云南省2019年中考数学试卷及参考答案

合集下载

2019年云南省中考数学试题题(word版,含解析)

2019年云南省中考数学试题题(word版,含解析)

2019年云南省初中学业水平考试数学试题卷一、填空题(本大题共6小题,每小题3分,共18分)1.若零上8℃记作+8℃,则零下6℃记作 ℃。

2.分解因式:x 2-2x +1= 。

3.如图,若AB℃CD ,℃1=40度,则℃2= 度。

4.若点(3,5)在反比例函数)0(≠=k xky 的图象上,则k = 。

5.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考 试成绩分为A 、B 、C 、D 、E 五个等级,绘制的统计图如下:根据以上统计图提供的信息,则D 等级这一组人数较多的班是 。

6.在平行四边形ABCD 中,℃A =30°,AD =34,BD =4,则平行四边形ABCD 的面积等于。

二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分) 7.下列图形既是轴对称图形,又是中心对称图形的是( )8.2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记 数法表示为( )A.68.8×104B.0.688×106C.6.88×105D.6.88×1069.一个十二边形的内角和等于( )A.2160°B.2080°C.1980°D.1800°10.要使21+x 有意义,则x 的取值范围为( ) A.x≤0 B.x ≥-1 C.x ≥0 D.x≤-111.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( ) A.48π B.45π C.36π D.32π12.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( ) A.(-1)n -1x 2n -1 B.(-1)n x 2n -1 C.(-1)n -1x 2n+1 D.(-1)n x 2n +113.如图,℃ABC 的内切圆℃O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且AB =5,BC =13,CA =12,则阴影部分(即四边形AEOF )的面积是( ) A.4 B.6.25 C.7.5 D.914. 若关于x 的不等式组⎩⎨⎧--02)1(2<>x a x 的解集为x >a ,则a 的取值范围是( )A.a <2B. a ≤2C.a >2D.a ≥2 三、解答题(本大题共9小题,共70分) 15.(本小题满分6分)计算: 1021453--+---)()(π16.(本小题满分6分)如图,AB=AD,CB=CD.求证:℃B=℃D.17.(本小题满分8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:月销售量/件数177048022018012090人数113334(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.18.(本小题满分6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动,已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.19.(本小题满分7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.温馨提示:确定一个适当的月销售目标是一个关键问题,如果目标定得太高,多数营业员完不成任务,会使营业员失去信心;如果目标定得太低,不能发挥营业员的潜力。

2019年云南省中考数学试卷附分析答案

2019年云南省中考数学试卷附分析答案
22.(9 分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜 的成本为 6 元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发 现,某天西瓜的销售量 y(千克)与销售单价 x(元/千克)的函数关系如图所示: (1)求 y 与 x 的函数解析式(也称关系式); (2)求这一天销售西瓜获得的利润 W 的最大值.
19.(7 分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为 1,2,3, 4 的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口 袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标 号分别用 x、y 表示.若 x+y 为奇数,则甲获胜;若 x+y 为偶数,则乙获胜. (1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出 现的结果总数; (2)你认为这个游戏对双方公平吗?请说明理由.
BC=13,CA=12,则阴影部分(即四边形 AEOF)的面积是( )
A.4
B.6.25
C.7.5
D.9
14.(4 分)若关于 x 的不等式组
.
5
r>
, 的解集是 x>a,则 a 的取值范围是(

5<
A.a<2
B.a≤2
C.a>2
三、解答题(本大共 9 小题,共 70 分) 15.(6 分)计算:32+(x﹣5)05 Ā(﹣1)﹣1.
∴DE AD=2 ,AE AD=6, 在 Rt△BDE 中,∵BD=4,
∴BE
5
5 . r 2,
如图 1,∴AB=8,
∴平行四边形 ABCD 的面积=AB•DE=8×2 如图 2,AB=4,

2019年云南省中考数学试卷(含答案与解析)

2019年云南省中考数学试卷(含答案与解析)

---------------- 密★启用前 _ -------------------- __ 1.若零上 8 ℃记作 +8 ℃,则零下 6 ℃记作 ℃. __ __ __ _号 卷生 __ __ ___ x (k ≠ 0) 的图象上,则 k =__ 上 __ __ __ __ __ _ 答____ _ --------------------学 业 2 有意义,则 x 的取值范围为的解集为 x >a ,则 a 的取值范围是-------------绝在--------------------云南省 2019 年初中学业水平考试数学A B C D8.2019 年“五一”期间,某景点接待海内外游客共 688 000 人次,688 000 这个数用科学记数法表示为 ( )A . 68.8 ⨯104B . 0.688 ⨯106_ __ __考 _______ _ _ 名 __ 姓 ___ __ __ __ _ 题 根据以上统计图提供的信息,则 D 等级这一组人数较多的班是 .校6.在平行四边形 ABCD 中, ∠A = 30 , AD = 4 3 , BD = 4,则平行四边形 ABCD 的面积等(本试卷满分 120 分,考试时间 120 分钟)此 一、填空题(本大题共 6 小题,每小题 3 分,共 18 分.请把答案填在题中的横线上)2.分解因式: x 2 - 2 x + 1 = .3.如图,若 AB ∥CD , ∠1 = 40 度,则 ∠2 = 度.--------------------_ _ 4.若点 (3,5) 在反比例函数 y = k .--------------------5.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为 40 人,每个班的考试成绩分为 A ,B ,C ,D ,E 五个等级,绘制的统计图如下:--------------------于 .毕 二、选择题(本大题共 8 小题,每小题 4 分,共 32 分.在每小题给出的四个选项中,只有一项是符合题目要求的)无 7.下列图形既是轴对称图形,又是中心对称图形的是 --------------------( )C .6 .8 8⨯1 0 5D.6.88⨯1069.一个十二边形的内角和等于()A.2160B.2080C.1980D.180010.要使x+1()A.x≤0B.x≥-1C.x≥0D.x≤-111.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π12.按一定规律排列的单项式:x3,-x5,x7,-x9,x11,……第n个单项式是()A.(-1)n-1x2n-1B.(-1)n x2n-1C.(-1)n-1x2n+1D.(-1)n x2n+113.如图,△ABC的内切圆O与BC,CA,AB分别相切于点D,E,F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A.4B.6.25C.7.5D.9⎧2(x-1)>2,14.若关于x的不等式组⎨()⎩a-x<0A.a<2B.a≤2C.a>2D.a≥2三、解答题(本大题共9小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分6分)计算:32-(π-5)0-4+(-1)-1.效数学试卷第1页(共18页)数学试卷第2页(共18页)16.(本小题满分6分)如图,AB=AD,CB=CD.求证:∠B=∠D.18.(本小题满分6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.17.(本小题满分8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:月销售量/件数177048022018012090人数113334(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.19.(本小题满分7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x,y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.数学试卷第3页(共18页)数学试卷第4页(共18页)(2)若 ∠AOB : ∠ODC = 4:3 ,求 ∠ADO 的度数.__ __ __ __ __ __ 卷 考 __ __ __ __ __ ____ ____ __名 __ 姓 __ 答__ (2)若点 P 在抛物线 y = x 2 + (k 2 + k - 6) x + 3k 上,且 P 到 y 轴的距离是 2,求点 P 的坐______ 题__ 5 .(1)求 -----------------------------在 20.(本小题满分 8 分) --------------------如图 , 四边形 ABCD 中 , 对角线 AC ,BD 相交于点 O , AO = OC , BO = OD , 且∠AOB = 2∠OAD .(1)求证:四边形 ABCD 是矩形;此--------------------__ _ _ 号 -------------------- 生 __ _ __ _ _ 上 _ -------------------- __ 21.(本小题满分 8 分) _ _ 已知 k 是常数,抛物线 y = x 2 + (k 2 + k - 6) x + 3k 的对称轴是 y 轴,并且与 x 轴有两个 交点. _ -------------------- k 的值;__ 标. __ __ --------------------校 学 业 毕无--------------------22.(本小题满分 9 分)某驻村扶贫小组实施产业扶贫 ,帮助贫困农户进行西瓜种植和销售 .已知西瓜的成本为 6 元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量 y (千克)与销售单价 x (元/千克)的函数关系如下图所示:(1)求 y 与 x 的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润 W 的最大值.23.(本小题满分 12 分)如 图 ,AB 是 C 的 直 径 ,M ,D 两 点 在 AB 的 延 长 线 上 ,E 是 C 上的点 , 且DE 2 = DB DA .延长 AE 至 F ,使 AE = EF ,设 BF = 10 , cos ∠BED = 4(1)求证: △DEB ∽△DAE ;(2)求 DA ,DE 的长;(3)若点 F 在 B ,E ,M 三点确定的圆上,求 MD 的长.效数学试卷 第 5 页(共 18 页) 数学试卷 第 6 页(共 18 页)x上,∴5=3,∴k=3⨯5=15.2有意义,则被开方数x+1要为非负数,即x+1≥0,∴x≥-1,故选B.云南省2019年初中学业水平考试数学答案解析一、填空题1.【答案】-6【解析】零上记为正数,则零下记为负数,故答案为-6.【考点】正负数表示两个相反意义的量.2.【答案】(x-1)2【解析】x2-2x1+12=(x-1)2,故答案为(x-1)2.【考点】分解因式.3.【答案】140【解析】∵AB∥CD,∴同位角相等,∴∠1与∠2互补,∴∠2=180-40=140,故答案为140.7.【答案】B【解析】根据轴对称和中心对称定义可知,A选项是轴对称,B选项既是轴对称又是中心对称,C选项是轴对称,D选项是轴对称图形,故选B.【考点】轴对称图形和中心对称图形的概念.8.【答案】C【解析】科学记数法较大数a⨯10N,其中1≤a<10,N为小数点移动的位数.∴a=6.88,N=5,故选C.【考点】科学记数法.9.【答案】D【解析】多边形内角和公式为(n-2)⨯180,其中n为多边形的边的条数.∴十二边形内角和为(12-2)⨯180=1800,故选D.【考点】多边形的内角和公式.【考点】平行线的性质,平角的意义.4.【答案】15【解析】∵点(3,5)在反比例函数y=k k10.【答案】B【解析】要使x+1【考点】二次根式有意义的条件.【考点】反比例函数的性质.5.【答案】甲班【解析】由频数分布直方图知D等级的人数为13人,由扇形统计图知D等级的人数为40⨯30%=12,∴D等级较多的人数是甲班,故答案为甲班.【考点】统计图的应用.6.【答案】163或83【解析】过点D作DE⊥AB于E,∵∠A=30,∴DE=AD s in30=23,AE=ADcos30=6,在△Rt DBE中,BE=BD2-DE2=2,∴AB=AE+B E=8,或AB=AE-BE=4,∴平行四边形ABCD的面积为8⨯23=163或4⨯23=83,故答案为163或83.