为:( )A. 0.5exp(εj/2kT)B. 2exp(- εj/2kT)C. 0.5exp( -εj/kT)D. 2exp( 2εj/kT) C8. I2的振动特征温度Θv= 307K,相邻两振动能级上粒子数之n(v + 1)/n(v) = 1/2的温度是:( )A. 306 KB. 443 KC. 760 KD. 556 K B9.下面哪组热力学性质的配分函数表达式与体系中粒子的可别与否无关:( )A. S、G、F、CvB. U、H、P、C vC. G、F、H、UD. S、U、H、G B10. 分子运动的振动特征温度Θv 是物质的重要性质之一,下列正确的说法是: ( )A.Θv 越高,表示温度越高B.Θv 越高,表示分子振动能越小C. Θv越高,表示分子处于激发态的百分数越小D. Θv越高,表示分子处于基态的百分数越小 C11.下列几种运动中哪些运动对热力学函数G与A贡献是不同的: ( )A. 转动运动B. 电子运动C. 振动运动D. 平动运动 D12.三维平动子的平动能为εt = 7h2 /(4mV2/3 ),能级的简并度为:( )A. 1B. 3C. 6D. 2 C13.O2 的转动惯量J = 19.3×10 -47 kg·m2 ,则O2 的转动特征温度是:( )A. 10 KB. 5 KC. 2.07 KD. 8 K C14. 对于单原子分子理想气体,当温度升高时,小于分子平均能量的能级上分布的粒子数:( )A. 不变B. 增多C. 减少D. 不能确定 C15.在相同条件下,对于 He 与 Ne 单原子分子,近似认为它们的电子配分函数相同且等于1,则He 与Ne 单原子分子的摩尔熵是:( )A. Sm(He) > Sm (Ne)B. Sm (He) = Sm (Ne)C. Sm (He) < S m(Ne)D. 以上答案均不成立 C二、填空题1.某双原子分子 AB 取振动基态能量为零,在 T 时的振动配分函数为 1.02,则粒子分布在 v = 0 的基态上的分布数 N 0/N 应为 1/1.022.已知CO的转动惯量 I=1.45×10-26 kg·m2,则CO 的转动特征温度为: 2.78K3. 双原子分子以平衡位置为能量零点,其振动的零点能等于 0.5hv4. 双原子分子在温度很低时且选取振动基态能量为零,则振动配分函数值为 15. 2molCO2 的转动能 Ur为 2RT6. NH3分子的平动自由度为转动自由度为振动自由度为 3 ,3 ,67. 300K 时,分布在J=1 转动能级上的分子数是J=0 能级上的3exp(-0.1)倍,则分子转动特征温度是15K8. H2O 分子气体在室温下振动运动时 C v,m 的贡献可以忽略不计。
热力学与统计物理试题

12、下列过程中为可逆过程的是()
①准静态过程②气体绝热自由膨胀过程③无摩擦的准静态过程④热传导过程
13、理想气体在节流过程前后将()
①压强不变②压强降低③温度不变④温度降低
14、气体在经准静态绝热过程后将()
①保持温度不变②保持压强不变③保持焓不变④保持熵不变
15、熵判据是基本的平衡判据,它只适用于()
5、准静态过程6、可逆过程7、绝热过程8、节流过程
9、特性函数10、熵增加原理11、等概率原理12、μ空间
13、态密度14、粒子全同性原理15、最概然速率16、能量均分定理
17、玻耳兹曼分布18、玻色分布19、费米分布20、 空间
五、证明题
1、证明热力学关系式
2、
3、证明热力学关系式
4、证明热力学关系式
26、由N个自由度为1的一维线性谐振子构成的系统,谐振子的一个运动状态在μ空间占据的相体积是()
①h ②h2③hN④h2N
27、由N个自由度为1的一维线性谐振子构成的系统,其系统的一个微观状态在 空间占据的相体积是()
①h ②h2③hN④h2N
28、由两个粒子构成的费米系统,单粒子状态数为3个,则系统的微观状态数为( )
13、具有完全相同属性的同类粒子是近独立粒子。()
14、玻色系统的粒子是不可分辨的,且每一个体量子态最多能容纳一个粒子。()
15、定域系统的粒子可以分辨,且遵从玻耳兹曼分布。()
16、热量是热现象中特有的宏观量,它没有相应的微观量。()
17、玻尔兹曼关系S=KlnΩ只适用于平衡态。()
18、T=0k时,金属中电子气体将产生巨大的简并压,它是泡利不相容原理及电子气的高密度所致。()
03-统计热力学基础

