位似教学设计

合集下载

湘教版数学九年级上册3.6《位似》教学设计2

湘教版数学九年级上册3.6《位似》教学设计2

湘教版数学九年级上册3.6《位似》教学设计2一. 教材分析湘教版数学九年级上册3.6《位似》是学生在学习了相似三角形的基础上,进一步研究图形的位似性质。

本节课的主要内容是位似的定义、位似变换的性质及位似图形的应用。

教材通过丰富的图片和实例,引导学生探索位似的性质,培养学生的空间想象能力和抽象思维能力。

二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的知识,能够理解并运用相似三角形的性质。

但是,对于位似这一概念,学生可能较为陌生,需要通过实例和活动,让学生感受和理解位似的含义。

同时,学生需要进一步培养空间想象能力和抽象思维能力。

三. 教学目标1.理解位似的定义,掌握位似变换的性质。

2.能够识别和判断位似图形。

3.培养学生的空间想象能力和抽象思维能力。

四. 教学重难点1.位似的定义和性质。

2.位似图形的识别和判断。

五. 教学方法1.情境教学法:通过丰富的图片和实例,引导学生感受和理解位似的含义。

2.启发式教学法:通过问题引导,让学生主动探索位似性质,培养学生的抽象思维能力。

3.合作学习法:小组讨论和分享,提高学生交流和合作能力。

六. 教学准备1.图片和实例:收集相关的位似图形图片和实例。

2.教学PPT:制作教学PPT,展示位似图形的性质和应用。

3.练习题:准备相应的练习题,巩固学生对位似知识的理解。

七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的位似图形,如相似的建筑物、相似的树叶等,引导学生关注位似现象。

提问:你们观察到了什么?这些图形有什么共同的特点?2.呈现(10分钟)介绍位似的定义和性质。

通过PPT展示位似图形的性质,如相似比、对应点、对应线段等。

同时,给出位似变换的性质,如保持角度不变、保持比例不变等。

3.操练(15分钟)学生分组讨论,判断给出的图形是否为位似图形。

每组选出一个图形,进行分析判断,并给出理由。

最后,各组分享自己的结论,全班共同讨论,得出正确答案。

4.巩固(10分钟)学生独立完成练习题,巩固对位似知识的理解。

初中数学位似教案

初中数学位似教案

初中数学位似教案教学目标:1. 理解位似的定义,掌握位似图形的性质。

2. 能够识别和判断两个图形是否位似。

3. 能够运用位似的概念解决实际问题。

教学重点:1. 位似的定义和性质。

2. 判断两个图形是否位似的方法。

教学难点:1. 位似的概念的理解和运用。

教学准备:1. 教学课件或黑板。

2. 图形示例。

教学过程:一、导入(5分钟)1. 引入位似的概念,让学生回顾已学的相似和全等图形的概念。

2. 提问:位似和相似、全等有什么区别和联系?二、新课讲解(15分钟)1. 讲解位似的定义:位似是指在平面上,两个图形形状相同,但大小不一定相同,对应点之间的连线不一定相交的一种关系。

2. 讲解位似图形的性质:a. 位似图形的大小不一定相同,但形状相同。

b. 位似图形的对应点之间的连线不一定相交,但一定平行。

c. 位似图形对应边的比例相等。

3. 通过示例图形,让学生判断两个图形是否位似,并解释原因。

三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固位似的概念和性质。

2. 讲解练习题的答案,并解释解题思路。

四、应用拓展(15分钟)1. 让学生运用位似的概念解决实际问题,如地图的比例尺、设计图案等。

2. 分组讨论,让学生分享自己的应用实例,并解释如何运用位似的概念。

五、总结(5分钟)1. 回顾本节课所学的内容,让学生总结位似的定义和性质。

2. 提问:位似在实际生活中有什么应用?教学反思:本节课通过讲解位似的定义和性质,让学生掌握位似图形的特征和判断方法。

通过课堂练习和应用拓展,让学生巩固所学知识,并能够运用位似的概念解决实际问题。

在教学过程中,要注意引导学生积极参与,提问和讨论,提高学生的学习兴趣和思维能力。

同时,也要注重练习题的设计和讲解,让学生更好地理解和运用位似的概念。

人教版九年级数学下册:27.3《位似》教案1

人教版九年级数学下册:27.3《位似》教案1

人教版九年级数学下册:27.3《位似》教案1一. 教材分析《人教版九年级数学下册》第27.3节“位似”是学生在学习了相似三角形的基础上,进一步研究位似图形的性质。

本节内容通过具体的实例,让学生理解位似的定义,掌握位似图形的性质,并能够运用位似的概念解决实际问题。

教材通过丰富的图片和实例,激发学生的学习兴趣,培养学生观察、思考、归纳的能力。

二. 学情分析九年级的学生已经学习了相似三角形的性质,对图形的相似性有一定的认识。

但在实际应用中,学生可能对位似的概念理解不够深入,难以运用位似知识解决生活中的问题。

因此,在教学过程中,教师需要关注学生的认知水平,通过实例分析,引导学生深入理解位似的概念,提高学生的实际应用能力。

三. 教学目标1.了解位似的定义,掌握位似图形的性质。

2.能够识别生活中的位似图形,并运用位似知识解决实际问题。

3.培养学生的观察能力、思考能力和归纳能力。

四. 教学重难点1.重点:位似的定义,位似图形的性质。

2.难点:运用位似知识解决实际问题。

五. 教学方法1.情境教学法:通过生活中的实例,引导学生观察、思考,激发学生的学习兴趣。

2.启发式教学法:教师提问,学生回答,引导学生主动探究位似的概念。

3.小组合作学习:学生分组讨论,共同完成实践任务,提高学生的合作能力。

六. 教学准备1.准备相关的图片和实例,用于教学演示。

2.准备练习题,用于巩固所学知识。

3.准备黑板,用于板书关键知识点。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的位似图形,如放大或缩小的图片、相似的建筑等。

