物理化学 热力学基本定律

合集下载

天大物化第五版第二章 热力学第一定律

天大物化第五版第二章 热力学第一定律

U 是广度量,具有加和性 是广度量, U 是状态函数 对指定系统,若n一定,有 对指定系统, 一定, 一定
U = f (T ,V )
dU =
( ) d T + ( ) dV
V T
U 抖 T 抖
U V
U 的绝对值无法求,但∆U可求 的绝对值无法求, 可求 只取决于始末态的状态, ∆U只取决于始末态的状态,与途径无关 只取决于始末态的状态 例: 始态 1 2 3 不同途径, 、 不同途径,W、Q 不同 但 ∆U= ∆U1 = ∆U2=∆U3 = 末态
(2)状态函数的分类 )状态函数的分类——广度量和强度量 广度量和强度量 按状态函数的数值是否与物质的数量有关, 按状态函数的数值是否与物质的数量有关,将其分为广 度量(或称广度性质)和强度量(或称强度性质)。 度量(或称广度性质)和强度量(或称强度性质)。 广度量:具有加和性(如V、m、UL) 广度量:具有加和性( 强度量:没有加和性(如p、T、ρ L ) 强度量:没有加和性( 、T、ρ 注意:由任何两种广度性质之比得出的物理量则为强度 注意: 量,如摩尔体积 等
2. 恒压热(Qp)及焓: 恒压热( 及焓:
恒压过程:系统的压力与环境的压力相等且恒定不变 恒压过程:
p = p amb = 常数
对于封闭系统, 时的恒压过程: 对于封闭系统,W′ =0 时的恒压过程:
Q > 0 Q < 0
单纯pVT变化时,系统吸收或放出的热 变化时, 单纯 变化时 相变时, 不变 不变, 相变时,T不变,系统吸收或放出的热 化学反应时, 化学反应时,系统吸收或放出的热
热是途径函数
5. 热力学能 热力学能U
热力学系统由大量运动着微观粒子(分子、 热力学系统由大量运动着微观粒子(分子、原子和 离子等)所组成, 离子等)所组成,系统的热力学能是指系统内部所有粒 子全部能量的总和 U是系统内部所储存的各种能量的总和 是系统内部所储存的各种能量的总和 是系统内部所储存的各种能量 分子平动能、 分子平动能、转动能 包括 分子间相互作用的势能 分子内部各原子间的振动、电子及核运动 分子内部各原子间的振动、电子及核运动 各原子间的振动

物理化学的知识点总结

物理化学的知识点总结

物理化学的知识点总结一、热力学1. 热力学基本概念热力学是研究能量转化和传递规律的科学。

热力学的基本概念包括系统、环境、热、功、内能、焓、熵等。

2. 热力学第一定律热力学第一定律描述了能量守恒的原理,即能量可以从一个系统转移到另一个系统,但总能量量不变。

3. 热力学第二定律热力学第二定律描述了能量转化的方向性,熵的增加是自然界中不可逆过程的一个重要特征。

4. 热力学第三定律热力学第三定律表明在绝对零度下熵接近零。

此定律是热力学的一个基本原理,也说明了热力学的某些现象在低温下会呈现出独特的特性。

5. 热力学函数热力学函数是描述系统状态和性质的函数,包括内能、焓、自由能、吉布斯自由能等。

二、化学热力学1. 热力学平衡和热力学过程热力学平衡是指系统各个部分之间没有宏观可观察的能量传输,热力学过程是系统状态发生变化的过程。

2. 能量转化和热力学函数能量转化是热力学过程中的一个重要概念,热力学函数则是描述系统各种状态和性质的函数。

3. 热力学理想气体理想气体是热力学研究中的一个重要模型,它通过状态方程和理想气体定律来描述气体的性质和行为。

4. 热力学方程热力学方程是描述系统热力学性质和行为的方程,包括焓-熵图、温度-熵图、压力-体积图等。

5. 反应焓和反应熵反应焓和反应熵是化学热力学研究中的重要参数,可以用来描述化学反应的热力学过程。

三、物质平衡和相平衡1. 物质平衡物质平衡是研究物质在化学反应和物理过程中的转化和分配规律的一个重要概念。

2. 相平衡相平衡是研究不同相之间的平衡状态和转化规律的一个重要概念,包括固相、液相、气相以及其之间的平衡状态。

3. 物质平衡和相平衡的研究方法物质平衡和相平衡的研究方法包括热力学分析、相平衡曲线的绘制和分析、相平衡图的绘制等。

四、电化学1. 电解质和电解电解质是能在水溶液中发生电离的化合物,电解是将电能转化为化学能或反之的过程。

2. 电化学反应和电势电化学反应是在电化学过程中发生的化学反应,电势是描述电化学系统状态的一个重要参数。

物理化学知识点总结(热力学第一定律)