三、统计热力学基础(313题)一、选择题 ( 共38题 )1. 1 分 (1301)玻耳兹曼熵定理一般不适用于: ( )(A) 独立子体系 (B) 理想气体 (C) 量子气体 (D) 单个粒子2. 1 分 (1302)非理想气体是: ( )(A) 独立的全同粒子体系 (B) 相依的粒子体系(C) 独立的可别粒子体系 (D) 定域的可别粒子体系3. 2 分 (1304)下列各体系中属于独立粒子体系的是: ( )(A) 绝对零度的晶体 (B) 理想液体混合物(C) 纯气体 (D) 理想气体的混合物4. 1 分 (1362)玻耳兹曼分布 _______ 。
(A) 是最概然分布,但不是平衡分布(B) 是平衡分布,但不是最概然分布(C) 即是最概然分布,又是平衡分布(D) 不是最概然分布,也不是平衡分布5. 1 分 (1363)对于近独立非定位体系,在经典极限下能级分布 D 所拥有的微观状态数t 为:( )(A) ∏=i i i n !!i N N N t g (B) ∏=i i i n !!iN g N t n (C) ∏=ii n !!iN N N t g (D) ∏=i i n !!i N g N t n 6. 1 分 (1364)对于服从玻耳兹曼分布定律的体系,其分布规律为: ( )(A) 能量最低的单个量子状态上的粒子数最多(B) 第一激发能级上的粒子数最多(C) 视体系的具体条件而定(D) 以上三答案都不对7. 2 分 (1369)近独立定域粒子体系和经典极限下的非定域粒子体系的 ( )(A) 最概然分布公式不同(B) 最概然分布公式相同(C) 某一能量分布类型的微观状态数相同(D) 以粒子配分函数表示的热力学函数的统计表达示相同8. 2 分 (1370)如果我们把同一种分子分布在二个不同能级ε与ε'上的n 与n ' 个分子看成是“不同种”的分子 A 与 A',则这“两种分子”将可按 A' A 进行转化而达到平衡。
(完整版)热力学统计物理练习的题目及答案详解

热力学·统计物理练习题一、填空题. 本大题70个小题,把答案写在横线上。
1.当热力学系统与外界无相互作用时,经过足够长时间,其宏观性质 时间改变,其所处的 为热力学平衡态。
2. 系统,经过足够长时间,其 不随时间改变,其所处的状态为热力学平衡态。
3.均匀物质系统的热力学平衡态可由力学参量、电磁参量、几何参量、化学参量等四类参量描述,但有 是独立的。
4.对于非孤立系统,当其与外界作为一个整体处于热力学平衡态时,此时的系统所处的状态是 。
5.欲描述非平衡系统的状态,需要将系统分成若干个小部分,使每小部分具有 小,但微观上又包含大量粒子,则每小部分都可视为 。
6.描述热力学系统平衡态的独立参量和 之间关系的方程式叫物态方程,其一般表达式为 。
7.均匀物质系统的独立参量有 个,而过程方程独立参量只有 个。
8.定压膨胀系数的意义是在 不变的条件下系统体积随 的相对变化。
9.定容压力系数的意义是在 不变条件下系统的压强随 的相对变化。
10.等温压缩系数的意义是在 不变条件下系统的体积随 的相对变化。
11.循环关系的表达式为 。
12.在无摩擦准静态过程中存在着几种不同形式的功,则系统对外界作的功∑-=δi i dy Y W ,其中i y 是 ,i Y 是与i y 相应的 。
13.W Q U U A B +=-,其中W 是 作的功。
14.⎰=+=0W Q dU ,-W 是 作的功,且-W 等于 。
15.⎰δ+δ2L 11W Q ⎰δ+δ2L 12W Q (1、2均为热力学平衡态,L 1、L 2为准静态过程)。
16.第一类永动机是指 的永动机。
17.内能是 函数,内能的改变决定于 和 。
18.焓是 函数,在等压过程中,焓的变化等于 的热量。
19.理想气体内能 温度有关,而与体积 。
20.理想气体的焓 温度的函数与 无关。
21.热力学第二定律指明了一切与热现象有关的实际过程进行的 。
22.为了判断不可逆过程自发进行的方向只须研究 和 的相互关系就够了。
热力学统计试卷题库

【1】试求理想气体的体胀系数,压强系数和等温压缩系数。
【2】证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得【3】 满足n pV C =的过程称为多方过程,其中常数名为多方指数。
