物理化学:1.1热力学概论
物理化学第一章_热力学第一定律
J=1°50′
W=8° t =-20℃
东经J1 =118°75 ′
北纬 W1 = 32°00 ′ 某时气温 t1 = 30℃
上页 0000--77-2-828
下页
回主目录
返回 2200
标准态
➢规定标准态的必要性:
• 体系的状态函数强烈地依赖于物质所处的状态. • 有关状态函数的计算强烈地依赖于基础的实验数据. • 建立通用的基础热力学数据需要确立公认的物质标
下页
回主目录
返回 1133
由经验可知,一般来说,质量一定的单组分气相 体系,只需要指定两个状态函数就能确定它的状态。 另一个通过近似PV=nRT的关系也就随之而定了,从 而体系的状态也就确定了。
上页 0000--77-2-828
下页
回主目录
返回 1144
状态函数共同性质
(1) 体系的状态一定,状态函数有确定值。
上页 0000--77-2-828
下页
回主目录
返回 1122
四、状态函数与状态性质
1、状态和状态函数
物理性质和化学性质的综合表现就称体系的状态。
描述物质状态的性质叫做状态函数(state function)。
状态函数是相互联系,相互制约,一个状态函 数的改变,也会引起另一个状态函数的改变 。
上页 0000--77-2-828
四、状态函数与状态性质
⑴ 状态函数的数学表达
体系由A态变到B态,Z值改变量
Z ZB ZA
ZB dZ
ZA
对于循环过程 dZ 0
状态函数的微小改变量可以表示为全微分,即偏微分之和
dZ
第1章热力学第一定律
物理化学(讲稿)第一章热力学第一定律1.1热力学基本概念(Basic concepts of thermodynamics)1.1.1系统与环境(system and surroundings)系统:被划出来作为研究对象的这部分物体或空间。
环境:系统以外的其它部分。
实际上环境通常是指与系统有相互影响的有限部分。
系统可大可小,大到一座电弧炉及其几十吨钢液与炉渣,小到一个烧杯内盛的少量水,一个系统最少包含一种物质,多者可由几种物质来组成。
例如,炼钢过程中当钢水为系统时,与其有关的炉衬、炉渣及炉气则为环境。
假若研究脱硫、脱磷反应,因为这些反应发生在钢、渣两相界面处,可以把钢液与炉渣视为系统,而与系统有关的炉衬和炉气等则成为环境。
系统与环境间可以存在真实界面,也可以不存在界面。
例如,钢瓶中的氧气为系统,则钢瓶为环境,钢瓶内壁就是一个真实的界面;当研究空气中的氧气时,则空气中的其它气体为环境,此时则不存在界面。
所以不能以有无界面来划分系统与环境。
1)敞开系统:与环境之间既有物质交换,也有能量的传递的系统,称为敞开系统(或开放系统)。
例如,一个盛有热水的玻璃杯,敞开放置,将会向空气中挥发水蒸气,同时散发热量。
(2)封闭系统:与环境之间只有能量传递而没有物质交换的系统,称为封闭系统。
例如,将上例的玻璃杯加盖后,就成为一个封闭系统。
在封闭系统内,可以发生化学变化和由此引起成分变化,只要不从环境引入或向环境输出物质即可。
物理化学上常常讨论这种系统。
冶金过程常把冶金炉(如电炉、高炉、转炉)等看作一个封闭系统,忽略挥发掉的很少量物质。
(3)隔离系统:与环境之间既无物质交换,也无能量传递的系统,称为隔离系统(或孤立系统);例如,把盛有热水的玻璃杯盖起来,并把它放在一个绝热箱内,把整个绝热箱内的所有物质(水杯和空气)作为一个新系统,那么这个新系统就成为隔离系统。
因为这个系统与环境之间既没有物质交换,也没有能量交换。
1.1.2 系统性质、状态和状态函数广度性质(容量性质) (extensive pro-perty): 与系统的物质的量成正比,如体积、质量、熵等。
物理化学第1章 热力学第一定律
系统从环境吸热Q为正值,系统放热于环境Q为
负值。 ⑶单位: 常用单位为焦耳(J)或千焦耳(kJ)。
⒉功 ⑴定义和符号
系统与环境之间除热以外被传递的其他各种形式
的能量统称为功,用符号W表示。 ⑵正负值规定 系统对环境做功W为负值,系统从环境获得功W为 正值。
⑶单位:常用单位为焦耳(J)或千焦耳 (kJ)。
p( H 2 ) y( H 2 ) p总 =0.6427 108.9=70.00 kPa
p( N2 ) p总 p( H2 ) 38.89 kPa
四、阿马格分体积定律
由A、B、C组成的理想气体混合物
nRT (nA nB nC ) RT V p p