物理化学知识点总结(热力学第一定律)

热力学第一定律一、基本概念1.系统与环境敞开系统:与环境既有能量交换又有物质交换的系统。

封闭系统:与环境只有能量交换而无物质交换的系统。

(经典热力学主要研究的系统)孤立系统:不能以任何方式与环境发生相互作用的系统。

2.状态函数:用于宏观描述热力学系统的宏观参量,例如物质的量n、温度T、压强p、体积V等。

根据状态函数的特点,我们把状态函数分成:广度性质和强度性质两大类。

广度性质:广度性质的值与系统中所含物质的量成正比,如体积、质量、熵、热容等,这种性质的函数具有加和性,是数学函数中的一次函数,即物质的量扩大a倍,则相应的广度函数便扩大a倍。

强度性质:强度性质的值只与系统自身的特点有关,与物质的量无关,如温度,压力,密度,摩尔体积等。

注:状态函数仅取决于系统所处的平衡状态,而与此状态的历史过程无关,一旦系统的状态确定,其所有的状态函数便都有唯一确定的值。

二、热力学第一定律热力学第一定律的数学表达式:对于一个微小的变化状态为:dU=公式说明:dU表示微小过程的内能变化,而δQ和δW则分别为微小过程的热和功。

它们之所以采用不同的符号,是为了区别dU是全微分,而δQ和δW不是微分。

或者说dU与过程无关而δQ和δW却与过程有关。

这里的W既包括体积功也包括非体积功。

以上两个式子便是热力学第一定律的数学表达式。

它们只能适用在非敞开系统,因为敞开系统与环境可以交换物质,物质的进出和外出必然会伴随着能量的增减,我们说热和功是能量的两种传递形式,显然这种说法对于敞开系统没有意义。

三、体积功的计算1.如果系统与环境之间有界面,系统的体积变化时,便克服外力做功。

将一定量的气体装入一个带有理想活塞的容器中,活塞上部施加外压。

当气体膨胀微小体积为dV时,活塞便向上移动微小距离dl,此微小过程中气体克服外力所做的功等于作用在活塞上推力F与活塞上移距离dl的乘积因为我们假设活塞没有质量和摩擦,所以此活塞实际上只代表系统与环境之间可以自由移动的界面。

物理化学第1章 热力学第一定律

物理化学第1章 热力学第一定律

系统从环境吸热Q为正值,系统放热于环境Q为
负值。 ⑶单位: 常用单位为焦耳(J)或千焦耳(kJ)。
⒉功 ⑴定义和符号
系统与环境之间除热以外被传递的其他各种形式
的能量统称为功,用符号W表示。 ⑵正负值规定 系统对环境做功W为负值,系统从环境获得功W为 正值。
⑶单位:常用单位为焦耳(J)或千焦耳 (kJ)。
p( H 2 ) y( H 2 ) p总 =0.6427 108.9=70.00 kPa
p( N2 ) p总 p( H2 ) 38.89 kPa
四、阿马格分体积定律
由A、B、C组成的理想气体混合物
nRT (nA nB nC ) RT V p p
VA VB VC
⑶热力学能是系统的广度性质,具有加和性。
热力学能的微小变化dU可用全微分表示
通常,习惯将热力学能看作是温度和体积的函数,
即U=f(T,V),则
U U dU ( )V dT ( )T dV T V
理想气体的热力学能只是温度的函数。
1.3热力学第一定律
一、能量守恒与热力学第一定律
1.能量守恒定律
自然界的一切物质都具有能量,能量有各种各样形式, 并且能从一种形式转变为另一种形式,但在相互转变过 程中,能量的总数量不变。 2.热力学第一定律

