人教版高中数学必修四学案 1.1.1任意角
1.1.1任意角(教案)
1.1 任意角和弧度制1.1.1 任意角【教学内容解析】本节课内容是《普通高中课程标准实验教科书数学》人教A版必修4第一章《三角函数》1.1《任意角和弧度制》中第1.1.1节《任意角》的第一课时,本节教学内容为任意角,主要学习任意角的推广、象限角、用几何和符号表示终边相同的角.本节内容为三角函数的第一节,终边相同的角的表示为后面证明恒等式、化简及利用诱导公式求三角函数的值奠定基础.由此确定本节课的教学重点为:教学重点:将0°~360°的角的概念推广到任意角.【学情分析】学生早在小学与初中学习过“角”,对角的概念有一定印象,但是过去接触过的角都在0°~360°,在对角的认识上已经形成一定的思维定势,所以在本小节要将角的概念推广可能会有一定的困难.用集合和符号来表示终边相同的角,涉及任意角、象限角、终边相同的角等新概念,对学生来说刚刚将角推广到任意角,然后就利用它来解决终边相同的角,是学习的主要难点.故确定本节课的教学难点为:教学难点:角的概念的推广,终边相同的角的表示.【教学目标设置】根据上述教学内容的地位和作用,结合课程标准与学情,确定了以下目标:1.结合生活中实例,认识角的概念推广的必要性;2.初步学会在平面直角坐标系中讨论任意角,并能熟练写出与已知角终边相同的角的集合.3.通过从特殊的三个角找关系,推广到一般的终边相同的角的集合的书写,体会类比的思想方法,同时利用直角坐标系作出角解决问题,渗透数形结合的数学思想.【教学策略分析】根据本节课的教学内容、学生情况和教学目标,教学中采用“教师设疑引导,学生自主探究”的教学方法.通过启发引导,激发学生的思维,鼓励学生发现、探究、合作、展示,使其在探究中对问题本质的思考逐步深入,思维水平不断提高.针对本节课的重点——将0°~360°的角的概念推广到任意角,教学中,通过“思考”提出拨手表指针问题,引导学生感受推广角的概念的必要性,使他们明白要正确表达“校准”手表的过程,需要同时说明分针的旋转量和旋转方向,教学时,让学生自己描述“校准”过程,让学生体会仅用0°~360°的角已经难以回答当前的问题,进而引出学习课题.同时还以体操转体运动为例,进一步说明引入新概念的必要性和实际意义.针对本节课的主要难点,教学中此处设置问题,让学生自己在直角坐标系中画30°,330°,-390°,(这一组角比教材上的那组角更容易找关系)通过观察这些角得出终边相同,然后提问这些角之间有怎样的数量关系?能不能用其中一个角表示这些角?让学生自己得出这一组角中任意两角之差是360°的整数倍,进一步类比得出所有与任意角α终边相同的角,连同α在内构成一个集合的表示.通过学生自己活动解决“探究”,经历由具体数值到一般值的抽象的过程,形成对“终边相同的角相差360°的整数倍”的直观感知.教学中同时多媒体,建立坐标系,画出任意角,并测出角的大小,旋转角的终边,观察角的变化规律,从而将数、形联系起来,使角的几何表示和集合表示相结合.对例题和习题的处理上,对教材上的例2改编为终边落在x轴上的角的集合,将终边落在y轴上的角的集合作为变式,变式设置了4个问题,让学生对终边落在各个坐标轴与象限角的表示有深刻认识,总结两种方法,为后面章节学习打下基础。
高中数学必修4全套学案含答案
第一章三角函数1.1 任意角和弧度制►1.1.1 任意角课前自主学习 KEQIANZIZHUXUEXI[基础自学]一、角的概念1.角的概念(1)角可以看成是一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形.(2)角的表示顶点:用O表示;始边:用OA表示,用语言可表示为角的始边;终边:用OB表示,用语言可表示为角的终边.2.角的分类按旋转方向可将角分为如下三类:类型定义图示正角按照逆时针旋转而成的角负角按照顺时针旋转而成的角零角当射线没有旋转时,我们也把它看成一个角,叫做零角1.象限角:若角的顶点在原点,角的始边与x轴非负半轴重合,则角的终边在第几象限,就称这个角是第几象限角.2.轴线角:若角的终边在坐标轴上,则这个角不属于任何象限.三、终边相同的角设α表示任意角,所有与角α终边相同的角,包括α本身构成一个集合,这个集合可记为{β|β=α+k·360°,k∈Z}.[自我小测]1.判断(正确的打“√”,错误的打“×”)(1)研究终边相同的角的前提条件是角的顶点在坐标原点.( )(2)锐角是第一象限的角,但第一象限的角不一定是锐角.( )(3)象限角与终边落在坐标轴上的角表示形式是唯一的.( )提示:(1)×(2)√(3)×2.做一做(1)下列各组角中,终边不相同的是( )A.60°与-300° B.230°与950°C.1050°与-300° D.-1000°与80°答案 C(2)将-885°化为α+k·360°(0°≤α<360°,k∈Z)的形式是________.答案195°+(-3)×360°课堂合作探究 KETANGHEZUOTANJIU1终边相同的角之间有什么关系?提示:与α终边相同的角,可表示为β=k·360°+α(k∈Z),即两角相差360°的整数倍.2如何表示终边在坐标轴上的角和象限角?提示:终边在x轴非负半轴上的角:α=k·360°(k∈Z);终边在y轴上的角:α=90°+k·180°(k∈Z);第二象限角:90°+k·360°<α<180°+k·360°(k∈Z).题型一正确理解角的概念例1 下列结论:①锐角都是第一象限角;②第一象限角一定不是负角;③第二象限角是钝角;④小于180°的角是钝角、直角或锐角.其中正确的序号为________(把正确结论的序号都写上).[解析] ①锐角是大于0°且小于90°的角,终边落在第一象限,故是第一象限角,所以①正确;②-330°角是第一象限角,但它是负角,所以②不正确;③480°角是第二象限角,但它不是钝角,所以③不正确;④0°角小于180°,但它既不是钝角,也不是直角或锐角,故④不正确.[答案] ①角的概念的理解正确解答角的概念问题,关键在于正确理解象限角与锐角、直角、钝角、平角、周角等概念,另外需要掌握判断结论正确与否的技巧,判断结论正确需要证明,而判断结论不正确只需举一个反例即可.【跟踪训练1】(1)经过2个小时,钟表上的时针旋转了( )A.60° B.-60°C.30° D.-30°(2)如图∠α=__________,∠β=__________. 答案 (1)B (2)-150° 210°解析 (1)钟表的时针旋转一周是-360°,其中每小时旋转-360°12=-30°,所以经过2个小时应旋转-60°.题型二 终边相同的角的表示及象限角 例2 已知α=-1910°.(1)把α写成β+k ·360°(k ∈Z,0°≤β<360°)的形式,指出它是第几象限的角; (2)求θ,使θ与α的终边相同,且-720°<θ≤0°. [解] (1)∵-1910°÷360°=-6余250°, ∴-1910°=-6×360°+250°.相应β=250°,从而α=-6×360°+250°是第三象限的角. (2)令θ=250°+k ·360°(k ∈Z ),取k =-1,-2就得到适合-720°<θ≤0°的角: 250°-360°=-110°,250°-720°=-470°. ∴θ=-110°或θ=-470°.[变式探究] 与-1560°角终边相同的角的集合中,最小正角是________,最大负角是________.答案 240° -120°解析 与-1560°角终边相同的角的集合为{α|α=k ·360°+240°,k ∈Z },所以最小正角为240°,最大负角为-120°.怎样表示终边相同的角及象限角(1)已知终边所处的位置,写角的集合时,可先写出0°~360°范围内的角,然后再加k ·360°(k ∈Z )组成集合即可.(2)象限角的判定有两种方法:一是根据图形判定,在直角坐标系中作出角,角的终边落在第几象限,此角就是第几象限角.二是根据终边相同的角的概念.把角转化到0°~360°范围内,转化后的角在第几象限,此角就是第几象限角.【跟踪训练2】 在0°到360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限的角.(1)-120°;(2)640°;(3)-950°12′.解(1)-120°=-360°+240°,∴在0°到360°范围内,与-120°终边相同的角是240°角,它是第三象限的角.(2)640°=360°+280°,∴在0°到360°范围内与640°终边相同的角是280°角,它是第四象限的角.(3)-950°12′=-3×360°+129°48′,∴在0°到360°范围内与-950°12′终边相同的角是129°48′,它是第二象限的角.题型三区域角的表示例3 写出终边落在阴影部分的角的集合.[解] 设终边落在阴影部分的角为α,角α的集合由两部分组成.①{α|k·360°+30°≤α<k·360°+105°,k∈Z}.②{α|k·360°+210°≤α<k·360°+285°,k∈Z}.∴角α的集合应当是集合①与②的并集:{α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°或(2k+1)·180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|k·180°+30°≤α<k·180°+105°,k∈Z}.[变式探究] 将例3改为下图,写出角的终边在图中阴影区域的角的集合(包括边界).解(1){α|45°+k·180°≤α≤90°+k·180°,k∈Z}.(2){α|-150°+k·360°≤α≤150°+k·360°,k∈Z}.表示区间角的三个步骤(1)先按逆时针方向找到区域的起始和终止边界.(2)由小到大分别标出起始、终止边界对应的一个角α,β,写出所有与α,β终边相同的角.(3)用不等式表示区域内的角,组成集合.【跟踪训练3】写出终边在如下图所示阴影部分内的角α的取值范围.解(1)与45°角终边相同的角的集合为{α|α=45°+k·360°,k∈Z},与30°-180°=-150°角终边相同的角的集合为{α|α=-150°+k·360°,k∈Z},因此终边在阴影部分内的角α的取值范围为{α|-150°+k·360°<α≤45°+k·360°,k∈Z}.(2)方法同(1),可得终边在阴影部分内的角α的取值范围为{α|45°+k·360°≤α≤300°+k·360°,k∈Z}.[规律小结]1.角的概念的理解(1)弄清角的始边与终边.(2)结合图形明确这个角从始边到终边转过了多少度.(3)注意逆时针旋转与顺时针旋转的区别.2.研究象限角时应注意的问题(1)前提条件:角的顶点与原点重合,角的始边与x轴的非负半轴重合;(2)并不是任何角都是象限角,如终边落在坐标轴上的角叫轴线角,轴线角的表示如下表:终边所在的位置角的集合x轴非负半轴{α|α=k·360°,k∈Z}x轴非正半轴{α|α=k·360°+180°,k∈Z}y轴非负半轴{α|α=k·360°+90°,k∈Z}y轴非正半轴{α|α=k·360°+270°,k∈Z}3.表示与α终边相同的角时应注意的问题(1)k是整数,这个条件不能漏掉;(2)α是任意角;(3)k ·360°与α之间是“+”号,如k ·360°-30°应看成k ·360°+(-30°)(k ∈Z );(4)终边相同的角不一定相等,但相等的角终边一定相同. [走出误区]易错点⊳分角所在象限及范围的确定的误区 [典例] 若α是第三象限的角,则α3是( )A.第一象限的角B.第三象限的角C.第四象限的角D.第一象限或第三象限或第四象限的角[错解档案] 因为α是第三象限的角,所以取α=210°,得到α3=70°,是第一象限的角,故选A.[误区警示] 第三象限的角α有无数个,用α=210°得到α3=70°而选择答案A ,犯了以偏概全的错误.[规范解答] 因为α是第三象限的角,所以k ·360°+180°<α<k ·360°+270°(k ∈Z ),则k ·120°+60°<α3<k ·120°+90°(k ∈Z ),取k =0,得到α3可在第一象限;取k =1,得到α3可在第三象限;取k =2,得到α3可在第四象限.故选D.矫正训练 若α为第二象限的角,则α2为第几象限角?解 若α为第二象限角,则有随堂消化吸收 SUITANGXIAOHUAXISHOU1.[2016·吉林实验高一期中]下列叙述正确的是( ) A .三角形的内角是第一象限角或第二象限角 B .钝角是第二象限角 C .第二象限角比第一象限角大 D .不相等的角终边一定不同 答案 B解析 三角形的内角是第一象限角、第二象限角或在y 轴非负半轴上的角,故A 错误;钝角是第二象限角,B 正确;象限角不能比较大小,故C 错误;不相等的角终边也可能相同,如40°和400°,故D 错误.2.[2016·山东枣庄模拟]若α是第四象限角,则180°+α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角答案 B解析 因为α与180°+α的终边关于点(0,0)对称,所以角180°+α的终边在第二象限.3.如果将钟表拨快10分钟,则时针所转成的角度是________度,分针所转成的角度是________度.答案 -5 -60解析 将钟表拨快10分钟,则时针按顺时针方向转了10×360°12×60=5°,所转成的角度是-5°;分针按顺时针方向转了10×360°60=60°,所转成的角度是-60°.4.若α为锐角,则-α+k ·360°(k ∈Z )在第________象限. 答案 四解析 由于0°<α<90°,所以-90°<-α<0°,所以-α是第四象限角,从而-α+k ·360°(k ∈Z )在第四象限.5.[2016·大连高一检测]写出与下列各角终边相同的角的集合S ,并把S 中适合不等式-360°≤α≤720°的元素α写出来:(1)60°;(2)-21°.解 第一步:利用终边相同的角的集合公式写出: (1)S ={α|α=60°+k ·360°,k ∈Z }; (2)S ={α|α=-21°+k ·360°,k ∈Z }.第二步:在第一步的基础上,利用约束条件对其中的k 值分别采用赋值法求出元素α; (1)-300°,60°,420°;(2)-21°,339°,699°.课后课时精练 KEHOUKESHIJINGLIAN 时间:25分钟满分:60分一、选择题(每小题5分,共25分)1.已知α=-130°,则α的终边落在( )A.第一象限B.第二象限C.第三象限D.第四象限答案 C解析∵-130°=-360°+230°,而230°是第三象限角,∴α的终边落在第三象限.2.已知角α的终边落在直线y=x上,则角α的集合S=( )A.{α|α=k·360°+45°,k∈Z}B.{α|α=k·90°+45°,k∈Z}C.{α|α=k·360°+225°,k∈Z}D.{α|α=k·180°+45°,k∈Z}答案 D解析本题考查终边在特殊直线上的角以及分类讨论的数学思想.由于角α的终边落在直线y=x上,故角α在0°~360°内所对应的两个角分别为45°及225°,从而角α的集合S={α|α=k·360°+45°或α=k·360°+225°,k∈Z}={α|α=k·180°+45°,k∈Z},故选D.3.若α是钝角,则θ=k·180°+α,k∈Z是( )A.第二象限角B.第三象限角C.第二象限角或第三象限角D.第二象限角或第四象限角答案 D解析当k为偶数时,θ=k·180°+α,k∈Z是第二象限角,当k为奇数时,θ=k·180°+α,k∈Z是第四象限角.4.已知角α、β的终边互为反向延长线,则α-β的终边在( )A.x轴的非负半轴上B.y轴的非负半轴上C.x轴的非正半轴上D.y轴的非正半轴上答案 C解析由题意知β+180°应与α终边相同,即α=β+180°+k·360°(k∈Z),∴α-β=180°+k·360°.故选C.5.已知角2α的终边在x轴上方,那么α是( )A.第一象限角B.第一或第二象限角C.第一或第三象限角D.第一或第四象限角答案 C解析由条件知k·360°<2α<k·360°+180°,(k∈Z),∴k·180°<α<k·180°+90°(k∈Z),当k为偶数时,α在第一象限,当k为奇数时,α在第三象限.二、填空题(每小题5分,共15分)6.[2016·广东佛山一中期中]终边在x轴上的角β的集合是________.答案{β|β=180°·k,k∈Z}解析 本题考查终边相同的角的概念.终边在x 轴正半轴上的角的集合为{β|β=360°·k ,k ∈Z },终边在x 轴负半轴上的角的集合为{β|β=180°·(2k +1),k ∈Z },所以终边在x 轴上的角β的集合为{β|β=180°·k ,k ∈Z }.7.时钟的时针走过了1小时20分钟,则分针转过的角为________. 答案 -480°解析 时针走过了1小时20分钟,则分针转了43圈,又因顺时针旋转的角为负角,∴分针转过的角为-43×360°=-480°.8.若集合M ={x |x =k ·90°+45°,k ∈Z },N ={x |x =k ·45°+90°,k ∈Z },则M ________N .(填“”“”)答案解析 M ={x |x =k ·90°+45°,k ∈Z } ={x |x =45°·(2k +1),k ∈Z },N ={x |x =k ·45°+90°,k ∈Z }={x |x =45°·(k +2),k ∈Z },∵k ∈Z ,∴k +2∈Z ,且2k +1为奇数,∴M N . 三、解答题(每小题10分,共20分)9.如图所示,试写出终边落在阴影区域内的角的集合S (包括边界),并指出-950°12′是否是该集合中的角.解 由题图可知,终边落在阴影区域内的角的集合S ={β|120°+k ·360°≤β≤250°+k ·360°,k ∈Z }.∵-950°12′=-3×360°+129°48′,且120°<129°48′<250°,∴-950°12′是该集合中的角. 10.已知α为第二象限角,问2α,α2分别是第几象限角?解 ∵α是第二象限角,∴90°+k ·360°<α<180°+k ·360°,k ∈Z , ∴180°+2k ·360°<2α<360°+2k ·360°,k ∈Z .∴2α是第三或第四象限角,或是终边落在y 轴的非正半轴上的角.同理45°+k2·360°<α2<90°+k2·360°. 当k 为偶数时,不妨令k =2n ,n ∈Z ,则45°+n ·360°<α2<90°+n ·360°,此时,α2为第一象限角;当k 为奇数时,令k =2n +1,n ∈Z ,则225°+n ·360°<α2<270°+n ·360°,此时,α2为第三象限角.∴α2为第一或第三象限角. ►1.1.2 弧度制课前自主学习 KEQIANZIZHUXUEXI[基础自学]一、弧度的概念设扇形的半径为r ,弧长为l ,α为其圆心角,则度量单位类别α为角度制 α为弧度制 扇形的弧长 l =πr ·⎪⎪⎪⎪⎪⎪α180l =r |α| 扇形的面积S =πr 2⎪⎪⎪⎪⎪⎪α360S =12r 2|α|=12rl1.判断(正确的打“√”,错误的打“×”)(1)“度”与“弧度”是相同的,都是用来度量角的单位.( )(2)终边落在x 轴非正半轴上的角可表示为α=k ·360°+π(k ∈Z ).( ) (3)1 rad 的角和1°的角大小一样.( )(4)用圆心角所对的弧长与半径的比来度量圆心角是合理的.