VA VB VC
⑶热力学能是系统的广度性质,具有加和性。
热力学能的微小变化dU可用全微分表示
通常,习惯将热力学能看作是温度和体积的函数,
即U=f(T,V),则
U U dU ( )V dT ( )T dV T V
理想气体的热力学能只是温度的函数。
1.3热力学第一定律
一、能量守恒与热力学第一定律
1.能量守恒定律
自然界的一切物质都具有能量,能量有各种各样形式, 并且能从一种形式转变为另一种形式,但在相互转变过 程中,能量的总数量不变。 2.热力学第一定律
本质:能量守恒定律。 常用表述:“第一类永动机是不可能造成的。” 第一类永动机是指不需要供给能量而可以连续不断做功
的机器。
二、封闭系统热力学第一定律的数学表达式
⑶恒容过程:变化过程中系统的体积始终恒定不变过程。
⑷绝热过程:系统与环境之间没有热交换的过程。 ⑸循环过程:系统由某一状态出发,经历一系列的变化,又 回到原状态的过程。
物理化学1-热力学第一定律
p1V2
p
p
p1
p1
pe
'
p1V1
p 'V '
p1V1
p2 V1
p2V2
V2 V
p2
V1
V'
p2V2 p2
V2
p2V2
V1
V
V2 V
功与变化的途径有关 可逆膨胀,系统对环境作最大功
可逆压缩,环境对系统作最小功
Xihua University
27
三、可逆过程(reversible process)
1. 什么是可逆过程
p'
p 'V '
p2
V1
V'
p2V2
V2
V
23
3. 多次等外压膨胀所作的功
p'
p1
V'
p2
V2
V1
p
p1
p1V1
阴影面积代表W3
p'
p 'V '
p2
V1
Xihua University
p2V2
V'
V2
V
24
4. 外压比内压小一个无穷小的值
外压相当于一杯水,水不断蒸发,这样的膨胀过程是无限
缓慢的,每一步都接近于平衡态。所作的功为:
W4 p外dV ( p dp)dV
p
p1
pdV
V1
V2
对理想气体
p1V1
V2
V1
V1 nRT dV nRT ln V2 V
p2
p2V2
V1
V2 V
这种过程近似地可看作可逆过程,系 统所作的功最大。
物理化学1.1-热力学基本概念
●在确定条件下,变化是自发还是非自发?变化的 限度?从确定的自发变化可以获得多少功?要实现 确定的非自发变化,必须注入多少功?
三峡大坝 发电机组
化学电池 化学激光 ……
农田灌溉
电解反应 光化学反应 ……
§1.1 热力学基本概念
1.系统和环境
系统(system) ——热力学研究的对象,包括指定的物质和空间。
非均相系统(多相系统)
(heterogeneous system)
CaCO3 (s) =CaO(s)+CO2(g) NH4HCO3 (s) = NH3(g) + H2O(g) + CO2(g)
相变(phase transformation)
——物质从一种聚集形态转变为另一种聚集形态。
气体
液化
升华
√
封闭系统(Closed system) ×
√
隔离系统(Isolated system) ×
×
2.描述系统状态的热力学函数
抽开插板
n,p,V,T
n, p,V,T
Sy(I)
Sy(II)
强度性质函数(intensive properties) 数值大小与系统中所含物质的量无关, 无加和性(如 p,T);
p、V、T 变化过程 相变化过程 化学变化过程
典型p、V、T变化过程
① 定温过程:T1=T2=Tsu ② 定压过程: p1= p2= psu ③ 定容过程: V1=V2 ④ 绝热过程: Q = 0 ⑤ 对抗恒外压过程:psu=常数(包括0)
p1,T1 psu
⑥ 循环过程 :系统的始态和终态为同一状态。
1、苯的正常沸点为80.1 ℃。你知道苯在80.1 ℃ 的饱和蒸汽压吗?
第一章 热力学第一定律
第一章 热力学第一定律
3.热力学能 热力学能:系统内部 能量的总和。符号U ,单位J 。它由多部 分组成: 分子的平动能、转动能、振动能、电子能、 原子核能及分子间 相互作用的势能。
一定量物质在确定状态,热力学能值为确定。但其绝对值是不 知道的。(如果对于某特定物质给予一个基准态,设该态 U=0,则可求得其它态的相对值)
系统分为:封闭系统、隔离系统和敞开系统。
隔离系统的例: 一个完好的热水 瓶:既不传热,也 无体积功与非体 积功的交换,且无 物质交换.