本质:能量守恒定律。 常用表述:“第一类永动机是不可能造成的。” 第一类永动机是指不需要供给能量而可以连续不断做功
的机器。
二、封闭系统热力学第一定律的数学表达式
⑶恒容过程:变化过程中系统的体积始终恒定不变过程。
⑷绝热过程:系统与环境之间没有热交换的过程。 ⑸循环过程:系统由某一状态出发,经历一系列的变化,又 回到原状态的过程。

物理化学 热力学一定律、二定律复习

物理化学 热力学一定律、二定律复习

H nC p,m dT
T1
T2
H Qp
此式适用于W′=0、dp=0的封闭系统所进行的一切过程
理想气体恒温pVT 变化:
U 0

H 0
4. 化学反应热效应
由生成焓求反应焓 r H m B f H m B 由燃烧焓求反应焓 r H m B c H m B
2. 单纯pVT变化过程的熵变
V2 T2 S nR ln nCV ,m ln V1 T1 p1 T2 S nR ln nC p ,m ln p2 T1
将C p ,m、CV ,m看成定值
p2 V2 S nCV ,m ln nC p ,m R ln p1 V1
3. 相变化过程的熵变
U QV 适用于W ' 0, dV 0的封闭系统所进行的一切过程。
H U ( pV ),式中:( pV ) p2V2 pV1 1
此式适用于封闭系统的一切过程。
此式适用于n、Cp,m恒定的理想气体单纯pVT变化的一切过程; 或n、Cp,m恒定的任意单相纯物质的恒压变温过程。
熵判据
不可逆 自发 隔离系统:S 0 或 dS 0 可逆 平衡 自发 S隔离 S系统 S环境 0 平衡
V2 p1 nR ln 理想气体的恒温可逆和不可逆过程:T S nR ln V1 p2
纯物质的恒压变温可逆和不可逆过程: p S nC p ,m ln T2 T1 纯物质的恒容变温可逆和不可逆过程:V S nCV ,m ln T2 T1 理想气体pVT都变的可逆过程:
5. 理想气体的绝热可逆方程:
T2
T1
Cv ,m

热力学四大定律

热力学四大定律

人类最伟大的十个科学发现之九:热力学四大定律18世纪,卡诺等科学家发现在诸如机车、人体、太阳系和宇宙等系统中,从能量转变成“功”的四大定律。

没有这四大定律的知识,很多工程技术和发明就不会诞生。

热力学的四大定律简述如下:热力学第零定律——如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。

热力学第一定律——能量守恒定律在热学形式的表现。

热力学第二定律——力学能可全部转换成热能,但是热能却不能以有限次的实验操作全部转换成功(热机不可得)。

热力学第三定律——绝对零度不可达到但可以无限趋近。

法国物理学家卡诺(Nicolas Leonard Sadi Carnot,1796~1823)(左图)生于巴黎。

其父L.卡诺是法国有名的数学家、将军和政治活动家,学术上很有造诣,对卡诺的影响很大。

卡诺身处蒸汽机迅速发展、广泛应用的时代,他看到从国外进口的尤其是英国制造的蒸汽机,性能远远超过自己国家生产的,便决心从事热机效率问题的研究。

他独辟蹊径,从理论的高度上对热机的工作原理进行研究,以期得到普遍性的规律;1824年他发表了名著《谈谈火的动力和能发动这种动力的机器》(右图),书中写道:“为了以最普遍的形式来考虑热产生运动的原理,就必须撇开任何的机构或任何特殊的工作介质来进行考虑,就必须不仅建立蒸汽机原理,而且建立所有假想的热机的原理,不论在这种热机里用的是什么工作介质,也不论以什么方法来运转它们。

”卡诺出色地运用了理想模型的研究方法,以他富于创造性的想象力,精心构思了理想化的热机——后称卡诺可逆热机(卡诺热机),提出了作为热力学重要理论基础的卡诺循环和卡诺定理,从理论上解决了提高热机效率的根本途径。

卡诺在这篇论文中指出了热机工作过程中最本质的东西:热机必须工作于两个热源之间,才能将高温热源的热量不断地转化为有用的机械功;明确了“热的动力与用来实现动力的介质无关,动力的量仅由最终影响热素传递的物体之间的温度来确定”,指明了循环工作热机的效率有一极限值,而按可逆卡诺循环工作的热机所产生的效率最高。