( ) 提示:(1)× (2)× (3)× (4)√2.做一做(1)半径为2,圆心角为π3的扇形的面积是( )A.4π3 B .π C.2π3D.π3答案 C解析 由扇形面积公式S =12r 2·|α|可得S =12×4×π3=2π3,故选C. (2)角度与弧度互化: ①7π6=________;②-75°=________. 答案 ①210° ②-5π12课堂合作探究 KETANGHEZUOTANJIU1角度制与弧度制如何换算?提示:360°=2π rad,180°=π rad,1°=π180rad ,1 rad =⎝⎛⎭⎪⎫180π°≈57.30°.2扇形的弧长与面积的计算公式是什么? 提示:l =|α|·r ,S =12l ·r =12|α|·r 2.题型一 弧度制的概念例1 下列命题中,假命题是( )A .“度”与“弧度”是度量角的两种不同的度量单位B .一度的角是周角的1360,一弧度的角是周角的12πC .1弧度是长度等于半径长的弧所对的圆心角,它是角的一种度量单位.D .不论是用角度制还是用弧度制度量角,它们均与圆的半径长短有关[解析] 根据角度和弧度的定义,可知无论是角度制还是弧度制,角的大小与圆的半径长短无关,而是与弧长与半径的比值有关,所以D 是假命题.选项A 、B 、C 均为真命题.[答案] D“度”与“弧度”的区别和联系(1)弧度制是以“弧度”为单位来度量角的单位制,角度制是以“度”为单位来度量角的单位制.(2)1弧度是长度等于半径长的弧所对的圆心角(或这条弧)的大小,而1°的角是周角的1360. (3)无论是以“弧度”还是以“度”为单位,角的大小都是一个与半径大小无关的值.【跟踪训练1】 下列命题中,真命题是( ) A .一弧度是一度的圆心角所对的弧B .一弧度是长度为半径的弧C .一弧度是一度的弧与一度的角之和D .一弧度是长度等于半径长的弧所对的圆心角的大小,它是角的一种度量单位 答案 D解析 根据一弧度的定义:我们把长度等于半径长的弧所对的圆心角叫做一弧度的角.对照各选项,可知D 为真命题.故选D.题型二 弧度和角度的换算 例2 将下列角度与弧度进行互化. (1)20°;(2)-15°;(3)7π12;(4)-115π.[解] (1)20°=20×π180=π9.(2)-15°=-15×π180=-π12.(3)712π=712π×⎝ ⎛⎭⎪⎫180π°=105°.(4)-115π=-115π×⎝ ⎛⎭⎪⎫180π°=-396°.角度制与弧度制互化的注意事项(1)用“弧度”为单位度量角时,“弧度”二字或“rad”可以省略不写.(2)用“弧度”为单位度量角时,常常把弧度数写成多少π的形式,如无特别要求,不必把π写成小数.(3)度化弧度时,应先将分、秒化成度,再化成弧度.【跟踪训练2】 (1)-450°化成弧度是________. (2)75π化成角度是________. 答案 (1)-52π (2)252°解析 (1)-450°=-450×π180=-52π.(2)75π=75π×⎝ ⎛⎭⎪⎫180π°=252°.题型三 用弧度表示角例3 (1)把下列角化为2k π+α(0≤α<2π,k ∈Z )的形式:①16π3;②-315°. (2)用弧度表示顶点在原点,终边落在阴影部分内的角的集合(不包括边界,如图所示). [解] (1)①16π3=4π+4π3.∵0≤4π3<2π,∴16π3=4π+4π3.②-315°=-315×π180=-7π4=-2π+π4.∵0≤π4<2π,∴-315°=-2π+π4.(2)330°=360°-30°=2π-π6,而60°=π3,它所表示的区域位于-π6与π3之间且跨越x 轴的正半轴.所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪2k π-π6<θ<2k π+π3,k ∈Z.弧度制表示角的注意事项(1)用弧度表示区域角,实质是角度表示区域角在弧度制下的应用,必要时,需进行角度与弧度的换算.注意单位要统一.可以先写(-π,π)或(0,2π)内的角,再加上2k π,k ∈Z .(2)终边在同一直线上的角可以合并为{x |x =α+k π,k ∈Z };终边在相互垂直的两直线上的角可以合并为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =α+k ·π2,k ∈Z.【跟踪训练3】 (1)把-1480°写成α+2k π(k ∈Z )的形式,其中0≤α<2π; (2)若β∈[-4π,0],且β与(1)中α终边相同,求β. 解 (1)∵-1480°=-1480π180=-74π9=-10π+16π9,又0≤16π9<2π,∴-1480°=16π9-2×5π=16π9+2×(-5)π.(2)由(1)可知α=16π9.∵β与α终边相同,∴β=2k π+16π9,k ∈Z .又∵β∈[-4π,0],令k =-1,则β=-2π9.令k =-2, 则β=-20π9,∴β的值是-2π9,-20π9.题型四 扇形的弧长与面积 例4 扇形AOB 的周长为8 cm.(1)若这个扇形的面积为3 cm 2,求圆心角的大小; (2)求该扇形的面积取得最大值时圆心角的大小和弦长AB . [解] 设这个扇形的半径为R ,弧长为l ,圆心角为α(α>0). (1)由已知,得⎩⎪⎨⎪⎧2R +l =8,12lR =3,解得⎩⎪⎨⎪⎧R =3,l =2.或⎩⎪⎨⎪⎧R =1,l =6.由|α|=l R 可得:α=23或α=6.(2)扇形的面积 S =12lR =12(8-2R )R =-(R -2)2+4(0<R <4),所以,当且仅当R =2时,S 取得最大值4. 这时,l =8-2R =4,可求出:α=lR=2. 又∵0<2<π,∴|AB |=2R ·sin α2=4sin1.[变式探究] 将例4中扇形周长改为6 cm ,面积改为2 cm 2,求圆心角的大小. 解 设扇形的半径为R ,弧长为l ,圆心角为α(α>0),则有⎩⎪⎨⎪⎧2R +l =612lR =2解得⎩⎪⎨⎪⎧R =1l =4或⎩⎪⎨⎪⎧R =2l =2,由|α|=lR得α=4或α=1.扇形周长及面积的最值(1)当扇形周长一定时,扇形的面积有最大值.其求法是把面积S 转化为关于r 的二次函数,但要注意r 的取值范围.特别注意一个扇形的弧长必须满足0<l <2πr .(2)当扇形面积一定时,扇形的周长有最小值.其求法是把扇形周长L 转化为关于r 的函数,但要注意r 的取值范围.【跟踪训练4】 已知扇形AOB 的圆心角为120°,半径长为6,求: (1) AB ︵的长; (2)弓形AOB 的面积.解 (1)∵120°=120180π=23π,∴l =6×23π=4π,∴AB ︵的长为4π.(2)∵S 扇形OAB =12lr =12×4π×6=12π,如图所示.又S △OAB =12×AB ×OD (D 为AB 中点)=12×2×6cos30°×6×sin30°=9 3. ∴S 弓形OAB =S 扇形OAB -S △OAB =12π-9 3.[规律小结]1.弧度制与角度制的区别与联系 (1)区别①单位不同.弧度制以“弧度”为度量单位,角度制以“度”为度量单位; ②定义不同. (2)联系不管以“弧度”还是以“度”为单位的角的大小都是一个与圆的半径大小无关的定值. 2.角度制与弧度制换算时应注意的问题(1)弧度制与角度制的互化是一种比例关系的变形,具体变化时,可牢记以下公式:π180=弧度角度,只要将已知数值填入相应的位置,解出未知的数值,再添上相应的单位即可; (2)如无特别要求,不必把π写成小数;(3)度化为弧度时,应先将分、秒化为度,再化为弧度; (4)同一个式子中角度和弧度不能混用. [走出误区]易错点⊳角度制与弧度制的应用误区[典例] 将-1485°化成2k π+α(0≤α<2π,k ∈Z )的形式为________. [错解档案] 因为-1485°=-4×360°-45°=-4×360°+(-360°+315°)=-5×360°+315°, 所以-1485°化为2k π+α形式应为-10π+315°.[误区警示] 只考虑了将-1485°写成了“2k π”的组合形式,而忽视了对α的要求,忽视了角度和弧度的统一,这是初学者极易犯的一个错误.[规范解答] 由-1485°=-5×360°+315°, 所以-1485°可以表示为-10π+74π.矫正训练 将17π4化成k ·360°+α(0°≤α<360°,k ∈Z )的形式为________.答案 2·360°+45° 解析 17π4=765°=720°+45°=2×360°+45°, 故17π4=2·360°+45°.随堂消化吸收 SUITANGXIAOHUAXISHOU1.1920°转化为弧度数为( ) A.163 B.323 C.16π3D.32π3答案 D解析 ∵1°=π180弧度,∴1920°=1920×π180=323π.2.若α=-3,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 C解析 ∵-3≈-171.9°,∴α=-3表示的角的终边在第三象限.3.[2016·南昌市高一月考]已知扇形的半径为R ,面积为R 2,那么这个扇形中心角的弧度数是________.答案 2解析 由l =|α|·R 及S =12lR ,得S =12|α|R 2.∴|α|=2S R 2=2R2R2=2.4.用弧度制表示终边落在第二象限的角的集合为________.答案 ⎩⎨⎧α⎪⎪⎪⎭⎬⎫2k π+π2<α<2k π+π,k ∈Z解析 若角α的终边落在第二象限,则 2k π+π2<α<2k π+π,k ∈Z .5.将下列各角转化成2k π+α(k ∈Z ),且0≤α<2π的形式,并指出它们是第几象限角:(1)-1725°;(2)64π3.解 (1)∵-1725°=-5×360°+75°=-10π+5π12,∴-1725°角与角5π12的终边相同.又∵5π12是第一象限角,∴-1725°是第一象限角. (2)∵64π3=20π+4π3,∴角64π3与角4π3的终边相同.又∵4π3是第三象限角,∴64π3是第三象限角. ,课后课时精练 KEHOUKESHIJINGLIAN时间:25分钟满分:60分一、选择题(每小题5分,共25分) 1.-300°化为弧度是( ) A .-4π3B .-5π3C .-7π4D .-7π6答案 B解析 ∵1°=π180 rad ,∴-300°=-5π3 rad.2.8π5弧度化为角度是( ) A .278° B .280° C .288° D .318°答案 C 解析 ∵1 rad =⎝⎛⎭⎪⎫180π°,∴8π5=8π5×⎝ ⎛⎭⎪⎫180π°=288°.3.[2016·清华附中月考]若角α,β的终边关于y 轴对称,则α,β的关系一定是( ) A .α+β=π B .α-β=π2C .α-β=(2k +1)π(k ∈Z )D .α+β=(2k +1)π(k ∈Z ) 答案 D解析 本题考查关于y 轴对称的两个角之间的关系.角α,β的终边关于y 轴对称,则画图可知α+β=(2k +1)π(k ∈Z ),D 选项正确;也可以用特殊值方法,例如取α=π4,β=3π4或α=-π4,β=-3π4,结合选项可知D 正确.故选D. 4.[2016·兰州一中高一期末]已知扇形的圆心角的弧度数为2,扇形的弧长为4,则扇形的面积为( )A .2B .4C .8D .16答案 B解析 由S =12lR 及|α|=l R ,得S =12l 2|α|=12·422=4.5.[2016·浙江永嘉高一月考]集合⎩⎪⎨⎪⎧α⎪⎪⎪ k π+π4≤α≤k π+π2,} k ∈Z 中的角所表示的范围(阴影部分)是()答案 C解析 当k =2m ,m ∈Z 时,2m π+π4≤α≤2m π+π2,m ∈Z ;当k =2m +1,m ∈Z 时,2m π+5π4≤α≤2m π+3π2,m ∈Z ,所以选C.二、填空题(每小题5分,共15分) 6.角度制与弧度制间的互化:(1)1095°=__________rad ;(2)-94π=__________.答案 (1)7312π (2)-405°解析 (1)1095°=1095×π180=73π12.(2)-94π=-94π×⎝ ⎛⎭⎪⎫180π°=-405°. 7.若圆的半径为6 cm ,则15°的圆心角所对的弧长为________,扇形面积为________.(用π表示)答案π2 cm 32π cm 2解析 15°=15×π180=π12,l =|α|·r =π12×6=π2cm , S =12l ·r =12×π2×6=32π cm 2.8.圆的半径变为原来的3倍,而所对弧长不变,则该弧所对圆心角是原来圆弧所对圆心角的________.答案 13解析 本题考查弧长公式的应用.设原来圆的半径为r ,弧长为l ,圆心角为α,则l =αr ,设将圆的半径变为原来的3倍后圆心角为α1,则α1=l 3r =αr 3r =α3,故α1α=13.三、解答题(每小题10分,共20分) 9.已知α=-800°.(1)把α改写成β+2k π(k ∈Z,0≤β<2π)的形式,并指出α是第几象限角; (2)求角γ,使γ与角α的终边相同,且γ∈⎝⎛⎭⎪⎫-π2,π2. 解 (1)∵-800°=-3×360°+280°,280°=149π,∴α=-800°=149π+(-3)×2π.∵角α与14π9终边相同,∴角α是第四象限角.(2)∵与角α终边相同的角可写为2k π+14π9,k ∈Z 的形式,而γ与α终边相同,∴γ=2k π+14π9,k ∈Z .又γ∈⎝ ⎛⎭⎪⎫-π2,π2,∴-π2<2k π+14π9<π2,k ∈Z , 解得k =-1,∴γ=-2π+14π9=-4π9.10.已知扇形的周长为20 cm ,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?解 设扇形的圆心角为α,半径为R cm ,面积为S cm 2,弧长为l cm ,则有l +2R =20,∴l =20-2R ,∴S =12lR =12(20-2R )R =-R 2+10R =-(R -5)2+25.故当半径R =5时,扇形的面积有最大值25 cm 2.此时扇形的圆心角为α=l R =20-2×55=2.[基础自学]一、三角函数的定义 1.单位圆中三角函数的定义设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么: ①y 叫做α的正弦,记作sin α,即sin α=y ; ②x 叫做α的余弦,记作cos α,即cos α=x ; ③yx 叫做α的正切,记作tan α,即tan α=y x(x ≠0). 2.任意角的三角函数的定义直角坐标系中任意大小的角α终边上一点P 的坐标(x ,y ),它到原点的距离是r (r >0),r =x 2+y 2,那么任意角的三角函数的定义:tanαyxtanα=yx⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪α≠kπ+π2,k∈Z记忆口诀:“一全正、二正弦、三正切、四余弦”.三、诱导公式(一)名称符号语言文字语言诱导公式(一)sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)终边相同的角的同名三角函数值相等1.判一判(正确的打“√”,错误的打“×”)(1)sinα,cosα,tanα中可以将“α”与“sin”“cos”“tan”分开.( )(2)同一个三角函数值能找到无数个角与之对应.( )(3)sin253π=sin⎝⎛⎭⎪⎫π3+8π=sinπ3=32.( )提示:(1)×(2)√(3)√2.做一做(1)若sinα<0,且tanα<0,则角α是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角答案 D解析若sinα<0,则α为第三或第四象限角.若tanα<0,则α为第二或第四象限角,故α为第四象限角,选D.(2)计算:sin180°+2cos270°的值为________.答案0解析sin180°+2cos270°=0+2×0=0.(3)tan390°的值为________.答案33解析tan390°=tan(360°+30°)=tan30°=33.课堂合作探究 KETANGHEZUOTANJIU1三角函数值在各象限的符号有什么规律吗?提示:由三角函数的定义知sin α=y r ,cos α=x r ,tan α=y x(r >0),可知角的三角函数值的符号是由角终边上任一点P (x ,y )的坐标确定的,可简记为:一全正,二正弦,三正切,四余弦.2诱导公式一的作用是什么?提示:公式一的作用:把求任意角的三角函数值转化为求0~2π(或0°~360°)角的三角函数值.题型一 求任意角的三角函数值例1 [2015·黑龙江五校联考]已知角θ的终边上有一点P (-3,m ),且sin θ=24m ,求cos θ与tan θ 的值.[解] 由已知有24m =m3+m2, 得m =0,或m =± 5.(1)当m =0时,cos θ=-1,tan θ=0; (2)当m =5时,cos θ=-64,tan θ=-153; (3)当m =-5时,cos θ=-64,tan θ=153. [变式探究] 将例1中的P 点坐标改为(3,m )再去求解. 解 ∵24m =mm 2+3,∴m =0或m =±5, 当m =0时,cos θ=1,tan θ=0; 当m =5时,cos θ=64,tan θ=153; 当m =-5时,cos θ=64,tan θ=-153.利用三角函数的定义求值的策略(1)求一个角的三角函数值,需确定三个量:角的终边上异于原点的点的横、纵坐标及其到原点的距离.(2)若终边在直线上时,因为角的终边是射线,应分两种情况处理.(3)若已知角,则需确定出角的终边与单位圆的交点坐标.【跟踪训练1】 已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线y =2x 上,则2cos 2θ-1=( )A .-45B .-35C.35D.45答案 B解析 设P (t,2t )(t ≠0)为角θ终边上任意一点,则 cos θ=t5|t |. 当t >0时,cos θ=55;当t <0时,cos θ=-55. ∴2cos 2θ-1=25-1=-35.题型二 三角函数值的符号例2 (1)α是第四象限角,判断sin α·tan α的符号; (2)若sin α|sin α|+|cos α|cos α=0,试判断α所在象限.[解] (1)∵α是第四象限角,∴sin α<0,tan α<0,∴sin α·tan α>0. (2)由条件知,sin α与cos α异号. ∴α是第二象限角或第四象限角.[变式探究] 将例2(1)中α改为第三象限角,则sin α·tan α的符号如何? 解 ∵α是第三象限角,∴sin α<0,tan α>0,∴sin α·tan α<0.熟记各象限函数值的符号准确确定三角函数中角所在象限是基础,准确记忆三角函数在各象限的符号并牢记记忆口诀“一全正,二正弦,三正切,四余弦”是解决这类问题的关键.【跟踪训练2】 (1)若sin α=-2cos α,判断sin α·tan α的符号;(2)判断符号:sin3·cos4·tan ⎝ ⎛⎭⎪⎫-23π4.