封闭系统的例: 一个不保温的热 水瓶:传热但无 物质交换;一个 汽缸:有功的交换, 但无物质交换.
敞开系统的例 :一个打开塞 子的热水瓶: 既有能量交换 ,又有物质交 换。
2
1.1 热力学概论
热力学的研究对象 热力学的方法和局限性 几个基本概念:(复习) •系统与环境
•系统的性质 •热力学平衡态
•状态函数
•状态方程
•过程和途径
1 热力学的研究对象 •研究热、功和其他形式能量之间的相互转换及
其转换过程中所遵循的规律。具体:
研究基础:热力学第一、二定律--人类长期 实践经验的总结。 研究内容: •研究各种物理变化和化学变化过程中所发生的 能量效应--热力学第一定律;
V=f(p,T)
例如,理想气体的状态方程可表示为:
pV=nRT
第一章 热力学第一定律—热力学基本概念
(2) 广度量和强度量
描述热力学系统的性质ቤተ መጻሕፍቲ ባይዱ为: 广度量(或广度性质):与物质的数量成正比的性质。如V,Cp ,
U,„等。它具有加和性。
强度量(或强度性质):与物质的数量无关的性质,如 p、T和组 成等。它不具有加和性。 两者的关系: 广度量与广度量的比是强度性质,例如,定压热容,Cp,为 广度量,物质的量n为广度量,摩尔定压热容Cp , m为强度量。
物理化学(pmph)1.1热力学概论PPT课件
熵总是趋向于增加,即系统的无序程度会不断增加。这一原理对于理解
热力学循环和效率具有重要意义。
03
热力学性质计算与应用
理想气体状态方程及应用
理想气体状态方程
描述理想气体状态参量之间关系的方程,即pV=nRT,其中p为压强,V为体积,n 为物质的量,R为气体常数,T为热力学温度。
应用
通过测量气体的压强、体积和温度,可以计算气体的物质的量、密度、摩尔质量 等物理量。同时,理想气体状态方程也是热力学第一定律和第二定律的基础。
04
热力学在化学反应中的应用
化学反应热力学基础
热力学基本概念
介绍温度、压力、热量、功等 热力学基本概念及其在化学反 应中的意义。
热力学第一定律
阐述能量守恒原理,解释化学 反应中的热效应及其计算方法 。
热力学第二定律
引入熵的概念,讨论化学反应 的方向和限度,以及热力学第 二定律在化学反应中的应用。
材料相变热力学分析
相变现象与分类
阐述材料中常见的相变现象,如固-固 相变、固-液相变、液-气相变等,及 其分类方法。
相变热力学基础
材料相变热力学应用
举例说明相变热力学在材料制备、加 工、性能优化等方面的应用。
介绍相变过程中的热力学基础,如相 平衡条件、相变驱动力等。
材料热力学性质计算与模拟
热力学性质计算方法
微观尺度下热力学现象探索
微观尺度热力学概述
01
研究在微观尺度下,如纳米、分子等层面上的热力学现象和规
律。
微观尺度热力学理论
02
包括统计热力学、量子热力学等,用于揭示微观尺度下的热力
学本质和机制。Leabharlann 微观尺度热力学应用03
在纳米科技、生物医学、能源转换等领域有重要应用,如纳米
物理化学:第一章 热力学第一定律
始态A
途径I C
B 途径II
终态Y
基本概念
系统的变化过程分为:
A. 单纯p,V,T变化过程(p,V,T change process)
B. 相变化过程(phase transformation process)
C. 化学变化过程(chemical change process)
几种主要的p,V,T变化过程
学上是一次齐函数。(如n,V,U等)
2、强度性质(intensive properties):数值取决于体系自 身的特性,与体系的数量无关。不具有加和性。在数学上是 零次齐函数。(如p,T等)
一种广度性质 =强度性质, 另一种广度性质
如Vm=Vn
,b= m V
等
基本概念
3. 热力学平衡态(thermodynamical equilibrium state)
dz
(
z x
)
y
dx
( z y
)x
dy
dz 0
③ 状态方程(equation of state)
定义:体系状态函数之间的定量关系式。
理想气体
V= nRT p
基本概念
5. 过程与途径(process and path)
定义:当外界条件改变时,体系的状态随之发生变化,体系 从某一状态变为另一状态成为体系经历了热力学方程,简称 为过程。完整地描述一个过程,应当指明始态、终态,外界 条件及变化的具体步骤,变化的具体步骤称为途径。
特性:a 是状态的单值函数,状态一经确定,状态函数就有 确定的数值,而与体系到达状态前的历史无关。
b 状态变化,函数随之变化,变化取决于体系的始终态, 与途径无关。
c 状态函数的组合仍然是状态函数。 d 状态函数的微小变化,在数学上是全微分。
物理化学热力学第一定律
§1.1 热力学概论 §1.2 热力学基本概念 §1.3 热力学第一定律 §1.4 体积功与可逆过程 §1.5 焓 §1.6 热容 §1.7 热力学第一定律的应用 §1.8 热化学 §1.9 化学反应热效应的计算 §1.10 能量代谢与微量量热技术简介(自习)
-1-
物理化学
第一章 热力学第一定律
-12-
Vm
V n
物理化学
§1.2 热力学基本概念
四、状态函数与状态方程 (state function & equation of state)
(一) 状态函数
体系状态一定时, 其值一定的物理量.