引导学生观察这些图形,并提出问题:“你们认为这些图形有什么共同的特点?”让学生思考并回答,从而引出位似的概念。

2.呈现(10分钟)介绍位似的定义,并用具体的实例进行分析。

讲解位似图形的性质,如对应边的比例关系、对应角的相等性等。

让学生通过观察实例,理解并掌握位似的概念。

3.操练(10分钟)学生分组讨论,找出生活中的位似图形,并运用位似知识进行分析。

位似的教案设计范文

位似的教案设计范文

位似的教案设计范文第一章:位似概念的引入1.1 教学目标:了解位似的定义和基本性质,能够识别和运用位似图形。

1.2 教学内容:1.2.1 位似图形的定义:两个图形如果可以通过一个缩放因子(大于1或小于1)和相似的变换(平移、旋转)相互转换,这两个图形就是位似的。

1.2.2 位似图形的性质:位似的图形具有相似的形状和大小,但位置和方向可能不同。

1.3 教学方法:采用讲授法和互动讨论法,通过具体的图形例子引导学生理解和掌握位似的概念。

1.4 教学步骤:1.4.1 引入位似的概念:通过展示两个相似的图形,让学生观察它们之间的关系。

1.4.2 讲解位似图形的定义:详细解释位似图形的定义和性质。

1.4.3 互动讨论:学生分组讨论,找出更多的位似图形例子,并解释它们之间的位似关系。

1.4.4 练习题:学生完成一些相关的练习题,巩固对位似概念的理解。

第二章:位似图形的画法2.1 教学目标:学会如何画出位似图形,能够运用位似性质进行图形的变换。

2.2 教学内容:2.2.1 位似图形的画法:通过缩放和变换的方法画出位似图形。

2.2.2 位似变换的性质:位似变换保持图形的形状和大小,但改变位置和方向。

2.3 教学方法:采用讲解法和实践操作法,通过具体的例子引导学生学会画出位似图形。

2.4 教学步骤:2.4.1 讲解位似图形的画法:通过讲解和示范,引导学生学会如何画出位似图形。

2.4.2 实践操作:学生自己尝试画出一些位似图形,并运用位似性质进行图形的变换。

2.4.3 互动讨论:学生分组讨论,分享自己的作品和方法,互相学习和交流。

2.4.4 练习题:学生完成一些相关的练习题,巩固对位似图形的画法。

第三章:位似图形的应用3.1 教学目标:能够运用位似性质解决实际问题,提高空间想象能力和解决问题的能力。

3.2 教学内容:3.2.1 位似图形的应用:通过位似性质解决实际问题,如放大或缩小图形,寻找相似图形等。

3.2.2 位似图形的意义:位似图形在实际中的应用,如设计、建筑、艺术等领域。

九年级数学上册《位似》教案、教学设计

九年级数学上册《位似》教案、教学设计
(3)位似中心:位似变换的固定点,图形在位似变换过程中,位似中心保持不变。
(4)性质:位似变换具有以下性质:①图形的形状不变;②位似比相同;③位似中心不变;④对应点连线的交点是位似中心。
(三)学生小组讨论
1.教学活动:将学生分成小组,针对以下问题进行讨论:
(1)位似变换在实际生活中的应用;
(2)如何判断两个图形之间是否存在位似关系;
(3)应用题:运用位似变换解决实际问题,如地图的放大与缩小、图形的拼接等。
2.学生练习:学生在课堂上独立完成练习题,教师对学生的解答进行点评和指导。
(五)总结归纳
1.教学内容:对本节课学习的位似变换的概念、性质、应用等进行总结归纳。
2.教学方法:教师引导学生从以下几个方面进行总结:
(1)位似变换的定义及性质;
(2)位似比、位似中心的概念;
(3)位似变换在实际问题中的应用;
(4)位似变换与已学过的几何变换的联系与区别。
3.学生反馈:教师邀请学生分享学习心得,了解学生对位似变换的掌握程度,为后续教学提供依据。
五、作业布置
为了巩固学生对位似变换知识点的掌握,提高学生的应用能力和解决问题的能力,特布置以下作业:
(2)运用现代信息技术,如多媒体、网络资源等,辅助教学,直观展示位似变换的过程,降低学生的理解难度。
(3)创设生活情境,将位似变换与实际问题相结合,培养学生的应用意识和解决实际问题的能力。
2.教学过程设计:
(1)导入:通过生活中的实例,如放大镜、地图等,引出位似变换的概念,激发学生的学习兴趣。
(2)探究:组织学生分组讨论,探索位似变换的性质,引导学生发现位似变换的规律。
(二)讲授新知
1.教学内容:位似图形的定义、性质、位似比、位似中心等基本概念。

人教版数学九年级下册27.3《位似》授课教学设计

人教版数学九年级下册27.3《位似》授课教学设计
此外,学生在解决实际问题时,可能缺乏将理论知识与生活实际相结合的能力。教师应通过生活实例的引入,帮助学生理解位似图形在实际生活中的应用,提高学生学以致用的能力。总之,在学情分析的基础上,教师应针对学生的实际情况,设计合理的教学策略,确保教学目标的顺利实现。
三、教学重难点和教学设想
(一)教学重点
1.位似图形的定义及其性质。
在每个环节结束后,引导学生进行小结,总结所学知识。同时,鼓励学生反思学习过程中的困惑和收获,提高学生的自我评价能力。
6.课后作业,拓展思维
布置适量的课后作业,包括基础题、提高题和拓展题,以满足不同层次学生的需求。让学生在完成作业的过程中,进一步巩固知识,拓展思维。
7.教学评价,关注成长
采用多元化评价方式,如课堂表现、作业完成情况、小组讨论等,全面评价学生的学习效果。关注学生的成长过程,鼓励学生积极参与,提高学习积极性。
5.课堂练习:设计有针对性的练习题,巩固学生对位似图形性质的理解,提高学生的解题能力。
6.小结与反思:引导学生总结本节课所学内容,分享学习心得,提高学生的自我评价能力。
7.课后作业:布置适量的课后作业,巩固所学知识,拓展学生的思维。
8.教学评价:通过课堂表现、作业完成情况、小组讨论等多种方式,全面评价学生的学习效果。
2.拓展提高题:挑选两道拓展提高题,旨在培养学生的空间想象能力和推理能力。
要求:学生尝试用不同的方法解题,比较各种方法的优缺点,提高解题效率。
3.实践应用题:结合生活中的实例,设计一道位似图形的应用题,让学生运用所学知识解决实际问题。
要求:学生在解题过程中,注意将理论知识与生活实际相结合,提高学以致用的能力。
二、学情分析
九年级下册的学生已经具备了一定的几何基础,掌握了相似三角形的相关知识,为本章节位似图形的学习打下了基础。在此基础上,学生对位似图形的概念、性质和判定方法的理解较为容易,但在实际应用中可能存在一定的困难。此外,学生在空间想象能力、推理能力和合作学习能力方面发展不均衡,需要教师在教学过程中关注个体差异,因材施教。