解 (1)∵sin α=-2cos α,∴sin α与cos α异号. ∴α是第二或第四象限角.当α是第二象限角时,tan α<0,sin α>0,∴sin α·tan α<0. 当α是第四象限角时,tan α<0,sin α<0,∴sin α·tan α>0.(2)∵π2<3<π,π<4<3π2,∴sin3>0,cos4<0.∵-23π4=-6π+π4,∴tan ⎝⎛⎭⎪⎫-23π4>0. ∴sin3·cos4·tan ⎝ ⎛⎭⎪⎫-234π<0.题型三 诱导公式(一)的应用 例3 计算下列各式的值:(1)sin(-1395°)cos1110°+cos(-1020°)sin750°;(2)sin ⎝⎛⎭⎪⎫-11π6+cos 12π5·tan4π. [解] (1)原式=sin(-4×360°+45°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin45°cos30°+cos60°sin30°=22×32+12×12=64+14=1+64. (2)原式=sin ⎝ ⎛⎭⎪⎫-2π+π6+cos ⎝⎛⎭⎪⎫2π+2π5·tan(4π+0)=sin π6+cos 2π5×0=12.利用诱导公式化简(1)将已知角化为k ·360°+α(k 为整数,0°≤α<360°)或2k π+β(k 为整数,0≤β<2π)的形式.(2)将原三角函数值化为角α的同名三角函数值.(3)借助特殊角的三角函数值或任意角三角函数的定义达到化简求值的目的.【跟踪训练3】 求值: (1)cos 25π3+tan ⎝ ⎛⎭⎪⎫-154π; (2)sin810°+ta n765°+tan1125°+cos360°. 解 (1)原式=cos(8π+π3)+tan ⎝ ⎛⎭⎪⎫-4π+π4=cos π3+tan π4=12+1=32.(2)原式=sin(2×360°+90°)+tan(2×360°+45°)+tan(3×360°+45°)+cos(360°+0°)=sin90°+tan45°+tan45°+cos0°=1+1+1+1=4.[规律小结]1.对三角函数定义的理解(1)三角函数也是一种函数,它满足函数的定义,可以看成是从一个角的集合(弧度制)到一个比值的集合的对应,并且对任意一个角,在比值集合中都有唯一确定的象与之对应.三角函数的自变量是角α,比值是角α的函数.(2)三角函数是用比值来定义的,所以三角函数的定义域是使比值有意义的角的范围.如在求正切时,若点P 的横坐标x 等于0,则tan α无意义.(3)三角函数值是比值,是一个实数,这个实数的大小和点P (x ,y )在终边上的位置无关,只由角α的终边位置确定.即三角函数值的大小只与角有关.2.三角函数值在各象限内的符号(1)三角函数值的符号是根据三角函数的定义,由各象限内点的坐标的符号得出的. (2)对正弦、余弦、正切函数值的符号可用下列口诀记忆:“一全正,二正弦,三正切,四余弦”,该口诀表示:第一象限全是正值,第二象限正弦是正值,第三象限正切是正值,第四象限余弦是正值.3.诱导公式一的理解及其应用(1)公式一的实质是说终边相同的角的三角函数值相等.(2)公式一的结构特征:①左、右为同一三角函数;②公式左边的角为α+k ·2π,右边的角为α.(3)公式一的作用:把求任意角的三角函数值转化为求0~2π(或0°~360°)范围内角的三角函数值.[走出误区]易错点⊳求三角函数定义域的误区[典例] 求满足y =sin x ·tan x 的x 的取值范围. [错解档案] 由题意知,只需要sin x ·tan x ≥0.即⎩⎪⎨⎪⎧sin x ≥0tan x ≥0①或⎩⎪⎨⎪⎧sin x ≤0tan x ≤0②对①可知x 为第一象限角或终边在x 轴或y 轴上的角. 对②可知x 为第四象限角或终边在x 轴或y 轴上的角. 因此x的取值范围为⎩⎪⎨⎪⎧x ⎪⎪⎪ 2k π-π2≤x <2k π或2k π<x ≤2k π+π2或x =⎭⎬⎫k π2,k ∈Z .[误区警示] 求y =sin x ·tan x 的x 取值范围时没有考虑tan x 的条件,致使思考问题不周全而出错.[规范解答] 所求x 应满足⎩⎪⎨⎪⎧sin x ·tan x ≥0,x ≠k π+π2k ∈Z ,即⎩⎪⎨⎪⎧sin x ≥0,tan x ≥0,x ≠k π+π2k ∈Z ,或⎩⎪⎨⎪⎧sin x ≤0,tan x ≤0,x ≠k π+π2k ∈Z .根据x 所在象限情况可判断x 的取值范围是⎩⎨⎧⎭⎬⎫x 2k π-π2<x <2k π或2k π<x <2k π+π2或x =k π,k ∈Z .矫正训练 求y =cos xsin x的x 的取值范围. 解 ∵cos x ≥0∴x 为第一、四象限角或x 轴非负半轴上的角或y 轴上 又∵sin x ≠0 ∴x 不能在x 轴上∴x 为第一或第四象限角或y 轴上.x 的取值范围是⎩⎪⎨⎪⎧x ⎪⎪⎪ -π2+2k π≤x <2k π或2k π<x ≤2k π+⎭⎬⎫π2,k ∈Z。
人教a版必修4学案:1.1.1任意角(含答案)
第一章三角函数§1.1任意角和弧度制1.1.1任意角自主学习知识梳理1.角的概念(1)角的概念:角可以看成平面内________________绕着________从一个位置________到另一个位置所成的图形.(2)角的分类:按旋转方向可将角分为如下三类:类型定义图示正角按______________________形成的角负角按________________形成的角零角一条射线________________,称它形成了一个零角2.象限角角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是______________.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=____________},即任一与角α终边相同的角,都可以表示成角α与____________的和.4.终边落在坐标轴上角的集合终边所在的位置角的集合x轴正半轴x轴负半轴x轴y轴正半轴y轴负半轴y轴自主探究终边落在各个象限的角的集合.α终边所在的象限角α的集合第一象限第二象限第三象限第四象限对点讲练知识点一终边相同的角与象限角例1在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°;(3)-950°15′.回顾归纳 解答本题可先利用终边相同的角的关系:β=α+k ·360°,k ∈Z ,把所给的角化归到0°~360°范围内,然后利用0°~360°范围内的角分析该角是第几象限角. 变式训练1 判断下列角的终边落在第几象限内: (1)1 400°; (2)-2 010°.知识点二 终边相同的角的应用例2 已知,如图所示,(1)写出终边落在射线OA ,OB 上的角的集合; (2)写出终边落在阴影部分(包括边界)的角的集合.回顾归纳 解答此类题目应先在0°~360°上写出角的集合,再利用终边相同的角写出符合条件的所有角的集合,如果集合能化简的还要化成最简.变式训练2 如图所示,写出终边落在阴影部分的角的集合.知识点三 角的象限的判断例3 已知α是第二象限角,试确定2α,α2的终边所在的位置.回顾归纳 若已知角α是第几象限角,判断α2,α3等是第几象限角,主要方法是解不等式并对k 进行分类讨论.考查角的终边的位置.变式训练3 已知α为第三象限角,则α2所在的象限是( )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限1.对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转幅度”决定角的“绝对值大小”.2.关于终边相同角的认识一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z },即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.注意:(1)α为任意角.(2)k ·360°与α之间是“+”号,k ·360°-α可理解为k ·360°+(-α).(3)相等的角,终边一定相同;终边相同的角不一定相等,终边相同的角有无数多个,它们相差360°的整数倍.(4)k ∈Z 这一条件不能少.课时作业一、选择题 1.与405°角终边相同的角是( ) A .k ·360°-45°,k ∈Z B .k ·180°-45°,k ∈Z C .k ·360°+45°,k ∈Z D .k ·180°+45°,k ∈Z 2.若α=45°+k ·180° (k ∈Z ),则α的终边在( ) A .第一或第三象限 B .第二或第三象限 C .第二或第四象限 D .第三或第四象限 3.若角α与β的终边相同,则α-β的终边落在( ) A .x 轴的正半轴 B .x 轴的负半轴 C .y 轴的正半轴 D .y 轴的负半轴 4.若α是第四象限角,则180°-α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 5. 如图,终边落在阴影部分(含边界)的角的集合是( )A .{α|-45°≤α≤120°}B .{α|120°≤α≤315°}C .{α|k ·360°-45°≤α≤k ·360°+120°,k ∈Z }D .{α|k ·360°+120°≤α≤k ·360°+315°,k ∈Z }二、填空题6.经过10分钟,分针转了________度.7.下列命题:①第一象限角都是锐角;②锐角都是第一象限角;③第一象限角一定不是负角;④第二象限角大于第一象限角;⑤第二象限角是钝角;⑥小于180°的角是钝角、直角或锐角.其中判断错误的是______.(把有关命题的序号写上即可)8.若α=1 690°,角θ与α终边相同,且-360°<θ<360°,则θ=________.三、解答题9.在与角-2 010°终边相同的角中,求满足下列条件的角.(1)最小的正角;(2)最大的负角;(3)-720°~720°内的角.10.已知角x的终边落在图示阴影部分区域,写出角x组成的集合.第一章三角函数§1.1任意角和弧度制1.1.1任意角知识梳理1.(1)一条射线端点旋转(2)类型定义图示正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角零角一条射线没有作任何旋转,称它形成了一个零角3.α+k·360°,k∈Z整数个周角4.终边所在的位置角的集合x轴正半轴{α|α=k·360°,k∈Z}x轴负半轴{α|α=k·360°+180°,k∈Z}x轴{α|α=k·180°,k∈Z}y轴正半轴{α|α=k·360°+90°,k∈Z}y轴负半轴{α|α=k·360°+270°,k∈Z}y轴{α|α=k·180°+90°,k∈Z}自主探究α终边所在的象角α的集合限第一{α|k·360°<α<k·360°+90°,k∈Z}象限第二{α|k·360°+90°<α<k·360°+180°,k∈Z}象限第三{α|k·360°+180°<α<k·360°+270°,k∈Z}象限第四{α|k·360°-90°<α<k·360°,k∈Z}象限对点讲练例1解(1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.变式训练1解(1)1 400°=3×360°+320°,∵320°是第四象限角,∴1 400°也是第四象限角.(2)-2 010°=-6×360°+150°,∴-2 010°与150°终边相同.∴-2 010°是第二象限角.例2解(1)终边落在射线OA上的角的集合是{α|α=k·360°+210°,k∈Z}.终边落在射线OB上的角的集合是{α|α=k·360°+300°,k∈Z}.(2)终边落在阴影部分(含边界)角的集合是{α|k·360°+210°≤α≤k·360°+300°,k∈Z}.变式训练2解设终边落在阴影部分的角为α,角α的集合由两部分组成.(1){α|k·360°+30°≤α<k·360°+105°,k∈Z}.(2){α|k·360°+210°≤α<k·360°+285°,k∈Z}.∴角α的集合应当是集合(1)与(2)的并集:{α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)·180°+30°≤α<(2k+1)·180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°或(2k+1)·180°+30°≤α<(2k+1)·180°+105°,k∈Z}={α|k ·180°+30°≤α<k ·180°+105°,k ∈Z }. 例3 解 因为α是第二象限角, 所以k ·360°+90°<α<k ·360°+180°,k ∈Z . 所以2k ·360°+180°<2α<2k ·360°+360°,k ∈Z ,所以2α的终边在第三或第四象限或终边在y 轴的非正半轴上. 因为k ·360°+90°<α<k ·360°+180°,k ∈Z ,所以k ·180°+45°<α2<k ·180°+90°,k ∈Z ,所以当k =2n ,n ∈Z 时,n ·360°+45°<α2<n ·360°+90°,即α2的终边在第一象限; 当k =2n +1,n ∈Z 时,n ·360°+225°<α2<n ·360°+270°,即α2的终边在第三象限.所以α2的终边在第一或第三象限.变式训练3 D [由于k ·360°+180°<α<k ·360°+270°,k ∈Z , 得k 2·360°+90°<α2<k 2·360°+135°. 当k 为偶数时,α2为第二象限角;当k 为奇数时,α2为第四象限角.]课时作业 1.C 2.A3.A [∵α=β+k ·360°,k ∈Z , ∴α-β=k ·360°,k ∈Z .]4.C [可以给α赋一特殊值-60°,则180°-α=240°,故180°-α是第三象限角.]5.C [与边界终边相同的角为k ·360°+120°或k ·360°-45°.故阴影部分的角为k ·360°-45°≤α≤k ·360°+120°,k ∈Z .] 6.-607.①③④⑤⑥解析 ①390°角是第一象限角,可它不是锐角,所以①不正确.②锐角是大于0°且小于90°的角,终边落在第一象限,故是第一象限角,所以②正确. ③-330°角是第一象限角,但它是负角,所以③不正确.④120°角是第二象限角,390°是第一象限角,显然390°>120°,所以④不正确. ⑤480°角是第二象限角,但它不是钝角,所以⑤不正确.⑥0°角小于180°,但它既不是钝角,也不是直角或锐角,故⑥不正确. 8.-110°或250°解析 ∵α=1 690°=4×360°+250°,∴θ=k ·360°+250°,k ∈Z .∵-360°<θ<360°, ∴k =-1或0. ∴θ=-110°或250°.9.解(1)∵-2 010°=-6×360°+150°,∴与角-2 010°终边相同的最小正角是150°.(2)∵-2 010°=-5×360°+(-210°),∴与角-2 010°终边相同的最大负角是-210°.(3)∵-2 010°=-6×360°+150°,∴与-2 010°终边相同也就是与150°终边相同.由-720°≤k·360°+150°<720°,k∈Z,解得:k=-2,-1,0,1.代入k·360°+150°依次得:-570°,-210°,150°,510°.10.解(1){x|k·360°-135°≤x≤k·360°+135°,k∈Z}.(2){x|k·360°+30°≤x≤k·360°+60°,k∈Z}∪{x|k·360°+210°≤x≤k·360°+240°,k∈Z}={x|2k·180°+30°≤x≤2k·180°+60°或(2k+1)·180°+30°≤x≤(2k+1)·180°+60°,k∈Z}={x|k·180°+30°≤x≤k·180°+60°,k∈Z}.。
人教版高中数学必修4第一章三角函数-《1.1.1任意角》教案_001
1.1.1 任意角教学目的:使学生认识角的始边、终边,知道什么是正角、负角、零度角,0到360 度以外的角,会用集合表示与角α终边相同的角。
教学重点:任意角的理解与表示方法。
教学难点:用集合表示与角α终边相同的角。
教学过程一、新课引入在体操中旋转1周多少度?旋转2周呢?旋转3周呢?二、新课1、角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
如图,从起始位置OA逆时针方向旋转到终止位置OB,形成一个角α,射线OA、OB分别是角α的始边和终边。
2、任意角体操中,旋转2周(720°),旋转3周(1080°),角度大于360°,有没有负角呢?我们规定:按逆时针方向旋转形成的角叫正角,按顺时针方向旋转形成的角叫做负角;如果一条射线没有作任何旋转,我们称它形成了一个零角,零角的始边与终边重合,若α是零角,则α=0°。
角包括正角、负角和零角,时针旋转形成的角都是负角。
角的顶点与原点重合,角的绐边与x轴非负半轴重合,那么,角的终边在第几象限,我们就说这个角在第几象限,如果角的终边在坐标轴上,就认为这个角不属于任何一个象限。
3、终边相同角的表示328°=-32°+360°-392°=-32°-360°设S={β|β=-32°+k·360°,k∈Z}328°、-392°、-32°角都是S的元素,因此,所有与-32°角终边相同的角,连同-32°角在内,都是集合S的元素;反过来,集合S的任一元素显然与-32°角终边相同。
所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k·360°,k∈Z}即任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和。
4、例题讲解例1、在0°-360°范围内,找出与-950°12′角终边相同的角,并判定它是第几象限的角。
高中数学人教A版必修4导学案设计:1.1.1任意角(无答案)
章节1.1.1 课题任意角教学目标1.了解角的概念推广的必要性,掌握任意角的的概念与分类;2.掌握象限角的定义,会判定给定的角是第几象限角;3.掌握所有与角α终边相同的角(包括角α)的集合表示。
教学重点理解正角、负角和零角和象限角的定义,掌握终边相同角的表示方法及判断。
教学难点把终边相同的角用集合和数学符号语言表示出来。
【复习回顾】1.已知{}A=2,x x k k Z=∈集合,集合{}B=21,x x k k Z=+∈则A B=U。
2.在初中,我们是如何定义角的?所研究的角的范围是什么?答:从一个点出发的两条射线组成的几何图形叫做角。
它是从图形的形状来定义角,称为静态定义。
这种定义的优点是形象、直观,但角的范围只是]360,0[00,不能准确地描述自然界中的很多现象。
课前预习案【新知探究】探究一、角的概念的推广及分类问题1:根据下面角的图形给角一个动态的定义,并指出动态定义下角的三要素。
ABαO问题2:根据始边旋转的方向,你能对推广后的角进行分类吗?问题3:根据上述分类方式,说明钟表的时针或分针在旋转时所形成的角是什么角?如果你的手表慢了20分钟,或快了1个半小时,你应当如何以最快的速度将它校准?问题4:任意两个角的数量大小可以相加、相减,如300120000︒︒=︒︒︒=︒+9,3-9-6,你能解释一下这两个式子的几何意义吗?例题2.写出终边在下列位置的角的集合。