又称为系统的热力学性质.
eg. T 、p 、V、U、H 等。
-13-
物理化学
§1.2 热力学基本概念
eg.
dT =0 isothermal process dp =0 isobaric process
dV =0 isochoric process Q =0 idiabatic process dZ =0 cyclical process
-17-
物理化学
§1.2 热力学基本概念
状态函数法 ── 计算状态函数的改变值△Z △Z =Z2 - Z1 与路径无关
Q > 0 Q < 0
物理化学
§1.2 热力学基本概念
2. 功W ── 系统在广义力的作用下, 产生
了 广义位移时, 系统与环境交换的能量
为功W .
[W ] = J
其微变量用δW 表示;
规定: 体系从环境 得功为正. W > 0
体系对环境 作功为负. W < 0
-21-
物理化学
§1.2 热力学基本概念
物理化学及实验_褚莹_第一章热力学第一定律
(2)可逆的化学反应
T,p 2+ →Zn2++Cu(s) Zn(s)+Cu
(i) E外=E – dE,放电 WR′= – z(E – dE)F= – zEF (ii) E外=E+dE,充电 WR′=z(E+dE) F=zEF
图1-3 Daniell电池
1.4
1.4.1 焓
焓与热容
或: ∆U = Q − ∑ pe,i ∆V
第一章 热力学第一定律
1.1 热力学概述
1.1.1 热力学的研究对象
热力学是以大量分子的集合体(宏观体系) 为研究对象,以热力学基本定律为基础,研究 与热现象有关的各种状态变化和能量转变规律 的一门学科。
1.1.2 热力学方法的特点
热力学是一种演绎的方法,即运用经验所得 的基本定律,借助状态函数的特征,通过逻辑推 理,阐明体系的宏观性质。 特点: (1)宏观理论,其结论具有统计意义。 (2)不考虑物质的微观结构和机理。 (3)不考虑时间的因素。
设 U = U (T,V ) 则
∂U ∂U dU = dT + dV ∂T V ∂V T
定V下,两边同除以dT,得
∂U ∂U ∂U ∂V = + ∂T p ∂T V ∂V T ∂T p
1.4.4 Cp与CV的关系
∂H ∂U C p − CV = − ∂T p ∂T V ∂U ∂ (U + pV ) = − ∂T p ∂T V ∂U ∂V ∂U = + p − ∂T p ∂T p ∂T V
100℃,105Pa
100℃,106Pa
物理化学课件-第一章-热力学精选全文
第二节 热力学基本概念
一、系统与环境
系统:划定的研究对象 环境:与系统相关联的其余部分 划定界面: 实际存在的想象的
(系统 + 环境 = 宇宙)
开放系统 封闭系统
系统分类: 敞开系统:有物质交换 有能量交换 封闭系统:无物质交换 有能量交换 隔离系统:无物质交换 无能量交换 (孤立系统)
V = f(T, p) dV = (V/ T)pdT + (V/ p)pdp
H2O (s, 25oC,1 atm ) H2O (g, 25oC,1 atm )
H2O (l, 25oC, 1 atm )
4. 不同状态函数的初等函数(+ - x /)也是状态 函数
G = H – TS; H = U + pV
功和热都不是系统性质,所以也不是状态函数!不符合全 微分性质,其微小变化表示为Q和P
第三节 热力学第一定律
一、热力学能(内能U-internal energy )
系统总能量 整体动能 系统中各种形式能量的总和
整体势能
内能 U 分子动能(平动、转动、振动) 温度T
分子位能
体积 V
分子内能量(更小一级质点能量)
七、功和热
体系和环境间能量传递交换的两种形式
1.热(Q): 由温度差异引起的能量传递, 规定: 系统吸热,Q为正值 系统放热,Q为负值 显热: 热量传递时,系统的温度改变。如水