《位似》教案 (省一等奖) 1

《位似》教案 (省一等奖) 1
五、归纳小结〔学生归纳,老师点评〕
本节课应掌握:
1.圆周角的概念;
2.圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都相等这条弧所
对的圆心角的一半;
3.半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径.
4.应用圆周角的定理及其推导解决一些具体问题.
六、布置作业
1.教材 P95 综合运用 9、10、
呢?分别画出这时得到的图形.
3.如图,△OAB 和△OCD 是位似图形, AB 与 CD 平行吗?为什么? 答:AB∥CD ∵△OAB 与△ODC 是位似图形 ∴△OAB∽△OCD ∴∠A=∠C ∴AB∥CD
活动四.畅所欲言,收获成果
1.作位似图形时,先确定位似中心, 再根据相似的性质,把对应线段放大 或缩小.
求证: a = b = c =2R. sin A sin B sin C
分析:要证明 a = b = c =2R,只要证明 a =2R, b =2R, c =2R,
sin A sin B sin C
sin A
sin B
sin C
即 sinA= a ,sinB= b ,sinC= c ,因此,十清楚显要在直角三
学生谈收获体会.
2.位似中心的位置有以下几种情 况:(以三角形为例)
ห้องสมุดไป่ตู้
(1)三角形的外部; (2)三角形的内部; (3)三角形的顶点上; (4)三角形的边上;
D A
B C
A
加强对概念的理 解
加强对学习内容 的理解,从多角 度引导学生学习 数学.
3.位似的作用:
B
C
将一个图形放大与缩小.
活动五.布置作业,书写收获
里地使学生逐步达教学目标的要求:闭上眼睛想象展开或折叠的过程,促进学生建立表象, 帮助学生理解概念,开展空间观念。

教学设计3:27.3 位似(1)

教学设计3:27.3 位似(1)

27. 3 位似(1)一、教学目标1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.二、重点、难点1.重点:位似图形的有关概念、性质与作图.2.难点:利用位似将一个图形放大或缩小.三、课堂引入1.观察:在日常生活中,我们经常见到下面所给的这样一类相似的图形,它们有什么特征?2.归纳总结:请同学们阅读课本47页,掌握什么叫位似图形、位似中心、位似比?如果两个相似图形的每组对应点所在的直线交于一点,那么这样的两个图形叫做位似图形....,这个交点叫做位似中心...。

....,这时两个相似图形的相似比又叫做它们的位似比3.问:已知:如图,多边形ABCDE,把它放大为原来的2倍,即新图与原图的相似比为2.应该怎样做?你能说出画相似图形的一种方法吗?五、例题讲解例1如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请指出其位似中心.【解析】:位似图形是特殊位置上的相似图形,因此判断两个图形是否为位似图形,首先要看这两个图形是否相似,再看对应点的连线是否都经过同一点,这两个方面缺一不可.【答案】图(1)、(2)和(4)三个图形中的两个图形都是位似图形,位似中心分别是图(1)中的点A ,图(2)中的点P 和图(4)中的点O .(图(3)中的点O 不是对应点连线的交点,故图(3)不是位似图形,图(5)也不是位似图形)例2把图1中的四边形ABCD 缩小到原来的21. 【解析】:把原图形缩小到原来的21,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2 . 作法一:(1)在四边形ABCD 外任取一点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 上取点A′、B′、C′、D′,使得21OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图2.问:此题目还可以如何画出图形?作法二:(1)在四边形ABCD 外任取一点O ;(2)过点O 分别作射线OA , OB , OC ,OD ;(3)分别在射线OA , OB , OC , OD 的反向延长线上取点A′、B′、C′、D′,使得21OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图3. 作法三:(1)在四边形ABCD 内任取一点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 上取点A′、B′、C′、D′,使得21OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图4.(当点O在四边形ABCD的一条边上或在四边形ABCD的一个顶点上时,作法略——可以让学生自己完成)六、课堂练习1.教材P48.1、22.画出所给图中的位似中心.1.把右图中的五边形ABCDE扩大到原来的2倍.七、课后作业1.教材P51.1、2、42.已知:如图,△ABC,画△A′B′C′,使△A′B′C′∽△ABC,且使相似比为1.5,要求(1)位似中心在△ABC的外部;(2)位似中心在△ABC的内部;(3)位似中心在△ABC的一条边上;(4)以点C为位似中心.教学反思:。

湘教版数学九年级上册3.6《位似》教学设计

湘教版数学九年级上册3.6《位似》教学设计

湘教版数学九年级上册3.6《位似》教学设计一. 教材分析湘教版数学九年级上册3.6《位似》是学生在学习了相似三角形之后的一个进一步探究。

本节内容主要通过引入位似的概念,让学生了解位似图形的性质,以及如何利用位似进行图形的变换。

教材通过丰富的例题和练习,帮助学生掌握位似的概念和应用。

二. 学情分析学生在学习本节内容之前,已经掌握了相似三角形的知识,他们对图形的变换有一定的了解。

但学生在位似图形的理解和运用上可能还存在一定的困难,因此,在教学过程中,需要教师耐心引导,通过实例让学生深入理解位似的概念。

三. 教学目标1.了解位似的概念,掌握位似图形的性质。

2.学会利用位似进行图形的变换。

3.培养学生的观察能力、思考能力和解决问题的能力。

四. 教学重难点1.重点:位似的概念,位似图形的性质。

2.难点:位似的应用,如何利用位似进行图形的变换。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等,引导学生通过观察、思考、讨论、实践等方式,掌握位似的概念和应用。