(1)x 轴; (2)y 轴; (3)坐标轴例题3.写出终边在直线y x =-上的角的集合S ,并把S 中适合不等式-360°≤β<720°的元素写出来.课后达标案【达标检测】A 组1、下列命题正确的是( )A 、终边相同的角一定相等B 、第一象限角都是锐角C 、锐角都是第一象限角D 、小于90°的角都是锐角 2、已知角α是第三象限角,则角180α-o的终边在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 3、与517︒-的终边相同的角可表示为( )A 、360517()k k Z +∈o o gB 、360157()k k Z +∈o og C 、360203()k k Z +∈oogD 、360203()k k Z -∈oog 4、若角α与角β的终边垂直,则α与β的关系是( ) A 、β=α+90° B 、β=α±90°C 、β=k ·360°+α+90°,k ∈ZD 、β=k ·360°+α±90°,k ∈Z5、设,,则相等的集合有哪些?B 组6、A={小于90°的角},B={第一象限角},则A ∩B=( ) A 、{锐角} B 、{小于90°的角} C 、{第一象限角} D 、以上都不对7、如图,已知角的终边所在的区域,写出角的取值范围。
高中数学必修四1.1.1任意角教案新人教A版必修4
1.1.1 任意角一、引入:1.回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角.②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.二、新课:1.角的有关概念:①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.②角的名称:③角的分类:④注意:⑴在不引起混淆的情况下,“角α”或“∠α”可以简化成“α”;⑵零角的终边与始边重合,如果α是零角α=0°;⑶角的概念经过推广后,已包括正角、负角和零角.⑤练习:请说出角α、β、γ各是多少度?2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.例1.如图⑴⑵中的角分别属于第几象限角?例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.⑴ 60°;⑵ 120°;⑶ 240°;⑷ 300°;⑸ 420°;⑹ 480°;答:分别为1、2、3、4、1、2象限角.3.探究:教材P3面终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合S ={ β| β= α+ k ·360°,k ∈Z },即任一与角α终边相同的角,都可以表示成角α与整个周角的和.注意:⑴k ∈Z⑵α是任一角;⑶终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差360°的整数倍;⑷角α+ k ·720°与角α终边相同,但不能表示与角α终边相同的所有角.正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角⑵B 1y ⑴Ox 45°B 2O x B 3y30°60o 负角:按顺时针方向旋转形成的角始边终边顶点 A O B例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.⑴-120°;⑵640°;⑶-950°12'.答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角;例4.写出终边在y轴上的角的集合(用0°到360°的角表示) .解:{α| α= 90°+ n·180°,n∈Z}.例5.写出终边在xy上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.4.课堂小结①角的定义;②角的分类:③象限角;④终边相同的角的表示法.5.课后作业:①阅读教材P2-P5;②教材P5练习第1-5题;③教材P.9习题1.1第1、2、3题思考题:已知α角是第三象限角,则2α,2各是第几象限角?解:角属于第三象限,k·360°+180°<α<k·360°+270°(k∈Z)因此,2k·360°+360°<2α<2k·360°+540°(k∈Z)即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z)故2α是第一、二象限或终边在y轴的非负半轴上的角.又k·180°+90°<2<k·180°+135°(k∈Z) .当k为偶数时,令k=2n(n∈Z),则n·360°+90°<2<n·360°+135°(n∈Z) ,此时,2属于第二象限角当k为奇数时,令k=2n+1 (n∈Z),则n·360°+270°<2<n·360°+315°(n∈Z) ,此时,2属于第四象限角因此2属于第二或第四象限角.正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角。
人教版高中数学必修4教案学案:1.1.1任意角(教、学案)
1. 1.1任意角一、教材分析“任意角的三角函数”是本章教学内容的基本概念,它又是学好本章教学内容的关键。
它是学生在学习了锐角三角函数后,对三角函数有一定的了解的基础上,进行的推广。
它又是下面学习平面向量、解析几何等内容的必要准备。
并且,通过这部分内容的学习,可以帮助学生更加深入理解函数这一基本概念。
二、教学目标1.理解任意角的概念;2.学会建立直角坐标系讨论任意角,判断象限角,掌握终边相同角的集合的书写。
三、教学重点难点1.判断已知角所在象限; 2.终边相同的角的书写。
四、学情分析 五、教学方法1.本节教学方法采用教师引导下的讨论法,通过多媒体课件在教师的带领下,学生发现就概念、就方法的不足之处,进而探索新的方法,形成新的概念,突出数形结合思想与方法在概念形成与形式化、数量化过程中的作用,是一节体现数学的逻辑性、思想性比较强的课. 2.学案导学:见后面的学案。
3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习六、课前准备七、课时安排:1课时 八、教学过程 (一)复习引入:1.初中所学角的概念。
2.实际生活中出现一系列关于角的问题。
(二)新课讲解:1.角的定义:一条射线绕着它的端点O ,从起始位置OA 旋转到终止位置OB ,形成 一个角α,点O 是角的顶点,射线,OA OB 分别是角α的终边、始边。
说明:在不引起混淆的前提下,“角α”或“α∠”可以简记为α. 2.角的分类:正角:按逆时针方向旋转形成的角叫做正角; 负角:按顺时针方向旋转形成的角叫做负角;零角:如果一条射线没有做任何旋转,我们称它为零角。
说明:零角的始边和终边重合。
3.象限角:在直角坐标系中,使角的顶点与坐标原点重合,角的始边与x 轴的非负轴重合,则 (1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。
例如:30,390,330-都是第一象限角;300,60-是第四象限角。
2020-2021高中数学必修4学案:1.1.1 任意角
1.1.1任意角考试标准课标要点学考要求高考要求任意角的概念 a a终边相同的角的表示b b象限角的概念 b b注:“a”表示“了解”,“b”表示“理解”,“c”表示“掌握”.知识导图学法指导1.结合实例明确任意角的概念.2.本节的重点是理解并掌握正角、负角、零角的概念,掌握用集合的形式表示终边相同的角,并会判断角的终边所在的象限.1.角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.2.角的表示顶点:用O表示;始边:用OA表示,用语言可表示为起始位置;终边:用OB表示,用语言可表示为终止位置.状元随笔(1)在画图时,常用带箭头的弧来表示旋转的方向.(2)为了简单起见,在不引起混淆的前提下,“角α”或“∠α”可以简记成“α”.3.角的分类类型定义图示正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角零角一条射线没有作任何旋转,称它形成了一个零角4.象限角在直角坐标系中研究角时,当角的顶点与原点重合,角的始边与x 轴的非负半轴重合时,角的终边在第几象限,就说这个角是第几象限角,如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.5.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.状元随笔(1)α为任意角,“k∈Z”这一条件不能漏.(2)k·360 °与α中间用“+”连接,k·360 °-α可理解成k·360 °+(-α).(3)当角的始边相同时,相等的角的终边一定相同,而终边相同的角不一定相等.终边相同的角有无数个,它们相差360 °的整数倍.终边不同则表示的角一定不同.[小试身手]1.判断下列命题是否正确. (正确的打“√”,错误的打“×”)(1)角的始边、终边是确定的,角的大小是确定的.()(2)第一象限的角一定是锐角.()(3)终边相同的角是相等的角.()答案:(1)×(2)×(3)×2.下列各角:-60°,126°,-63°,0°,99°,其中正角的个数是()A.1B.2C.3D.4解析:结合正角、负角和零角的概念可知,126°,99°是正角,-60°,-63°是负角,0°是零角,故选B.答案:B3.与30°角终边相同的角的集合是()A.{α|α=30°+k·360°,k∈Z}B.{α|α=-30°+k·360°,k∈Z}C.{α|α=30°+k·180°,k∈Z}D.{α|α=-30°+k·180°,k∈Z}解析:由终边相同的角的定义可知与30°角终边相同的角的集合是{α|α=30°+k·360°,k∈Z}.答案:A4.2019°是第()象限角()A.一B.二C.三D.四解析:2019°=360°×5+219°,180°<219°<270°,∴2019°是第三象限角.答案:C类型一任意角的概念及应用例1(1)若角的顶点在原点,角的始边与x轴的非负半轴重合,给出下列四个命题:①0°角是第一象限角;②相等的角的终边一定相同;③终边相同的角有无限多个;④与-30°角终边相同的角都是第四象限角.其中正确的有()A.1个B.2个C.3个D.4个(2)时针走过2小时40分,则分针转过的角度是________.【解析】(1)①错误,0°角是象限界角;②③④正确.(2)分针按顺时针方向转动,则转过的角度是负角为-360°×22 3=-960°.【答案】(1)C(2)-960°按照象限分类,角可以分为象限角和象限界角;角的正负是由终边的旋转方向决定的.分针1个小时转过的角度的绝对值是360 °.方法归纳与角的概念有关问题的解决方法正确解答角的概念问题,关键在于正确理解象限角与锐角、直角、差90°的整数倍.跟踪训练2写出与下列各角终边相同的角的集合S,并把S中满足-360°≤α<720°的元素写出来.(1)α=60°;(2)α=-210°;(3)α=364°13′.解析:(1)S={α|α=60°+k·360°,k∈Z}.当k=-1时,α=-300°;当k=0时,α=60°;当k=1时,α=420°.∴S中满足-360°≤α<720°的元素是-300°,60°,420°.(2)S={α|α=-210°+k·360°,k∈Z}.当k=0时,α=-210°;当k=1时,α=150°;当k=2时,α=510°.∴S中满足-360°≤α<720°的元素是-210°,150°,510°.(3)S={α|α=364°13′+k·360°,k∈Z}.当k=-2时,α=-355°47′;当k=-1时,α=4°13′;当k=0时,α=364°13′.∴S中满足-360°≤α<720°的元素是-355°47′,4°13′,364°13′.求与已知角α终边相同的角时,首先将这样的角表示成k·360 °+α(k∈Z)的形式,然后采用赋值法求解相应不等式,确定k的值,求出满足条件的角.类型三象限角与区间角的表示例3(1)若α是第四象限角,则-α一定在()A.第一象限B.第二象限C.第三象限D.第四象限(2)写出终边落在图中阴影部分(包括边界)的角的集合.【解析】(1)因为α是第四象限角,所以k·360°-90°<α<k·360°,k∈Z.所以-k·360°<-α<-k·360°+90°,k∈Z,由此可知-α是第一象限角.(2)若角α的终边落在OA上,则α=30°+360°·k,k∈Z.若角α的终边落在OB上,则α=135°+360°·k,k∈Z.所以,角α的终边落在图中阴影区域内时,30°+360°·k≤α≤135°+360°·k,k∈Z.故角α的取值集合为{α|30°+360°·k≤α≤135°+360°·k,k∈Z}.【答案】(1)A(2)见解析依题意写出α的范围,再求-α的范围.由图写出终边OA表示的角,终边OB表示的角,再求阴影的范围.方法归纳象限角的判定方法(1)根据图象判定.依据是终边相同的角的概念,因为0°~360°之间的角的终边与坐标系中过原点的射线可建立一一对应的关系.(2)将角转化到0°~360°范围内.在直角坐标平面内,在0°~360°范围内没有两个角终边是相同的.跟踪训练3已知α是第二象限角,则180°-α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:由α是第二象限角可得,90°+k·360°<α<180°+k·360°(k∈Z).所以180°-(90°+k·360°)>180°-α>180°-(180°+k·360°)(k∈Z),即90°-k·360°>180°-α>-k·360°(k∈Z),所以180°-α为第一象限角.答案:A定α的范围→定180 °-α的范围→定180 °-α是第几象限角[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.下列角中,终边在y轴非负半轴上的是()A.45°B.90°C.180°D.270°解析:根据角的概念可知,90°角是以x轴的非负半轴为始边,逆时针旋转了90°,故其终边在y轴的非负半轴上.答案:B2.把一条射线绕着端点按顺时针方向旋转240°所形成的角是()A.120°B.-120°C.240°D.-240°解析:一条射线绕着端点按顺时针方向旋转240°所形成的角是-240°,故选D.答案:D3.与-457°角终边相同的角的集合是()A.{α|α=k·360°+457°,k∈Z}B.{α|α=k·360°+97°,k∈Z}C.{α|α=k·360°+263°,k∈Z}D.{α|α=k·360°-263°,k∈Z}解析:263°=-457°+360°×2,所以263°角与-457°角的终边相同,所以与-457°角终边相同的角可写作α=k·360°+263°,k∈Z.答案:C4.若α为锐角,则下列各角中一定为第四象限角的是()A.90°-αB.90°+αC.360°-αD.180°+α解析:∵0°<α<90°,∴270°<360°-α<360°,故选C.答案:C5.若角α与角β的终边关于y轴对称,则必有()A.α+β=90°B.α+β=k·360°+90°(k∈Z)C.α+β=k·360°(k∈Z)D.α+β=(2k+1)180°(k∈Z)解析:α与β的终边关于y轴对称,则α与180°-β终边相同,故α=180°-β+360°·k,即α+β=(2k+1)·180°,k∈Z.答案:D二、填空题(每小题5分,共15分)6.图中从OA旋转到OB,OB1,OB2时所成的角度分别是________、________、________.解析:图(1)中的角是一个正角,α=390°.图(2)中的角是一个负角、一个正角,β=-150°,γ=60°.答案:390°-150°60°7.已知角α与2α的终边相同,且α∈[0°,360°),则角α=________.解析:由条件知,2α=α+k·360°,所以α=k·360°(k∈Z),因为α∈[0°,360°),所以α=0°.答案:0°8.如图,终边在阴影部分内的角的集合为________________________.解析:先写出边界角,再按逆时针顺序写出区域角,则得{α|30°+k·360°≤α≤150°+k·360°,k∈Z}.答案:{α|30°+k·360°≤α≤150°+k·360°,k∈Z}三、解答题(每小题10分,共20分)9.在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是第几象限角:(1)549°;(2)-60°;(3)-503°36′.解析:(1)549°=189°+360°,而180°<189°<270°,因此,549°角为第三象限角,且在0°~360°范围内,与189°角有相同的终边.(2)-60°=300°-360°,而270°<300°<360°,因此,-60°角为第四象限角,且在0°~360°范围内,与300°角有相同的终边.(3)-503°36′=216°24′-2×360°,而180°<216°24′<270°.因此,-503°36′角是第三象限角,且在0°~360°范围内,与216°24′角有相同的终边.10.如图所示,分别写出适合下列条件的角的集合:(1)终边落在射线OM上;(2)终边落在直线OM上;(3)终边落在阴影区域内(含边界).解析:(1)终边落在射线OM上的角的集合为A={α|α=45°+k·360°,k∈Z}.(2)由(1)得终边落在射线OM上的角的集合为A={α|α=45°+k·360°,k∈Z},终边落在射线OM反向延长线上的角的集合为B={α|α=225°+k·360°,k∈Z},则终边落在直线OM上的角的集合为A∪B={α|α=45°+k·360°,k∈Z}∪{α|α=225°+k·360°,k∈Z}={α|α=45°+2k·180°,k∈Z}∪{α|α=45°+(2k+1)·180°,k∈Z}={α|α=45°+n·180°,n∈Z}.(3)终边落在直线ON上的角的集合为C={β|β=60°+n·180°,n∈Z},则终边落在阴影区域内(含边界)的角的集合为S={α|45°+n·180°≤α≤60°+n·180°,n∈Z}.|能力提升|(20分钟,40分)11.若角α与65°角的终边相同,角β与-115°角的终边相同,那么α与β之间的关系是()A.α+β=-50°B.α-β=180°C.α+β=k·360°+180°(k∈Z)D.α-β=k·360°+180°(k∈Z)解析:由题意可知,α=k1·360°+65°(k1∈Z),β=k2·360°-115°(k2∈Z),所以α-β=(k1-k2)·360°+180°,记k=k1-k2∈Z,故α-β=k·360°+180°(k∈Z).答案:D12.若角α的终边与75°角的终边关于直线y=0对称,且0°<α<360°,则角α的值为________.解析:如图,设75°角的终边为射线OA,射线OA关于直线y=0对称的射线为OB,则以射线OB为终边的一个角为-75°,所以以射线OB为终边的角的集合为{α|α=k ·360°-75°,k ∈Z }.又0°<α<360°,令k =1,得α=285°.答案:285°13.如图,写出终边在直线y =3x 上的角的集合.解析:方法一 终边在y =3x (x ≥0)上的角的集合是S 1={α|α=60°+k ·360°,k ∈Z };终边在y =3x (x ≤0)上的角的集合是S 2={α|α=240°+k ·360°,k ∈Z }.综上,终边在直线y =3x 上的角的集合是S =S 1∪S 2={α|α=60°+k ·360°,k ∈Z }∪{α|α=240°+k ·360°,k ∈Z }={α|α=60°+2k ·180°,k ∈Z }∪{α|α=60°+(2k +1)·180°,k ∈Z }={α|α=60°+n ·180°,n ∈Z }.方法二 如图,观察图形可知,终边在直线y =3x 上的最小正角为60°,其终边每旋转180°便与直线重合,∴终边在y =3x 上的角的集合为S ={α|α=60°+k ·180°,k ∈Z }.14.已知α是第四象限角,则2α,α2各是第几象限角?解析:由题意知k ·360°+270°<α<k ·360°+360°(k ∈Z ),因此2k ·360°+540°<2α<2k ·360°+720°(k ∈Z ),即(2k +1)360°+180°<2α<(2k +1)360°+360°(k ∈Z ),故2α是第三象限角或第四象限角或终边在y 轴非正半轴上的角.又k ·180°+135°<α2<k ·180°+180°(k ∈Z ),当k 为偶数时,令k =2n (n ∈Z ),则n ·360°+135°<α2<n ·360°+180°(n ∈Z ),此时,α2是第二象限角;当k 为奇数时,令k =2n +1(n ∈Z ),则n ·360°+315°<α2<n ·360°+。