试证明:【4】试证明:理想气体在某一过程中的热容量如果是常数,该过程一定是多方过程,【5】假设理想气体的p V C C γ和之比是温度的函数,试求在准静态绝热过程中T V 和的关系,【6】利用上题的结果证明:当为温度的函数时,理想气体卡诺循环的效率 【7】试根据热力学第二定律证明两条绝热线不能相交。
【8】 温度为0C 的1kg 水与温度为100C 的恒温热源接触后,水温达到100C 。
试分别【9】均匀杆的温度一端为另一端为计算到均匀温度()1212T T +后的熵增。
【10】 物体的初温,高于热源的温度,有一热机在此物体与热源之间工作,直到将【11】有两个相同的物体,热容量为常数,初始温度同为。
今令一制冷机在这两个物体【12】1mol 理想气体,在27C 的恒温下体积发生膨胀,其压强由20准静态地降到1,【13】 在25C 下,压强在0至1000之间,测得水的体积为 36231(18.0660.715100.04610)cm mol V p p ---=-⨯+⨯⋅【14】使弹性体在准静态等温过程中长度由压缩为2L , 【15】 在0C 和1下,空气的密度为31.29kg m -⋅,空气的定压比热容-11996J kg K , 1.41p C γ-=⋅⋅=。
今有327m 的空气,【18】设一物质的物态方程具有以下形式(),p f V T =试证明其内能与体积无关【19】 求证: ()0;HS a p ⎛⎫∂< ⎪∂⎝⎭()0.U Sb V ∂⎛⎫> ⎪∂⎝⎭【20】试证明在相同的压强降落下,气体在准静态绝热膨胀中的温度降落大于在节流过程【21】证明范氏气体的定容热容量只是温度T 的函数,与比体积无关. 【22】试讨论以平衡辐射为工作物质的卡诺循环,计算其效率.【23】已知顺磁物质遵从居里定律:().CM H T=居里定律若维物质的温度不变,使磁场【24】 温度维持为25C ,压强在0至1000n p 之间,测得水的实验数据如下: 【25】 试证明范氏气体的摩尔定压热容量与摩尔定容热容量之差为【26】试将理想弹性体等温可逆地由拉长至02L 时吸收的热量和内能变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二.统计热力学部分
1.热力学函数与配分函数的关系对于定位体系和非定位体系都相同的是:
a. G、F、S
b. U、H、S
c. U、H、C v
d. G、H、C v
2. NH3分子的平动、转动、振动自由度分别为
a. 3 、3 、6
b. 3 、2 、7
c. 3 、2、6
d. 3 、3 、7
3.一个体积为V、质量为m的离域子体系其最低平动能级和其相邻能级间隔为
4.三维平动子基态能级的简并度为;第一激发态能级的简并度为;
平动能为14h2 /8mV2/3能级的简并度为;
5 关于配分函数,下列那一点是不正确的
a.粒子的配分函数是一个粒子所有可能状态的玻兹曼因子之和;
b.并不是所有配分函数都无量纲;
c.粒子的配分函只有在独立子体系中才有意义;
d.只有平动配分函数才与体系的压力有关。
6在定位体系与非定位体系,热力学函数有区别的是。
7 CO 和N2质量m相同,转动惯量相同,但其摩尔转动熵不同,原因是;
分子的摩尔转动熵较大。
8.双原子分子Cl2的振动特征温度θv = 801.3K, 不考虑电子运动和核运动的贡献,
(1)求Cl2在323K时的C v,m ; (2)当Cl2分子的平动、转动和振动运动全部展开时,其C v,m为何值;(3)说明以上两值产生差别的原因。
18.非理想气体是:
a.独立的不可别粒子体系;
b.相依粒子体系;
c.独立的可别粒子体系;
d.定域的可别粒子体系
19.某体系有1mol NO分子,每个分子有两种可能的排列方式,即NO 和ON,也可将体系视为NO 和ON 的混合物,在0K下,该体系的熵值为
a. 0
b. k ln 2
c R ln 2 d.. 2 k ln 2
20. 在298.15K, p0下,摩尔平动熵最大的气体为
a. H2
b. CH4
c NO d.. CO2
21 对于宏观热力学体系,能级愈高,此能级量子态所具有的分子数;体系温度愈高,高能级所具有的分子数
22.设双原子分子AB为理想气体,计算在1000K时处在v = 2, J = 5 和v = 1, J = 2能级的分子数的比。
已知,θv = 3700K;θr =12.1K.