六. 教学准备1.准备相关的教学案例和图片。

2.准备课件,进行动画演示。

3.准备练习题,进行巩固和拓展。

七. 教学过程1.导入(5分钟)通过一个生活中的实例,如照相机拍照时,图片放大或缩小的现象,引导学生思考图形的变换。

2.呈现(10分钟)呈现位似的定义,引导学生观察、思考,理解位似的概念。

通过动画演示,让学生直观地感受位似的变化。

3.操练(10分钟)让学生通过实际的例子,运用位似的概念进行图形的变换。

教师进行个别指导,帮助学生解决问题。

4.巩固(10分钟)通过练习题,让学生巩固位似的概念和应用。

教师进行讲解,解答学生的疑问。

5.拓展(10分钟)引导学生思考位似在实际生活中的应用,如设计图纸、建筑模型等。

让学生通过小组合作,探讨位似的更多应用。

6.小结(5分钟)对本节课的内容进行总结,强调位似的概念和性质,以及位似的应用。

7.家庭作业(5分钟)布置相关的练习题,让学生回家后巩固所学知识。

人教版数学九年级下册27.3《位似(第一课时)》表格优秀教学案例

人教版数学九年级下册27.3《位似(第一课时)》表格优秀教学案例
(三)学生小组讨论
1.分组讨论:我将学生分成若干小组,每个小组选择一个具体实例,分析其中的位似关系,并总结位似的性质。
2.小组汇报:每个小组选代表进行汇报,分享自己的发现和总结。其他小组成员和教师进行点评和补充。
(四)总结归纳
1.位似的定义和性质:我引导学生总结位似的定义和性质,使学生能够系统地掌握位似的概念。
三、教学策略
(一)情景创设
1.以生活实例引入:我选择了几个现实生活中常见的位似现象,如相似的建筑、动物的生长变化等,通过展示图片或视频,让学生直观地感受到位似的存在。这样的引入方式能够激发学生的兴趣,使他们更加关注本节课的内容。
2.几何图形展示:在课堂上,我展示了多种几何图形,让学生观察并分析其中的位似关系。通过观察和分析,学生能够发现位似的性质,并逐步理解位似的概念。
2.培养学生运用位似的概念解决实际问题的能力,提高学生的几何思维能力。
3.通过对位似概念的学习,使学生能够灵活运用位似性质,解决一些相关的几何问题。
为了实现这一目标,我在教学中采用了多种教学手段。首先,我通过生活实例引入位似的概念,让学生感受到位似在生活中的存在。然后,我通过几何图形的展示,引导学生发现位似的性质,并通过小组讨论的方式,让学生共同探讨位似的特征。在讲解位似图形的画法时,我以具体例子为例,引导学生动手操作,加深对位似概念的理解。
(四)反思与评价
1.学生自我反思:在课堂结束后,我要求学生进行自我反思,总结自己在课堂上的学习情况和收获。通过自我反思,学生能够更好地了解自己的学习状态,发现自己的不足之处,从而调整学习策略,提高学习效果。
2.教师评价:在课后,我对学生的学习情况进行评价。我注重评价学生的知识掌握程度、思维能力、团队合作能力等多个方面。通过教师的评价,学生能够了解自己的学习成果和不足之处,从而激发学生的学习动力,提高他们的学习效果。

位似教案(教学设计)

位似教案(教学设计)

位似【教学目标】知识与技能:1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质。

2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小。

3.会用图形的坐标的变化来表示图形的位似变换,并掌握点的坐标变化的规律。

4.了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换。

过程与方法:通过设置问题情境,建立数学概念,解释、应用与拓展,引导学生观察,验证,推理,交流,探究位似变换和图形缩放及在直角坐标系中位似变换中对应点的坐标变化规律。

让学生了解相似与轴对称、平移、旋转都是图形之间的基本变换,总结四种变换的异同。

情感、态度与价值观:发展学生的探究能力,养成学生动脑动手的学习习惯,增强数学应用意识与能力。

【教学重点】1.位似图形的有关概念、性质与作图。

2.用图形的坐标的变化来表示图形的位似变换。

【教学难点】利用位似将一个图形放大或缩小及其点的坐标变化的规律。

【教学流程】一、情境引入观察:在日常生活中,照相机把人物的影像缩小到底片上,它们有什么特征?引出课题:这节课来探究这类问题。

二、观察探究(一)概念图中有相似多边形吗?如果有,这种相似有什么特征?每幅图中的两个多边形不仅相似,而且对应顶点的连线相交于一点,像这样的两个图形叫做位似图形,这个点叫做位似中心。

这时的相似比又叫位似比。

追问:位似图形有什么性质呢?(二)利用位似可以将一个图形放大或缩小如何把图1中的四边形ABCD缩小到原来的。

分析:把原图形缩小到原来的,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2。

作法一:①在四边形ABCD 外任取一点O ;②过点O 分别作射线OA ,OB ,OC ,OD ;③分别在射线OA ,OB ,OC ,OD 上取点A ′、B ′、C ′、D ′使得;④顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到四边形A ′B ′C ′D ′,如图2。

人教版数学九年级下册27.3《位似》教学设计(二)

人教版数学九年级下册27.3《位似》教学设计(二)

人教版数学九年级下册27.3《位似》教学设计(二)一. 教材分析人教版数学九年级下册27.3《位似》是学生在学习了相似图形、相似比等概念的基础上进一步学习的知识。

本节内容主要介绍位似的定义、性质和运用。

通过本节课的学习,学生能够理解位似的含义,掌握位似的性质,并能够运用位似解决一些实际问题。

二. 学情分析九年级的学生已经具备了一定的几何基础,对相似图形、相似比等概念有一定的了解。

但在学习本节课时,学生可能对位似的理解存在一定的困难,因此需要通过大量的实例和练习来帮助学生理解和掌握位似。

三. 教学目标1.知识与技能:理解位似的定义,掌握位似的性质,能够运用位似解决一些实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和几何思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和问题解决能力。

四. 教学重难点1.重点:位似的定义和性质。

2.难点:位似在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例和几何模型,引导学生观察、操作、思考,激发学生的学习兴趣。

2.合作学习法:引导学生分组讨论和交流,培养学生的团队合作意识和几何思维能力。

3.问题解决法:通过解决实际问题,引导学生运用位似知识,提高学生的问题解决能力。

六. 教学准备1.教学课件:制作课件,包括位似的定义、性质和实例等。

2.几何模型:准备一些几何模型,如正方形、矩形等,用于引导学生观察和操作。

3.实际问题:准备一些实际问题,如建筑设计、地图绘制等,用于引导学生运用位似知识。

七. 教学过程1.导入(5分钟)利用课件展示一些实际问题,如建筑设计、地图绘制等,引导学生思考这些问题与位似的关系。

2.呈现(10分钟)利用课件呈现位似的定义和性质,引导学生观察和理解。

同时,配合几何模型,让学生直观地感受位似的特点。

3.操练(10分钟)分组讨论和交流,让学生通过操作几何模型,探索位似的性质。

27.3 第1课时 位似 教案 九年级数学下册(人教版)

27.3 第1课时 位似 教案 九年级数学下册(人教版)