第一章:热力学第一定律(物理化学)

第一章:热力学第一定律(物理化学)

We,1 = -p1(V1- V2) =p1(V2 - V1)
功与过程
2.多次等外压压缩 第一步:用 p" 的压力将系统从 V2 压缩到V " ; 第二步:用 p ' 的压力将系统从V " 压缩到V ' ; 第三步:用 p1 的压力将系统从V ' 压缩到 V1 。 We = -p”(V”- V2) +[- p ’(V’ - V”)] + [-p1 (V”- V1)] 整个过程所作的功为三步加和。
系统吸热,Q>0; 功(work)
系统放热,Q<0 。
环境对系统作功,W >0; 系统对环境作功,W<0 。
1. 如图,在绝热盛水容器中,浸入电阻丝,通电一段 时间,通电后水及电阻丝的温度均略有升高,今以电阻 丝为系统------------------------------------- ( ) (A) W =0,Q <0, ΔU <0 (B)W >0, Q <0, ΔU >0 (C) W <0, Q <0, ΔU >0 (D) W >0, Q =0, ΔU >0 若以电阻丝,水以及绝热水槽为系统又如何??
d(U pV )
H U pV
积分式
Qp DH
3.焓(enthalpy)
焓的定义式: 发生微变时:
H U pV
dH d(U pV ) dU pdV Vdp
系统由始态到末态的焓变
DH DU D( pV )
为什么要定义焓? 为了使用方便,因为在等压、不作非膨胀功的条 Q p 容易测定,从而 Qp 件下,焓变等于等压热效应 。 可求其它热力学函数的变化值。 焓是状态函数 定义式中焓由状态函数组成。 焓不是能量 具有能量的单位,但不守恒。

物理化学基本知识点与公式总结

物理化学基本知识点与公式总结

3、气体组分的化学势
RT lnp/p
B

B

RT
ln p B /p

RT lnp/p
B

B

RT lnpBB/p
化学平衡总结
化学平衡总结
1、标准平衡常数
K 0 ( pBeq p0 )B
Qp
H

T2 T1
nC
p,m
dT
n,
C
为常数
p,m
nCp,m (T2 T1)
Cp,m-CV,m=R(理想气体) 单原子理想气体: CV,m=3/2 R
双原子理想气体:CV,m=5/2 R
多原子理想气体:CV,m=3R
可逆相变
Q2 相变过程的热力学计算
不可逆相变
状态函数法
Q3
热力学第一定律
可不 逆可 相逆
热力 学
第三 定律
PVT
程程 程过 程 程程

变相 变
热力学基本方程
Maxwell关系式
过程判据
S判据
0 dS隔离 0
0
不可逆,自发 可逆, 平衡 不可能
不可逆 dSiso dSsys dSamb 0 可逆
A判据 A 0
A=U-TS
自发进行
nC p ,m
ln

T2 T1


nR
ln

p1 p2

S

nCV ,m
ln

p2 p1


nC p ,m
ln

V2 V1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

W p1 (V1 V2 )
' e,1
示功图--多步恒外压压缩
We',1 p" (V " V2 ) p' (V ' V " ) p1 (V1 V ' )
示功图--等温可逆压缩过程
W
体积功的计算
W = -pe S dl
= -pe dV
体积功计算示意图
体积功的计算
① 自由膨胀过程 (向真空膨胀的过程 pe=0) 系统对外不作功, W=0。 ② 恒外压过程 (pe= 常数) V2 W= - pe dV = - pe (V2 -V1) = -peΔV