50C~100C 潜热: 热量传递时,系统的温度不变。如水100C蒸发 热是一种由质点无序运 动平均强度不同传递的能量 热不是状态函数,Q的大小与途径有关
若压力是连续变化的 W =- p外dV
W = - p外dV
等容过程 真空膨胀过程
物理化学第1章 热力学第一定律及其应用
Q U W U H=40.69kJ
37.59kJ
§2.6 理想气体的热力学能和焓
一、理想气体U
理想气体有两个基本特点:a 分子本身不占有体积 b分子间没有相互作用力
理气内能只是温度的函数,即 U =f (T )
具体写成数学式为:
功可以分为:
体积功:本教材又称膨胀功 定义——由于系统体积变化而与环境交换的功 We
非体积功:也称非膨胀功,其他功 指体积功以外的功 Wf 热力学中一般不考虑非膨胀功
四、数学表达式
设想系统由状态(1)变到状态(2),系统与环
境的热交换为Q,功交换为W,则系统的热力学能的变
化为:
U U2 U1 QW
二、内能(热力学能)
1.定义:指系统内部能量的总和, 包括分子运动的平动能、 分子之间相互作用的位能、 分子内部的所有能量 符号:U
系统总能量通常(E )有三部分组成:
(1)系统整体运动的动能
(2)系统在外力场中的位能 (3)内能
热力学中一般只考虑静止的系统,无整体运动,不考虑 外力场的作用,所以只注意内能
对于微小变化
dU Q W
说明:(1)W指的是总功,包括We、Wf (2)适用范围:封闭体系 、孤立体系 (没有物质交换的体系)
§2.4 体积功 W Fdl
一、体积功的计算 pi > pe We FedlFe AAdlpedV
公式说明:
(1)不管体系是膨胀还是压缩,体积功都用-p外dV表示; (2)不用-pdV表示;p指内部压力, p外指外压,也不能用-p外V、 -Vdp外表示。
§2.3 热力学的一些基本概念
一、系统与环境
物理化学第一章热力学第一定律 (1)
p
p1
' pe
p1V1
' pe V'
p1 (V1 V )
'
整个过程所作的
功为两步的加和。
27
p2
V1
V'
p2V2
V2
V
(3)外压比内压大一个无穷小的值 外压始终比内压大一无限小值,使压力缓慢
增加,恢复到原状,所作的功为:
p
W pi dV
15
热力学第一定律的经典表述:
不供给能量而可以连续不断对外做功的机器叫作 第一类永动机。无数事实表明,第一类永动机不 可能存在。 这种表述只是定性的, 不能定量的主要原因是测量 热和功所用的单位不同,它们之间没有一定的当量 关系。1840年左右, Joule和mayer 做了二十多年的 大量实验后,得到了著名的热功当量:1 cal = 4.184 J和 1J = 0.239 cal 。热功当量为能量守恒原 理提供了科学的实验证明。
3
§1.2 基本概念
一、系统和环境 二、状态和状态函数 三、相 四、过程与途径 五、热力学平衡系统
4
一、系统和环境 System and Surroundings
系统:研究对象 环境:系统以外的,与系统有关的部分 系统与环境有实际的或想象的界面分开 系统的分类:
System 物质交换 能量交换 敞开系统 open 可以 可以 密闭系统 closed 不可能 可以 孤立 ( 隔离 ) 系 统isolated 不可能 不可能
' e,3 V2
V1
p1
p1V1
' 阴影面积代表We,3
第一章热力学第一定律及热化学-资料
4. 不同体系有不同的环境, 常用热源这一概念描述;
5.体系可以是多种多样的: 单组分, 多组分, 固体, 液体, 气体, 化学反应体系, 单相, 多相。
第一章 热力学第一定律及热化学
物理化学电子教案
第一章 热力学第一定律及热化学
物理化学电子教案
状态函数
热力学性质是描述系统状态的, 是系统状态的单 值函数, 即当系统处于一定的状态时, 系统的这些 热力学性质有唯一的确定值.