27.3 第1课时位似教案九年级数学下册(人教版)一、教学目标1.了解图形的位似概念,及其和相似图形的区别,会判断简单的位似图形和位似中心。

2.理解位似图形的性质,掌握位似图形的画法。

3.能利用位似将一个图形放大或缩小,解决一些简单的实际问题。

4.培养学生综合分析问题、解决问题的能力,进一步提高学生利用图形的变换解决问题的能力和小组合作、探究学习的能力,促进良好的数学思维习惯和应用意识的形成。

5.发展学生的合情推理能力和初步的逻辑推理能力。

6.通过较多的社会背景素材的展现,使学生亲身经历位似图形的概念形成过程和位似图形、位似变换的性质的探索过程,感受数学学习内容的现实性、应用性、挑战性。

二、教学重点和难点教学重点:图形的位似概念、位似图形的性质及利用位似把一个图形放大或缩小。

教学难点:图形的位似概念、位似图形的性质及利用位似把一个图形放大或缩小。

三、教学过程一、创设情境,激情导入观察图片,思考图片在发生怎样的变化,举生活实例演示幻灯机的播放过程让学生观察性质2:对应边平行或在同一直线上特点:(1)图形相似:(2)每组对应点所连直线交于一点。

二、位似图形的概念1.什么是位似图形,位似中心?如果两个图形不仅相似,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心。

2.位似和相似有怎样的联系和区别?3.位似比也叫相似比4.怎样作一个图形的位似图形。

三、画位似图形例:把△ABC扩大为原来2倍1.任取一点O;2.以O为端点做射线在射线OA,上取点A'使OA':OA=2:13.同样的方法做出B',C',学生活动教学步骤教师活动教学形式展示现实生活中的位似图形,让学生体会本课的价值,激发学生的兴趣。

启发学生寻找图形的特点。

引出本节课题自主学习并通过观察,寻找图形的特点。

多媒体展示图片资料学生与师生互动通过对五个位似图形的判断,引导学生归纳出位似图形的概念。

九年级数学下册《位似》教案、教学设计

九年级数学下册《位似》教案、教学设计
5.评价多元化,促进全面发展。
-采用过程性评价和终结性评价相结合的方式,全面评估学生的学习效果。
-注重学生在课堂上的表现、作业完成情况以及参与小组讨论的态度,鼓励学生自我评价和相互评价,促进他们的全面发展。
四、教学内容与过程
(一)导入新课
1.联系实际,激发兴趣。
-以生活中的实例引入新课,如照片的放大与缩小、建筑设计图纸的缩放等,让学生感受到位似在实际生活中的广泛应用。
九年级数学下册《位似》教案、教学设计
一、教学目标
(一)知识与技能
1.理解位似图形的概念,掌握位似图形的性质和判定方法。
-通过实际操作、观察和分析,使学生对位似图形有直观的认识,了解位似比的概念,掌握位似图形的判定条件。
-学会运用位似性质解决实际问题,如地图放大与缩小、相似图形的面积比等。
2.学会运用位似变换进行几何作图,培养空间想象能力和逻辑思维能力。
-学生需要通过具体的实例和图形变化,深入理解位似比的意义,以及它在解决实际问题中的应用。
-教学中需重点关注学生对位似性质的理解深度,确保他们的作图方法和技巧。
-位似变换的作图是本章节的难点,学生需要掌握如何准确找到位似中心,并运用这一中心进行几何作图。
-教师点评,总结各组优点,指出不足,促进全体学生共同进步。
(四)课堂练习
1.设计具有梯度性的习题,让学生巩固所学知识。
-基础题:判断两个图形是否位似,求位似比。
-提高题:运用位似性质解决实际问题,如求相似图形的面积比。
2.学生独立完成习题,教师巡回辅导。
-关注学生的解题过程,及时发现问题,提供针对性的指导。
-通过引入生活中的位似现象,如摄影中的缩放、地图的制作等,激发学生的好奇心和兴趣。
-利用多媒体和实物展示,让学生直观感受到位似图形的魅力,从而提高学习积极性。

人教版九年级数学下册:27.3《位似》教学设计1

人教版九年级数学下册:27.3《位似》教学设计1

人教版九年级数学下册:27.3《位似》教学设计1一. 教材分析人教版九年级数学下册第27.3节《位似》主要介绍了位似的定义、性质和运用。

位似是几何中的一个重要概念,它涉及到图形的变换和相似性质。

通过学习本节内容,学生能够理解位似的含义,掌握位似的性质,并能够运用位似解决实际问题。

二. 学情分析九年级的学生已经具备了一定的几何基础,对图形的变换和相似性质有一定的了解。

但是,对于位似的定义和性质,学生可能还存在一定的困惑。

因此,在教学过程中,教师需要引导学生通过观察、操作和思考,逐步理解位似的含义,并能够运用位似解决实际问题。

三. 教学目标1.知识与技能:学生能够理解位似的定义,掌握位似的性质,并能够运用位似解决实际问题。

2.过程与方法:学生通过观察、操作和思考,培养直观思维和逻辑推理能力。

3.情感态度与价值观:学生培养对数学的兴趣,增强自信心,培养合作意识和探究精神。

四. 教学重难点1.重点:位似的定义和性质。

2.难点:位似的运用和实际问题的解决。

五. 教学方法1.情境教学法:通过创设实际情境,引导学生观察和操作,培养学生的直观思维和逻辑推理能力。

2.问题驱动法:通过提出问题,引导学生思考和讨论,激发学生的学习兴趣和探究精神。

3.案例教学法:通过分析实际案例,引导学生运用位似解决实际问题,培养学生的应用能力。

六. 教学准备1.教学课件:制作精美的教学课件,包括图片、动画和实例,帮助学生直观地理解位似的含义和性质。

2.教学素材:准备一些实际的图形和图片,用于展示和分析位似的情况。

3.练习题:设计一些练习题,用于巩固学生对位似的理解和运用。

七. 教学过程1.导入(5分钟)教师通过展示一些实际的图形和图片,引导学生观察和思考,提出问题:“你们可以看出这些图形之间有什么关系吗?”学生可能回答:“它们看起来很相似,但是不完全一样。

”教师引导学生总结出位似的定义。

2.呈现(15分钟)教师通过课件展示位似的性质,包括位似的比例、位似的中心等。

27.3 位似(第1课时)(教学设计)九年级数学下册(人教版)

27.3 位似(第1课时)(教学设计)九年级数学下册(人教版)