V1
③ 等压过程 (p1=p2=pe=常数) V2 W= - pe dV = - p (V2 -V1) = -pΔV
10 功的定义, 体积功
把系统与环境间除热以外,其它各种形式 传递的能量统称为功(work),以W 表示。 功与热具有相同的能量量纲,同时规定环 境对系统作功W为正值,系统对环境作功W 为负。 功可以视作广义力X与广义位移(dY)的乘积: W = X i dYi i 功的诸多形式中以体积功最常见,一般将 除体积功外的其它形式的功通称非体积功或 其它功,以 W ' 表示。
§1. 1 热力学基本概念
一 系统与系统的性质 二 系统的状态 三 状态函数
四 过程与途径 五 热与功
1 系统与环境
系统(System) 在科学研究时必须先确定研 究对象,把一部分物质与其余 分开,这种分离可以是实际的 ,也可以是想象的。这种被划 定的研究对象称为系统,亦称 为物系或体系。 环境(surroundings) 与系统密切相关、有相互 作用或影响所能及的部分称为 环境。
V1
体积功的计算
④ 可逆过程或准静态过程 因pe= p±dp, 可以用系统的压力p 代替pe, ,即 V2 W = - pdV 或 W = - pdV V1 若气体为理想气体,又是等温可逆过 程,则 W= -V pdV =
1
V2
n RT - V dV 1 V
V2
V2 = -nRTln V1
7 过程(process)与途径(path)
循环过程(cyclic process)初态与终态是同一 状态的过程 等温过程(isothermal process)初、终态温度 相同且等于环境温度的过程 绝热过程(adiabatic process):系统与环境间 不存在热量传递的过程 等压过程(isobaric process):初态压力、终态 压力与环境压力都相同的过程 等容过程(isochoric process):系统体积不变
ห้องสมุดไป่ตู้
热力学过程性质的改变值(ΔZ) ① 聚集状态的变化(相变):α→β , Z = Z (β) - Z (α) O g 例如 lVm (H2O ,298.15K, p )。 ② 化学反应过程:在”Δ” 后加下标”r” (也可用下标”f ”表示化合物由元素生成的 反应;”c”表示燃烧反应等) 例如 r Z ③ 发生单位反应时性质的改变记为。对化学 反应:0= B B , r Zm= dZ / d ;
4 热力学平衡态 (equilibrium state)
当系统的性质不随时间而改变,则系统就处于热力 学平衡态,它包括下列几个平衡: 热平衡 (系统内如果不存在绝热壁,则各处温度相等) 力学平衡 (系统内如果不存在刚性壁,各处压力相等) 相平衡 (多相共存时,各相的组成和数量不随时间而改变) 化学平衡 (反应体系中各物的数量不再随时间而改变。) 总之处于平衡态的系统中不存在宏观量的流。
强度性质(intensive properties) 它的数值取决于系统自身的特点,与系统的数量无 关,不具有加和性,如温度、压力等。它在数学上 是零次齐函数。指定了物质的量的容量性质即成为 强度性质,如摩尔热容。
3 相与聚集态
系统中物理性质和化学性质完全均匀(指在分子水平上 均匀混合的状态)的部分称为相(phase)。 相与聚集态是不同的概念, 固态可以是不同的相, 石墨与金刚石都是固态碳, 但它们是不同的相。 根据系统中包含相的 数目将系统分为: 单相系统(均相系统) 多相系统(非均相系统)。
§0. 2 热力学 方法
热力学采用宏观的研究方法:依据系统的初始、终了状 态及过程进行的外部条件(均是可以测量的宏观物理量) 对系统的变化规律进行研究。它不涉及物质的微观结构和 过程进行的机理。
热力学的这一特点就决定了它的优点和局限性;热力学
其结论绝对可靠。但不能对热力学规律作出微观说明。 热力学只能告诉人们系统在一定条件下的变化具有什么 样的规律,而不能回答为什么具有这样的规律。
B
9 热的定义
因为系统与环境存在温度差而在其间传递 的能量称为热(heat),以Q表示,单位是焦 尔( J ) 或千焦( kJ ),并且规定系统吸热时Q 为正值,放热Q 为负。
热容 一个无相变、无化学变化的均相封 闭系统经历一个指定过程,热容 C = Q / dT (单位为J K-1 )
如果已知热容C 则可计算出指定过程的热 Q = C dT
对于任一化学反应,其计量方程式为: aA + bB + … = gG + hH + … 一般可表示为: 0= B B B dnB 反应进度的微小改变量定义为 d = B 对于有限量的变化 nB ( 2 ) - nB (1 )
Δ =
2
-
1
=
B
当 1= 0 mol (尚未发生反应)时
§0. 3 化学热力学
热力学的基本原理在化学现象以及和化学现象有关 的物理现象中的应用称为化学热力学。化学热力学主 要解决三个问题: (1)利用热力学第一定律解决热力学系统变化过程 中的能量计算问题。重点解决化学反应热效应的计算 问题。 (2)利用热力学第二定律解决系统变化过程的可能 性问题,即过程的性质问题。重点解决化学反应变 化自发方向和限度的问题。 (3)利用热力学基本原理研究热力学平衡系统的热 力学性质以及各种性质间相互关系的一般规律。
5 稳态 (steady state) 或定态
我们把这种非平衡态中,虽然有宏观量的流, 但系统中各点的宏观性质不随时间变化的状态叫 做稳态或定态。
6 状态函数 (state function)
系统性质又叫状态参量。 同时,对确定状态的系统, 其宏观性质由状态所确定, 是状态的单值函数,这些 由系统状态所确定的宏观 性质也被叫做状态函数,
等容过程
绝热等容
等温过程 等压过程
恒外压过程
绝热过程
绝热等压
等温等压
准静态过程(quasi-staticprocess)
当系统在状态变化过程中的每一时刻都处于平衡态时, 这种过程叫做准静态过程。例如
气缸内气体的膨胀过程, 当活塞非常缓慢地外移,以 致气体由一个平衡状态变为 相邻的另一个平衡状态(驰 豫过程)的速率远远大于活 塞移动的速率,这时气缸内 的气体在任何时刻都非常接 近于平衡态,这种过程可以 近似地看作是准静态过程
状态方程 系统状态函数之间的定量关系式称为状态 方程(state equation )。 对于一定量的单组分均匀系统,状态函数 T,p,V 之间有一定量的联系。经验证明,只 有两个是独立的,它们的函数关系可表示为: T= f(p,V) , p= f(T,V) , V= f(p,T) 例如,理想气体的状态方程可表示为: pV = nRT
环境
系统
系统分类 根据系统与环境 之间的关系,把 系统分为三类: (1)敞开系统 (open system) 系统与环境之间 既有物质交换, 又有能量交换。
系统分类 (2)封闭系统 (closed system) 系统与环境之间 无物质交换,但 有能量交换。
系统分类 (3)隔离系统 (isolated system) 系统与环境之间 既无物质交换, 又无能量交换, 又称为孤立系统。 有时把封闭系统 和系统影响所及 的环境一起作为 孤立系统来考虑。
反应进度
引入反应进度的优点: 在反应进行到任意时刻,可以用任一反应物或 生成物来表示反应进行的程度,所得的值都是相 同的,即:
d dnD
D