高中数学必修四(1.1.1任意角)教案新人教A版必修4
第一章三角函数1.1 任意角和弧度制1.1.1 任意角整体设计教学过程导入新课图1思路 1.(情境导入)如图1,在许多学校的门口都有摆设的一些游戏机,只要指针旋转到阴影部分即可获得高额奖品.由此发问:指针怎样旋转,旋转多少度才能赢?还有我们所熟悉的体操运动员旋转的角度,自行车车轮旋转的角度,螺丝扳手的旋转角度,这些角度都怎样解释?在学生急切想知道的渴望中引入角的概念的推广.进而引入角的概念的推广的问题.思路 2.(复习导入)回忆初中我们是如何定义一个角的?所学的角的范围是什么?用这些角怎样解释现实生活的一些现象,比如你原地转体一周的角度,应怎样修正角的定义才能解释这些现象?由此让学生展开讨论,进而引入角的概念的推广问题.推进新课新知探究提出问题①你的手表慢了5分钟,你将怎样把它调整准确?假如你的手表快了 1.25小时,你应当怎样将它调整准确?当时间调整准确后,分针转过了多少度角?②体操运动中有转体两周,在这个动作中,运动员转体多少度?③请两名男生(或女生、或多名男女学生)起立,做由“面向黑板转体背向黑板”的动作.在这个过程中,他们各转体了多少度?活动:让学生到讲台利用准备好的教具——钟表,实地演示拨表的过程.让学生站立原地做转体动作.教师强调学生观察旋转方向和旋转量,并思考怎样表示旋转方向.对回答正确的学生及时给予鼓励、表扬,对回答不准确的学生提示引导考虑问题的思路.角可以看作是平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形,设一条射线的端点是O,它从起始位置OA按逆时针方向旋转到终止位置OB,则形成了一个角α,点O 是角的顶点,射线OA、OB分别是角α的始边和终边.我们规定:一条射线绕着它的端点按逆时针方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做负角.钟表的时针和分针在旋转过程中所形成的角总是负角,为了简便起见,在不引起混淆的前提下,“角α”或“∠α”可以简记作“α”.如果一条射线没有作任何旋转,我们称它形成了一个零角,零角的始边和终边重合,如果α是零角,那么α=0°.讨论结果:①顺时针方向旋转了30°;逆时针方向旋转了450°.②顺时针方向旋转了720°或逆时针方向旋转了720°.③-180°或+180°或-540°或+540°或900°或 1 080°……提出问题①能否以同一条射线为始边作出下列角:210°,-45°,-150°.②如何在坐标系中作出这些角,象限角是什么意思? 0°角又是什么意思?活动:先让学生看书、思考、并讨论这些问题,教师提示、点拨,并对回答正确的学生及时表扬,对回答不准确的学生,教师提示、引导考虑问题的思路.学生作这样的角,使用一条射线作为始边,没有固定的参照,所以会作出很多形式不同的角.教师可以适时地提醒学生:如果将角放到平面直角坐标系中,问题会怎样呢?并让学生思考讨论在直角坐标系内讨论角的好处:使角的讨论得到简化,还能有效地表现出角的终边“周而复始”的现象.今后我们在坐标系中研究和讨论角,为了讨论问题的方便,我们使角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合.那么角的终边在第几象限,我们就说这个角是第几象限角.要特别强调角与直角坐标系的关系——角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合.讨论结果:①能.②使角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合.角的终边在第几象限,我们就说这个角是第几象限角.这样:210°角是第三象限角;-45°角是第四象限角;-150°角是第三象限角.特别地,终边落在坐标轴上的角不属于任何一个象限,比如0°角.可以借此进一步设问:锐角是第几象限角?钝角是第几象限角?直角是第几象限角?反之如何?将角按照上述方法放在直角坐标系中,给定一个角,就有唯一一条终边与之对应,反之,对于直角坐标系中的任意一条射线OB,以它为终边的角是否唯一?如果不唯一,那么终边相同的角有什么关系?提出问题①在直角坐标系中标出210°,-150°的角的终边,你有什么发现?它们有怎样的数量关系?328°,-32°,-392°角的终边及数量关系是怎样的?终边相同的角有什么关系?②所有与α终边相同的角,连同角α在内,怎样用一个式子表示出来?活动:让学生从具体问题入手,探索终边相同的角的关系,再用所准备的教具或是多媒体给学生演示:演示象限角、终边相同的角,并及时地引导:终边相同的一系列角与0°到360°间的某一角有什么关系,从而为终边相同的角的表示作好准备.为了使学生明确终边相同的角的表示方法,还可以用教具作一个32°角,放在直角坐标系内,使角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,形成-32°角后提问学生这是第几象限角?是多少度角?学生对后者的回答是多种多样的.至此,教师因势利导,予以启发,学生对问题探究的结果已经水到渠成,本节难点得以突破.同时学生也在这一学习过程中,体会到了探索的乐趣,激发起了极大的学习热情,这是比学习知识本身更重要的.讨论结果:①210°与-150°角的终边相同;328°,-32°,-392°角的终边相同.终边相同的角相差360°的整数倍.设S={β|β=-32°+k·360°,k∈Z},则328°,-392°角都是S的元素,-32°角也是S的元素(此时k=0).因此,所有与-32°角的终边相同的角,连同-32°在内,都是集合S的元素;反过来,集合S的任何一个元素显然与-32°角终边相同.②所有与α终边相同的角,连同角α在内,可以构成一个集合S={β|β=k·360°+α,k∈Z}.即任一与角α终边相同的角,都可以表示成α与整数个周角的和.适时引导学生认识:①k∈Z;②α是任意角;③终边相同的角不一定相等,终边相同的角有无数多个,它们相差360°的整数倍.应用示例例1 在0°—360°范围内,找出与-950°12′角终边相同的角,并判定它是第几象限角. 解:-950°12′=129°48′-3×360°,所以在0°—360°的范围内,与-950°12′角终边相同的角是129°48′,它是第二象限的角.点评:教师可引导学生先估计-950°12′大致是360°的几倍,然后再具体求解.例2 写出终边在y轴上的角的集合.活动:终边落在y轴上,应分y轴的正方向与y轴的负方向两个.学生很容易分别写出所有与90°,270°的终边相同的角构成集合,这时应启发引导学生进一步思考:能否化简这两个式子,用一个式子表示出来.让学生观察、讨论、思考,并逐渐形成共识,教师再规范地板书出来.并强调数学的简捷性.在数学表达式子不唯一的情况下,注意采用简约的形式.图2解:在0°—360°范围内,终边在y轴上的角有两个,即90°和270°角,如图 2.因此,所有与90°的终边相同的角构成集合S1={β|β=90°+k·360°,k∈Z}.而所有与270°角的终边相同的角构成集合S2={β|β=270°+k·360°,k∈Z}.于是,终边在y轴上的角的集合S=S1∪S2={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+180°+2k·180°,k∈Z}={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+(2k+1)·180°,k∈Z}={β|β=90°+n·180°,n∈Z}.点评:本例是让学生理解终边在坐标轴上的角的表示.教学中,应引导学生体会用集合表示终边相同的角时,表示方法不唯一,要注意采用简约的形式.变式训练①写出终边在x轴上的角的集合.②写出终边在坐标轴上的角的集合.答案:①S={β|β=(2n+1)·180°,n∈Z}.②S={β|β=n·90°,n∈Z}.例3 写出终边在直线y=x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.图3解:如图3,在直角坐标系中画出直线y=x,可以发现它与x轴夹角是45°,在0°—360°范围内,终边在直线y=x上的角有两个:45°和225°,因此,终边在直线y=x上的角的集合S={β|β=45°+k·360°,k∈Z}∪{β|β=225°+k·360°,k∈Z}.S中适合-360°≤β<720°的元素是:45°-2×180°=-315°,45°-1×180°=-135°,45°+0×180°=45°,45°+1×180°=225°,45°+2×180°=405°,45°+3×180°=585°.点评:本例是让学生表示终边在已知直线的角,并找出某一范围的所有的角,即按一定顺序取k的值,应训练学生掌握这一方法.例4 写出在下列象限的角的集合:①第一象限; ②第二象限;③第三象限; ④第四象限.活动:本题关键是写出第一象限的角的集合,其他象限的角的集合依此类推即可,如果学生阅读例题后没有解题思路,或者把①中的范围写成0°—90°,可引导学生分析360°—450°范围的角是不是第一象限的角呢?进而引导学生写出所有终边相同的角.解:①终边在第一象限的角的集合:{β|n·360°<β<n·360°+90°,n∈Z}.②终边在第二象限的角的集合:{β|n·360°+90°<β<n·360°+180°,n∈Z}.③终边在第三象限的角的集合:{β|n·360°+180°<β<n·360°+270°,n∈Z}.④终边在第四象限的角的集合:{β|n·360°+270°<β<n·360°+360°,n∈Z}.点评:教师给出以上解答后可进一步提问:以上的解答形式是唯一的吗?充分让学生思考、讨论后形成共识,并进一步深刻理解终边相同角的意义.知能训练课本本节练习.解答:1.锐角是第一象限角,第一象限角不一定是锐角;直角不属于任何一个象限,不属于任何一个象限的角不一定是直角;钝角是第二象限角,但是第二象限角不一定是钝角.点评:要深刻认识锐角、直角、钝角和象限角的区别与联系,并理解记忆.为弄清概念的本质属性,还可以再进一步启发设问:锐角一定小于90°吗?小于90°的角一定是锐角吗?钝角一定大于90°吗?大于90°的角一定是钝角吗?答案当然是:不一定.让学生展开讨论,在争论中,将对问题的认识进一步升华,并牢牢的记忆这些基础知识.2.三、三、五.点评:本题的目的是将终边相同的角的符号表示应用到其他周期性问题上.题目联系实际,把教科书中除数360换成每个星期的天数7,利用了“同余”来确定7k天后、7k天前也是星期三,这样的练习难度不大,可以口答.3.(1)第一象限角.(2)第四象限角.(3)第二象限角.(4)第三象限角.点评:能作出给定的角,并判断是第几象限的角.4.(1)305°42′,第四象限角.(2)35°8′,第一象限角.(3)249°30′,第三象限角.点评:能在给定的范围内找出与指定角终边相同的角,并判断是第几象限的角.5.(1){β|β=1 303°8′+k·360°,k∈Z},-496°42′,-136°42′,223°18′.(2){β|β=-225°+k·360°,k∈Z},-585°,-225°,135°.点评:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定的范围内找出与指定的角的终边相同的角.课堂小结以提问的方式与学生一起回顾本节所学内容并简要总结:让学生自己回忆:本节课都学习了哪些新知识?你是怎样获得这些新知识的?你从本节课上都学到了哪些数学方法?让学生自己得到以下结论:本节课推广了角的概念,学习了正角、负角、零角的定义,象限角的概念以及终边相同的角的表示方法,零角是射线没有作任何旋转.一个角是第几象限的角,关键是看这个角的终边落在第几象限,终边相同的角的表示有两方面的内容:(1)与角α终边相同的角,这些角的集合为S={β|β=k·360°+α,k∈Z};(2)在0°—360°内找与已知角终边相同的角α,其方法是用所给的角除以360°,所得的商为k,余数为α(α必须是正数),α即为所找的角.数形结合思想、运动变化观点都是学习本课内容的重要思想方法.作业①课本习题 1.1 A组1、3、5.②预习下一节:弧度制.设计感想1.本节课设计的容量较大,学生的活动量也较大,若用信息技术辅助教学效果会很好.教师可充分利用多媒体做好课件,在课堂上演示给学生;有条件的学校,可以让学生利用计算机或计算器进行探究,让学生在动态中掌握知识、提炼方法.2.本节设计的指导思想是加强直观.利用几何直观有利于对抽象概念的理解.在学生得出象限角的概念后,可以充分让学生讨论在直角坐标系中研究角的好处.前瞻性地引导学生体会:在直角坐标系中角的“周而复始”的变化规律,为研究三角函数的周期性奠定基础.3.几点说明:(1)列举不在0°—360°的角时,应注意所有的角在同一个平面内,且终边在旋转的过程中,角的顶点不动.(2)在研究终边相同的两个角的关系时,k的正确取值是关键,应让学生独立思考领悟.(3)在写出终边相同的角的集合时,可根据具体问题,对相应的集合内容进行复习.。
[人版]高中数学必修四教学案
第一章三角函数1.1任意角和弧度制1.1.1任意角一、教学目标:1、知识与技能(1)推广角的概念、引入大于360︒角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与α角终边相同的角(包括α角)的表示方法;(.二、教学重、难点重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.难点: 终边相同的角的表示.三、学法回忆-观察-讲解-归纳-推广.四、教学设想【创设情境】思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于0360︒︒~之间,这正是我们这节课要研究的主要内容——任意角.【探究新知】1.初中时,我们已学习了0360︒︒~角的概念,它是如何定义的呢?角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置OA,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α.旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点.2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体720︒” (即转体2周),“转体1080︒”(即转体3周)等,都是遇到大于360︒的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于360︒的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性. 为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角如果一条射线没有做任何旋转,我们称它形成了一个零角.如教材图1.1.3(1)中的角是一个正角,它等于750︒;图1.1.3(2)中,正角210α︒=,负角150,660βγ︒︒=-=-;这样,我们就把角的概念推广到了任意角,包括正角、负角和零角. 为了简单起见,在不引起混淆的前提下,“角α”或“α∠”可简记为α.3.在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念.角的顶点与原点重合,角的始边与x 轴的非负半轴重合。
193.高一数学人教A版必修四教案:1.1.1 任意角 Word版含答案
第一章 三角函数1.1任意角和弧度制1.1.1任意角一、教学目标:1、知识与技能(1)推广角的概念、引入大于360︒角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与α角终边相同的角(包括α角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣.(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识.2、过程与方法通过创设情境: “转体720︒,逆(顺)时针旋转”,角有大于360︒角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.3、情态与价值通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.二、教学重、难点重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.难点: 终边相同的角的表示.三、学法与教学用具之前的学习使我们知道最大的角是周角,最小的角是零角.通过回忆和观察日常生活中实际例子,把对角的理解进行了推广.把角放入坐标系环境中以后,了解象限角的概念.通过角终边的旋转掌握终边相同角的表示方法.我们在学习这部分内容时,首先要弄清楚角的表示符号,以及正负角的表示.另外还有相同终边角的集合的表示等.教学用具:电脑、投影机、三角板四、教学设想【创设情境】思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于0360︒︒~之间,这正是我们这节课要研究的主要内容——任意角.【探究新知】1.初中时,我们已学习了0360︒︒~角的概念,它是如何定义的呢?[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α.旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点.2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体720︒” (即转体2周),“转体1080︒”(即转体3周)等,都是遇到大于360︒的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于360︒的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性. 为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positive angle),按顺时针方向旋转所形成的角叫负角(negative angle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zero angle).[展示课件]如教材图1.1.3(1)中的角是一个正角,它等于750︒;图1.1.3(2)中,正角210α︒=,负角150,660βγ︒︒=-=-;这样,我们就把角的概念推广到了任意角(any angle ),包括正角、负角和零角. 为了简单起见,在不引起混淆的前提下,“角α”或“α∠”可简记为α.3.在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念. 角的顶点与原点重合,角的始边与x 轴的非负半轴重合。