【考点】平行四边形的性质,特殊角的三角函数,勾股定理.二、选择题数学试卷第7页(共18页)11.【答案】A【解析】设圆锥底面圆的半径为r,母线长为l,则底面圆的周长等于半圆的弧长8π,∴2πr=8π,∴r=4,圆锥的全面积等于S侧+S底=πrl+πr2=16π+32π=48π,故选A.【考点】圆锥的侧面展开图,圆锥的全面积.12.【答案】C【解析】观察可知,奇数项系数为正,偶数项系数为负,∴可以用(-1)n-1或(-1)n+1,(n为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为2n+1,故选C.【考点】探索规律.13.【答案】A【解析】∵AB=5,BC=13,CA=12,∴AB2+AC2=BC2,∴△ABC为直角三角形,且∠A=90,∵O为△ABC内切圆,∴∠AFO=∠AEO=90,且AE=AF,∴四数学试卷第8页(共18页)= S+ S+ S∴ r = 2 ,∴ S= r 2 = 4,故选 A .(平均速度为 1.5xkm /h .根据题意得 240∵ ⎨CB = CD,速度为 1.5xkm /h .根据题意得 240⎪ AC = AC , ∵ ⎨CB = CD,⎪ AC = AC , xx边形 AEOF 为正方形,设O 的半径为 r ,∴ OE = O F = r ,∴ S四边形AEOF= r 2 ,连接所以,如果想让一半左右的营销人员都能够达到月销售目标 ,(1)中的平均数、中位数、AO ,BO ,CO , ∴ S四边形AEOF1 1△BOC , ∴ 2 ( AB + AC +BC) = 2 AB AC ,众数中,中位数最适合作为月销售目标.【解析】1)这 15 名销售人员该月销售量数据的平均数为 278,中位数为 180,众数为 90; (2)解:中位数最适合作为月销售目标.理由如下:在这 15 人中,月销售额不低于 278(平均数)件的有 2 人,月销售额不低于 180(中位数)件【考点】勾股定理逆定理,正方形的判定与性质,切线长定理,解方程组.14.【答案】D【解析】解不等式组得 x >2 , x >a ,根据同大取大的求解集的原则,∴ a >2 ,当 a = 2 时,也满足不等式的解集为 x >2 ,∴ a ≥2 ,故选 D .【考点】解不等式组.三、解答题15.【答案】解: 原式 = 9 + 1 - 2 -1= 7【解析】解: 原式 = 9 + 1 - 2 -1= 7【考点】实数的运算.16.【答案】证明:在△ABC 和 △ADC 中,⎧ AB = AD , ⎪ ⎩∴ △ABC ≌△ADC (SSS) .∴ ∠ B = ∠ D .【解析】证明:在 △ABC 和 △ADC 中,⎧ AB = AD , ⎪ ⎩∴ △ABC ≌△ADC (SSS) . ∴ ∠ B = ∠ D .【考点】全等三角形的判定及性质.17.【答案】(1)这 15 名销售人员该月销售量数据的平均数为 278,中位数为 180,众数为90;(2)解:中位数最适合作为月销售目标.理由如下:在这 15 人中,月销售额不低于 278(平均数)件的有 2 人,月销售额不低于 180(中位数)件的有 8 人,月销售额不低于 90(众数)件的有 15 人.数学试卷 第 9 页(共 18 页) 的有 8 人,月销售额不低于 90(众数)件的有 15 人.所以,如果想让一半左右的营销人员都能够达到月销售目标 ,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标.【考点】统计的综合应用.18.【答案】解:设甲校师生所乘大巴车的平均速度为 xkm /h ,则乙校师生所乘大巴车的270x - 1.5x = 1 . 解得 x = 60,经检验, x = 60是原分式方程的解. ∴ x = 60,1.5 =90.答:甲、乙两校师生所乘大巴车的平均速度分别为 60 km /h 和 90 km /h .【解析】解:设甲校师生所乘大巴车的平均速度为 xkm /h ,则乙校师生所乘大巴车的平均270x - 1.5x = 1 . 解得 x = 60,经检验, x = 60是原分式方程的解. ∴ x = 60,1.5 =90.答:甲、乙两校师生所乘大巴车的平均速度分别为 60 km /h 和 90 km /h . 【考点】列分式方程解应用题.19.【答案】解:(1)方法一:列表法如下:x y 1 2 3 41 (1,1) (1,2) (1,3) (1,4)2 (2,1) (2,2) (2,3) (2,4)3 (3,1) (3,2) (3,3) (3,4)5 (4,1) (4,2) (4,3) (4,4)(x, y) 所有可能出现的结果共有 16 种. 方法二:树形图(树状图)法如下:数学试卷 第 10 页(共 18 页)∵x+y为奇数的有8种情况,∴P(甲获胜)=8∵x+y为偶数的有8种情况,∴P(乙获胜)=8∵x+y为奇数的有8种情况,∴P(甲获胜)=8∵x+y为偶数的有8种情况,∴P(乙获胜)=82=0,即k2+k-6=0..(x,y)所有可能出现的结果共有16种.(2)这个游戏对双方公平.理由如下:由列表法或树状图法可知,在16种可能出现的结果中,它们出现的可能性相等.116=2.116=2.∴P(甲获胜)=P(乙获胜).∴这个游戏对双方公平.【解析】解:(1)方法一:列表法如下:x y12341(1,1)(1,2)(1,3)(1,4)2(2,1)(2,2)(2,3)(2,4)3(3,1)(3,2)(3,3)(3,4)5(4,1)(4,2)(4,3)(4,4)(x,y)所有可能出现的结果共有16种.方法二:树形图(树状图)法如下:(x,y)所有可能出现的结果共有16种.(2)这个游戏对双方公平.理由如下:由列表法或树状图法可知,在16种可能出现的结果中,它们出现的可能性相等.116=2.116=2.∴P(甲获胜)=P(乙获胜).∴这个游戏对双方公平.【考点】求随机事件的概率.20.【答案】解:(1)证明:∵AO=O C,BO=O D,∴四边形ABCD是平行四边形.又∵∠AOB=2∠OAD,∠AOB是△AOD的外角,∴∠AOB=∠OAD+∠ADO.∴∠OAD=∠ADO数学试卷第11页(共18页)∴AO=O D.又∵AC=AO+OC=2AO,BD=B O+OD=2OD,∴AC=BD.∴四边形ABCD是矩形.(2)解:设∠AOB=4x,∠ODC=3x,则∠ODC=∠OCD=3x.在△ODC中,∠DOC+∠OCD+∠CDO=180.∴4x+3x+3x=180,解得x=18.∴∠ODC=3⨯18=54.∴∠ADO=90-∠ODC=90-54=36.【解析】解:(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形.又∵∠AOB=2∠OAD,∠AOB是△AOD的外角,∴∠AOB=∠OAD+∠ADO.∴∠OAD=∠ADO.∴AO=OD.又∵AC=AO+OC=2A O,BD=BO+OD=2OD,∴AC=BD.∴四边形ABCD是矩形.(2)解:设∠AOB=4x,∠ODC=3x,则∠ODC=∠OCD=3x.在△ODC中,∠DOC+∠OCD+∠CDO=180.∴4x+3x+3x=180,解得x=18.∴∠ODC=3⨯18=54.∴∠ADO=90-∠ODC=90-54=36.【考点】矩形的判定与性质,三角形外角的性质,等腰三角形的判定,三角形的内角和定理.21.【答案】解:(1)∵抛物线y=x2+(k2+k-6)x+3k的对称轴是y轴,∴x=-k2+k-6解得k=-3或k=2.当k=2时,二次函数解析式为y=x2+6,它的图象与x轴无交点,不满足题意,舍去.当k=-3时,二次函数解析式为y=x2-9,它的图象与x轴有两个交点,满足题意.∴k=-3.(2)∵P到y轴的距离为2,∴点P的横坐标为-2或2.当x=2时,y=-5;当x=-2时,y=-5.∴点P的坐标为(2,-5)或(-2,-5).【解析】解:(1)∵抛物线y=x2+(k2+k-6)x+3k的对称轴是y轴,数学试卷第12页(共18页)2=0,即k2+k-6=0.⎩200,10<x≤12.2)2+12502时,W最大,且W的最大值为1250.⎩200,10<x≤12.2)2+12502时,W最大,且W的最大值为1250.∴DE5,5.5,得AE=ABcos∠EAD=8,∴x=-k2+k-6解得k=-3或k=2.当k=2时,二次函数解析式为y=x2+6,它的图象与x轴无交点,不满足题意,舍去.当k=-3时,二次函数解析式为y=x2-9,它的图象与x轴有两个交点,满足题意.∴k=-3.(2)∵P到y轴的距离为2,∴点P的横坐标为-2或2.当x=2时,y=-5;当x=-2时,y=-5.∴点P的坐标为(2,-5)或(-2,-5).【考点】二次函数的图象与性质.22.【答案】解:(1)当6≤x≤10时,由题意设y=kx+b(k≠0),它的图象经过点(6,1000)与点(10,200).⎧1000=6k+b,∴⎨⎩200=10k+b,⎧k=-200,解得⎨⎩b=2200,当10<x≤12时,y=200.⎧-200x+2200,6≤x≤10,答:y与x的函数解析式为y=⎨(2)当6≤x≤10时,y=-200x+2200,W=(x-6)y=(x-6)(-200x+2200)=-200(x-17∵-200<0,6≤x≤10,当x=17当10<x≤12时,y=200,W=(x-6)y=200(x-6)=200x-1200.∵200>0,∴W=200x-1200随x增大而增大.又∵10<x≤12,∴当x=12时,W最大,且W的最大值为1200.∵1250>1200,∴W的最大值为1250.答:这一天销售西瓜获得利润的最大值为1250元.【解析】解:(1)当6≤x≤10时,由题意设y=kx+b(k≠0),它的图象经过点(6,1000)与点(10,200).数学试卷第13页(共18页)⎧1000=6k+b,∴⎨⎩200=10k+b,⎧k=-200,解得⎨⎩b=2200,当10<x≤12时,y=200.⎧-200x+2200,6≤x≤10,答:y与x的函数解析式为y=⎨(2)当6≤x≤10时,y=-200x+2200,W=(x-6)y=(x-6)(-200x+2200)=-200(x-17∵-200<0,6≤x≤10,当x=17当10<x≤12时,y=200,W=(x-6)y=200(x-6)=200x-1200.∵200>0,∴W=200x-1200随x增大而增大.又∵10<x≤12,∴当x=12时,W最大,且W的最大值为1200.∵1250>1200,∴W的最大值为1250.答:这一天销售西瓜获得利润的最大值为1250元.【考点】函数的综合应用.23.【答案】解:(1)证明:DE2=DB DA,DBDA=DE.又∵∠BDE=∠EDA,∴△DEB∽△DAE.(2)∵AB是C的直径,E是C上的点,∴∠AEB=90,即BE⊥AF.又∵AE=EF,BF=10,∴AB=BF=10.∴△DEB△DAE,cos∠BED=4∴∠EAD=∠BED,cos∠EAD=cos∠BED=4在△Rt ABE中,由于AB=10,cos∠EAD=4∴BE=AB2-AE2=6.∴△DEB∽△DAE,数学试卷第14页(共18页)∴ DE = ⎧ ⎪⎪ DA ⎪ DA = ,解得 ⎨ 7 ∴ ⎨ 4 ⎪⎩ DE = ⎪⎪ DA = ⎪⎪ DA经检验, ⎨ 7 是 ⎨ 7 ⎪⎩ DE = ⎪⎪ DA = 120 . 5 ,5 .5 ,得 AE = ABcos ∠EAD = 8 ,∴DE ⎪ DA = 4 ⎪⎪ DA = ⎩DA = 160 ⎧ DE = 3经检验, ⎨ 7 是 ⎨⎩⎪⎪ AF 得,5 .7 - 5 = 35 .DA = DB EB 6 3DA = DE = AE = 8 = 4 .∵ DB = DA - AB = DA - 10 ,⎧ DE 3160 ⎪ DA - 10 3⎪DE = 120 4⎪⎩ 7 ⎧ 160 ⎧ DE 3 = 4 ⎪DE = 120 ⎪ DA - 10 3⎪⎩4 ⎧160 ∴ ⎨ 7 ⎪DE = ⎪⎩ 7(3)解:连接 FM .,的解.又∵ ∠BDE = ∠EDA ,∴ △DEB ∽△DAE .(2)∵AB 是 C 的直径,E 是 C 上的点, ∴ ∠AEB = 90 ,即 BE ⊥ AF . 又∵ AE = EF , BF = 10 , ∴ AB = BF = 10 .∴ △DEB △DAE , cos ∠BED = 4∴ ∠EAD = ∠BED , cos ∠EAD = cos ∠BED = 4在 △Rt ABE 中,由于 AB = 10 , cos ∠EAD = 4∴ BE = AB 2 - AE 2 = 6 .∴ △DEB ∽△DAE ,DB EB 6 3DA = DE = AE = 8 = 4 . ∵ DB = DA - AB = DA - 10 ,⎧ DE 3∴ ⎨⎪ DA - 10 ⎪ DE ⎧ 160 ,解得 ⎨ 7 = 3 ⎪DE = 120 4 ⎪⎩ 7,⎧ ⎪⎪ ⎪ DA 4 ⎪DE = 120 ⎪ DA - 10 3 的解.⎪ 7 ⎪⎩ DE = 4∵ BE ⊥ AF ,即 ∠BEF = 90 ,∴BF 是 B 、E 、F 三点确定的圆的直径.∵点 F 在 B 、E 、M 三点确定的圆上,即四点 F 、E 、B 、M 在同一个圆上, ∴点 M 在以 BF 为直径的圆上. ⎧ 160DA =∴ ⎨ 7⎪DE = 120 ⎪⎩ 7.∴ FM ⊥ AB .在 △Rt AMF 中,由 cos ∠F AM = AM4 64 AM = AFcos ∠F AM = 2 A Ecos ∠EAB = 2 ⨯ 8 ⨯ =5 (3)解:连接 FM .∴ MD = DA - AM = 160 64 35235 .∴ MD = 352【解析】解:(1)证明: DE 2 = DB DA ,∵ BE ⊥ AF ,即 ∠BEF = 90 ,∴BF 是 B 、E 、F 三点确定的圆的直径.∴ DE DB DE .∵点 F 在 B 、E 、M 三点确定的圆上,即四点 F 、E 、B 、M 在同一个圆上, ∴点 M 在以 BF 为直径的圆上.数学试卷 第 15 页(共 18 页)数学试卷 第 16 页(共 18 页)AF 得,5 .7 - 5 = 35 .∴ FM ⊥ AB .在 △Rt AMF 中,由 cos ∠F AM = AM4 64AM = AFcos ∠F AM = 2 A Ecos ∠EAB = 2 ⨯ 8 ⨯ = 5∴ MD = DA - AM = 160 64 35235 .∴ MD = 352【考点】相似三角形的判定与性质,圆的性质,等腰三角形的判定,锐角三角函数,勾股定理.数学试卷 第 17 页(共 18 页) 数学试卷 第 18 页(共 18 页)。