27.3位似(第1课时)1.通过观察实例理解位似图形的定义,能够熟练准确地找到位似中心.2.掌握位似图形的性质和画法,并且能够熟练准确地利用图形的位似将一个图形放大或缩小.3.掌握位似与相似的联系与区别.位似图形的定义、性质和画法.位似图形的性质和画法.新课导入在日常生活中,我们经常见到这样一类相似的图形.例如,(1)放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上.(2)在照相馆中,摄影师通过照相机,把景物的形象缩小在底片上.这样的放大或缩小,没有改变图形形状,经过放大或缩小的图形,与原图形是相似的,因此,我们可以得到真实的图片和照片.【师生活动】教师展示图片,让学生观察特点.教学目标教学重点教学难点教学过程【设计意图】通过情境,展示位似图形的情况,为下面讲位似图形的概念作铺垫.新知探究一、探究学习【问题】与上面放映幻灯片时把图形放大或照相时把图形缩小类似,下图中的多边形相似,这种相似有什么特征?【师生活动】学生观察思考得出结论,让几名学生回答,教师总结.【答案】经过观察与测量计算发现,对应顶点的连线相交于一点O,且OAOA'=OBOB'=…=OPOP'=….【新知】如图,如果一个图形上的点A,B,…,P,…和另一个图形上的点A′,B′,…,P′,…分别对应,并且它们的连线AA′,BB′,…,PP′,…都经过同一点O,OAOA'=OBOB'=…=OPOP'=…,那么这两个图形叫做位似图形,点O是位似中心.【设计意图】通过这个问题,引出位似图形和位似中心的概念,提高学生观察、思考及概括的能力.【问题】位似图形与相似图形有什么区别呢?【师生活动】学生小组讨论,然后教师找学生代表回答.【答案】(1)相似只要求两个图形的形状完全相同,而位似不仅要求图形相似,还必须有特殊的位置关系,即对应顶点的连线相交于同一点;(2)如果两个图形是位似图形,那么这两个图形必是相似图形,但相似的两个图形不一定是位似图形.【设计意图】通过这个问题,让学生掌握位似图形与相似图形之间的关系,加深学生对位似图形的理解.【问题】类比位似图形的概念,你能给出位似多边形的概念吗?【师生活动】学生小组讨论,然后教师找学生代表回答,最后教师总结,得出结论.教师补充:本节课下面所讲的位似图形只包括位似多边形.【答案】对于两个多边形,如果它们的对应顶点的连线相交于一点,并且这点与对应顶点所连线段成比例,那么这两个多边形就是位似多边形.【设计意图】运用类比的方法,让学生了解位似多边形的概念,提高学生的抽象思维能力.【问题】下列各组图中的两个图形是不是位似图形,如果是位似图形,请指出其位似中心.【师生活动】学生动手画一画,并找4名学生板演.【答案】如图,它们都是位似图形,位似中心是点O.【追问】由此可知,位似中心可在两个图形的同侧,或两个图形的中间,除此之外,还有其他情况吗?【师生活动】学生思考并动手画一画,小组讨论,找几名学生代表举例,教师总结.【答案】如图,位似中心还可在图形内、边上、顶点处.【设计意图】让学生能够熟练准确地找到位似中心,并了解常见的位似中心的位置.【问题】位似图形有哪些性质呢?【师生活动】学生思考,小组讨论,找学生代表回答,学生比较容易得出下面的性质:(1)位似图形是相似图形,那么位似图形有相似图形的性质,即对应角相等,对应边成比例;(2)根据定义,位似图形的所有对应点的连线相交于一点,这个点就是位似中心;(3)根据定义,位似中心与对应顶点(在不重合的情况下)所连线段成比例.教师引导:(3)中这个比是多少呢?然后教师给出示例图形(前面找位似中心的图形即可),让学生猜想并给出简单证明思路,得出结论:根据相似三角形的判定和性质可知,位似图形上任意一对对应点到位似中心的距离之比等于相似比.教师继续引导:位似图形的对应边有什么位置关系吗?然后教师给出示例图形(前面找位似中心的图形即可),让学生猜想并给出简单证明思路,得出结论:位似图形的对应边互相平行(根据相似三角形的性质和平行线的判定可知),或在同一条直线上(观察可知).最后教师总结.【答案】(1)对应角相等,对应边成比例;(2)对应点的连线相交于一点;(3)位似图形上任意一对对应点(到位似中心的距离为0的点除外)到位似中心的距离之比等于相似比;(4)对应边互相平行或在同一条直线上.【设计意图】通过小组讨论及教师设置问题引导的方式,得到位似图形的性质,通过讨论探究,加深学生对位似图形的性质的理解与掌握.【问题】如何利用位似将一个图形放大或缩小呢?例如,把四边形ABCD缩小到原来的12.【师生活动】教师提示:结合探究位似图形的性质的过程,就能找到作图方法,动手试一试.学生思考,并动手画一画,小组讨论,找学生代表回答,教师修正,并出示规范的作图过程.【答案】①如图,在四边形外任选一点O.②分别在线段OA,OB,OC,OD上取点A′,B′,C′,D′,使得12 OA OB OC ODOA OB OC OD''''====.③顺次连接点A′,B′,C′,D′,所得四边形A′B′C′D′就是所要求的图形.【追问】如果在四边形外任选一个点O,分别在OA,OB,OC,OD的反向延长线上取A′,B′,C′,D′,使得12OA OB OC ODOA OB OC OD''''====呢?如果点O取在四边形ABCD内部呢?分别尝试画出对应的四边形A′B′C′D′.【师生活动】学生动手画一画,并找4名学生板演,教师讲评.【答案】如图,【归纳】画位似图形的一般步骤:1.确定位似中心并找出原图形的关键点;2.分别连接位似中心和原图形的关键点;3.根据相似比,在位似中心与各关键点所确定的直线上取点,确定所画位似图形的关键点的位置;4.顺次连接所作各点,得到放大或缩小的图形.【设计意图】通过这个问题,让学生能够熟练准确地利用图形的位似将一个图形缩小,锻炼学生的动手能力.二、典例精讲【例1】如图,以点O 为位似中心,将△ABC 放大为原来的2倍.【答案】解:①作射线OA ,OB ,OC .②分别在线段OA ,OB ,OC 上取点A′,B′,C′,使得2OA OB OC OA OB OC'''===. ③顺次连接A′,B′,C′,△A′B′C′就是所要求图形.【设计意图】检验学生对利用图形的位似将一个图形放大的掌握情况.【例2】下列图形中△ABC ∽△DEF ,但这两个三角形不是位似图形的是( ). A . B .C .D .【答案】B【解析】观察对应点的连线是否交于一点,若交于一点,则是位似图形;否则,不是位似图形.【归纳】位似图形必须同时满足两个条件:1.两个图形是相似图形;2.两个相似图形的对应顶点的连线相交于同一点.【设计意图】检验学生对判断所给图形是否是位似图形的掌握情况.课堂小结板书设计一、位似图形的概念二、位似图形的性质三、位似图形的画法课后任务完成教材第48页练习第1~2题.。