2020年高中数学人教A版 必修4 导学案《任意角》(含答案)
1.1.1 任意角[新知初探]1.任意角(1)角的概念:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)角的表示:如图,OA是角α的始边,OB是角α的终边,O是角的顶点.角α可记为“角α”或“∠α”或简记为“α”.(3)角的分类:名称定义图示正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角零角一条射线没有作任何旋转形成的角[点睛] 对角的概念的理解的关键是抓住“旋转”二字:①要明确旋转的方向;②要明确旋转量的大小;③要明确射线未作任何旋转时的位置.2.象限角把角放在平面直角坐标系中,使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.[点睛] 象限角的条件是:角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.[点睛] 对终边相同的角的理解(1)终边相同的角不一定相等,但相等的角终边一定相同;(2)k∈Z,即k为整数这一条件不可少;(3)终边相同的角的表示不唯一.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)-30°是第四象限角.( )(2)钝角是第二象限的角.( )(3)终边相同的角一定相等.( )2.与45°角终边相同的角是( )A.-45° B.225° C.395° D.-315°3.下列说法正确的是( )A.锐角是第一象限角B.第二象限角是钝角C.第一象限角是锐角D.第四象限角是负角4.将35°角的终边按顺时针方向旋转60°所得的角度数为________,将35°角的终边按逆时针方向旋转一周后的角度数________.任意角的概念[典例]A.终边与始边重合的角是零角B.终边和始边都相同的两个角一定相等C.在90°≤β<180°范围内的角β不一定是钝角D.小于90°的角是锐角理解与角的概念有关问题的关键关键在于正确理解象限角与锐角、直角、钝角、平角、周角等的概念,弄清角的始边与终边及旋转方向与大小.另外需要掌握判断结论正确与否的技巧,判断结论正确需要证明,而判断结论不正确只需举一个反例即可.如图,射线OA绕端点O旋转90°到射线OB的位置,接着再旋转-30°到OC的位置,则∠AOC的度数为________.终边相同角的表示[典例] 写出与080°范围内与75°角终边相同的角.1.终边落在直线上的角的集合的步骤(1)写出在0°~360°范围内相应的角;(2)由终边相同的角的表示方法写出角的集合;(3)根据条件能合并一定合并,使结果简洁.2.终边相同角常用的三个结论(1)终边相同的角之间相差360°的整数倍.(2)终边在同一直线上的角之间相差180°的整数倍.(3)终边在相互垂直的两直线上的角之间相差90°的整数倍.[活学活用]分别写出终边在下列各图所示的直线上的角的集合.象限角的判断[典例]作出下列各角,并指出它们是第几象限角.(1)-75°;(2)855°;(3)-510°.象限角的判定方法(1)根据图象判定.依据是终边相同的角的概念,因为0°~360°之间的角的终边与坐标系中过原点的射线可建立一一对应的关系.(2)将角转化到0°~360°范围内.在直角坐标平面内,在0°~360°范围内没有两个角终边是相同的.[活学活用]若α是第四象限角,则180°-α一定在( )A .第一象限B .第二象限C .第三象限D .第四象限角αn,nα(n∈N *)所在象限的确定 [典例] 已知α是第二象限角,求角2所在的象限.[一题多变]1.[变设问]在本例条件下,求角2α的终边的位置.2.[变条件]若角α变为第三象限角,则角α2是第几象限角?倍角、分角所在象限的判定思路(1)已知角α终边所在的象限,确定nα终边所在的象限,可依据角α的范围求出nα的范围,再直接转化为终边相同的角即可.注意不要漏掉nα的终边在坐标轴上的情况. (2)已知角α终边所在的象限,确定αn 终边所在的象限,分类讨论法要对k 的取值分以下几种情况进行讨论:k 被n 整除;k 被n 除余1;k 被n 除余2,…,k 被n 除余n -1.然后方可下结论.几何法依据数形结合思想,简单直观.层级一学业水平达标1.-215°是( )A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角2.下面各组角中,终边相同的是( )A.390°,690° B.-330°,750°C.480°,-420° D.3 000°,-840°3.若α=k·180°+45°,k∈Z,则α所在的象限是( )A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限4.终边在第二象限的角的集合可以表示为( )A.{α|90°<α<180°}B.{α|90°+k·180°<α<180°+k·180°,k∈Z}C.{α|-270°+k·180°<α<-180°+k·180°,k∈Z}D.{α|-270°+k·360°<α<-180°+k·360°,k∈Z}5.将-885°化为α+k·360°(0°≤α<360°,k∈Z)的形式是( )A.-165°+(-2)×360° B.195°+(-3)×360°C.195°+(-2)×360° D.165°+(-3)×360°6.在下列说法中:①时钟经过两个小时,时针转过的角是60°;②钝角一定大于锐角;③射线OA绕端点O按逆时针旋转一周所成的角是0°;④-2 000°是第二象限角.其中错误说法的序号为______(错误说法的序号都写上).7.α满足180°<α<360°,5α与α有相同的始边,且又有相同的终边,那么α=________. 8.若角α=2 016°,则与角α具有相同终边的最小正角为________,最大负角为________.9.在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是第几象限角:(1)549°;(2)-60°;(3)-503°36′.10.已知角的集合M={α|α=30°+k·90°,k∈Z},回答下列问题:(1)集合M中大于-360°且小于360°的角是哪几个?(2)写出集合M中的第二象限角β的一般表达式.层级二应试能力达标1.给出下列四个结论:①-15°是第四象限角;②185°是第三象限角;③475°是第二象限角;④-350°是第一象限角.其中正确的个数为( )A.1 B.2C.3 D.42.若角2α与240°角的终边相同,则α=( )A.120°+k·360°,k∈ZB.120°+k·180°,k∈ZC.240°+k·360°,k∈ZD.240°+k·180°,k∈Z3.若α与β终边相同,则α-β的终边落在( )A.x轴的非负半轴上B.x轴的非正半轴上C.y轴的非负半轴上D.y轴的非正半轴上4.设集合M={α|α=45°+k·90°,k∈Z},N={α|α=90°+k·45°,k∈Z},则集合M与N的关系是( )A.M∩N=∅ B.M N C.N M D.M=N5.从13:00到14:00,时针转过的角为________,分针转过的角为________.6.已知角2α的终边在x轴的上方,那么α是第______象限角.7.试写出终边在直线y=-3x上的角的集合S,并把S中适合不等式-180°≤α<180°的元素α写出来.8.如图,分别写出适合下列条件的角的集合:(1)终边落在射线OB上;(2)终边落在直线OA上;(3)终边落在阴影区域内(含边界).参考答案[小试身手]1.答案:(1)√ (2)√ (3)× 2.答案:D 3.答案:A4.答案:-25° 395°[典例][解析] 终边与始边重合的角还可能是360°,720°,…,故A 错;终边和始边都相同的两个角可能相差360°的整数倍,如30°与-330°,故B 错;由于在90°≤β<180°范围内的角β包含90°角,所以不一定是钝角,C 正确;小于90°的角可以是0°,也可以是负角,故D 错误. [答案] C [活学活用]解析:∠AOC =∠AOB +∠BOC =90°+(-30°)=60°. 答案:60° [典例][解] 与75°角终边相同的角的集合为 S ={β|β=k·360°+75°,k ∈Z}.当360°≤β<1 080°时,即360°≤k·360°+75°<1 080°, 解得1924≤k<21924.又k ∈Z ,所以k =1或k =2.当k =1时,β=435°;当k =2时,β=795°.综上所述,与75°角终边相同且在360°≤β<1 080°范围内的角为435°角和795°角. [活学活用]解:(1)在0°~360°范围内,终边在直线y =0上的角有两个,即0°和180°,因此,所有与0°角终边相同的角构成集合S 1={β|β=0°+k·360°,k ∈Z},而所有与180°角终边相同的角构成集合S 2={β|β=180°+k·360°,k ∈Z},于是,终边在直线y =0上的角的集合为S =S 1∪S 2={β|β=k·180°,k ∈Z}.(2)由图形易知,在0°~360°范围内,终边在直线y =-x 上的角有两个,即135°和315°,因此,终边在直线y =-x 上的角的集合为S ={β|β=135°+k·360°,k ∈Z}∪{β|β=315°+k·360,k ∈Z}={β|β=135°+k·180°,k ∈Z}. [典例][解] 作出各角,其对应的终边如图所示:(1)由图①可知:-75°是第四象限角. (2)由图②可知:855°是第二象限角. (3)由图③可知:-510°是第三象限角. [活学活用]解析:选C ∵α与-α的终边关于x 轴对称,且α是第四象限角,∴-α是第一象限角. 而180°-α可看成-α按逆时针旋转180°得到, ∴180°-α是第三象限角.[典例][解] 法一:∵α是第二象限角, ∴k·360°+90°<α<k·360°+180°(k∈Z). ∴k 2·360°+45°<α2<k2·360°+90°(k∈Z). 当k 为偶数时,令k =2n(n ∈Z),得n·360°+45°<α2<n·360°+90°,这表明α2是第一象限角;当k 为奇数时,令k =2n +1(n ∈Z),得n·360°+225°<α2<n·360°+270°,这表明α2是第三象限角.∴α2为第一或第三象限角. [一题多变]1.解:∵α是第二象限角,∴k·360°+90°<α<k·360°+180°(k∈Z). ∴k·720°+180°<2α<k·720°+360°(k∈Z). ∴角2α的终边在第三或第四象限或在y 轴的非正半轴上.2.解:如图所示,先将各象限分成2等份,再从x 轴正半轴的上方起,按逆时针方向,依次将各区域标上一、二、三、四,则标有三的区域即为角α2的终边所在的区域,故角α2为第二或第四象限角.层级一 学业水平达标1.解析:选B 由于-215°=-360°+145°,而145°是第二象限角,则-215°也是第二象限角.2.解析:选B ∵-330°=-360°+30°,750°=720°+30°, ∴-330°与750°终边相同.3.解析:选A 由题意知α=k·180°+45°,k ∈Z ,当k =2n +1,n ∈Z ,α=2n·180°+180°+45°=n·360°+225°,在第三象限, 当k =2n ,n ∈Z ,α=2n·180°+45°=n·360°+45°,在第一象限. ∴α是第一或第三象限的角.4.解析:选 D 终边在第二象限的角的集合可表示为{α|90°+k·360°<α<180°+k·360°,k ∈Z},而选项D 是从顺时针方向来看的,故选项D 正确. 5.解析:选B -885°=195°+(-3)×360°,0°≤195°<360°,故选B.6.解析:①时钟经过两个小时,时针按顺时针方向旋转60°,因而转过的角为-60°,所以①不正确.②钝角α的取值范围为90°<α<180°,锐角θ的取值范围为0°<θ<90°,因此钝角一定大于锐角,所以②正确.③射线OA 按逆时针旋转一周所成的角是360°,所以③不正确.④-2 000°=-6×360°+160°与160°终边相同,是第二象限角,所以④正确. 答案:①③7.解析:5α=α+k·360°,k ∈Z ,∴α=k·90°,k ∈Z.又∵180°<α<360°,∴α=270°. 答案:270°8.解析:∵2 016°=5×360°+216°,∴与角α终边相同的角的集合为{α|α=216°+k·360°,k ∈Z},∴最小正角是216°,最大负角是-144°.答案:216° -144° 9.解:(1)549°=189°+360°,而180°<189°<270°,因此,549°角为第三象限角,且在0°~360°范围内,与189°角有相同的终边.(2)-60°=300°-360°,而270°<300°<360°,因此,-60°角为第四象限角,且在0°~360°范围内,与300°角有相同的终边.(3)-503°36′=216°24′-2×360°,而180°<216°24′<270°,因此,-503°36′角是第三象限角,且在0°~360°范围内,与216°24′角有相同的终边.10.解:(1)令-360°<30°+k·90°<360°,则-133<k<113,又∵k ∈Z ,∴k =-4,-3,-2,-1,0,1,2,3,∴集合M 中大于-360°且小于360°的角共有8个,分别是-330°,-240°,-150°,-60°,30°,120°,210°,300°. (2)集合M 中的第二象限角与120°角的终边相同, ∴β=120°+k·360°,k ∈Z.层级二 应试能力达标1.解析:选D ①-15°是第四象限角;②180°<185°<270°是第三象限角;③475°=360°+115°,而90°<115°<180°,所以475°是第二象限角;④-350°=-360°+10°是第一象限角,所以四个结论都是正确的.2.解析:选B 角2α与240°角的终边相同,则2α=240°+k·360°,k∈Z,则α=120°+k·180°,k∈Z.选B.3.解析:选A ∵α=β+k·360°,k∈Z,∴α-β=k·360°,k∈Z,∴其终边在x轴的非负半轴上.4.解析:选C 对于集合M,α=45°+k·90°=45°+2k·45°=(2k+1)·45°,即M={α|α=(2k+1)·45°,k∈Z};对于集合N,α=90°+k·45°=2×45°+k·45°=(k+2)·45°,即N={α|α=(k+2)·45°,k∈Z}={α|α=n·45°,n∈Z}.∵2k+1表示所有的奇数,而n表示所有的整数,∴N M,故选C.5.解析:经过一小时,时针顺时针旋转30°,分针顺时针旋转360°,结合负角的定义可知时针转过的角为-30°,分针转过的角为-360°.答案:-30°-360°6.解析:由题意知k·360°<2α<180°+k·360°(k∈Z),故k·180°<α<90°+k·180°(k∈Z),按照k的奇偶性进行讨论.当k=2n(n∈Z)时,n·360°<α<90°+n·360°(n∈Z),∴α在第一象限;当k=2n+1(n∈Z)时,180°+n·360°<α<270°+n·360°(n∈Z),∴α在第三象限.故α是第一或第三象限角.答案:一或三7.解:终边在直线y=-3x上的角的集合S={α|α=k·360°+120°,k∈Z}∪{α|α=k·360°+300°,k∈Z}={α|α=k·180°+120°,k∈Z},其中适合不等式-180°≤α<180°的元素α为-60°,120°.8.解:(1)终边落在射线OB上的角的集合为S1={α|α=60°+k·360°,k∈Z}.(2)终边落在直线OA上的角的集合为S2={α|α=30°+k·180°,k∈Z}.(3)终边落在阴影区域内(含边界)的角的集合为S3={α|30°+k·180°≤α≤60°+k·180°,k∈Z}.。
高中数学 必修四 1.1.1任意角和弧度制
又k∈Z,故所求的最大负角为β=-50°. (2)由360°≤10 030°+k·360°<720°, 得-9670°≤k·360°<-9310°,又k∈Z,解得k=-26. 故所求的角为β=670°.
【方法技巧】 1.在0°到360°范围内找与给定角终边相同的角的方法 (1)一般地,可以将所给的角α 化成k·360°+β 的形式(其中 0°≤β <360°,k∈Z),其中的β 就是所求的角. (2)如果所给的角的绝对值不是很大,可以通过如下方法完成:当所 给角是负角时,采用连续加360°的方式;当所给角是正角时,采用 连续减360°的方式,直到所得结果达到要求为止.
4.将35°角的终边按顺时针方向旋转60°所得的角度数为_______, 将35°角的终边按逆时针方向旋转两周后的角度数________. 【解析】将35°角的终边按顺时针方向旋转60°所得的角为35°60°=-25°,将35°角的终边按逆时针方向旋转两周后的角为 35°+2×360°=755°. 答案:-25° 755°
【解析】(1)错误.终边与始边重合的角是k·360°(k∈Z),不一定 是零角. (2)错误.如-10°与350°终边相同,但是不相等. (3)错误.如-330°角是第一象限角,但它是负角. (4)错误.终边在x轴上的角不属于任何象限. 答案:(1)× (2)× (3)× (4)×
2.下列各组角中,终边不相同的是( )
2.判断角的概念问题的关键与技巧 (1)关键:正确理解象限角与锐角、直角、钝角、平角、周角等概念. (2)技巧:判断一种说法正确需要证明,而判断一种说法错误只要举 出反例即可.