2019年云南省中考数学试卷含答案

2019年云南省中考数学试卷含答案

数学试卷第1页(共18页)数学试卷第2页(共18页)绝密★启用前云南省2019年初中学业水平考试数学(本试卷满分120分,考试时间120分钟)一、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上)1.若零上8℃记作8+℃,则零下6℃记作℃.2.分解因式:221x x -+=.3.如图,若AB CD ∥,140∠=度,则2∠=度.4.若点(3,5)在反比例函数(0)ky k x=≠的图象上,则k =.5.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A ,B ,C ,D ,E五个等级,绘制的统计图如下:根据以上统计图提供的信息,则D 等级这一组人数较多的班是.6.在平行四边形ABCD 中,30A ∠=,AD =,4BD =,则平行四边形ABCD 的面积等于.二、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)7.下列图形既是轴对称图形,又是中心对称图形的是()A B C D8.2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为()A .468.810⨯B .60.68810⨯C .56.8810⨯D .66.8810⨯9.一个十二边形的内角和等于()A .2160 B .2080C .1980D .180010.要使12有意义,则x 的取值范围为()A .0x ≤B .1x ≥-C .0x ≥D .1x ≤-11.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A .48πB .45πC .36πD .32π12.按一定规律排列的单项式:3x ,5x -,7x ,9x -,11x ,……第n 个单项式是()A .121(1)n n x ---B .211()n n x --C .121(1)n n x -+-D .211()n n x +-13.如图,ABC △的内切圆O 与BC ,CA ,AB 分别相切于点D ,E ,F ,且5AB =,13BC =,12CA =,则阴影部分(即四边形AEOF )的面积是()A .4B .6.25C .7.5D .914.若关于x 的不等式组2(1)2,0x a x -⎧⎨-⎩><的解集为x a >,则a 的取值范围是()A .2a <B .2a ≤C .2a >D .2a ≥三、解答题(本大题共9小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分6分)计算:2013(π5)(1)----+-.毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3页(共18页)数学试卷第4页(共18页)16.(本小题满分6分)如图,AB AD =,CB CD =.求证:B D ∠=∠.17.(本小题满分8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:月销售量/件数177048022018012090人数113334(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.18.(本小题满分6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.19.(本小题满分7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x ,y 表示.若x y +为奇数,则甲获胜;若x y +为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(),x y 所有可能出现数学试卷第5页(共18页)数学试卷第6页(共18页)的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.20.(本小题满分8分)如图,四边形ABCD 中,对角线AC ,BD 相交于点O ,AO OC =,BO OD =,且2AOB OAD ∠=∠.(1)求证:四边形ABCD 是矩形;(2)若:4:3AOB ODC ∠∠=,求ADO ∠的度数.21.(本小题满分8分)已知k 是常数,抛物线223)6(y x k k x k =++-+的对称轴是y 轴,并且与x 轴有两个交点.(1)求k 的值;(2)若点P 在抛物线223)6(y x k k x k =++-+上,且P 到y 轴的距离是2,求点P 的坐标.22.(本小题满分9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y (千克)与销售单价x (元/千克)的函数关系如下图所示:(1)求y 与x 的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.23.(本小题满分12分)如图,AB 是C 的直径,M ,D 两点在AB 的延长线上,E 是C 上的点,且2DE DB DA = .延长AE 至F ,使AE EF =,设10BF =,4cos 5BED ∠=.(1)求证:DEB DAE △∽△;(2)求DA ,DE 的长;(3)若点F 在B ,E ,M 三点确定的圆上,求MD 的长.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________姓名________________考生号_____________________________________________数学试卷第7页(共18页)数学试卷第8页(共18页)云南省2019年初中学业水平考试数学答案解析一、填空题1.【答案】6-【解析】零上记为正数,则零下记为负数,故答案为6-.【考点】正负数表示两个相反意义的量.2.【答案】2(1)x -【解析】222211(1)x x x -+=- ,故答案为2(1)x -.【考点】分解因式.3.【答案】140【解析】∵AB CD ∥,∴同位角相等,∴1∠与2∠互补,∴218040140∠=-= ,故答案为140.【考点】平行线的性质,平角的意义.4.【答案】15【解析】∵点(3,5)在反比例函数k y x =上,∴53k=,∴3515k =⨯=.【考点】反比例函数的性质.5.【答案】甲班【解析】由频数分布直方图知D 等级的人数为13人,由扇形统计图知D 等级的人数为4030%12⨯=,∴D 等级较多的人数是甲班,故答案为甲班.【考点】统计图的应用.6.【答案】或【解析】过点D作DE AB⊥于E ,∵30A ∠=,∴sin30DE AD == ,cos306AE AD == ,在Rt DBE△中,2BE =,∴8A B A E B E =+=,或4AB AE BE =-=,∴平行四边形ABCD的面积为8⨯=或4⨯=,故答案为或.【考点】平行四边形的性质,特殊角的三角函数,勾股定理.二、选择题7.【答案】B【解析】根据轴对称和中心对称定义可知,A 选项是轴对称,B 选项既是轴对称又是中心对称,C 选项是轴对称,D 选项是轴对称图形,故选B .【考点】轴对称图形和中心对称图形的概念.8.【答案】C【解析】科学记数法较大数10N a ⨯,其中110a ≤<,N 为小数点移动的位数.∴6.88,5a N ==,故选C .【考点】科学记数法.9.【答案】D【解析】多边形内角和公式为(2)180n -⨯ ,其中n 为多边形的边的条数.∴十二边形内角和为(122)1801800-⨯= ,故选D .【考点】多边形的内角和公式.10.【答案】【解析】要使2有意义,则被开方数1x +要为非负数,即10x +≥,∴1x -≥,故选B .【考点】二次根式有意义的条件.11.【答案】A【解析】设圆锥底面圆的半径为r ,母线长为l ,则底面圆的周长等于半圆的弧长8π,∴数学试卷第9页(共18页)数学试卷第10页(共18页)2π8πr =,∴4r=,圆锥的全面积等于2ππ16π32π48πS S rl r +=+=+=侧底,故选A .【考点】圆锥的侧面展开图,圆锥的全面积.12.【答案】C【解析】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为21n +,故选C .【考点】探索规律.13.【答案】A【解析】∵5AB =,13BC =,12C A =,∴222AB AC BC +=,∴ABC △为直角三角形,且90A ∠=,∵O 为ABC △内切圆,∴90AFO AEO ∠=∠=,且AE AF =,∴四边形AEOF 为正方形,设O 的半径为r ,∴OE OF r ==,∴2AEOF S r =四边形,连接AO ,BO ,CO ,∴ABC AOB AOC BOC S S S S =++△△△△,∴1()2AB AC BC ++12AB AC = ,∴2r =,∴24AEOF S r ==四边形,故选A .【考点】勾股定理逆定理,正方形的判定与性质,切线长定理,解方程组.14.【答案】D【解析】解不等式组得2x >,x a >,根据同大取大的求解集的原则,∴2a >,当2a =时,也满足不等式的解集为2x >,∴2a ≥,故选D .【考点】解不等式组.三、解答题15.【答案】解:9121=+--原式7=【解析】解:9121=+--原式7=【考点】实数的运算.16.【答案】证明:在ABC △和ADC △中,∵,,,AB AD CB CD AC AC =⎧⎪=⎨⎪=⎩∴()SSS ABC ADC △≌△.∴B D ∠=∠.【解析】证明:在ABC △和ADC △中,∵,,,AB AD CB CD AC AC =⎧⎪=⎨⎪=⎩∴()SSS ABC ADC △≌△.∴B D ∠=∠.【考点】全等三角形的判定及性质.17.【答案】(1)这15名销售人员该月销售量数据的平均数为278,中位数为180,众数为90;(2)解:中位数最适合作为月销售目标.理由如下:在这15人中,月销售额不低于278(平均数)件的有2人,月销售额不低于180(中位数)件的有8人,月销售额不低于90(众数)件的有15人.所以,如果想让一半左右的营销人员都能够达到月销售目标,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标.【解析】(1)这15名销售人员该月销售量数据的平均数为278,中位数为180,众数为90;(2)解:中位数最适合作为月销售目标.理由如下:在这15人中,月销售额不低于278(平均数)件的有2人,月销售额不低于180(中位数)件的有8人,月销售额不低于90(众数)件的有15人.所以,如果想让一半左右的营销人员都能够达到月销售目标,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标.【考点】统计的综合应用.18.【答案】解:设甲校师生所乘大巴车的平均速度为x km /h ,则乙校师生所乘大巴车的平均速度为1.5x km /h .根据题意得24027011.5x x-=.解得60x =,经检验,60x =是原分式方程的解.∴60x =,1.590x =.答:甲、乙两校师生所乘大巴车的平均速度分别为60km /h 和90km /h .【解析】解:设甲校师生所乘大巴车的平均速度为x km /h ,则乙校师生所乘大巴车的平均速度为1.5x km /h .根据题意得24027011.5x x-=.解得60x =,经检验,60x =是原分式方程的解.∴60x =,1.590x =.答:甲、乙两校师生所乘大巴车的平均速度分别为60km /h 和90km /h .数学试卷第11页(共18页)数学试卷第12页(共18页)【考点】列分式方程解应用题.19.【答案】解:(1)方法一:列表法如下:xy12341(1,1)(1,2)(1,3)(1,4)2(2,1)(2,2)(2,3)(2,4)3(3,1)(3,2)(3,3)(3,4)5(4,1)(4,2)(4,3)(4,4)(),x y 方法二:树形图(树状图)法如下:(),x y 所有可能出现的结果共有16种.(2)这个游戏对双方公平.理由如下:由列表法或树状图法可知,在16种可能出现的结果中,它们出现的可能性相等.∵x y +为奇数的有8种情况,∴81()162P ==甲获胜.∵x y +为偶数的有8种情况,∴81()162P ==乙获胜.∴()()P P =甲获胜乙获胜.∴这个游戏对双方公平.【解析】解:(1)方法一:列表法如下:xy12341(1,1)(1,2)(1,3)(1,4)2(2,1)(2,2)(2,3)(2,4)3(3,1)(3,2)(3,3)(3,4)5(4,1)(4,2)(4,3)(4,4)(),x y 方法二:树形图(树状图)法如下:(),x y 所有可能出现的结果共有16种.(2)这个游戏对双方公平.理由如下:由列表法或树状图法可知,在16种可能出现的结果中,它们出现的可能性相等.∵x y +为奇数的有8种情况,∴81()162P ==甲获胜.∵x y +为偶数的有8种情况,∴81()162P ==乙获胜.∴()()P P =甲获胜乙获胜.∴这个游戏对双方公平.【考点】求随机事件的概率.20.【答案】解:(1)证明:∵AO OC =,BO OD =,∴四边形ABCD 是平行四边形.又∵2AOB OAD ∠=∠,AOB ∠是AOD △的外角,∴AO B O AD AD O ∠=∠+∠.∴OAD ADO ∠=∠.∴AO OD =.又∵2AC AO O C AO =+=,2BD BO OD OD =+=,∴AC BD =.∴四边形ABCD 是矩形.(2)解:设4AOB x ∠=,3O D C x ∠=,则3O D C O C D x ∠=∠=.在ODC △中,180DOC OCD CDO ∠+∠+∠= .∴433180x x x ++= ,解得18x = .∴31854ODC ∠=⨯= .∴90905436ADO ODC ∠=-∠=-= .【解析】解:(1)证明:∵AO OC =,BO OD =,∴四边形ABCD 是平行四边形.又∵2AOB OAD ∠=∠,AOB ∠是AOD △的外角,∴AOB OAD ADO ∠=∠+∠.∴OAD ADO ∠=∠.∴AO OD =.又∵2AC AO OC AO =+=,2BD BO OD OD =+=,∴AC BD =.∴四边形ABCD 是矩形.(2)解:设4AOB x ∠=,3ODC x ∠=,则3ODC OCD x ∠=∠=.在ODC △中,180DOC OCD CDO ∠+∠+∠= .∴433180x x x ++= ,解得18x = .∴31854ODC ∠=⨯= .∴90905436ADO ODC ∠=-∠=-= .【考点】矩形的判定与性质,三角形外角的性质,等腰三角形的判定,三角形的内角和定数学试卷第13页(共18页)数学试卷第14页(共18页)理.21.【答案】解:(1)∵抛物线223)6(y x k k x k =++-+的对称轴是y 轴,∴2602k k x +-=-=,即260k k +-=.解得3k =-或2k =.当2k =时,二次函数解析式为26y x =+,它的图象与x 轴无交点,不满足题意,舍去.当3k =-时,二次函数解析式为29y x =-,它的图象与x 轴有两个交点,满足题意.∴3k =-.(2)∵P 到y 轴的距离为2,∴点P 的横坐标为2-或2.当2x =时,5y =-;当2x =-时,5y =-.∴点P 的坐标为(2,)5-或(2,5)--.【解析】解:(1)∵抛物线223)6(y x k k x k =++-+的对称轴是y 轴,∴2602k k x +-=-=,即260k k +-=.解得3k =-或2k =.当2k =时,二次函数解析式为26y x =+,它的图象与x 轴无交点,不满足题意,舍去.当3k =-时,二次函数解析式为29y x =-,它的图象与x 轴有两个交点,满足题意.∴3k =-.(2)∵P 到y 轴的距离为2,∴点P 的横坐标为2-或2.当2x =时,5y =-;当2x =-时,5y =-.∴点P 的坐标为(2,)5-或(2,5)--.【考点】二次函数的图象与性质.22.【答案】解:(1)当610x ≤≤时,由题意设()0y kx b k =+≠,它的图象经过点(6,1000)与点(10,200).∴10006,20010,k b k b =+⎧⎨=+⎩解得200,2200,k b =-⎧⎨=⎩当1012x <≤时,200y =.答:y 与x 的函数解析式为2002200,610,200,1012.x x y x -+⎧=⎨⎩≤≤<≤(2)当610x ≤≤时,2002200y x =-+,266200220017()()()200()12502W x y x x x =-=--+=-+-∵2000-<,610x ≤≤,当172x =时,W 最大,且W 的最大值为1250.当1012x <≤时,200y =,6200(6200120()0)W x y x x =-=-=-.∵2000>,∴2001200W x =-随x 增大而增大.又∵1012x <≤,∴当12x =时,W 最大,且W 的最大值为1200.∵12501200>,∴W 的最大值为1250.答:这一天销售西瓜获得利润的最大值为1250元.【解析】解:(1)当610x ≤≤时,由题意设()0y kx b k =+≠,它的图象经过点(6,1000)与点(10,200).∴10006,20010,k b k b =+⎧⎨=+⎩解得200,2200,k b =-⎧⎨=⎩当1012x <≤时,200y =.答:y 与x 的函数解析式为2002200,610,200,1012.x x y x -+⎧=⎨⎩≤≤<≤(2)当610x ≤≤时,2002200y x =-+,266200220017()()()200(12502W x y x x x =-=--+=-+-∵2000-<,610x ≤≤,当172x =时,W 最大,且W 的最大值为1250.当1012x <≤时,200y =,6200(6200120()0)W x y x x =-=-=-.∵2000>,∴2001200W x =-随x 增大而增大.又∵1012x <≤,∴当12x =时,W 最大,且W 的最大值为1200.∵12501200>,∴W 的最大值为1250.答:这一天销售西瓜获得利润的最大值为1250元.【考点】函数的综合应用.23.【答案】解:(1)证明:2DE DB DA = ,∴DE DBDA DE=.又∵BDE EDA ∠=∠,数学试卷第15页(共18页)数学试卷第16页(共18页)∴DEB DAE △∽△.(2)∵AB 是C 的直径,E 是C 上的点,∴90AEB ∠= ,即BE AF ⊥.又∵AE EF =,10BF =,∴10AB BF ==.∴DEB DAE △△,4os 5c BED ∠=,∴EAD BED ∠=∠,cos cos 45EAD BED ∠=∠=.在Rt ABE △中,由于10AB =,4os 5c EAD ∠=,得cos 8AE AB EAD =∠=,∴6BE ==.∴DEB DAE △∽△,∴6384DE DB EB DA DE AE ====.∵10DB DA AB DA =-=-,∴341034DE DA DA DE ⎧=⎪⎪⎨-⎪=⎪⎩,解得16071207DA DE ⎧=⎪⎪⎨⎪=⎪⎩,经检验,16071207DA DE ⎧=⎪⎪⎨⎪=⎪⎩是341034DE DA DA DE ⎧=⎪⎪⎨-⎪=⎪⎩的解.∴16071207DA DE ⎧=⎪⎪⎨⎪=⎪⎩.(3)解:连接FM.∵BE AF ⊥,即90BEF ∠= ,∴BF 是B 、E 、F 三点确定的圆的直径.∵点F 在B 、E 、M 三点确定的圆上,即四点F 、E 、B 、M 在同一个圆上,∴点M 在以BF 为直径的圆上.∴FM AB ⊥.在Rt AMF △中,由cos FAM AMAF∠=得,cos 2co 46455s 28AM AF FAM AE EAB =∠=∠==⨯⨯.∴160643527535MD DA AM -==-=.∴35235MD =.【解析】解:(1)证明:2DE DB DA = ,∴DE DBDA DE=.又∵BDE EDA ∠=∠,∴DEB DAE △∽△.(2)∵AB 是C 的直径,E 是C 上的点,∴90AEB ∠= ,即BE AF ⊥.又∵AE EF =,10BF =,∴10AB BF ==.∴DEB DAE △△,4os 5c BED ∠=,∴EAD BED ∠=∠,cos cos 45EAD BED ∠=∠=.在Rt ABE △中,由于10AB =,4os 5c EAD ∠=,得cos 8AE AB EAD =∠=,∴6BE =.∴DEB DAE △∽△,∴6384DE DB EB DA DE AE ====.∵10DB DA AB DA =-=-,∴341034DE DA DA DE ⎧=⎪⎪⎨-⎪=⎪⎩,解得16071207DA DE ⎧=⎪⎪⎨⎪=⎪⎩,经检验,16071207DA DE ⎧=⎪⎪⎨⎪=⎪⎩是341034DE DA DA DE ⎧=⎪⎪⎨-⎪=⎪⎩的解.数学试卷第17页(共18页)数学试卷第18页(共18页)∴16071207DA DE ⎧=⎪⎪⎨⎪=⎪⎩.(3)解:连接FM.∵BE AF ⊥,即90BEF ∠= ,∴BF 是B 、E 、F 三点确定的圆的直径.∵点F 在B 、E 、M 三点确定的圆上,即四点F 、E 、B 、M 在同一个圆上,∴点M 在以BF 为直径的圆上.∴FM AB ⊥.在Rt AMF △中,由cos FAM AMAF∠=得,cos 2co 46455s 28AM AF FAM AE EAB =∠=∠==⨯⨯.∴160643527535MD DA AM -==-=.∴35235MD =.【考点】相似三角形的判定与性质,圆的性质,等腰三角形的判定,锐角三角函数,勾股定理.。

2019年云南省中考数学试卷(word版,含答案解析)

2019年云南省中考数学试卷(word版,含答案解析)