dnE
E

dnF
F

dnG
G

反应进度被应用于反应热的计算、化学平衡和 反应速率的定义等方面。 注意: 应用反应进度,必须与化学反应计量方程 相对应。 1 mol 时, 当 都等于 H 2 Cl 2 2HCl 两个方程所发生反应的物 例如: 1 1 Cl HCl H 质的量显然不同。 2 2 2 2
状态函数Z具有全微分的性质: 当系统状态发生微小变化时
f dZ= T p
dT
f + p T
dp 及
=0 d Z
状态1 (Z1,T1,p1) ----状态2 (Z2,T2,p2) :
ΔZ =Z2 - Z1=

2
1
dZ 。
状态函数的改变值只取决于系统的初、终 态而与变化所经历的细节无关。
§0. 1 热力学
热力学(thermodynamics) 起源于1824年Carnot(卡 诺)对热机效率的研究,这时的热力学仅研究热与机 械功之间的相互转化。直到19世纪末,热力学发展成 研究热与其它形式能量相互转化所遵循规律的一门学 科。 热力学的理论基础主要是两个基本定律: 热力学第一定律,即能量守恒与转化定律,研究热与 其它形式能量间相互转化的守恒关系; 热力学第二定律, 是热与其它形式能量相互转化的方 向和限度的规律。
p1 = -nRTln p2
体积功的计算
⑤ 等温(T)等压(p)化学反应(或相变) 过程中体积功的计算: 对化学反应 0= B B B , 体积功 W = - pΔV 当化学反应中有气体参加时,如果将气体视 作理想气体,同时忽略非气态物质对体积改 变的贡献,那么对单位反应 B (g) W = - p [ B (g)Vm,B (g) ] = - RT B B 如对相变过程: l → g (Δξ=1 mol ) ,则 W = - RT
相关文档
最新文档