人教版九年级数学下册:27.3《位似》教学设计4

人教版九年级数学下册:27.3《位似》教学设计4

人教版九年级数学下册:27.3《位似》教学设计4一. 教材分析人教版九年级数学下册27.3《位似》是学生在学习了相似三角形的基础上,进一步研究位似图形的性质。

本节课的内容主要包括位似图形的定义、位似比、位似变换等。

通过本节课的学习,学生能够理解位似图形的概念,掌握位似比的意义,会用位似比描述图形之间的相似关系,为后续学习几何图形的变换打下基础。

二. 学情分析九年级的学生已经学习了相似三角形的性质,对相似图形有一定的认识。

但是,对于位似图形这一概念,学生可能较为陌生,需要通过具体的例子和实践活动来理解和掌握。

此外,学生对于图形的变换可能还没有形成清晰的认识,因此,在教学过程中,需要注重引导学生从实际问题中抽象出位似图形的概念,并通过实际操作来感受位似变换的特点。

三. 教学目标1.理解位似图形的概念,能够识别位似图形。

2.掌握位似比的意义,能够用位似比描述图形之间的相似关系。

3.理解位似变换的性质,能够进行简单的位似变换。

4.培养学生的空间想象能力和几何思维能力。

四. 教学重难点1.重点:位似图形的概念,位似比的意义,位似变换的性质。

2.难点:位似变换的应用,灵活运用位似知识解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出位似图形的概念。

2.利用数形结合的方法,通过图形的变化让学生直观地感受位似变换的特点。

3.采用小组合作的学习方式,让学生在讨论中加深对位似知识的理解。

4.运用实例讲解,让学生在实际问题中学会运用位似知识。

六. 教学准备1.准备相关的图形材料,如相似图形和位似图形。

2.准备多媒体教学设备,如投影仪、电脑等。

3.准备练习题,以便在课堂上进行巩固练习。

七. 教学过程1.导入(5分钟)通过展示一些实际的图形,如照片的放大与缩小,提问学生这些图形之间有什么共同的特点。

引导学生从实际问题中抽象出位似图形的概念。

2.呈现(10分钟)利用多媒体展示位似图形的定义和性质,让学生直观地感受位似图形的特征。

《位似》教学设计

《位似》教学设计

《位似》教学设计一教学分析(一)教学内容分析《位似》是人教版数学九年级下册第27章的内容。

本课旨在让学生了解位似图形的定义与性质,从而运用其对图形进行放大或缩小。

通过有趣的图形变换,培养学生形成多角度,多方面想问题的学习习惯,从而进一步提高他们研究“空间与图形”的水平,《位似》是前面学习的相似知识的延续,也为以后的学习奠定基础。

教学对象分析:学生已较为系统地掌握了相似图形的相关知识及研究图形的一般方法,具有一定的数学活动经验。

初三学生思维敏锐,具备比较强的逻辑推理能力,对自主学习有着浓厚兴趣,渴望充分展示和表现自己,从而获得成功的体验。

但以原点为位似中心的位似变换的性质涉及到数形结合、分类讨论的数学思想,此部分知识是一些学生的数学薄弱环节。

(二)教学环境分析采用计算机(网络)教室,主要采用几何画板和PPT课件。

借助信息技术平台,将研究问题一一呈现,供学生探究学习、合作学习,突破重难点。

二教学目标分析知识与技能:了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.数学思考:掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.解决问题:利用图形的位似解决一些简单的实际问题,并在此过程中培养学生的数学应用意识。

情感与态度:发展学生的合情推理能力和逻辑推理能力。

三教学重点、难点重点:位似图形的有关概念、性质与作图.利用位似将一个图形放大或缩小。

难点:.在直角坐标系中,以原点为位似中心的位似变换的性质涉及到数形结合、分类讨论的数学思想等一些学生的数学薄弱环节,不容易被理解,是本节教学的难点。

四 教学过程(一)教学流程(二)教学过程设计1.实例引入,概括定义(1)数学来源于生活,且应用于生活,很多的数学知识都是通过生活中的实例概括总结出来的。

观察在日常生活中,经常见到下面的图形,观察像与原像,它们有什么特点?[设计意图]:利用多媒体展示现实生活中的位似图形,让学生体会数学来源于生活,激发学生的学习兴趣。

人教版九年级数学下册:27.3《位似》教学设计2

人教版九年级数学下册:27.3《位似》教学设计2

人教版九年级数学下册:27.3《位似》教学设计2一. 教材分析人教版九年级数学下册27.3《位似》是学生在学习了相似三角形的基础上,进一步研究位似图形的性质和运用。

本节内容通过具体的图形和实例,让学生理解位似的定义,掌握位似图形的性质,以及会运用位似图形解决实际问题。

教材通过丰富的素材,激发学生的学习兴趣,培养学生的空间想象能力和抽象思维能力。

二. 学情分析九年级的学生已经学习了相似三角形的性质和运用,对图形的相似性有一定的理解。

但位似图形与相似图形既有联系又有区别,学生需要进一步理解和掌握。

学生在学习过程中,可能对位似图形的性质的理解和运用存在一定的困难,需要通过实例和练习进行巩固。

三. 教学目标1.理解位似的定义,掌握位似图形的性质。

2.能运用位似图形解决实际问题,提高空间想象能力和抽象思维能力。

3.培养学生的观察能力,提高学生分析问题和解决问题的能力。

四. 教学重难点1.教学重点:位似图形的性质和运用。

2.教学难点:位似图形性质的理解和运用。

五. 教学方法采用问题驱动法、案例分析法、合作交流法等,引导学生通过观察、思考、讨论、实践等方式,理解和掌握位似图形的性质,提高学生的空间想象能力和抽象思维能力。

六. 教学准备1.教学素材:教材、多媒体课件、练习题。

2.教学工具:黑板、粉笔、多媒体设备。

七. 教学过程1.导入(5分钟)通过展示一些生活中的位似图形,如相似的树叶、相似的建筑等,引导学生观察和思考,提出问题:“这些图形有什么共同的特点?”让学生回顾相似图形的性质,为新课的学习做好铺垫。