2019年云南省中考数学试卷副标题题号一二三总分得分一、选择题(本大题共8小题,共32.0分)1.下列图形既是轴对称图形,又是中心对称图形的是()A. B. C. D.2.2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为()A. 68.8×104B. 0.688×106C. 6.88×105D. 6.88×1063.一个十二边形的内角和等于()A. 2160°B. 2080°C. 1980°D. 1800°4.要使√x+1有意义,则x的取值范围为()2A. x≤0B. x≥−1C. x≥0D. x≤−15.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A. 48πB. 45πC. 36πD. 32π6.按一定规律排列的单项式:x3,−x5,x7,−x9,x11,……,第n个单项式是()A. (−1)n+1x2n−1B. (−1)n x2n−1C. (−1)n+1x2n+1D. (−1)n x2n+17.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A. 4B. 6.25C. 7.5D. 98.若关于x的不等式组{2(x−1)>2,a的取值范围是()a−x<0的解集是x>a,则A. a<2B. a≤2C. a>2D. a≥2二、填空题(本大题共6小题,共18.0分)9.若零上8℃记作+8℃,则零下6℃记作______℃.10.分解因式:x2−2x+1=______.11.如图,若AB//CD,∠1=40度,则∠2=______度.(k≠0)的图象上,则k=______.12.若点(3,5)在反比例函数y=kx13.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如图:根据以上统计图提供的信息,则D等级这一组人数较多的班是______.14.在平行四边形ABCD中,∠A=30°,AD=4√3,BD=4,则平行四边形ABCD的面积等于______.三、解答题(本大题共9小题,共70.0分)15.计算:.16.如图,AB=AD,CB=CD.求证:∠B=∠D.17.某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:月销售量/件数177048022018012090人数113334(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.18.为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.19.甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.20.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.21.已知k是常数,抛物线y=x2+(k2+k−6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值;(2)若点P在抛物线y=x2+(k2+k−6)x+3k上,且P到y轴的距离是2,求点P的坐标.22.某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.23.如图,AB是⊙O的直径,M、D两点AB的延长线上,E是⊙C上的点,且DE2=DB⋅DA,延长AE至F,使得AE=EF,设BF=10,cos∠BED=4.5(1)求证:△DEB∽△DAE;(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.答案和解析1.【答案】B【解析】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;C、此图形旋转180°后能与原图形不重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:B.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.2.【答案】C【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将688000用科学记数法表示为6.88×105.故选:C.3.【答案】D【解析】解:十二边形的内角和等于:(12−2)⋅180°=1800°;故选:D.n边形的内角和是(n−2)⋅180°,把多边形的边数代入公式,就得到多边形的内角和.本题主要考查多边形内角与外角的知识点,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容,此题难度不大.4.【答案】B【解析】解:要使根式有意义则令x+1≥0,得x≥−1故选:B.要根式有意义,只要令x+1≥0即可考查了二次根式的意义和性质.概念:式子√a(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.5.【答案】A【解析】解:侧面积是:12πr2=12×π×82=32π,底面圆半径为:2π×82÷2π=4,底面积=π×42=16π,故圆锥的全面积是:32π+16π=48π.故选:A.首先利用圆的面积公式即可求得侧面积,利用弧长公式求得圆锥的底面半径,得到底面面积,据此即可求得圆锥的全面积.本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.6.【答案】C【解析】【分析】此题主要考查了数字的变化类,关键是分别找出符号与指数的变化规律.观察指数规律与符号规律,进行解答便可.【解答】解:∵x3=(−1)1+1x2×1+1,−x5=(−1)2+1x2×2+1,x7=(−1)3+1x2×3+1,−x9=(−1)4+1x2×4+1,x11=(−1)5+1x2×5+1,……由上可知,第n个单项式是:(−1)n+1x2n+1,故选C.7.【答案】A【解析】解:∵AB=5,BC=13,CA=12,∴AB2+CA2=BC2,∴△ABC为直角三角形,∠A=90°,∵AB、AC与⊙O分别相切于点E、F∴OF⊥AB,OE⊥AC,∴四边形OFAE为正方形,设OE=r,则AE=AF=x,∵△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,∴BD=BF=5−r,CD=CE=12−r,∴5−r+12−r=13,∴r=5+12−132=2,∴阴影部分(即四边形AEOF)的面积是2×2=4.故选:A.利用勾股定理的逆定理得到△ABC为直角三角形,∠A=90°,再利用切线的性质得到OF⊥AB,OE⊥AC,所以四边形OFAE为正方形,设OE=AE=AF=x,利用切线长定理得到BD=BF=5−r,CD=CE=12−r,所以5−r+12−r=13,然后求出r 后可计算出阴影部分(即四边形AEOF)的面积.本题考查了三角形的内切圆和内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了勾股定理的逆定理和切线的性质.8.【答案】D【解析】【分析】根据不等式组的解集的概念即可求出a 的范围.本题考查不等式的解集,解题的关键是正确理解不等式的解集,本题属于基础题型. 解:解关于x 的不等式组{2(x −1)>2,a −x <0得{x >2x >a ,∵不等式组得解集为x >a ,∴a ≥2故选:D .9.【答案】−6【解析】解:根据正数和负数表示相反的意义,可知 如果零上8℃记作+8℃,那么零下6℃记作−6℃. 故答案为:−6.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.本题考查了正数和负数的知识,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量. 10.【答案】(x −1)2【解析】解:x 2−2x +1=(x −1)2, 故答案为(x −1)2.直接利用完全平方公式分解因式即可. 本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键. 11.【答案】140【解析】解:∵AB//CD ,∠1=40°, ∴∠3=∠1=40°,∴∠2=180°−∠3=180°−40°=140°. 故答案为:140.根据两直线平行,同位角相等求出∠3,再根据邻补角的定义列式计算即可得解.本题考查了平行线的性质,邻补角的定义,熟记性质是解题的关键. 12.【答案】15【解析】解:把点(3,5)的纵横坐标代入反比例函数y =kx 得:k =3×5=15 故答案为:15点在函数的图象上,其纵横坐标一定满足函数的关系式,反之也成立,因此只要将点(3,5)代入反比例函数y =kx (k ≠0)即可.考查反比例函数图象上点的坐标特征,用待定系数法可直接求出k 的值;比较简单.13.【答案】甲班【解析】解:由题意得:甲班D 等级的有13人, 乙班D 等级的人数为40×30%=12(人), 13>12,所以D 等级这一组人数较多的班是甲班;故答案为:甲班.由频数分布直方图得出甲班D等级的人数为13人,求出乙班D等级的人数为40×30%=12人,即可得出答案.此题考查了频数(率)分布直方图,扇形统计图,弄清题意,求出乙班D等级的人数是解本题的关键.14.【答案】16√3或8√3【解析】解:过D作DE⊥AB于E,在Rt△ADE中,∵∠A=30°,AD=4√3,∴DE=12AD=2√3,AE=√32AD=6,在Rt△BDE中,∵BD=4,∴BE=√BD2−DE2=√42−(2√3)2=2,如图1,∴AB=8,∴平行四边形ABCD的面积=AB⋅DE=8×2√3=16√3,如图2,AB=4,∴平行四边形ABCD的面积=AB⋅DE=4×2√3=8√3,故答案为:16√3或8√3.过D作DE⊥AB于E,解直角三角形得到AB,根据平行四边形的面积公式即可得到结论.本题考查了平行四边形的性质以及平行四边形的面积公式的运用和30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.15.【答案】解:原式=9+1−2−1=10−3=7.【解析】先根据平方性质,0指数幂法则,算术平方根的性质,负指数幂的运算,再进行有理数的加减运算便可.此题主要考查了实数运算,主要考查了0指数幂法则,负整数幂法则,乘方的意义,有理数的加减运算,正确化简各数是解题关键.计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(−3)−2=(−3)×(−2)的错误.16.【答案】证明:在△ABC和△ADC中,{AB=ADCB=CDAC=AC,∴△ABC≌△ADC(SSS),∴∠B=∠D.【解析】由SSS证明△ABC≌△ADC,得出对应角相等即可.本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解题的关键.17.【答案】解:(1)这15名营业员该月销售量数据的平均数=1770+480+220×3+180×3+120×3+90×415=278(件),数据从大到小排列后最中间的数是180,故中位数为180件,∵90出现了4次,出现的次数最多,∴众数是90件;(2)如果想让一半左右的营业员都能达到销售目标,平均数、中位数、众数中,中位数最适合作为月销售目标;理由如下:因为中位数为180件,月销售量大于180与小于180的人数一样多,所以中位数最适合作为月销售目标,有一半左右的营业员能达到销售目标.【解析】本题考查的是平均数、众数和中位数的定义及运用.要学会根据统计量的意义分析解决问题.(1)根据平均数、众数和中位数的意义进行解答即可;(2)根据平均数、中位数和众数的意义以及得出的数据进行分析即可得出答案.18.【答案】解:设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由题意得:240x −2701.5x=1,解得:x=60,经检验,x=60是所列方程的解,则1.5x=90,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时、90千米/小时.【解析】本题主要考查分式方程的应用,解题的关键是理解题意,找到题目中蕴含的相等关系,并依据相等关系列出方程.设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由时间关系“甲校师生比乙校师生晚1小时到达目的地”列出方程,解方程即可.19.【答案】解:(1)画树状图如图所示,共有16种等可能的结果数;(2)x+y为奇数的结果数为8,x+y为偶数的结果数为8,∴甲获胜的概率=816=12,乙获胜的概率=816=12,∴甲获胜的概率=乙获胜的概率,∴这个游戏对双方公平.【解析】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B 的概率.画树状图展示所有16种等可能的结果数,然后根据概率公式求解判断是否公平.20.【答案】(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB =∠DAO +∠ADO =2∠OAD ,∴∠DAO =∠ADO ,∴AO =DO ,∴AC =BD ,∴四边形ABCD 是矩形;(2)解:∵四边形ABCD 是矩形,∴AB//CD ,∴∠ABO =∠CDO ,∵∠AOB :∠ODC =4:3,∴∠AOB :∠ABO =4:3,∵OA =OD =OB ,∴∠BAO :∠AOB :∠ABO =3:4:3,∵∠BAO +∠AOB +∠ABO =180°,∴∠ABO =54°,∵∠BAD =90°,∴∠ADO =90°−54°=36°.【解析】本题考查了矩形的判定和性质,三角形的内角和,正确的理解题意是解题的关键.(1)根据平行四边形的判定定理得到四边形ABCD 是平行四边形,根据三角形的外角的性质得到∠AOB =∠DAO +∠ADO =2∠OAD ,求得∠DAO =∠ADO ,推出AC =BD ,于是得到四边形ABCD 是矩形;(2)根据矩形的性质得到AB//CD ,根据平行线的性质得到∠ABO =∠CDO ,根据三角形的内角和定理得到∠ABO =54°,于是得到结论.21.【答案】解:(1)∵抛物线y =x 2+(k 2+k −6)x +3k 的对称轴是y 轴, ∴k 2+k −6=0,解得k 1=−3,k 2=2;又∵抛物线y =x 2+(k 2+k −6)x +3k 与x 轴有两个交点.∴3k <0,∴k =−3.此时抛物线的关系式为y =x 2−9,因此k 的值为−3.(2)∵点P 在抛物线y =x 2−9上,且P 到y 轴的距离是2,∴点P 的横坐标为2或−2,当x =2时,y =−5当x =−2时,y =−5.∴P(2,−5)或P(−2,−5),因此点P 的坐标为:P(2,−5)或P(−2,−5).【解析】(1)根据抛物线的对称轴为y 轴,则b =0,可求出k 的值,再根据抛物线与x 轴有两个交点,进而确定k 的值和抛物线的关系式;(2)由于对称轴为y 轴,点P 到y 轴的距离为2,可以转化为点P 的横坐标为2或−2,求相应的y 的值,确定点P 的坐标.本题主要考查二次函数的图象和性质,以及二次函数图象上点的坐标特征,善于将线段的长转化为坐标,或将坐标转化为线段的长.22.【答案】解:(1)当6≤x ≤10时,设y 与x 的关系式为y =kx +b(k ≠0)根据题意得{1000=6k +b 200=10k +b ,解得{k =−200b =2200∴y =−200x +2200当10<x ≤12时,y =200故y 与x 的函数解析式为:y ={−200x +2200,(6≤x ≤10)200,(10<x ≤12)(2)由已知得:W =(x −6)y当6≤x ≤10时,W =(x −6)(−200x +2200)=−200(x −172)2+1250 ∵−200<0,抛物线的开口向下∴x =172时,取最大值,∴W =1250当10<x ≤12时,W =(x −6)⋅200=200x −1200∵y 随x 的增大而增大∴x =12时取得最大值,W =200×12−1200=1200综上所述,当销售价格为8.5元时,取得最大利润,最大利润为1250元.【解析】(1),根据函数图象得到直线上的两点,再结合待定系数法即可求得y 与x 的函数解析式;(2),根据总利润=每千克利润×销售量,列出函数关系式,配方后根据x 的取值范围可得W 的最大值.本题主要考查的是待定系数法求函数解析式及二次函数的应用,根据相等关系列出函数解析式,并由二次函数的性质确定其最值是解题的关键;23.【答案】解:(1)∵∠D =∠D ,DE 2=DB ⋅DA ,∴△DEB∽△DAE ;(2)∵△DEB∽△DAE ,∴∠DEB =∠DAE =α,∵AB 是直径,∴∠AEB =90°,又AE =EF ,∴AB =BF =10,∴∠BFE =∠BAE =α,则BF ⊥ED 交于点H ,∵cos∠BED =45,则BE =6,AB =8∴ED DA =EB AE =DB ED,即:ED 10+BD =68=BD DE , 解得:BD =907,DE =1207, 则AD =AB +BD =1607, ED =1207;(3)点F 在B 、E 、M 三点确定的圆上,则BF 是该圆的直径,连接MF ,∵BF ⊥ED ,∠BMF =90°,∴∠MFB =∠D =β,在△BED中,过点B作HB⊥ED于点H,设HD=x,则EH=1207−x,则36−(1207−x)2=(907)2−x2,解得:x=43235,则cosβ=x907=2425,则sinβ=725,MB=BFsinβ=10×725=145,DM=BD−MB=35235.【解析】(1)∠D=∠D,DE2=DB⋅DA,即可求解;(2)由EDDA =EBAE=DBED,即:ED10+BD=68=BDDE,即可求解;(3)在△BED中,过点B作HB⊥ED于点H,36−(1207−x)2=(907)2−x2,解得:x=43235,则cosβ=x907=2425,即可求解.此题属于圆的综合题,涉及了直角三角形的性质、相似三角形的判定与性质、三角函数值的知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.。