23.CH4分子的平动自由度为;转动自由度为;振动自由度为
24.分子配分函数q的物理含义是对
进行加和。
当体系温度T→0K时,体系的中分子(N个)处于状态。
当体系温度T→+∞时,体系的分子的分配为。
a. 晶体属于定位体系;
b. 气体属于非定位体系
c. 理想气体、绝对零度的晶体属于独立子体系;
d. 实际气体、液体属于相依粒子体系。
26.关于宏观状态和微观状态的描述不正确的是
a. 宏观状态由体系宏观状态来描述;
b. 微观状态指某一瞬间的状态;
c. 微观状态在经典力学中用相空间来描述,在量子力学中用波函数来描述;
d. 微观状态数不是状态函数。
27.关于分布的描述不正确的是
a.指N个粒子在许可能级上的一种分配;
b. 指N个粒子在量子态上的一种分配;
c. 定位体系和非定位体系的分布数相同;d, 描述一种分布需要一套分布数。
28.关于玻兹曼分布的描述不正确的是
a. 玻兹曼分布是微观状态数最多的一种分布;
b. 玻兹曼分布是最概然分布;
c. 玻兹曼分布是宏观平衡分布;d, 定位体系和非定位体系的玻兹曼分布表达式不同。
29.关于玻配分函数q的描述不正确的是
a.配分函数q是一个粒子的有效状态和;
b. 配分函数q 无量纲,由配分函数可直接计算体系的宏观性质
c. 体系一定时配分函数q有定植(q是状态函数);
d.粒子配分函数是各种运动形式配分函数的加和。
30.下述说法不正确的是
a.玻兹曼统计只适用于独立子体系;
b.费米-狄拉克统计适用于由电子、质子、中子以及由奇数个粒子构成的体系;
c.玻色-爱因斯坦统计适用于由光子以及由偶数个粒子构成的体系;
d.经典统计和量子统计的最概然分布表达式相同。
.
填充题:
31.I2分子的振动能级间隔为0.43×10-20 j. 在298K时某一能级与其次能级上分子数的比值N i+1/N i = .
32. 1mol理想气体,在298K时,已知其分子的配分函数为1.6,假定ε0 = 0,g0 = 1, 则处于基态的分子数为
33.设有一极大数目的三维平动子组成的体系,运动于边长为a的立方容器中,体系体积、粒子质量和温度有如下关系,h2/8ma2 = 0.100kT, 则处于ε1 = 9h2/4ma2和ε2 = 27h2/8ma2上粒子数目的比值是34.300K时,当分布在J = 1转动能级上的分子数是J = 0能级上的3e倍时,其分子的转动特征温度为35.某分子转动光谱中相邻两谱线的波数间隔为20.48cm-1, 则该分子的转动惯量为
36.当热力学体系的熵函数S增加0.418 j . K-1时,则体系的微观状态数增加⊿Ω/Ω为
37.300K时,有1mol氪(Kr)气和有1mol氦(He)气, 处于相同的体积V中,若使两种气体具有相同的熵值,则氦(He)的温度应为
38.NO晶体是由其二聚物N2O2分子组成,该分子在晶体中有两种随机取向,则0K 1mol NO晶体的残余熵为
39.有四种分子,H2(M=2,θr =87.5K,θv = 5976K ); HBr(M=81,θr =12.2K,θv = 3682K ); N2(M=28,
S最大?θr =2.89K,θv = 3353K ); H2(M=71,θr =0.35K,θv = 801K ),在同温同压下,那种气体的t
m S最大?那种分子的振动频率最小?
那种气体的r
m。