2.呈现(10分钟)介绍位似的定义,通过具体的图形和实例,让学生理解位似的概念。

呈现位似图形的性质,如对应边成比例、对应角相等等,引导学生观察和思考,总结位似图形的性质。

3.操练(10分钟)让学生通过观察和分析一些位似图形,运用位似图形的性质,解决问题。

如给定一个位似图形,求其对应边的比例和对应角的大小。

引导学生动手操作,培养学生的空间想象能力和抽象思维能力。

27.3 位似 教学设计 教案

27.3 位似 教学设计 教案

27.3 位似教学设计教案27.3位似教学设计教案教学准备1.教学目标1.1知识和技能:1.巩固位似图形及其有关概念.2.能够用图形坐标的变化来表示图形的位置变换,掌握图形按一定尺寸放大或缩小后点坐标的变化规律3.了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换.1.2过程和方法:经历探究平面直角坐标系中,以o为位似中心的多边形的坐标变化与相似比之间关系的过程,领会所学知识,归纳作图步骤,总结规律,并较熟练地进行应用.1.3情感态度和价值观:在探究过程中发展学生积极的情感、态度、价值观,体验解决实际问题策略的多样性.2.教学重点/难点把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.3.教学工具课件.多媒体4.标签教学过程6.1回顾介绍1、什么是位似图形?你是如何识别的?如果两个相似图形的每组对应顶点的直线在一个点相交,这两个图形称为位置图形,这一点称为位置相似中心,在位置图形识别中,此时的相似比也称为位置相似比:(1)两个图形是相似图形;(2)两个相似图形的每一对对应点的直线通过同一点,两者缺一不可2、如何将画在纸上的一个图片放大,使放大前后对应线段的比为1:2?① 确定位置相似中心(可选);② 连接并延伸中心和关键点等位置,分别代表原始图纸;③ 按照1:2的比例,确定能代表所绘制位置图的关键点;④ 按顺序连接上述各点,以获得放大图推进新课(黑板写作主题:确定相似三角形)6.2新知识探索问题1如图,在平面直角坐标系中,有两点a(6,3),b(6,0).以原点o为位似中心,相似比为,把线段ab缩小,观察对应点之间坐标的变化,你有什么发现?老师:(指向图)在平面直角坐标系中,有两点a(6,3)和B(6,0)。

以原点o为位置相似中心,相似比为1/3。

如果你减少AB线怎么画?(停顿)生:作法(1)通过点O分别用作射线OA;(2)在射线oa、ob取点a′、b′,使得(3)连接a'B'线段a′b′就是以原点o为位似中心,把线段ab缩小得到图形.师:还有其它作法吗?生:作法(1)通过点O分别画一条直线OA;(2)在直线oa、ob取点a\、b\,使得;(3)连接a\.线段a′B′是以原点o为准中心,通过减少线段AB而得到的图师:两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧.师:(指图)位似变换后a,b的对应点坐标是什么?a和B的对应点是a′(2,1),B′(2,0);a\(-2,-1),b\(-2,0)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学下册《位似》教学设计
【教学目标】:
(一)知识与技能
1.进一步理解图形的位似概念,掌握位似图形的性质。

2.会利用作位似图形的方法把一个图形进行放大或缩小。

3.掌握直角坐标系中图形的位似变化与对应点坐标变化的规律。

(二)过程与方法
1、经历位似图形性质的探索过程,进一步发展学生的探究、交流能力、以及动手、动脑、手脑和谐一致的习惯。

2、利用图形的位似解决一些简单的实际问题,并在此过程中培养学生的数学应用意识,进一步培养学生动手操作的良好习惯。

(三)情感态度与价值观
通过动手操作、探究与交流,发展学生的合情推理能力和初步的逻辑推理能力。

【教学重点和难点】:
本节教学的重点是图形的位似概念、位似图形的性质及利用位似把一个图形放大或缩小。

【教学过程】:
一、创设情景,构建新知
1.位似图形的概念
下列两幅图有什么共同特点?
如果两个图形不仅形状相同,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形, 这个点叫做位似中心.
2、引导学生观察位似图形
下列图形中,每个图中的四边形ABCD和四边形A′B′C′D′都是相似图形.分别观察这
五个图,你发现每个图中的两个四边形各对应点的连线有什么特征?
显然,位似图形是相似图形的特殊情形,其相似比又叫做它们的位似比.
(1)五边形ABCDE 与五边形A ′B ′C ′D ′E ′;
(2)在平行四边形ABCD 中,△ABO 与△CDO
(3)正方形ABCD 与正方形A ′B ′C ′D ′.
(4)等边三角形ABC 与等边三角形A ′B ′C ′
(5)反比例函数y
=6x (x>0)的图像与y =6x
(x<0)的图像 (6)曲边三角形ABC 与曲边三角形A ′B ′C ′
(7)扇形ABC与扇形A′B′C′,(B、A 、B′在一条直线上,C、A 、
C′在一条直线上)
(8)△ABC与△ADE(①DE∥BC;②∠AED=∠B)
2.如图P,E,F分别是AC,AB,AD的中点,四边形AEPF与四边形ABCD是位似图形吗?如果是位似图形,说出位似中心和位似比.
二、适当提高,应用新知
1、位似图形的性质
一般地,位似图形有以下性质:
位似图形上任意一对对应点到位似中心的距离之比等于位似比.
2、作位似图形
例:如图,请以坐标原点O为位似中心,作的位似图
形,并把的边长放大3倍.
分析:根据位似图形上任意一对对应点到位似中心的
距离之比等于位似比,我们只要连结位似中心O和的各顶
点,并把线段延长(或反向延长)到原来的3倍,就得到
所求作图形的各个顶点
3、直角坐标系中图形的位似变化与对应点坐标变化的规律
想一想:
1.四边形GCEF与四边形G′C′E′F′具有怎样的对称性?
2.怎样运用像与原像对应点的坐标关系,画出以原点为位似中心的
位似图形?
以坐标原点为位似中心的位似变换有一下性质:
若原图形上点的坐标为(x,y),像与原图形的位似比为k,则像上的对应点的坐标为(kx,ky)或(―kx,―ky).
练一练:
1.如图,已知△ABC和点O.以O为位似中心,
求作△ABC的位似图形,并把△ABC的边长
缩小到原来的一半.
2.如图,在直角坐标系中,△ABC的各个
坐标为A(-1,1),B(2,3),C(0,3)。

现要以坐标原点0为位似中心,位似比为,
作△ABC的位似图形△A/B/C/,则它的顶
点A、B、C的坐标各是多少?
三、小结内容,自我反馈
今天你学会了什么?
位似图形的定义,位似图形的性质.
四、作业
1.P65习题27.3 1、2、3。

相关文档
最新文档