2019年云南省中考数学试卷以及解析版

2019年云南省中考数学试卷以及解析版

2019年云南省中考数学试卷以及逐题解析一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)若零上8C ︒记作8C ︒+,则零下6C ︒记作C ︒.2.(3分)分解因式:221x x -+= .3.(3分)如图,若//AB CD ,140∠=度,则2∠= 度.4.(3分)若点(3,5)在反比例函数(0)k y k x=≠的图象上,则k = . 5.(3分)某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A 、B 、C 、D 、E 五个等级,绘制的统计图如图:根据以上统计图提供的信息,则D 等级这一组人数较多的班是 .6.(3分)在平行四边形ABCD 中,30A ∠=︒,AD =4BD =,则平行四边形ABCD 的面积等于 .二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .8.(4分)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为( )A .468.810⨯B .60.68810⨯C .56.8810⨯D .66.8810⨯9.(4分)一个十二边形的内角和等于( )A .2160︒B .2080︒C .1980︒D .1800︒10.(4有意义,则x 的取值范围为( ) A .0x … B .1x -… C .0x … D .1x -…11.(4分)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( )A .48πB .45πC .36πD .32π12.(4分)按一定规律排列的单项式:3x ,5x -,7x ,9x -,11x ,⋯⋯,第n 个单项式是( )A .121(1)n n x ---B .21(1)n n x --C .121(1)n n x -+-D .21(1)n n x +-13.(4分)如图,ABC ∆的内切圆O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且5AB =,13BC =,12CA =,则阴影部分(即四边形)AEOF 的面积是( )A .4B .6.25C .7.5D .914.(4分)若关于x 的不等式组2(1)2,0x a x ->⎧⎨-<⎩的解集是x a >,则a 的取值范围是( ) A .2a < B .2a … C .2a > D .2a …三、解答题(本大共9小题,共70分)15.(6分)计算:2013(5)(1)x -+--.16.(6分)如图,AB AD =,CB CD =.求证:B D ∠=∠.17.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.18.(6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.19.(7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x 、y 表示.若x y +为奇数,则甲获胜;若x y +为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(,)x y 所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.20.(8分)如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO OC =,BO OD =,且2AOB OAD ∠=∠.(1)求证:四边形ABCD 是矩形;(2)若:4:3AOB ODC ∠∠=,求ADO ∠的度数.21.(8分)已知k 是常数,抛物线22(6)3y x k k x k =++-+的对称轴是y 轴,并且与x 轴有两个交点.(1)求k 的值;(2)若点P 在物线22(6)3y x k k x k =++-+上,且P 到y 轴的距离是2,求点P 的坐标.22.(9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y (千克)与销售单价x (元/千克)的函数关系如图所示:(1)求y 与x 的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W 的最大值.23.(12分)如图,AB 是O 的直径,M 、D 两点AB 的延长线上,E 是C 上的点,且2DE DB DA =,延长AE 至F ,使得AE EF =,设10BF =,4cos 5BED ∠=.(1)求证:DEB DAE∽;∆∆(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.2019年云南省中考数学试卷答案与解析一、填空题(本大题共6小题,每小题3分,共18分)1.(3分).【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据正数和负数表示相反的意义,可知如果零上8C ︒记作8C ︒+,那么零下6C ︒记作6C ︒-.故答案为:6-.【点评】本题考查了正数和负数的知识,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.(3分).【分析】直接利用完全平方公式分解因式即可.【解答】解:2221(1)x x x -+=-.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.3.(3分)【分析】根据两直线平行,同位角相等求出3∠,再根据邻补角的定义列式计算即可得解.【解答】解://AB CD ,140∠=︒,3140∴∠=∠=︒,2180318040140∴∠=︒-∠=︒-︒=︒.故答案为:140.【点评】本题考查了平行线的性质,邻补角的定义,熟记性质是解题的关键.4.(3分) .【分析】点在函数的图象上,其纵横坐标一定满足函数的关系式,反之也成立,因此只要将点(3,5)代入反比例函数(0)k y k x=≠即可.【解答】解:把点(3,5)的纵横坐标代入反比例函数k y x=得:3515k =⨯= 故答案为:15 【点评】考查反比例函数图象上点的坐标特征,用待定系数法可直接求出k 的值;比较简单.5.(3分).【分析】由频数分布直方图得出甲班D 等级的人数为13人,求出乙班D 等级的人数为4030%12⨯=人,即可得出答案.【解答】解:由题意得:甲班D 等级的有13人,乙班D 等级的人数为4030%12⨯=(人),1312>,所以D 等级这一组人数较多的班是甲班;故答案为:甲班.【点评】此题考查了频数(率)分布直方图,扇形统计图,弄清题意,求出乙班D 等级的人数是解本题的关键.6.(3分)【分析】过D 作DE AB ⊥于E ,解直角三角形得到8AB =,根据平行四边形的面积公式即可得到结论.【解答】解:过D 作DE AB ⊥于E ,在Rt ADE ∆中,30A ∠=︒,AD =12DE AD ∴==6AE AD ==, 在Rt BDE ∆中,4BD =,2BE ∴=,8AB ∴=,∴平行四边形ABCD 的面积8AB DE ==⨯,故答案为:.【点评】本题考查了平行四边形的以及平行四边形的面积公式的运用和30度角的直角三角形的性质:在直角三角形中,30︒角所对的直角边等于斜边的一半.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A 、此图形旋转180︒后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B 、此图形旋转180︒后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;C 、此图形旋转180︒后能与原图形不重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D 、此图形旋转180︒后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:B .【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.8.(4分)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为( )A .468.810⨯B .60.68810⨯C .56.8810⨯D .66.8810⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:将688000用科学记数法表示为56.8810⨯.故选:C .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.(4分)一个十二边形的内角和等于( )A .2160︒B .2080︒C .1980︒D .1800︒【分析】n 边形的内角和是(2)180n -︒,把多边形的边数代入公式,就得到多边形的内角和.【解答】解:十二边形的内角和等于:(122)1801800-︒=︒;故选:D .【点评】本题主要考查多边形内角与外角的知识点,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容,此题难度不大.10.(4有意义,则x 的取值范围为( ) A .0x … B .1x -… C .0x … D .1x -…【分析】要根式有意义,只要令10x +…即可【解答】解:要使根式有意义则令10x +…,得1x -…故选:B .【点评】0)a …叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.11.(4分)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( )A .48πB .45πC .36πD .32π【分析】首先利用圆的面积公式即可求得侧面积,利用弧长公式求得圆锥的底面半径,得到底面面积,据此即可求得圆锥的全面积.【解答】解:侧面积是:221183222r πππ=⨯⨯=, 底面圆半径为:28242ππ⨯÷=, 底面积2416ππ=⨯=,故圆锥的全面积是:321648πππ+=.故选:A .【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.12.(4分)按一定规律排列的单项式:3x ,5x -,7x ,9x -,11x ,⋯⋯,第n 个单项式是( )A .121(1)n n x ---B .21(1)n n x --C .121(1)n n x -+-D .21(1)n n x +-【分析】观察指数规律与符号规律,进行解答便可.【解答】解:311211(1)x x -⨯+=-,521221(1)x x -⨯+-=-,731231(1)x x -⨯+=-,941241(1)x x -⨯+-=-,1151251(1)x x -⨯+=-,⋯⋯由上可知,第n 个单项式是:121(1)n n x -+-,故选:A .【点评】此题主要考查了数字的变化类,关键是分别找出符号与指数的变化规律.13.(4分)如图,ABC ∆的内切圆O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且5AB =,13BC =,12CA =,则阴影部分(即四边形)AEOF 的面积是( )A .4B .6.25C .7.5D .9【分析】利用勾股定理的逆定理得到ABC ∆为直角三角形,90A ∠=︒,再利用切线的性质得到OF AB ⊥,OE AC ⊥,所以四边形OFAE 为正方形,设OE AE AF x ===,利用切线长定理得到5BD BF r ==-,12CD CE r ==-,所以51213r r -+-=,然后求出r 后可计算出阴影部分(即四边形)AEOF 的面积.【解答】解:5AB =,13BC =,12CA =,222AB CA BC ∴+=,ABC ∴∆为直角三角形,90A ∠=︒, AB 、AC 与O 分别相切于点E 、FOF AB ∴⊥,OE AC ⊥,∴四边形OFAE 为正方形,设OE r =,则AE AF x ==,ABC ∆的内切圆O 与BC 、CA 、AB 分别相切于点D 、E 、F , 5BD BF r ∴==-,12CD CE r ==-, 51213r r ∴-+-=, 5121322r +-∴==, ∴阴影部分(即四边形)AEOF 的面积是224⨯=.故选:A .【点评】本题考查了三角形的内切圆和内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了勾股定理的逆定理和切线的性质. 14.(4分)若关于x 的不等式组2(1)2,0x a x ->⎧⎨-<⎩的解集是x a >,则a 的取值范围是( )A .2a <B .2a …C .2a >D .2a …【分析】根据不等式组的解集的概念即可求出a 的范围. 【解答】解:解关于x 的不等式组2(1)2,0x a x ->⎧⎨-<⎩得2x x a >⎧⎨>⎩2a ∴…故选:D .【点评】本题考查不等式的解集,解题的关键是正确理解不等式的解集,本题属于基础题型. 三、解答题(本大共9小题,共70分)15.(6分)计算:2013(5)(1)x -+--.【分析】先根据平方性质,0指数幂法则,算术平方根的性质,负指数幂的运算,再进行有 数的加减运算便可.【解答】解:原式91211037=+--=-=.【点评】此题主要考查了实数运算,主要考查了0指数幂法则,负整数幂法则,乘方的意义,有理数的加减运算,正确化简各数是解题关键.计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现2(3)(3)(2)--=-⨯-的错误. 16.(6分)如图,AB AD =,CB CD =.求证:B D ∠=∠.【分析】由SSS 证明ABC ADC ∆≅∆,得出对应角相等即可. 【解答】证明:在ABC ∆和ADC ∆中,AB ADCB CDAC AC =⎧⎪=⎨⎪=⎩,()ABC ADC SSS ∴∆≅∆,B D ∴∠=∠.【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解题的关键.17.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.【分析】(1)根据平均数、众数和中位数的意义进行解答即可; (2)根据平均数、中位数和众数得出的数据进行分析即可得出答案. 【解答】解:(1)这15名营业员该月销售量数据的平均数177048022031803120390427815++⨯+⨯+⨯+⨯==(件),中位数为180件,90出现了4次,出现的次数最多,∴众数是90件;(2)如果想让一半左右的营业员都能达到销售目标,平均数、中位数、众数中,中位数最适合作为月销售目标;理由如下:因为中位数为180件,即月销售量大于180与小于180的人数一样多, 所以中位数最适合作为月销售目标,有一半左右的营业员能达到销售目标.【点评】本题考查的是平均数、众数和中位数的定义及运用.要学会根据统计量的意义分析解决问题.18.(6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.【分析】设甲学校师生所乘大巴车的平均速度为x 千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x 千米/小时,由时间关系“甲校师生比乙校师生晚1小时到达目的地”列出方程,解方程即可.【解答】解:设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由题意得:24027011.5x x-=,解得:60x=,经检验,60x=是所列方程的解,则1.590x=,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时、90千米/小时.【点评】本题主要考查分式方程的应用,解题的关键是理解题意,找到题目中蕴含的相等关系,并依据相等关系列出方程.19.(7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x y+为奇数,则甲获胜;若x y+为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(,)x y所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.【分析】画树状图展示所有16种等可能的结果数,然后根据概率公式求解.【解答】解:画树状图如图所示,(1)共有16种等可能的结果数;(2)x y+为奇数的结果数为8,x y+为偶数的结果数为8,∴甲获胜的概率81162==,乙获胜的概率81162==,∴甲获胜的概率=乙获胜的概率,∴这个游戏对双方公平.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO OC=,BO OD=,且2∠=∠.AOB OAD(1)求证:四边形ABCD是矩形;(2)若:4:3∠的度数.AOB ODC∠∠=,求ADO【分析】(1)根据平行四边形的判定定理得到四边形ABCD是平行四边形,根据三角形的外角的性质得到2∠=∠,推出AC BD=,∠=∠+∠=∠,求得DAO ADOAOB DAO ADO OAD于是得到四边形ABCD是矩形;(2)根据矩形的性质得到//AB CD,根据平行线的性质得到ABO CDO∠=∠,根据三角形的内角得到54∠=︒,于是得到结论.ABO【解答】(1)证明:AO OC=,=,BO OD∴四边形ABCD是平行四边形,∠=∠+∠=∠,AOB DAO ADO OAD2∴∠=∠,DAO ADO∴=,AO DO∴=,AC BD∴四边形ABCD是矩形;(2)解:四边形ABCD是矩形,∴,//AB CD∴∠=∠,ABO CDO∠∠=,:4:3AOB ODC∴∠∠=,:4:3AOB ABO∴∠∠∠=,BAO AOB ABO::3:4:3ABO∴∠=︒,54BAD∠=︒,90∴∠=︒-︒=︒.ADO905436【点评】本题考查了矩形的判定和性质,三角形的内角和,正确的理解题意是解题的关键.21.(8分)已知k 是常数,抛物线22(6)3y x k k x k =++-+的对称轴是y 轴,并且与x 轴有两个交点. (1)求k 的值;(2)若点P 在物线22(6)3y x k k x k =++-+上,且P 到y 轴的距离是2,求点P 的坐标. 【分析】(1)根据抛物线的对称轴为y 轴,则0b =,可求出k 的值,再根据抛物线与x 轴有两个交点,进而确定k 的值和抛物线的关系式;(2)由于对称轴为y 轴,点P 到y 轴的距离为2,可以转化为点P 的横坐标为2或2-,求相应的y 的值,确定点P 的坐标.【解答】解:(1)抛物线22(6)3y x k k x k =++-+的对称轴是y 轴, 260k k ∴+-=,解得13k =-,22k =;又抛物线22(6)3y x k k x k =++-+与x 轴有两个交点. 30k ∴<3k ∴=-.此时抛物线的关系式为29y x =-,因此k 的值为3-.(2)点P 在物线29y x =-上,且P 到y 轴的距离是2,∴点P 的横坐标为2或2-,当2x =时,5y =- 当2x =-时,5y =-. (2,5)P ∴-或(2,5)P --因此点P 的坐标为:(2,5)P -或(2,5)P --.【点评】主要考查二次函数的图象和性质,以及二次函数图象上点的坐标特征,善于将线段的长转化为坐标,或将坐标转化为线段的长.22.(9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y (千克)与销售单价x (元/千克)的函数关系如图所示: (1)求y 与x 的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W 的最大值.【分析】(1),根据函数图象得到直线上的两点,再结合待定系数法即可求得y 与x 的函数解析式;(2),根据总利润=每千克利润⨯销售量,列出函数关系式,配方后根据x 的取值范围可得W 的最大值.【解答】解:(1)当610x 剟时,设y 与x 的关系式为(0)y kx b k =+≠ 根据题意得1000620010k b k b =+⎧⎨=+⎩,解得2002200k b =-⎧⎨=⎩2001200y x ∴=-+当1012x <…时,200y =故y 与x 的函数解析式为:2002200,(610)200,(1012)x x y x -+⎧=⎨<⎩剟…(2)由已知得:(6)W x y =- 当610x 剟时,217(6)(2001200)200()12502W x x x =--+=--+ 2000-<,抛物线的开口向下 172x ∴=时,取最大值, 1250W ∴=当1012x <…时,(6)2002001200W x x =-=-y 随x 的增大而增大12x ∴=时取得最大值,2001212001200W =⨯-=综上所述,当销售价格为8.5元时,取得最大利润,最大利润为1250元.【点评】本题主要考查的是待定系数法求函数解析式及二次函数的应用,根据相等关系列出函数解析式,并由二次函数的性质确定其最值是解题的关键;23.(12分)如图,AB 是O 的直径,M 、D 两点AB 的延长线上,E 是C 上的点,且2DE DB DA =,延长AE 至F ,使得AE EF =,设10BF =,4cos 5BED ∠=. (1)求证:DEB DAE ∆∆∽; (2)求DA ,DE 的长;(3)若点F 在B 、E 、M 三点确定的圆上,求MD 的长.【分析】(1)D D ∠=∠,2DE DB DA =,即可求解; (2)由ED EB DB DA AE ED ==,即:6108ED BDBD DE==+,即可求解; (3)在BED ∆中,过点B 作HB ED ⊥于点H ,2221209036()()77x x --=-,解得:43235x =,则24cos 90257x β==,即可求解. 【解答】解:(1)D D ∠=∠,2DE DB DA =,DEB DAE ∴∆∆∽;(2)DEB DAE ∆∆∽, DEB DAE α∴∠=∠=,AB 是直径,90AEB ∴∠=︒,又AE EF =,10AB BF ∴==,BFE BAE α∴∠=∠=,则BF ED ⊥交于点H , 4cos 5BED ∠=,则6BE =,8AB = ∴ED EB DB DA AE ED ==,即:6108ED BDBD DE==+, 解得:907BD =,1207DE =, 则1607AD AB BD =+=,1207ED =; (3)点F 在B 、E 、M 三点确定的圆上,则BF 是该圆的直径,连接MF ,BF ED ⊥,90BMF ∠=︒,MFB D β∴∠=∠=,在BED ∆中,过点B 作HB ED ⊥于点H , 设HD x =,则1207EH x =-, 则2221209036()()77x x --=-,解得:43235x =, 则24cos 90257x β==,则7sin 25β=, 714sin 10255MB BF β==⨯=, 35235DM BD MB =-=. 【点评】此题属于圆的综合题,涉及了直角三角形的性质、相似三角形的判定与性质、三角函数值的知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来。