这种函数有两个重要的特征:
★ 这些函数值只取决于系统当前所处的状态,与 历史无关;
★ 热力学函数的改变值只决定于系统状态变 化的始、终态,与过程变化所经历的具体途径无关.
强度性质 由系统自身性质决定, 与系统内物质 的数量无关, 不具有简单的加和性质. 如:温度T、 压力p这种性质、摩尔内能Um……等.
显然, 容量性质除以物质的量后就与系统的量无 关变成了强度性质, 如:摩尔体积Vm、摩尔内能 Um……。
第一章 热力学第一定律及热化学
物理化学电子教案
如果系统内各部分所有强度性质皆相同, 则此 系统是均匀的, 成为均相系, 否则为复相系统.
●热力学第二定律说明:热与其它形式能量间 相互转化时的方向性问题。
将热力学的基本原理应用在化学现象以及与 化学现象有关的物理现象中, 构成化学热力学.
第一章 热力学第一定律及热化学
物理化学电子教案
§1.2 热力学常用的一些基本概念
体系与环境
体系 system 选定研究的对象.
环境 surrounding 与体系密切相关的部分.
V T P
物理化学 第一章 热力学第一定律
1.1 热力学第一定律1.1.1 热力学的研究对象1.热力学:研究能量相互转换过程中所遵循的规律的科学2.化学热力学:用热力学的基本原理来研究化学现象以及和化学有关的物理现象的科学3.研究的内容:研究化学变化的方向和限度。
4.热力学方法:研究对象是由大量质点(原子、分子、离子等)构成的宏观物质体系,所得结论是大量质点集体的平均行为,具有统计意义。
5.局限性:只能告诉我们在某种条件下,变化能否自动发生,发生后进行到什么程度,但不能告诉我们变化所需的时间以及具体的机理———可能性1.1.2 基本概念1.1.2.1 体系与环境1.体系: 所研究的对象。
(物系或系统)2.环境:体系以外并与体系密切相关的部分。
3. 体系分类:敞开体系: 体系与环境之间既有物质交换又有能量交换() 封闭体系: 体系与环境之间没有物质交换只有能量交换() 孤立体系: 体系与环境之间没有物质交换没有能量交换 ()1.1.2.2 状态与状态函数1. 状态:体系的物理性质和化学性质的综合表现状态函数:描述体系状态的性质注:(1)体系与环境的划分不绝对 (2)体系与环境的界面可以是实际存在的,也可以是虚拟的2. 状态函数的特点:A.状态一定,值一定;反之亦然B.异途同归,值变相等,周而复始,数值还原。
C.状态函数的微小变化是全微分,并且可积分D.状态函数代数运算的结果仍然是状态函数,如ρ=m/VE.状态函数之间存在着相互联系,如对于一定量的理想气体P、V、T之间存在下列关系PV=nRT说明:①定量纯物质均相体系或组成不变的多组分均相体系:只需两个独立改变的状态函数就能确定体系的状态②组成可变的多组分均相体系:除两个独立改变的状态函数之外,还需各组分的物质的量3. 状态函数的分类:根据状态函数与体系物质的量的关系,状态函数可以分为两类:广度性质:其数值与体系中物质的量成正比,具有加和性。
整个体系的该广度性质的数值,是组成体系的各部分该性质数值的总和强度性质:其数值与体系中物质的量无关,没有加和性。
热力学第一定律及其应用
2009年博士物理化学(二)考试大纲第一章热力学第一定律及其应用1.1 热力学概论1.2热力学第一定律1.3准静态过程与可逆过程1.4焓1.5热容1.6热力学第一定律对理想气体的应用1.7 实际气体1.8 热化学1.9 赫斯定律1.10 几种热效应1.11反应热与温度的关系1.12 绝热反应——非等温反应1.13 热力学第一定律的微观说明第二章热力学第二定律2.1 自发变化的共同特征一不可逆性性2.2 热力学第二定律2.3 卡诺定律2.4 熵的概念.2.5 克劳修斯不等式与熵增加原理2.6熵的计算2.7热力学第二定律的本质和熵的统计意义2.8亥姆霍兹自由能和古布斯自由能2.9变化的方向和平衡条件2.10ΔG的计算示例2.11几个热力学函数间的关系2.12单组分体系的两相平衡2.13多组分体系中物质的偏摩尔量和化学势2.14不可逆过程热力学简介第三章统计热力学基础3.1 