【变式训练】射线OA绕端点O顺时针旋转80°到OB位置,接着逆时针 旋转250°到OC位置,然后再顺时针旋转270°到OD位置,则 ∠AOD=________.
高中数学必修四学案:1.1.1任意角Word版
360 的整数倍 .
2. 学习小结 (1)你知道角是如何推广的吗 ? (2)象限角是如何定义的呢 ? (3)你熟练掌握具有相同终边角 a 的表示了吗 ?
【基础达标】
1.设 E {小于 90o 的角} F { 锐角}, G={ 第一象限的角} ,
,那么有( ).
A.
B.
C.
(
) D.
2.用集合表示: ( 1)各象限的角组成的集合.
疑惑内容
【学习过程】
例 1. 例 1 在 0 360 范围内,找出与 -950 12' 角终边相同的角, 并判定它是第几象限角 .
(注: 0 -360 是指 0
360 )
例 2. 写出终边在 y 轴上的角的集合 .
例 3. 写出终边直线在 y x 上的角的集合 S , 并把 S 中适合不等式 360 720 的元素 写出来 .
【学习反思】 1. 尝试练习
(1)教材 P6 第 3、 4、 5 题 .
( 2)补充:时针经过 3 小时 20 分,则时针转过的角度为
,分针转过的角度为
。
注意 : ( 1) k Z ;( 2) 是任意角(正角、负角、零角) ;(3)终边相同的角不一定相等;
但相等的角,终边一定相同;终边相同的角有无数多个,它们相差
)
A . 轴正半轴上, C. 轴或 轴上,
B . 轴正半轴上, D . 轴正半轴或 轴正半轴上
6.设
,
C=
{
α
|α
=
k180
o
o
+45
,
k∈
Z}
,
则相等的角集合为 _
_.
参考答案
1. 解: 2 小时 40 分= 8 小时,
《任意角》学案
1 / 2o x y x o 导学案 科目 高一数学 设计者 张进峰 班级 学生姓名必修四 第一 章 课题: §1.1.1任意角一、课标要求:1.了解任意角的概念。
2.理解终边相同角的含义及其表示。
二、重点、难点:任意角、象限角、终边相同的角的概念是本节课的重点。
用集合来表示终边相同的角是本节课的难点。
三、学习过程:阅读课本1-3页尝试解决下列问题。
1、任意角(1)任意角的概念:角可以看成是平面内一条 绕着端点从一个位置旋转到另一个位置所形成的图形。
(2)正角、负角与零角我们规定按 方向旋转形成的角叫做正角,按 - 方向旋转形成的角叫做负角,如果一条射线没有作____ 旋转,我们称它形成了一个零角。
零角的 与 重合。
如果α是零角,那么α= 。
2、象限角为了讨论问题的方便,我们总是把任意大小的角放到平面直角坐标系内加以讨论,具体做法是:(1)使角的顶点和坐标 重合;(2)使角的始边和x 轴 重合.这时,角的终边落在第几象限,就说这个角是 的角(有时也称这个角属于第几象限);如果这个角的终边落在坐标轴上,这个角不属于任何一个象限。
思考:(1)锐角是第几象限角?第一象限角一定是锐角吗?(2)你能说出在直角坐标系内讨论角的好处吗?练习1、在平面直角坐标系中作出下列各角并指出它们是第几象限角:(1)420o (2) -75o3、终边相同的角在下列坐标系中分别作出 690,750,30;150,210--角2 / 2思考:以上各角的终边有什么关系?把与30o 角终边相同的所有角表示为 ,所有与角α终边相同的角,连同角α在内可构成集合为 .。
即任一与角α终边相同的角,都可以表示成角α与整数个周角的和。
练习 2、 在0︒~360︒之间,找出与下列各角终边相同的角,并分别指出它们是第几象限角:(1)420 º (2)—54 º18′ (3)—1190º 30′练习3、写出与下列各角终边相同的角的集合,并把集合中适合不等式 360720<≤-β的元素写出来:(1)1303o 18, (2)-225o练习4、写出终边在y 轴上角的集合四、检测题1、如果x 是第一象内的角,那么( )(A )x 一定是正角 (B )x 一定是锐角(C )-3600<x <-2700或00<x <900 (D )x ∈{x ∣k ⋅3600<x <k ⋅3600+900 k ∈Z }2、若α为锐角,则180°+α在第__________象限,-α在第______________象限.180°—α在第__________象限。
人教版高中数学必修四第一章1-1-1任意角《学案》
1.1.1 任意角班级:__________姓名:__________设计人:__________日期:__________♒♒♒♒♒♒♒课前预习·预习案♒♒♒♒♒♒♒学习目标1.了解任意角的概念及角的分类.2.理解象限角的概念.3.理解终边相同的角的概念,并能熟练写出终边相同的角的集合表示.学习重点1.将0度到360度范围的角推广到任意角2.终边相同的角的集合学习难点用集合来表示终边相同的角自主学习1.任意角的概念2.象限角(1)前提:①角的顶点:________________,②角的始边:_______________.(2)结论:角的终边在第几象限,就说这个角是______________.3.终边相同的角的表示所有与角α终边相同的角,连同角α在内,可构成一个集合:S=_____________,即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.预习评价1.下列说法正确的是B.小于90°的角一定是第一象限角C.180°是第二象限角D.330°是第四象限角2.下列各角中与330°角终边相同的角是°°C.-150° D.-390°3.从13:00到14:00,时针转过的角度为____________,分针转过的角度为____________. 4.与60°角终边相同的角的集合为____________.要点互动探究♒♒♒♒♒♒♒知识拓展·探究案♒♒♒♒♒♒♒合作探究1.任意角的概念回忆初中学过的角的定义(从一个点出发引出的两条射线构成的几何图形)再结合角的旋转定义,思考下列问题.(1)将一条射线OΑ绕其端点O按逆时针旋转α角到OB位置,结合图形完成下列填空.①角α的顶点为_________,始边为_________,终边为_________ .②角α是_________(填“正角”“负角”“零角”之一).(2)若将该射线OΑ绕其端点O按顺时针旋转α角到OB位置,则α是正角还是负角?若射线OΑ不旋转所形成的角又是什么呢?2.将一条射线绕其端点按逆时针方向旋转60°所形成的角,与按顺时针方向旋转60°所形成的角是否相等?3.(1)观察如图所示的象限角的图形表示,其中α的始边是x轴的非负半轴,终边是OΑ,β的始边是x轴的非负半轴,终边是OB,思考下面的问题:①如图所示的角α是第_______象限角,角β是第_______象限角.②结合α,β所在象限的判断方法,思考怎样判断一个角是第几象限角?(2)若已知角α所在的象限,如何判断2α,所在的象限?4.结合如图所示图形分析角-32°,328°,-392°的终边是否相同?5.根据终边相同的角的概念,思考下列问题:(1)如何用-32°表示328°,-392°?(2)所有与-32°角终边相同的角,连同-32°角在内,可构成一个集合S,你能用描述法表示集合S吗?推广到一般与角α终边相同的角如何表示?教师点拨1.对任意角的概念的三点说明(1)角的正负的规定纯属习惯.(2)零角无正负,始边与终边重合.(3)确定一个角的关键:①方向:顺时针,逆时针;②旋转量:圈数;③终边位置.2.终边相同的角的三点说明(1)α为任意角,可为正角、负角或零角,一般选用0°〜360°的角.(2)终边相同的角不一定相等,相等的角若共始边,则终边一定相同.(3)终边相同的角有无数多个,它们相差360°的整数倍,在写终边相同的角的集合表示时一定要有k∈Z.交流展示——任意角的概念1.把一条射线绕着端点按顺时针方向旋转240°所形成的角是()A.120°B.-120°C.240°D.-240°2.与405°角终边相同的角是A.k·360°-45°,k∈ZB.k·180°-45°,k∈ZC.k·360°+45°,k∈ZD.k·180°+45°,k∈Z3.若角θ的终边与168°角的终边相同,则在0°~360°内终边与角的终边相同的角的集合为__________.变式训练1.若角和角的终边关于轴对称,则角可以用角表示为A.B.C.D.2.若与的终边互为反向延长线,则有A.=+180°B.=180°C.=D.=+()·180°,3.已知,且与120°角终边相同,则______.交流展示——象限角的判断4.下列四个命题中,正确的是5.已知下列各角(1)787°,(2)-957°,(3)-289°,(4)1711°,其中在第一象限的角是A.(1)、(2)B.(2)、(3)C.(1)、(3)D.(2)、(4)6.若是第四象限角,则180°是第____象限角.变式训练4.已知α是第四象限角,则270°-α是()5.已知是第三象限角,则所在的象限是交流展示——终边相同的角的表示7.在与终边相同的角是A. B. C. D.8.在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是第几象限角:(1)549°;(2)-60°;(3)-503°36'.变式训练6.把表示成的形式,则可以是A. B. C. D.7.若角α=2 013°,则与角α具有相同终边的最小正角为_____,最大负角为______.学习小结求解任意角问题的步骤(1)定方向:明确该角是由顺时针方向还是逆时针方向旋转形成的,由逆时针方向旋转形成的角为正角,否则为负角.(2)定大小:根据旋转角度的绝对量确定角的大小.当堂检测1.已知角2的终边落在轴的上方,那么角是C.第三、四象限角D.第一、三象限角2.在“①-160°,②488°,③-1 008°,④-1 637°”这四个角中,属于第二象限的是A.①②B.①③C.②③D.②④3.(1)写出与下列各角终边相同的角的集合S,并把S中适合不等式-360°≤α<720°的元素α写出来:①60°;②-21°.(2)试写出终边在直线y=-x上的角的集合S,并把S中适合不等式-180°≤α<180°的元素α写出来.知识拓展1.终边与坐标轴重合的角的集合是A. B.C. D.2.已知角,则符合条件的最大负角为A.−26°B.−224°C.−206°D.−162°3.一角为30°,其终边按逆时针方向旋转三周后得到的角的度数为.1.1.1 任意角详细答案♒♒♒♒♒♒♒课前预习·预习案♒♒♒♒♒♒♒【自主学习】1.逆时针顺时针2.(1)①坐标原点②x轴的非负半轴(2)第几象限角3.{β|β=α+k·360°,k∈Z}【预习评价】1.D2.D3.-30°-360°4.{α|α=k·360°+60°,k∈Z}♒♒♒♒♒♒♒知识拓展·探究案♒♒♒♒♒♒♒【合作探究】1.(1)①O OA OB②正角(2)提示:α是负角,不旋转所形成的角是零角.2.不相等,度量一个角的大小,既要考虑旋转量,又要考虑旋转方向.故原题中两种旋转方法所形成的角不相等.3.(1)①一三②判断方法是将角的顶点与原点重合、角的始边与x轴的非负半轴重合,角的终边落在第几象限,就说该角是第几象限角. (2)方法一:取特殊值法,可以取角α所在的象限内的某一特殊角,把2α,求出进行判断.方法二:写出角α的范围,从而把2α,的范围写出,再对k的范围进行讨论,从而确定2α,所在的象限.4.由图可知,它们的终边是同一条射线,即终边相同.5.(1)328°=360°-32°,-392°=-360°-32°.(2)所有与-32°角终边相同的角,连同-32°角在内的集合可表示为:S={β|β=-32°+k·360°,k∈Z};与角α终边相同的角记为β,构成的集合记为S,则S={β|β=α+k·360°,k∈Z}.【交流展示——任意角的概念】1.D【解析】一条射线绕着端点按顺时针方向旋转240°所形成的角是-240°,故选D.2.C终边相同的角可表示为,由此可得与角终边相同的角为,即,所以选C3.{56°,176°,296°}【解析】本题考查终边相同角的表示.,所以在0°~360°内与其终边相同的角为56°,176°,296°.【备注】终边相同的角的大小相差360°的整数倍.【变式训练】1.B【解析】本题主要考查角的概念和的对称性.因为角和角的终边关于轴对称,所以,所以.故选B2.D3.【解析】题主要考查角的概念.由与120°角终边相同,故,∵,∴.又,∴,此时.【交流展示——象限角的判断】4.B,故一定在第一象限.【备注】象限角根据终边所在的象限来决定,可正可负.5.C【解析】本题考查象限角的定义.. ∴在第一象限的角是(1)、(3). 6.三【解析】因为β是第四象限角,所以是,,则,.故180°−β是第三象限角.【变式训练】4.D【解析】∵α是第四象限角,∴-α是第一象限,则由任意角的定义知,270°-α是第四象限角. 5.D【解析】本题主要考查角的概念.因为是第三象限角,所以,,从而当为偶数时,位于第二象限;当为奇数时,位于第四象限.选D.【交流展示——终边相同的角的表示】7.D【解析】本题考查终边相同角的表示方法..8.(1)549°=189°+360°,而180°<189°<270°,因此,549°角为第三象限角,且在0°~360°范围内,与189°角有相同的终边.(2)-60°=300°-360°,而270°<300°<360°,因此,-60°角为第四象限角,且在0°~360°范围内,与300°角有相同的终边.(3)-503°36'=216°24'-2×360°,而180°<216°24'<270°,因此,-503°36'角是第三象限角,且在0°~360°范围内,与216°24'角有相同的终边.【变式训练】6.C【解析】本题考查终边相同角的表示方法..7.213°-147°【解析】∵2 013°=5×360°+213°,∴与角α终边相同的角的集合为{α|α=213°+k·360°,k∈Z},∴最小正角是213°,最大负角是-147°.【当堂检测】1.D2.D【解析】-160°=-360°+200°;488°=360°+128°;-1 008°=-3×360°+72°;-1 637°=-5×360°+163°,故①是第三象限角,②④是第二象限角,③是第一象限角.【备注】判断角所在的象限,其关键就是利用终边相同的角将其化为0°~360°范围内的角,然后进行判断.3.(1)①S={α|α=60°+k·360°,k∈Z},其中适合不等式-360°≤α<720°的元素α为:-300°,60°,420°;②S={α|α=-21°+k·360°,k∈Z},其中适合不等式-360°≤α<720°的元素α为:-21°,339°,699°.(2)终边在直线y=-x上的角的集合S={α|α=k·360°+120°,k∈Z}∪{α|α=k·360°+300°,k∈Z}={α|α=k·180°+120°,k∈Z},其中适合不等式-180°≤α<180°的元素α为:-60°,120°.【知识拓展】1.C2.A3.1 110°【解析】按逆时针方向旋转得到的角是正角,旋转三周则得30°+3×360°=1 110°.。
【创新设计】2022-2021学年高一数学人教A版必修4学案:1.1.1 任意角 Word版含答案
1.1 任意角和弧度制 1.1.1 任意角[学习目标] 1.了解角的概念.2.把握正角、负角和零角的概念,理解任意角的意义. 3.娴熟把握象限角、终边相同的角的概念,会用集合符号表示这些角.[学问链接]1.手表慢了5分钟,如何校准?手表快了1.5小时,又如何校准? 答 可将分针顺时针方向旋转30°;可将时针逆时针方向旋转45°. 2.在学校角是如何定义的?答 定义1:有公共端点的两条射线组成的几何图形叫做角.定义2:平面内一条射线围着端点从一个位置旋转到另一个位置所形成的图形叫做角. 3.学校所学角的范围是什么? 答 角的范围是[0°,360°]. [预习导引] 1.角的概念(1)角的概念:角可以看成平面内一条射线围着端点从一个位置旋转到另一个位置所成的图形. (2)角的表示方法:①常用大写字母A ,B ,C 等表示;②也可以用希腊字母α、β、γ等表示; ③特殊是当角作为变量时,常用字母x 表示. (3)角的分类:按旋转方向可将角分为如下三类:类型 定义图示正角按逆时针方向旋转形成的角负角 按顺时针方向旋转形成的角零角一条射线没有作任何旋转,称它形成了一个零角2.象限角角的顶点与坐标原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是第几象限角.假如角的终边在坐标轴上,就认为这个角不属于任何一个象限.3.终边相同的角全部与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z },即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.要点一 任意角概念的辨析例1 在下列说法中: ①0°~90°的角是第一象限角; ②其次象限角大于第一象限角; ③钝角都是其次象限角;④小于90°的角都是锐角. 其中错误说法的序号为 . 答案 ①②④解析 ①0°~90°的角是指[0°,90°),0°角不属于任何象限,所以①不正确. ②120°是其次象限角,390°是第一象限角,明显390°>120°,所以②不正确. ③钝角的范围是(90°,180°),明显是其次象限角,所以③正确.④锐角的范围是(0°,90°),小于90°的角也可以是零角或负角,所以④不正确.规律方法 推断说法错误,只需举一个反例即可.解决本题关键在于正确理解各类角的定义.随着角的概念的推广,对角的生疏不能再停留在学校阶段,否则推断简洁错误.跟踪演练1 设A ={小于90°的角},B ={锐角},C ={第一象限角},D ={小于90°而不小于0°的角},那么有( ) A .B C A B .B A C C .D(A ∩C )D .C ∩D =B答案 D解析 锐角、0°~90°的角、小于90°的角及第一象限角的范围,如下表所示.角集合表示锐角 B ={α|0°<α<90°} 0°~90°的角D ={α|0°≤α<90°}小于90°的角A={α|α<90°}第一象限角C={α|k·360°<α<k·360°+90°,k∈Z}要点二象限角的判定例2在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°;(3)-950°15′.