2019年云南省中考数学试卷(含解析)完美打印版

2019年云南省中考数学试卷(含解析)完美打印版

2019年云南省中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)若零上8℃记作+8℃,则零下6℃记作℃.2.(3分)分解因式:x2﹣2x+1=.3.(3分)如图,若AB∥CD,∠1=40度,则∠2=度.4.(3分)若点(3,5)在反比例函数y=(k≠0)的图象上,则k=.5.(3分)某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如图:根据以上统计图提供的信息,则D等级这一组人数较多的班是.6.(3分)在平行四边形ABCD中,∠A=30°,AD=4,BD=4,则平行四边形ABCD的面积等于.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.(4分)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为()A.68.8×104B.0.688×106C.6.88×105D.6.88×1069.(4分)一个十二边形的内角和等于()A.2160°B.2080°C.1980°D.1800°10.(4分)要使有意义,则x的取值范围为()A.x≤0B.x≥﹣1C.x≥0D.x≤﹣111.(4分)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π12.(4分)按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n个单项式是()A.(﹣1)n﹣1x2n﹣1B.(﹣1)n x2n﹣1C.(﹣1)n﹣1x2n+1D.(﹣1)n x2n+113.(4分)如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA =12,则阴影部分(即四边形AEOF)的面积是()A.4B.6.25C.7.5D.914.(4分)若关于x的不等式组的解集是x>a,则a的取值范围是()A.a<2B.a≤2C.a>2D.a≥2三、解答题(本大共9小题,共70分)15.(6分)计算:32+(x﹣5)0﹣+(﹣1)﹣1.16.(6分)如图,AB=AD,CB=CD.求证:∠B=∠D.17.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.18.(6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.19.(7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.20.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.21.(8分)已知k是常数,抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值;(2)若点P在物线y=x2+(k2+k﹣6)x+3k上,且P到y轴的距离是2,求点P的坐标.22.(9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.23.(12分)如图,AB是⊙O的直径,M、D两点在AB的延长线上,E是⊙C上的点,且DE2=DB•DA,延长AE至F,使得AE=EF,设BF=10,cos∠BED=.(1)求证:△DEB∽△DAE;(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.2019年云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)若零上8℃记作+8℃,则零下6℃记作﹣6℃.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据正数和负数表示相反的意义,可知如果零上8℃记作+8℃,那么零下6℃记作﹣6℃.故答案为:﹣6.2.(3分)分解因式:x2﹣2x+1=(x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.3.(3分)如图,若AB∥CD,∠1=40度,则∠2=140度.【分析】根据两直线平行,同位角相等求出∠3,再根据邻补角的定义列式计算即可得解.【解答】解:∵AB∥CD,∠1=40°,∴∠3=∠1=40°,∴∠2=180°﹣∠3=180°﹣40°=140°.故答案为:140.4.(3分)若点(3,5)在反比例函数y=(k≠0)的图象上,则k=15.【分析】点在函数的图象上,其纵横坐标一定满足函数的关系式,反之也成立,因此只要将点(3,5)代入反比例函数y=(k≠0)即可.【解答】解:把点(3,5)的纵横坐标代入反比例函数y=得:k=3×5=15故答案为:155.(3分)某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如图:根据以上统计图提供的信息,则D等级这一组人数较多的班是甲班.【分析】由频数分布直方图得出甲班D等级的人数为13人,求出乙班D等级的人数为40×30%=12人,即可得出答案.【解答】解:由题意得:甲班D等级的有13人,乙班D等级的人数为40×30%=12(人),13>12,所以D等级这一组人数较多的班是甲班;故答案为:甲班.6.(3分)在平行四边形ABCD中,∠A=30°,AD=4,BD=4,则平行四边形ABCD的面积等于16或8.【分析】过D作DE⊥AB于E,解直角三角形得到AB=8,根据平行四边形的面积公式即可得到结论.【解答】解:过D作DE⊥AB于E,在Rt△ADE中,∵∠A=30°,AD=4,∴DE=AD=2,AE=AD=6,在Rt△BDE中,∵BD=4,∴BE===2,如图1,∴AB=8,∴平行四边形ABCD的面积=AB•DE=8×2=16,如图2,AB=4,∴平行四边形ABCD的面积=AB•DE=4×2=8,故答案为:16或8.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;C、此图形旋转180°后能与原图形不重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:B.8.(4分)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为()A.68.8×104B.0.688×106C.6.88×105D.6.88×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:将688000用科学记数法表示为6.88×105.故选:C.9.(4分)一个十二边形的内角和等于()A.2160°B.2080°C.1980°D.1800°【分析】n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【解答】解:十二边形的内角和等于:(12﹣2)•180°=1800°;故选:D.10.(4分)要使有意义,则x的取值范围为()A.x≤0B.x≥﹣1C.x≥0D.x≤﹣1【分析】要根式有意义,只要令x+1≥0即可【解答】解:要使根式有意义则令x+1≥0,得x≥﹣1故选:B.11.(4分)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π【分析】首先利用圆的面积公式即可求得侧面积,利用弧长公式求得圆锥的底面半径,得到底面面积,据此即可求得圆锥的全面积.【解答】解:侧面积是:πr2=×π×82=32π,底面圆半径为:,底面积=π×42=16π,故圆锥的全面积是:32π+16π=48π.故选:A.12.(4分)按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n个单项式是()A.(﹣1)n﹣1x2n﹣1B.(﹣1)n x2n﹣1C.(﹣1)n﹣1x2n+1D.(﹣1)n x2n+1【分析】观察指数规律与符号规律,进行解答便可.【解答】解:∵x3=(﹣1)1﹣1x2×1+1,﹣x5=(﹣1)2﹣1x2×2+1,x7=(﹣1)3﹣1x2×3+1,﹣x9=(﹣1)4﹣1x2×4+1,x11=(﹣1)5﹣1x2×5+1,……由上可知,第n个单项式是:(﹣1)n﹣1x2n+1,故选:C.13.(4分)如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA =12,则阴影部分(即四边形AEOF)的面积是()A.4B.6.25C.7.5D.9【分析】利用勾股定理的逆定理得到△ABC为直角三角形,∠A=90°,再利用切线的性质得到OF⊥AB,OE⊥AC,所以四边形OF AE为正方形,设OE=AE=AF=r,利用切线长定理得到BD=BF=5﹣r,CD=CE=12﹣r,所以5﹣r+12﹣r=13,然后求出r后可计算出阴影部分(即四边形AEOF)的面积.【解答】解:∵AB=5,BC=13,CA=12,∴AB2+CA2=BC2,∴△ABC为直角三角形,∠A=90°,∵AB、AC与⊙O分别相切于点E、F∴OF⊥AB,OE⊥AC,∴四边形OF AE为正方形,设OE=r,则AE=AF=r,∵△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,∴BD=BF=5﹣r,CD=CE=12﹣r,∴5﹣r+12﹣r=13,∴r==2,∴阴影部分(即四边形AEOF)的面积是2×2=4.故选:A.14.(4分)若关于x的不等式组的解集是x>a,则a的取值范围是()A.a<2B.a≤2C.a>2D.a≥2【分析】根据不等式组的解集的概念即可求出a的范围.【解答】解:解关于x的不等式组得∴a≥2故选:D.三、解答题(本大共9小题,共70分)15.(6分)计算:32+(x﹣5)0﹣+(﹣1)﹣1.【分析】先根据平方性质,0指数幂法则,算术平方根的性质,负指数幂的运算,再进行有数的加减运算便可.【解答】解:原式=9+1﹣2﹣1=10﹣3=7.16.(6分)如图,AB=AD,CB=CD.求证:∠B=∠D.【分析】由SSS证明△ABC≌△ADC,得出对应角相等即可.【解答】证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠B=∠D.17.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.【分析】(1)根据平均数、众数和中位数的意义进行解答即可;(2)根据平均数、中位数和众数得出的数据进行分析即可得出答案.【解答】解:(1)这15名营业员该月销售量数据的平均数==278(件),中位数为180件,∵90出现了4次,出现的次数最多,∴众数是90件;(2)如果想让一半左右的营业员都能达到销售目标,平均数、中位数、众数中,中位数最适合作为月销售目标;理由如下:因为中位数为180件,即月销售量大于180与小于180的人数一样多,所以中位数最适合作为月销售目标,有一半左右的营业员能达到销售目标.18.(6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.【分析】设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由时间关系“甲校师生比乙校师生晚1小时到达目的地”列出方程,解方程即可.【解答】解:设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由题意得:,解得:x=60,经检验,x=60是所列方程的解,则1.5x=90,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时、90千米/小时.19.(7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.【分析】画树状图展示所有16种等可能的结果数,然后根据概率公式求解.【解答】解:画树状图如图所示,(1)共有16种等可能的结果数;(2)x+y为奇数的结果数为8,x+y为偶数的结果数为8,∴甲获胜的概率==,乙获胜的概率==,∴甲获胜的概率=乙获胜的概率,∴这个游戏对双方公平.20.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.【分析】(1)根据平行四边形的判定定理得到四边形ABCD是平行四边形,根据三角形的外角的性质得到∠AOB=∠DAO+∠ADO=2∠OAD,求得∠DAO=∠ADO,推出AC=BD,于是得到四边形ABCD 是矩形;(2)根据矩形的性质得到AB∥CD,根据平行线的性质得到∠ABO=∠CDO,根据三角形的内角得到∠ABO=54°,于是得到结论.【解答】(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB=∠DAO+∠ADO=2∠OAD,∴∠DAO=∠ADO,∴AO=DO,∴AC=BD,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AB∥CD,∴∠ABO=∠CDO,∵∠AOB:∠ODC=4:3,∴∠AOB:∠ABO=4:3,∴∠BAO:∠AOB:∠ABO=3:4:3,∴∠ABO=54°,∵∠BAD=90°,∴∠ADO=90°﹣54°=36°.21.(8分)已知k是常数,抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值;(2)若点P在物线y=x2+(k2+k﹣6)x+3k上,且P到y轴的距离是2,求点P的坐标.【分析】(1)根据抛物线的对称轴为y轴,则b=0,可求出k的值,再根据抛物线与x轴有两个交点,进而确定k的值和抛物线的关系式;(2)由于对称轴为y轴,点P到y轴的距离为2,可以转化为点P的横坐标为2或﹣2,求相应的y的值,确定点P的坐标.【解答】解:(1)∵抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,∴k2+k﹣6=0,解得k1=﹣3,k2=2;又∵抛物线y=x2+(k2+k﹣6)x+3k与x轴有两个交点.∴3k<0∴k=﹣3.此时抛物线的关系式为y=x2﹣9,因此k的值为﹣3.(2)∵点P在抛物线y=x2﹣9上,且P到y轴的距离是2,∴点P的横坐标为2或﹣2,当x=2时,y=﹣5当x=﹣2时,y=﹣5.∴P(2,﹣5)或P(﹣2,﹣5)因此点P的坐标为:P(2,﹣5)或P(﹣2,﹣5).22.(9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.【分析】(1),根据函数图象得到直线上的两点,再结合待定系数法即可求得y与x的函数解析式;(2),根据总利润=每千克利润×销售量,列出函数关系式,配方后根据x的取值范围可得W的最大值.【解答】解:(1)当6≤x≤10时,设y与x的关系式为y=kx+b(k≠0)根据题意得,解得∴y=﹣200x+2200当10<x≤12时,y=200故y与x的函数解析式为:y=(2)由已知得:W=(x﹣6)y当6≤x≤10时,W=(x﹣6)(﹣200x+2200)=﹣200(x﹣)2+1250∵﹣200<0,抛物线的开口向下∴x=时,取最大值,∴W=1250当10<x≤12时,W=(x﹣6)•200=200x﹣1200∵y随x的增大而增大∴x=12时取得最大值,W=200×12﹣1200=1200综上所述,当销售价格为8.5元时,取得最大利润,最大利润为1250元.23.(12分)如图,AB是⊙O的直径,M、D两点在AB的延长线上,E是⊙C上的点,且DE2=DB•DA,延长AE至F,使得AE=EF,设BF=10,cos∠BED=.(1)求证:△DEB∽△DAE;(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.【分析】(1)∠D=∠D,DE2=DB•DA,即可求解;(2)由,即:,即可求解;(3)在△BED中,过点B作HB⊥ED于点H,36﹣(﹣x)2=()2﹣x2,解得:x=,则cosβ==,即可求解.【解答】解:(1)∵∠D=∠D,DE2=DB•DA,∴△DEB∽△DAE;(2)∵△DEB∽△DAE,∴∠DEB=∠DAE=α,∵AB是直径,∴∠AEB=90°,又AE=EF,∴AB=BF=10,∴∠BFE=∠BAE=α,则BF⊥ED交于点H,∵cos∠BED=,则BE=6,AE=8∴,即:,解得:BD=,DE=,则AD=AB+BD=,ED=;(3)点F在B、E、M三点确定的圆上,则BF是该圆的直径,连接MF,∵BF⊥ED,∠BMF=90°,∴∠MFB=∠D=β,在△BED中,过点B作HB⊥ED于点H,设HD=x,则EH=﹣x,则36﹣(﹣x)2=()2﹣x2,解得:x=,则cosβ==,则sinβ=,MB=BF sinβ=10×=,DM=BD﹣MB=.。