概论3.2玻尔兹曼统计3.3玻色—爱因期坦统计和费米—狄拉克统计3.4配分函数3.5各配分函数的求法及其对热力学因数的贡献3.6晶体的热容问题3.7分子的全配分函数第四章溶液——多组分体系热力学在溶液中的应用4.1 引言4.2 溶液组成的表示法4.3 稀溶液的两个经验定律4.4混合气体中各组分的化学势4.5理想溶液的定义、通性及各组分的化学势4.6稀溶液中各组份的化学势4.7理想溶液和稀溶液的微观说明4.8稀溶液的依数性4.9吉朽斯—杜亥姆公式和杜亥姆—马居耳公式4.10非理想溶液4.11分配定律――溶质在两互不相溶液中的分配第五章相平衡5.1引言5.2多相体系的一般平衡条件5.3相律5.4单组份体系的相图5.5二组份体系的相图及应用5.6三组份体系的相图和应用5.7二级相变第六章化学平衡6.1化学反应的平衡条件和化学反应的亲和势6.2化学反应的平衡常数和等温方程式6.3平衡常数的表示式6.4复相化学平衡6.5平衡常数的测定和平衡转化率的计算6.6标准生成自由能6.7用配分函数计算自由能和平衡常数6.8温度、压力和惰性气体对化学平衡的影响6.9同时平衡6.10反应的耦合6.11近似计算6.12生物能力学简介第八章电解质溶液8.1法拉第定律8.2离子的电迁移和迁移数8.3电导8.4电解质溶液理论第九章可逆电池的电动势及其应用9.1可逆和不可逆电池9.2电动势的测定9.3可逆电池电动势的符号及电池的写法9.4可逆电池的热力学9.5电动势产生机理9.6电极电势和电池的电动势9.7浓差电池和液体接界电势的计算9.8电动势测定的应用第十章电解与极化作用10.1分解电压10.2极化作用10.3电解时电极上的反应10.4金属的电化学腐蚀原理10.5化学电源第十一章化学动力学基础11.1化学反应速度的表示方法11.2化学反应速度方程式11.3简单级数的反应11.4几种典型的复杂反应11.5温度对反应速度的影响11.6活化能能反应速度的影响11.7光化学反应11.8激化化学反应11.9在溶液中进行的反应11.10流动体系反应动力学第十二章吸附作用与多相催化12.1吸附等温线12.2吸附现象的本质12.3化学吸附12.4化学吸附与催化反应12.5气固相催化反应动力学12.6扩散的影响12.7催化剂理论第十三章表面现象13.1表面自由能和表面张力13.2弯曲表面下的附加压力和蒸气压13.3液体的铺展和湿润13.4溶液界面吸附13.5表面活性剂及其作用第十四章胶体分散体系14.1胶体和胶体的基本特性14.2胶体的制备和净化14.3溶胶的动力性质14.4溶胶的光学性质14.5溶胶电学性质14.6溶胶的稳定性和聚沉作用14.7乳状液。
物理化学 01章_热力学第一定律及其应用
功可分为膨胀功和非膨胀功两大类。W的取号:
环境对体系作功,W>0;体系对环境作功,W<0 。
Q和W都不是状态函数,其数值与变化途径有关。
上一内容 下一内容 回主目录
返回
2021/1/3
1.2 热力学第一定律
•热功当量 •能量守恒定律 •热力学能 •第一定律的文字表述 •第一定律的数学表达式
上一内容 下一内容 回主目录
返回
2021/1/3
热功当量
焦耳(Joule)和迈耶(Mayer)自1840年起,历经 20多年,用各种实验求证热和功的转换关系, 得到的结果是一致的。
即: 1 cal = 4.1840 J
这就是著名的热功当量,为能量守恒原理 提供了科学的实验证明。
上一内容 下一内容 回主目录
返回
2021/1/3
热力学的方法和局限性
热力学方法 •研究对象是大数量分子的集合体,研究 宏观性质,所得结论具有统计意义。
•只考虑变化前后的净结果,不考虑物质 的微观结构和反应机理。
•能判断变化能否发生以及进行到什么程 度,但不考虑变化所需要的时间。
局限性 不知道反应的机理、速率和微观性
状态函数的特性可描述为:异途同归,值变 相等;周而复始,数值还原。
状态函数在数学上具有全微分的性质。
上一内容 下一内容 回主目录
返回
2021/1/3
状态方程
体系状态函数之间的定量关系式称为状态方 程(state equation )。
对于一定量的单组分均匀体系,状态函数 T,p,V 之间有一定量的联系。经验证明,只有两个 是独立的,它们的函数关系可表示为:
•体系与环境 •体系的分类 •体系的性质 •热力学平衡态 •状态函数 •状态方程 •热和功
物理化学1 热力学第一定律
体积功 功 非体积功 W’ 电功 表面功 光 轴功,等
1、体积功的计算
p外 dV
若体积膨胀或压缩dV (即V→V+dV),则
W p外dV
W p外dV
V1 V2
系统,V
使用该公式注意: (1)不论系统是膨胀还是压缩体积功都用-p外dv来计算, 不能用系统压力p,pV或Vdp都不是体积功; (2)此处W与热力学第一定律△U=Q+W中的W不同; (3)公式中的负号。
作业:p19 习题14。
第一章 热力学第一定律
§1.6 理想气体的内能和焓
实验结果:没有发现水温的 变化,也就是ΔT=0,系统与 环境没有热交换,Q=0。 W=0 ΔU=0
结论:在温度一定时气体的 内能U是一定值,而与体积无 关。
第一章 热力学第一定律——理想气体的内能和焓
U U dU dT dV T V V T
第一章 热力学第一定律——理想气体的内能和焓
理想气体的等温可逆过程:
U 0,
H 0
U Q W Q W
Q W
V2
V1
nRT V2 p1 dV nRT ln nRT ln V V1 p2
§1.7 热 容
1、定容热容和定压热容
热容的定义:系统每升高单位温度所需要吸收的热。
热力学物理量 状函数
过程量
Ⅰ (过程量)
A
(状态 函数) Ⅱ (过程量)
B
(状态 函数)
(1) Ⅰ和Ⅱ的过程量一般不同:QⅠ≠ QⅡ, WⅠ≠ WⅡ Ⅰ和Ⅱ的状态函数变化相同:YⅠ= YⅡ (2) 一般Q ≠-Q逆, W ≠-W逆; 但Y =- Y逆
3. 热力学第一定律的数学表达式 当一系统的状态发生某一任意变化时,假设系统吸收 的热量为Q,同时做出的功为W,那么根据第一定律, 应当有下列公式:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b. 其研究对象是有足够大量质点的体系, 得到物质的宏观性质(故无需知物质 的结构),因而对体系的微观性质, 即个别或少数分子、原子的行为,热 力学无法解答。
c. 热力学所研究的变量中,没有时间 的概念,不涉及过程进行的速度问 题。热力学无法预测过程什么时候 发生、什么时候停止。(这对实用 的化学反应来讲显然是不够的,需 用化学动力学来解决)。
件。 * 这些问题的解决,将对生产和科研起巨大的作
用。
四、热力学的应用
1. 广泛性:只需知道体系的起始状态、 最终状态,过程进行的外界条件,就可 进行相应计算;而无需知道反应物质的 结构、过程进行的机理,所以能简易方 便地得到广泛应用。
2. 局限性:
a. 由于热力学无需知道过程的机理,所以 它对过程自发性的判断只能是知其然 而不知其所以然,只能停留在对客观 事物表面的了解而不知其内在原因;
2. 一定条件下某种过程能否自发进行,若 能进行,则进行到什么程度为止,即变 化的方向和限度问题。
二、热力学体系的基础(基石)
热力学的一切结论主要建立在两个经 验定律的基础之上,即热力学第一定 律和热力学第二定律(这是19世纪发 现的,后面将详细讲述)。
所谓经验定律,应有如下特征:
1. 是人类的经验总结,其正确性是由无 数次的实验事实所证实的;
2. 它不能从逻辑上或其他理论方法来加 以证明(不同于定理)。
20 世纪初,又发现了热力学第三定 律。虽然其作用远不如第一、第二 定律广泛,但对化学平衡的计算具 有重大的意义。
三、化学热力学
热力学在化学过程中的应用构成“化学 热力学”,其研究对象和内容:
1. 判断某一化学过程能否进行(自发); 2. 在一定过程所能取得的最大产量的条
第一章 热力学第一定律
§1.1 热力学概论
一、热力学的研究对象 热力学是研究能量相互转换过程中所应
遵循的规律的科学。 研究对象: 1. 各种物理变化、化学变化中所发生的能
量效应。
热力学发展初期,只涉及热和机械功间 的相互转换关系,这是由蒸汽机的发明和 使用引起的。现在,其他形式的能量如电 能、化学能、辐射能等等也纳入热力学研 究范围。