解(1)由于-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)由于650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)由于-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是其次象限角.规律方法本题要求在0°~360°范围内,找出与已知角终边相同的角,并推断其为第几象限角,这是为以后证明恒等式、化简及利用诱导公式求三角函数的值打基础.跟踪演练2给出下列四个说法:①-75°角是第四象限角;②225°角是第三象限角;③475°角是其次象限角;④-315°是第一象限角,其中正确的有()A.1个B.2个C.3个D.4个答案 D解析对于①:如图1所示,-75°角是第四象限角;对于②:如图2所示,225°角是第三象限角;对于③:如图3所示,475°角是其次象限角;对于④:如图4所示,-315°角是第一象限角.要点三终边相同的角的应用例3在与角10 030°终边相同的角中,求满足下列条件的角.(1)最大的负角;(2)最小的正角;(3)360°~720°的角.解(1)与10 030°终边相同的角的一般形式为β=k·360°+10 030°(k∈Z),由-360°<k·360°+10 030°<0°,得-10 390°<k·360°<-10 030°,解得k=-28,故所求的最大负角为β=-50°.(2)由0°<k·360°+10 030°<360°,得-10 030°<k·360°<-9 670°,解得k=-27,故所求的最小正角为β=310°.(3)由360°≤k·360°+10 030°<720°,得-9 670°≤k·360°<-9 310°,解得k=-26,故所求的角为β=670°.规律方法求适合某种条件且与已知角终边相同的角,其方法是先求出与已知角终边相同的角的一般形式,再依条件构建不等式求出k的值.跟踪演练3写出与α=-1 910°终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.解由终边相同的角的表示知与角α=-1 910°终边相同的角的集合为:{β|β=k·360°-1 910°,k∈Z}.∵-720°≤β<360°,即-720°≤k·360°-1 910°<360°(k∈Z),∴31136≤k<61136(k∈Z).故取k=4,5,6.k=4时,β=4×360°-1 910°=-470°;k=5时,β=5×360°-1 910°=-110°;k=6时,β=6×360°-1 910°=250°.要点四区域角的表示例4写出终边落在阴影部分的角的集合.解设终边落在阴影部分的角为α,角α的集合由两部分组成.①{α|k·360°+30°≤α<k·360°+105°,k∈Z}.②{α|k·360°+210°≤α<k·360°+285°,k∈Z}.∴角α的集合应当是集合①与②的并集:{α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°或(2k+1)·180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|n·180°+30°≤α<n·180°+105°,n∈Z}.规律方法解答此类题目应先在0°~360°上写出角的集合,再利用终边相同的角写出符合条件的全部角的集合,假如集合能化简的还要化成最简.本题还要留意实线边界与虚线边界的差异.跟踪演练4已知集合A={α|k·180°+30°<α<k·180°+90°,k∈Z},集合B={β|k·360°-45°<β<k·360°+45°,k∈Z}.求:(1)A∩B;(2)A∪B.解在直角坐标系中,分别画出集合A,B所包含的区域,结合图形可知,A∩B={θ|30°+k·360°<θ<45°+k·360°,k∈Z},A∪B={γ|k·360°-45°<γ<k·360°+90°或k·360°+210°<γ<k·360°+270°,k∈Z}.1.-361°的终边落在()A.第一象限B.其次象限C.第三象限D.第四象限答案 D2.集合A={α|α=k·90°-36°,k∈Z},B={β|-180°<β<180°},则A∩B等于()A.{-36°,54°} B.{-126°,144°}C.{-126°,-36°,54°,144°} D.{-126°,54°}答案 C解析令-180°<k·90°-36°<180°,则-144°<k·90°<216°,当k=-1,0,1,2时,不等式均成立,所对应的角分别为-126°,-36°,54°,144°,故选C.3.若角α满足180°<α<360°,角5α与α有相同的始边,且又有相同的终边,那么角α=.答案270°解析由于5α与α的始边和终边相同,所以这两角的差应是360°的整数倍,即5α-α=4α=k·360°.又180°<α<360°,令k=3,得α=270°.4.写出终边落在坐标轴上的角的集合S.解终边落在x轴上的角的集合:S1={β|β=k·180°,k∈Z};终边落在y轴上的角的集合:S2={β|β=k·180°+90°,k∈Z};∴终边落在坐标轴上的角的集合:S=S1∪S2={β|β=k·180°,k∈Z}∪{β|β=k·180°+90°,k∈Z}={β|β=2k·90°,k∈Z}∪{β|β=(2k+1)·90°,k∈Z}={β|β=n·90°,n∈Z}.1.对角的理解,学校阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要留意“旋转方向”打算角的“正负”,“旋转量”打算角的“确定值大小”.2.关于终边相同角的生疏一般地,全部与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.留意:(1)α为任意角;(2)k·360°与α之间是“+”号,k·360°-α可理解为k·360°+(-α);(3)相等的角终边肯定相同;终边相同的角不肯定相等,终边相同的角有很多多个,它们相差360°的整数倍;(4)k∈Z这一条件不能少.一、基础达标1.设A={θ|θ为锐角},B={θ|θ为小于90°的角},C={θ|θ为第一象限的角},D={θ|θ为小于90°的正角},则下列等式中成立的是()A.A=B B.B=CC.A=C D.A=D答案 D2.与405°角终边相同的角是()A.k·360°-45°,k∈Z B.k·180°-45°,k∈ZC.k·360°+45°,k∈Z D.k·180°+45°,k∈Z答案 C3.如图,终边落在直线y=±x上的角α的集合是()A.{α|α=k·360°+45°,k∈Z}B.{α|α=k·180°+45°,k∈Z}C.{α|α=k·180°-45°,k∈Z}D.{α|α=k·90°+45°,k∈Z}答案 D4.若α是第四象限角,则180°-α是()A.第一象限角B.其次象限角C.第三象限角D.第四象限角答案 C解析可以给α赋一特殊值-60°,则180°-α=240°,故180°-α是第三象限角.5.已知α∈(0°,360°),α的终边与-60°角的终边关于x轴对称,则α=.答案60°6.下列说法中,正确的是.(填序号)①终边落在第一象限的角为锐角;②锐角是第一象限的角;③其次象限的角为钝角;④小于90°的角肯定为锐角;⑤角α与-α的终边关于x轴对称.答案②⑤解析终边落在第一象限的角不肯定是锐角,如400°的角是第一象限的角,但不是锐角,故①的说法是错误的;同理其次象限的角也不肯定是钝角,故③的说法也是错误的;小于90°的角不肯定为锐角,比如负角,故④的说法是错误的.7.在与角-2 013°终边相同的角中,求满足下列条件的角.(1)最小的正角;(2)最大的负角;(3)-720°~720°内的角.解(1)∵-2 013°=-6×360°+147°,∴与角-2 013°终边相同的最小正角是147°.(2)∵-2 013°=-5×360°+(-213°),∴与角-2 013°终边相同的最大负角是-213°.(3)∵-2 013°=-6×360°+147°,∴与-2 013°终边相同也就是与147°终边相同.由-720°≤k·360°+147°<720°,k∈Z,解得:k=-2,-1,0,1.代入k·360°+147°依次得:-573°,-213°,147°,507°.二、力量提升8.集合{α|k·180°+45°≤α≤k·180°+90°,k∈Z}中,角所表示的范围(阴影部分)正确的是()答案 C9.在-180°~360°范围内,与2 000°角终边相同的角为.答案-160°,200°解析∵2 000°=200°+5×360°,2 000°=-160°+6×360°,∴在-180°~360°范围内与2 000°角终边相同的角有-160°,200°两个.10.角α,β的终边关于y轴对称,若α=30°,则β=.答案150°+k·360°,k∈Z解析∵30°与150°的终边关于y轴对称,∴β的终边与150°角的终边相同.∴β=150°+k·360°,k∈Z.11.已知角x的终边落在图示阴影部分区域,写出角x组成的集合.解(1){x|k·360°-135°≤x≤k·360°+135°,k∈Z}.(2){x|k·360°+30°≤x≤k·360°+60°,k∈Z}∪{x|k·360°+210°≤x≤k·360°+240°,k∈Z}={x|2k·180°+30°≤x≤2k·180°+60°或(2k+1)·180°+30°≤x≤(2k+1)·180°+60°,k∈Z}={x|n·180°+30°≤x≤n·180°+60°,n∈Z}.12.已知角β的终边在直线3x -y =0上. (1)写出角β的集合S ;(2)写出S 中适合不等式-360°<β<720°的元素.解 (1)如图,直线3x -y =0过原点,倾斜角为60°,在0°~360°范围内,终边落在射线OA 上的角是60°,终边落在射线OB 上的角是240°,所以以射线OA 、OB 为终边的角的集合为:S 1={β|β=60°+k ·360°,k ∈Z }, S 2={β|β=240°+k ·360°,k ∈Z },所以,角β的集合S =S 1∪S 2={β|β=60°+k ·360°,k ∈Z }∪{β|β=60°+180°+k ·360°,k ∈Z }={β|β=60°+2k ·180°,k ∈Z }∪{β|β=60°+(2k +1)·180°,k ∈Z }={β|β=60°+n ·180°,n ∈Z }.(2)由于-360°<β<720°,即-360°<60°+n ·180°<720°,n ∈Z .解得-73<n <113,n ∈Z ,所以n =-2,-1,0,1,2,3.所以S 中适合不等式-360°<β<720°的元素为: 60°-2×180°=-300°;60°-1×180°=-120°; 60°+0×180°=60°;60°+1×180°=240°; 60°+2×180°=420°;60°+3×180°=600°. 三、探究与创新13.若α是第一象限角,问-α,2α,α3是第几象限角?解 ∵α是第一象限角,∴k ·360°<α<k ·360°+90°(k ∈Z ). (1)-k ·360°-90°<-α<-k ·360°(k ∈Z ),∴-α所在区域与(-90°,0°)范围相同,故-α是第四象限角. (2)2k ·360°<2α<2k ·360°+180°(k ∈Z ), ∴2α所在区域与(0°,180°)范围相同,故2α是第一、二象限角或终边在y 轴的非负半轴上. (3)k ·120°<α3<k ·120°+30°(k ∈Z ).方法一 (分类争辩)当k =3n (n ∈Z )时, n ·360°<α3<n ·360°+30°(n ∈Z ),∴α3是第一象限角; 当k =3n +1(n ∈Z )时,n ·360°+120°<α3<n ·360°+150°(n ∈Z ),∴α3是其次象限角;当k =3n +2(n ∈Z )时,n ·360°+240°<α3<n ·360°+270°(n ∈Z ),∴α3是第三象限角.综上可知:α3是第一、二或第三象限角.方法二 (几何法)如图,先将各象限分成3等份,再从x 轴的非负半轴的上方起,依次将各区域标上1,2,3,4,则标有1的区域即为α3终边所落在的区域,故α3为第一、二或第三象限角.。
高中数学必修四教案-1.1.1 任意角(5)-人教A版
任意角【教学目标】(1)要求学生掌握用“旋转”定义角的概念,理解任意角的概念;(2)学会在平面内建立适当的坐标系来讨论角;(3)并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。【教学重点】理解“正角”“负角”“象限角”“终边相同的角”的含义。【教学难点】“旋转”定义角;终边相同的角的表示。三角函数是基本初等函数,它是描述周期现象的重要数学模型。角的概念的推广正是这一思想的体现之一,是初中相关知识的自然延续。为进一步研究角的和、差、倍角、半角关系提供了条件,也为今后学习解析几何、复数等相关知识提供有利的工具。本节课是三角函数的第一节课,学生正确的理解和掌握角的概念的推广尤为重要。【学情分析】(1)初中学生已经接触到角的定义,角的范围仅限于0°~360°;(2)学生在理解终边相同的角的表示方法上,会出现障碍,其原因是:刚刚将角的概念推广,还不是很适应终边相同的角的“周而复始”这个现象的本质;(3)学生在学习了象限角的概念后,怎样用集合和数学符号语言正确地表示象限角(如:第一象限角),会出现障碍,其原因是:对第一象限角是有无数个区间构成,它们的终边是“周而复始”的现象的刻画还不了解,教师要进一步的解释k·360°的运用特点。【设计思路】(1)通过创设情境,类比初中所学的角的概念,从运动的观点阐述,进行角的概念推广,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;(2)通过几个特殊的角,画出终边所在的位置,归纳总结出它们的关系,探索具有相同终边的角的表示。这一设计符合新课程标准强调的加强对数学概念本质的认识,同时在教学中充分运用现代教育技术手段,将抽象的数学知识形象化、直观化,帮助学生理解“正角”“负角”“象限角”“终边相同的角”的含义,和掌握终边相同的角的表示。【教学准备】借助信息技术工具(如:几何画板),(1)角的推广在角的旋转量、旋转方向上给学生以动态的体会;(2)动态的表现角的终边旋转过程,有利于学生观察到角的变化与终边的位置关系,从特殊到一般,让学生发现并验证终边相同的角的表示方法。【教学过程】【教学反思】这堂课从实际问题引入,引起学生的认知冲突。说明角的概念扩展的必要性,然后通过学生的自主探索,得出了定义,为后面的探究打下了基础,体现了新课程理念,教学效果好,是一堂好课。由于学生的计算机技术不高,导致课时安排过紧。。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、复习: 角的概念:
(1)在初中我们把有公共顶点的 组成的 叫做角,这个公共顶点叫做角的 ,这两条射线叫做角的 。
(2)角可以看成是一条射线绕着它的 从一个位置旋转到另一个位置所成的 。
二、自主学习:自学53P P ,回答: 1.正角、负角、零角:
一条射线绕着它的端点旋转有两个相反方向:
方向和 方向,习惯上
规定:按照 方向旋转而成的角为正角;按照 方向旋转而成的角为负角,当射线没有 时为零角。
注意:(1)在画图时,常用带箭头的弧来表示旋转的 和旋转的 ,
旋转生成的角,又常叫做 角。
(2)引入正角、负角的概念后,角的减法运算可以转化为角的加法运算,即α—β可以化为 ,这就是说,各角和的旋转量等于各角旋转量的。
2.终边相同的角:设α表示任意角,所有与α终边相同的角以及α本身组成一个集合,这
个集合可记为S = 。
终边相同的角有 个,相等的角终边一定 ,但终边相同的角不一定 。
3.象限角:在直角坐标系中讨论角,是使角的顶点与 重合,角的始边与 重
合,角的终边在第几象限,就把这个角叫做 ,如果终边在坐标轴上,就认为这个角 属于任何象限。
三、典型例题:
1.自学4P 、5P 例1、例2、例4完成练习A
2.自学5P 例3完成下面填空:
终边落在x 轴正半轴上角的集合表示为
终边落在x 轴负半轴上角的集合表示为
终边落在x 轴上角的集合表示为
终边落在y 轴正半轴上角的集合表示为 终边落在y 轴负半轴上角的集合表示为 终边落在坐标轴上角的集合表示为
第一象限角的集合表示为 第二象限角的集合表示为
第三象限角的集合表示为
第四象限角的集合表示为
3.补充例题:
例5.已知α是第一象限的角,判断2
α
、α2分别是第几象限角?
练习:7P 练习B2、3、5 4.小结: 5.作业:
1.在“①160°②480°③-960°④-1600°”这四个角中属于第二象限角的是( )
A.①
B.①②
C.①②③
D.①②③④
2.下列命题中正确的是( )
A.终边相同的角都相等
B.第一象限的角比第二象限的角小
C.第一象限角都是锐角
D.锐角都是第一象限角
3.射线OA 绕端点O 逆时针旋转120°到达OB 位置,由OB 位置顺时针旋转270°到达OC 位置,则∠AOC =( )
A.150°
B.-150°
C.390°
D.-390°
4.如果α的终边上有一个点P (0,-3),那么α是( ) A.第三象限角 B.第四象限角 C.第三或四象限角 D.不属于任何象限角
5.与405°角终边相同的角( )
A. k ·360°-45° k ∈z
B. k ·360°-405° k ∈z
C. k ·360°+45° k ∈z
D. k ·180°+45° k ∈z 6.(2005年全国卷Ⅲ)已知α是第三象限角,则2
α
所在象限是( )
A.第一或第二象限
B.第二或第三象限
C.第一或第三象限
D.第二或第四象限
7.把-1050°表示成k ·360°+θ(k ∈z )的形式,使θ最小的θ值是
8.(2005年上海抽查)已知角α终边与120°终边关于y 轴对称, 则α的集合S =
.
9.已知β终边在图中阴影所表示的范围内(不包括边界), 那么β∈
150°
° x
y。