2019年云南省中考数学试卷和答案

2019年云南省中考数学试卷和答案

2019年云南省中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)若零上8℃记作+8℃,则零下6℃记作℃.2.(3分)分解因式:x2﹣2x+1=.3.(3分)如图,若AB∥CD,∠1=40度,则∠2=度.4.(3分)若点(3,5)在反比例函数y=(k≠0)的图象上,则k =.5.(3分)某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如图:根据以上统计图提供的信息,则D等级这一组人数较多的班是.6.(3分)在平行四边形ABCD中,∠A=30°,AD=4,BD=4,则平行四边形ABCD的面积等于.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.(4分)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为()A.68.8×104B.0.688×106C.6.88×105D.6.88×106 9.(4分)一个十二边形的内角和等于()A.2160°B.2080°C.1980°D.1800°10.(4分)要使有意义,则x的取值范围为()A.x≤0B.x≥﹣1C.x≥0D.x≤﹣1 11.(4分)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π12.(4分)按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n个单项式是()A.(﹣1)n﹣1x2n﹣1B.(﹣1)n x2n﹣1C.(﹣1)n﹣1x2n+1D.(﹣1)n x2n+113.(4分)如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A.4B.6.25C.7.5D.914.(4分)若关于x 的不等式组的解集是x>a,则a的取值范围是()A.a<2B.a≤2C.a>2D.a≥2三、解答题(本大共9小题,共70分)15.(6分)计算:32+(x﹣5)0﹣+(﹣1)﹣1.16.(6分)如图,AB=AD,CB=CD.求证:∠B=∠D.17.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:月销售量/件177048022018012090数人数113334(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.18.(6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.19.(7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.20.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.21.(8分)已知k是常数,抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值;(2)若点P在物线y=x2+(k2+k﹣6)x+3k上,且P到y轴的距离是2,求点P的坐标.22.(9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.23.(12分)如图,AB是⊙O的直径,M、D两点AB的延长线上,E是⊙C上的点,且DE2=DB•DA,延长AE至F,使得AE=EF,设BF=10,cos∠BED=.(1)求证:△DEB∽△DAE;(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.2019年云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)若零上8℃记作+8℃,则零下6℃记作﹣6℃.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据正数和负数表示相反的意义,可知如果零上8℃记作+8℃,那么零下6℃记作﹣6℃.故答案为:﹣6.【点评】本题考查了正数和负数的知识,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.(3分)分解因式:x2﹣2x+1=(x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.3.(3分)如图,若AB∥CD,∠1=40度,则∠2=140度.【分析】根据两直线平行,同位角相等求出∠3,再根据邻补角的定义列式计算即可得解.【解答】解:∵AB∥CD,∠1=40°,∴∠3=∠1=40°,∴∠2=180°﹣∠3=180°﹣40°=140°.故答案为:140.【点评】本题考查了平行线的性质,邻补角的定义,熟记性质是解题的关键.4.(3分)若点(3,5)在反比例函数y=(k≠0)的图象上,则k =15.【分析】点在函数的图象上,其纵横坐标一定满足函数的关系式,反之也成立,因此只要将点(3,5)代入反比例函数y=(k≠0)即可.【解答】解:把点(3,5)的纵横坐标代入反比例函数y=得:k =3×5=15故答案为:15【点评】考查反比例函数图象上点的坐标特征,用待定系数法可直接求出k的值;比较简单.5.(3分)某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如图:根据以上统计图提供的信息,则D等级这一组人数较多的班是甲班.【分析】由频数分布直方图得出甲班D等级的人数为13人,求出乙班D等级的人数为40×30%=12人,即可得出答案.【解答】解:由题意得:甲班D等级的有13人,乙班D等级的人数为40×30%=12(人),13>12,所以D等级这一组人数较多的班是甲班;故答案为:甲班.【点评】此题考查了频数(率)分布直方图,扇形统计图,弄清题意,求出乙班D等级的人数是解本题的关键.6.(3分)在平行四边形ABCD中,∠A=30°,AD=4,BD=4,则平行四边形ABCD的面积等于16或8.【分析】过D作DE⊥AB于E,解直角三角形得到AB=8,根据平行四边形的面积公式即可得到结论.【解答】解:过D作DE⊥AB于E,在Rt△ADE中,∵∠A=30°,AD=4,∴DE=AD=2,AE=AD=6,在Rt△BDE中,∵BD=4,∴BE===2,如图1,∴AB=8,∴平行四边形ABCD的面积=AB•DE=8×2=16,如图2,AB=4,∴平行四边形ABCD的面积=AB•DE=4×2=8,故答案为:16或8.【点评】本题考查了平行四边形的以及平行四边形的面积公式的运用和30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;C、此图形旋转180°后能与原图形不重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:B.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.8.(4分)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为()A.68.8×104B.0.688×106C.6.88×105D.6.88×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将688000用科学记数法表示为6.88×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.(4分)一个十二边形的内角和等于()A.2160°B.2080°C.1980°D.1800°【分析】n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【解答】解:十二边形的内角和等于:(12﹣2)•180°=1800°;故选:D.【点评】本题主要考查多边形内角与外角的知识点,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容,此题难度不大.10.(4分)要使有意义,则x的取值范围为()A.x≤0B.x≥﹣1C.x≥0D.x≤﹣1【分析】要根式有意义,只要令x+1≥0即可【解答】解:要使根式有意义则令x+1≥0,得x≥﹣1故选:B.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.11.(4分)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π【分析】首先利用圆的面积公式即可求得侧面积,利用弧长公式求得圆锥的底面半径,得到底面面积,据此即可求得圆锥的全面积.【解答】解:侧面积是:πr2=×π×82=32π,底面圆半径为:,底面积=π×42=16π,故圆锥的全面积是:32π+16π=48π.故选:A.【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.12.(4分)按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n个单项式是()A.(﹣1)n﹣1x2n﹣1B.(﹣1)n x2n﹣1C.(﹣1)n﹣1x2n+1D.(﹣1)n x2n+1【分析】观察指数规律与符号规律,进行解答便可.【解答】解:∵x3=(﹣1)1﹣1x2×1+1,﹣x5=(﹣1)2﹣1x2×2+1,x7=(﹣1)3﹣1x2×3+1,﹣x9=(﹣1)4﹣1x2×4+1,x11=(﹣1)5﹣1x2×5+1,……由上可知,第n个单项式是:(﹣1)n﹣1x2n+1,故选:A.【点评】此题主要考查了数字的变化类,关键是分别找出符号与指数的变化规律.13.(4分)如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A.4B.6.25C.7.5D.9【分析】利用勾股定理的逆定理得到△ABC为直角三角形,∠A =90°,再利用切线的性质得到OF⊥AB,OE⊥AC,所以四边形OFAE为正方形,设OE=AE=AF=x,利用切线长定理得到BD =BF=5﹣r,CD=CE=12﹣r,所以5﹣r+12﹣r=13,然后求出r后可计算出阴影部分(即四边形AEOF)的面积.【解答】解:∵AB=5,BC=13,CA=12,∴AB2+CA2=BC2,∴△ABC为直角三角形,∠A=90°,∵AB、AC与⊙O分别相切于点E、F∴OF⊥AB,OE⊥AC,∴四边形OFAE为正方形,设OE=r,则AE=AF=x,∵△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,∴BD=BF=5﹣r,CD=CE=12﹣r,∴5﹣r+12﹣r=13,∴r==2,∴阴影部分(即四边形AEOF)的面积是2×2=4.故选:A.【点评】本题考查了三角形的内切圆和内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了勾股定理的逆定理和切线的性质.14.(4分)若关于x的不等式组的解集是x>a,则a的取值范围是()A.a<2B.a≤2C.a>2D.a≥2【分析】根据不等式组的解集的概念即可求出a的范围.【解答】解:解关于x的不等式组得∴a≥2故选:D.【点评】本题考查不等式的解集,解题的关键是正确理解不等式的解集,本题属于基础题型.三、解答题(本大共9小题,共70分)15.(6分)计算:32+(x﹣5)0﹣+(﹣1)﹣1.【分析】先根据平方性质,0指数幂法则,算术平方根的性质,负指数幂的运算,再进行有数的加减运算便可.【解答】解:原式=9+1﹣2﹣1=10﹣3=7.【点评】此题主要考查了实数运算,主要考查了0指数幂法则,负整数幂法则,乘方的意义,有理数的加减运算,正确化简各数是解题关键.计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(﹣3)﹣2=(﹣3)×(﹣2)的错误.16.(6分)如图,AB=AD,CB=CD.求证:∠B=∠D.【分析】由SSS证明△ABC≌△ADC,得出对应角相等即可.【解答】证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠B=∠D.【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解题的关键.17.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:177048022018012090月销售量/件数人数113334(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.【分析】(1)根据平均数、众数和中位数的意义进行解答即可;(2)根据平均数、中位数和众数得出的数据进行分析即可得出答案.【解答】解:(1)这15名营业员该月销售量数据的平均数==278(件),中位数为180件,∵90出现了4次,出现的次数最多,∴众数是90件;(2)如果想让一半左右的营业员都能达到销售目标,平均数、中位数、众数中,中位数最适合作为月销售目标;理由如下:因为中位数为180件,即月销售量大于180与小于180的人数一样多,所以中位数最适合作为月销售目标,有一半左右的营业员能达到销售目标.【点评】本题考查的是平均数、众数和中位数的定义及运用.要学会根据统计量的意义分析解决问题.18.(6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.【分析】设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由时间关系“甲校师生比乙校师生晚1小时到达目的地”列出方程,解方程即可.【解答】解:设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由题意得:,解得:x=60,经检验,x=60是所列方程的解,则1.5x=90,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时、90千米/小时.【点评】本题主要考查分式方程的应用,解题的关键是理解题意,找到题目中蕴含的相等关系,并依据相等关系列出方程.19.(7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.【分析】画树状图展示所有16种等可能的结果数,然后根据概率公式求解.【解答】解:画树状图如图所示,(1)共有16种等可能的结果数;(2)x+y为奇数的结果数为8,x+y为偶数的结果数为8,∴甲获胜的概率==,乙获胜的概率==,∴甲获胜的概率=乙获胜的概率,∴这个游戏对双方公平.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.【分析】(1)根据平行四边形的判定定理得到四边形ABCD是平行四边形,根据三角形的外角的性质得到∠AOB=∠DAO+∠ADO=2∠OAD,求得∠DAO=∠ADO,推出AC=BD,于是得到四边形ABCD是矩形;(2)根据矩形的性质得到AB∥CD,根据平行线的性质得到∠ABO=∠CDO,根据三角形的内角得到∠ABO=54°,于是得到结论.【解答】(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB=∠DAO+∠ADO=2∠OAD,∴∠DAO=∠ADO,∴AO=DO,∴AC=BD,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AB∥CD,∴∠ABO=∠CDO,∵∠AOB:∠ODC=4:3,∴∠AOB:∠ABO=4:3,∴∠BAO:∠AOB:∠ABO=3:4:3,∴∠ABO=54°,∵∠BAD=90°,∴∠ADO=90°﹣54°=36°.【点评】本题考查了矩形的判定和性质,三角形的内角和,正确的理解题意是解题的关键.21.(8分)已知k是常数,抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值;(2)若点P在物线y=x2+(k2+k﹣6)x+3k上,且P到y轴的距离是2,求点P的坐标.【分析】(1)根据抛物线的对称轴为y轴,则b=0,可求出k的值,再根据抛物线与x轴有两个交点,进而确定k的值和抛物线的关系式;(2)由于对称轴为y轴,点P到y轴的距离为2,可以转化为点P的横坐标为2或﹣2,求相应的y的值,确定点P的坐标.【解答】解:(1)∵抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y 轴,∴k2+k﹣6=0,解得k1=﹣3,k2=2;又∵抛物线y=x2+(k2+k﹣6)x+3k与x轴有两个交点.∴3k<0∴k=﹣3.此时抛物线的关系式为y=x2﹣9,因此k的值为﹣3.(2)∵点P在物线y=x2﹣9上,且P到y轴的距离是2,∴点P的横坐标为2或﹣2,当x=2时,y=﹣5当x=﹣2时,y=﹣5.∴P(2,﹣5)或P(﹣2,﹣5)因此点P的坐标为:P(2,﹣5)或P(﹣2,﹣5).【点评】主要考查二次函数的图象和性质,以及二次函数图象上点的坐标特征,善于将线段的长转化为坐标,或将坐标转化为线段的长.22.(9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.【分析】(1),根据函数图象得到直线上的两点,再结合待定系数法即可求得y与x的函数解析式;(2),根据总利润=每千克利润×销售量,列出函数关系式,配方后根据x的取值范围可得W的最大值.【解答】解:(1)当6≤x≤10时,设y与x的关系式为y=kx+b(k≠0)根据题意得,解得∴y=﹣200x+1200当10<x≤12时,y=200故y与x的函数解析式为:y=(2)由已知得:W=(x﹣6)y当6≤x≤10时,W=(x﹣6)(﹣200x+1200)=﹣200(x﹣)2+1250∵﹣200<0,抛物线的开口向下∴x=时,取最大值,∴W=1250当10<x≤12时,W=(x﹣6)•200=200x﹣1200∵y随x的增大而增大∴x=12时取得最大值,W=200×12﹣1200=1200综上所述,当销售价格为8.5元时,取得最大利润,最大利润为1250元.【点评】本题主要考查的是待定系数法求函数解析式及二次函数的应用,根据相等关系列出函数解析式,并由二次函数的性质确定其最值是解题的关键;23.(12分)如图,AB是⊙O的直径,M、D两点AB的延长线上,E是⊙C上的点,且DE2=DB•DA,延长AE至F,使得AE=EF,设BF=10,cos∠BED=.(1)求证:△DEB∽△DAE;(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.【分析】(1)∠D=∠D,DE2=DB•DA,即可求解;(2)由,即:,即可求解;(3)在△BED中,过点B作HB⊥ED于点H,36﹣(﹣x)2=()2﹣x2,解得:x=,则cosβ==,即可求解.【解答】解:(1)∵∠D=∠D,DE2=DB•DA,∴△DEB∽△DAE;(2)∵△DEB∽△DAE,∴∠DEB=∠DAE=α,∵AB是直径,∴∠AEB=90°,又AE =EF,∴AB=BF=10,∴∠BFE=∠BAE=α,则BF⊥ED交于点H,∵cos∠BED=,则BE=6,AB=8∴,即:,解得:BD=,DE=,则AD=AB+BD=,ED=;(3)点F在B、E、M三点确定的圆上,则BF是该圆的直径,连接MF,∵BF⊥ED,∠BMF=90°,∴∠MFB=∠D=β,在△BED中,过点B作HB⊥ED于点H,设HD=x,则EH=﹣x,则36﹣(﹣x)2=()2﹣x2,解得:x=,则cosβ==,则sinβ=,MB=BFsinβ=10×=,DM=BD﹣MB=.【点评】此题属于圆的综合题,涉及了直角三角形的性质、相似三角形的判定与性质、三角函数值的知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.。

云南省2019年中考数学试题及答案(Word解析版)

云南省2019年中考数学试题及答案(Word解析版)

2019年云南省中考数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分)1.(3分)(2019年云南省)|﹣|=()A.﹣B.C.﹣7 D.7考点:绝对值.分析:根据负数的绝对值是它的相反数,可得答案.解答:解:|﹣|=,故选:B.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2019年云南省)下列运算正确的是()A. 3x2+2x3=5x6B.50=0 C.2﹣3=D.(x3)2=x6考点:幂的乘方与积的乘方;合并同类项;零指数幂;负整数指数幂.分析:根据合并同类项,可判断A,根据非0的0次幂,可判断B,根据负整指数幂,可判断C,根据幂的乘方,可判断D.解答:解:A、系数相加字母部分不变,故A错误;B、非0的0次幂等于1,故B错误;C、2,故C错误;D、底数不变指数相乘,故D正确;故选:D.点评:本题考查了幂的乘方,幂的乘方底数不变指数相乘是解题关键.3.(3分)(2019年云南省)不等式组的解集是()A. x>B.﹣1≤x<C.x<D.x≥﹣1考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>,由②得,x≥﹣1,故此不等式组的解集为:x>.故选A.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.(3分)(2019年云南省)某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方体C.球D.圆锥考点:由三视图判断几何体.分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:根据主视图和左视图为三角形判断出是锥体,根据俯视图是圆形可判断出这个几何体应该是圆锥,故选D.点评:主视图和左视图的大致轮廓为三角形的几何体为锥体,俯视图为圆就是圆锥.5.(3分)(2019年云南省)一元二次方程x2﹣x﹣2=0的解是()A. x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=﹣2 D.x1=﹣1,x2=2考点:解一元二次方程-因式分解法.分析:直接利用十字相乘法分解因式,进而得出方程的根解答:解:x2﹣x﹣2=0(x﹣2)(x+1)=0,解得:x1=﹣1,x2=2.故选:D.点评:此题主要考查了十字相乘法分解因式解方程,正确分解因式是解题关键.6.(3分)(2019年云南省)据统计,2019年我国用义务教育经费支持了13940000名农民工随迁子女在城市里接受义务教育,这个数字用科学计数法可表示为()A. 1.394×107B.13.94×107C.1.394×106D.13.94×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:13 940 000=1.394×107,故选:A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(3分)(2019年云南省)已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为()A.B.2πC.3πD.12π考点:弧长的计算.分析:根据弧长公式l=,代入相应数值进行计算即可.解答:解:根据弧长公式:l==3π,故选:C.点评:此题主要考查了弧长计算,关键是掌握弧长公式l=.8.(3分)(2019年云南省)学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:成绩(分)9.40 9.50 9.60 9.70 9.80 9.90人数 2 3 5 4 3 1则入围同学决赛成绩的中位数和众数分别是()A. 9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.60考点:众数;中位数.分析:根据中位数和众数的概念求解.解答:解:∵共有18名同学,则中位数为第9名和第10名同学成绩的平均分,即中位数为:=9.60,众数为:9.60.故选B.点评:本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.二、填空题(本大题共6个小题,每小题3分,满分18分)9.(3分)(2019年云南省)计算:﹣= .考点:二次根式的加减法.分析:运用二次根式的加减法运算的顺序,先将二次根式化成最简二次根式,再合并同类二次根式即可.解答:解:原式=2﹣=.故答案为:.点评:合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.10.(3分)(2019年云南省)如图,直线a∥b,直线a,b被直线c所截,∠1=37°,则∠2= 143°.考点:平行线的性质.分析:根据对顶角相等可得∠3=∠1,再根据两直线平行,同旁内角互补列式计算即可得解.解答:解:∠3=∠1=37°(对顶角相等),∵a∥b,∴∠2=180°﹣∠3=180°﹣37°=143°.故答案为:143°.点评:本题考查了平行线的性质,对顶角相等的性质,熟记性质并准确识图是解题的关键.11.(3分)(2019年云南省)写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式)y=2x .考点:正比例函数的性质.专题:开放型.分析:根据正比例函数y=kx的图象经过一,三象限,可得k>0,写一个符合条件的数即可.解答:解:∵正比例函数y=kx的图象经过一,三象限,∴k>0,取k=2可得函数关系式y=2x.故答案为:y=2x.点评:此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.12.(3分)(2019•天津)抛物线y=x2﹣2x+3的顶点坐标是(1,2).考点:二次函数的性质.专题:计算题.分析:已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.解答:解:∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2,∴抛物线y=x2﹣2x+3的顶点坐标是(1,2).点评:此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h,此题还考查了配方法求顶点式.13.(3分)(2019年云南省)如图,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD=18°.考点:等腰三角形的性质.分析:根据已知可求得两底角的度数,再根据三角形内角和定理不难求得∠DBC的度数.解答:解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°.∵BD⊥AC于点D,∴∠CBD=90°﹣72°=18°.故答案为:18°.点评:本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.14.(3分)(2019年云南省)观察规律并填空(1﹣)=•=;(1﹣)(1﹣)=•••==(1﹣)(1﹣)(1﹣)=•••••=•=;(1﹣)(1﹣)(1﹣)(1﹣)=•••••••=•=;…(1﹣)(1﹣)(1﹣)(1﹣)…(1﹣)= .(用含n的代数式表示,n是正整数,且n≥2)考点:规律型:数字的变化类.分析:由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩下两端的(1﹣)和(1+)相乘得出结果.解答:解:(1﹣)(1﹣)(1﹣)(1﹣)…(1﹣)=••••••…=.故答案为:.点评:此题考查算式的运算规律,找出数字之间的联系,得出运算规律,解决问题.三、解答题(本大题共9个小题,满分60分)15.(5分)(2019年云南省)化简求值:•(),其中x=.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,将x 的值代入计算即可求出值.解答:解:原式=•=x+1,当x=时,原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.16.(5分)(2019年云南省)如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.考点:全等三角形的判定与性质.专题:证明题.分析:根据“SAS”可证明△ADB≌△BAC,由全等三角形的性质即可证明AC=BD.解答:证明:在△ADB和△BAC中,,∴△ADB≌△BAC(SAS),∴AC=BD.点评:本题考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.17.(6分)(2019年云南省)将油箱注满k升油后,轿车科行驶的总路程S(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系S=(k是常数,k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1)求该轿车可行驶的总路程S与平均耗油量a之间的函数解析式(关系式);(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?考点:反比例函数的应用.分析:(1)将a=0.1,s=700代入到函数的关系S=中即可求得k的值,从而确定解析式;(2)将a=0.08代入求得的函数的解析式即可求得s的值.解答:解:(1)由题意得:a=0.1,s=700,代入反比例函数关系S=中,解得:k=sa=70,所以函数关系式为:s=;(2)将a=0.08代入s=得:s===875千米,故该轿车可以行驶多875米;点评:本题考查了反比例函数的应用,解题的关键是从实际问题中抽象出反比例函数模型.18.(9分)(2019年云南省)为了解本校九年级学生期末数学考试情况,销量在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)抽查人数可由C等所占的比例为50%,根据总数=某等人数÷比例来计算;(2)可由总数减去A、C、D的人数求得B等的人数,再补全条形统计图;(3)用样本估计总体.用总人数1200乘以样本中测试成绩等级在80分(含80分)以上的学生所占百分比即可.解答:解:(1)20÷50%=40(人),答:这次随机抽取的学生共有40人;(2)B等级人数:40﹣5﹣20﹣4=11(人)条形统计图如下:(3)1200××100%=480(人),这次九年级学生期末数学考试成绩为优秀的学生人数大约有480人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(7分)(2019年云南省)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.考点:游戏公平性;列表法与树状图法.分析:(1)用列表法将所有等可能的结果一一列举出来即可;(2)求得两人获胜的概率,若相等则公平,否则不公平.解答:解:(1)根据题意列表得:1 23 41 234 52 345 63 456 74 567 8(2)由列表得:共16种情况,其中奇数有8种,偶数有8种,∴和为偶数和和为奇数的概率均为,∴这个游戏公平.点评:本题考查了游戏公平性及列表与列树形图的知识,难度不大,是经常出现的一个知识点.20.(6分)(2019年云南省)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?考点:分式方程的应用.分析:设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.解答:解:设第一批盒装花的进价是x元/盒,则2×=,解得 x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.点评:本题考查了分式方程的应用.注意,分式方程需要验根,这是易错的地方.21.(6分)(2019年云南省)如图,小明在M处用高1米(DM=1米)的测角仪测得旗杆AB 的顶端B的仰角为30°,再向旗杆方向前进10米到F处,又测得旗杆顶端B的仰角为60°,请求出旗杆AB的高度(取≈1.73,结果保留整数)考点:解直角三角形的应用-仰角俯角问题.分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造三角关系,进而可求出答案.解答:解:∵∠BDE=30°,∠BCE=60°,∴∠CBD=60°﹣∠BDE=30°=∠BDE,∴BC=CD=10米,在Rt△BCE中,sin60°=,即=,∴BE=5,AB=BE+AE=5+1≈10米.答:旗杆AB的高度大约是10米.点评:主要考查解直角三角形的应用,本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.22.(7分)(2019年云南省)如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC 的中点,BC=2CD.(1)求证:四边形MNCD是平行四边形;(2)求证:BD=MN.考点:平行四边形的判定与性质.专题:证明题.分析:(1)根据平行四边形的性质,可得AD与BC的关系,根据MD与NC的关系,可得证明结论;(2)根据根据等边三角形的判定与性质,可得∠DNC的度数,根据三角形外角的性质,可得∠DBC的度数,根据正切函数,可得答案.解答:证明:(1)∵ABCD是平行四边形,∴AD=BC,AD∥BC,∵M、N分别是AD、BC的中点,∴MD=NC,MD∥NC,∴MNCD是平行四边形;(2)如图:连接ND,∵MNCD是平行四边形,∴MN=DC.∵N是BC的中点,∴BN=CN,∵BC=2CD,∠C=60°,∴△NVD是等边三角形.∴ND=NC,∠DNC=60°.∵∠DNC是△BND的外角,∴∠NBD+∠NDB=∠DNC,∵DN=NC=NB,∴∠DBN=∠BDN=∠DNC=30°,∴∠BDC=90°.∵tan,∴DB=DC=MN.点评:本题考查了平行四边形的判定与性质,利用了一组对边平行且相等的四边形是平行四边形,等边三角形的判定与性质,正切函数.23.(9分)(2019年云南省)已知如图平面直角坐标系中,点O是坐标原点,矩形ABCD是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM与△ABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.考点:圆的综合题;待定系数法求一次函数解析式;垂线段最短;勾股定理;切线长定理;相似三角形的判定与性质.专题:综合题;存在型;分类讨论.分析:(1)只需先求出AC中点P的坐标,然后用待定系数法即可求出直线DP的解析式.(2)由于△DOM与△ABC相似,对应关系不确定,可分两种情况进行讨论,利用三角形相似求出OM的长,即可求出点M的坐标.(3)易证S△PED=S△PFD.从而有S四边形DEPF=2S△PED=DE.由∠DEP=90°得DE2=DP2﹣PE2=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE也最短,对应的四边形DEPF的面积最小.借助于三角形相似,即可求出DP⊥AC时DP的值,就可求出四边形DEPF面积的最小值.解答:解:(1)过点P作PH∥OA,交OC于点H,如图1所示.∵PH∥OA,∴△CHP∽△COA.∴==.∵点P是AC中点,∴CP=CA.∴HP=OA,CH=CO.∵A(3,0)、C(0,4),∴OA=3,OC=4.∴HP=,CH=2.∴OH=2.∵PH∥OA,∠COA=90°,∴∠CHP=∠COA=90°.∴点P的坐标为(,2).设直线DP的解析式为y=kx+b,∵D(0,﹣5),P(,2)在直线DP上,∴∴∴直线DP的解析式为y=x﹣5.(2)①若△DOM∽△ABC,图2(1)所示,∵△DOM∽△ABC,∴=.∵点B坐标为(3,4),点D的坐标为(0.﹣5),∴BC=3,AB=4,OD=5.∴=.∴OM=.∵点M在x轴的正半轴上,∴点M的坐标为(,0)②若△DOM∽△CBA,如图2(2)所示,∵△DOM∽△CBA,∴=.∵BC=3,AB=4,OD=5,∴=.∴OM=.∵点M在x轴的正半轴上,∴点M的坐标为(,0).综上所述:若△DOM与△CBA相似,则点M的坐标为(,0)或(,0).(3)∵OA=3,OC=4,∠AOC=90°,∴AC=5.∴PE=PF=AC=.∵DE、DF都与⊙P相切,∴DE=DF,∠DEP=∠DFP=90°.∴S△PED=S△PFD.∴S四边形DEPF=2S△PED=2×PE•DE=PE•DE=DE.∵∠DEP=90°,∴DE2=DP2﹣PE2.=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE取到最小值,四边形DEPF的面积最小.∵DP⊥AC,∴∠DPC=90°.∴∠AOC=∠DPC.∵∠OCA=∠PCD,∠AOC=∠DPC,∴△AOC∽△DPC.∴=.∵AO=3,AC=5,DC=4﹣(﹣5)=9,∴=.∴DP=.∴DE2=DP2﹣=()2﹣=.∴DE=,∴S四边形DEPF=DE=.∴四边形DEPF面积的最小值为.点评:本题考查了相似三角形的判定与性质、用待定系数法求直线的解析式、切线长定理、勾股定理、垂线段最短等知识,考查了分类讨论的思想.将求DE的最小值转化为求DP的最小值是解决第3小题的关键.另外,要注意“△DOM与△ABC相似”与“△DOM∽△ABC“之间的区别.。

云南省2019年中考数学真题试题(含解析)

云南省2019年中考数学真题试题(含解析)
A.(-1)n-1x2n-1B.(-1)nx2n-1 C.(-1)n-1x2n+1D.(-1)nx2n+1
【解析】观察可知,奇数项系数为正,偶数项系数为负,∴可以用 (1)n1 或 (1)n1 ,( n 为大于等于 1 的整数)来控制正负,指数为从第 3 开始的奇数,所以指数部分规律为 2n 1 ,
5
精品文档,欢迎下载! (1)求证:四边形 ABCD 是矩形; (2)若∠AOB∶∠ODC=4∶3,求∠ADO 的度数.
21.(本小题满分 8 分) 已知 k 是常数,抛物线 y=x2+(k2+k-6)x+3k 的对称轴是 y 轴,并且与 x 轴有两
个交点. (1)求 k 的值: (2)若点 P 在抛物线 y=x2+(k2+k-6)x+3k 上,且 P 到 y 轴的距离是 2,求点 P 的坐 标.
精品文档,欢迎下载!
D.9
2(x 1)>2 14.若关于 x 的不等式组 a x<0 的解集为 x>a,则 a 的取值范围是
A.a<2 B. a≤2
C.a>2D.a≥2
三、解答题(本大题共 9 小题,共 70 分)
15.(本小题满分 6 分)
计算: 32 ( 5)0 4 (1)1
16.(本小题满分 6 分) 如图,AB=AD,CB=CD. 求证:∠B=∠D.
故选 C
13.如图,△ABC 的内切圆⊙O 与 BC、CA、AB 分别相切于点 D、E、F,且 AB=5,BC=13,CA =12,则阴影部分(即四边形 AEOF)的面积是
10
精品文档,欢迎下载!
A.4B.6.25
C.7.5D.9
【解析】,∵AB=5,BC=13,CA=12,∴AB2+AC2=BC2,∴△ABC 为直角三角形,且∠A=90°,

2019年云南省中考数学真题(答案+解析)

2019年云南省中考数学真题(答案+解析)

2019年云南省初中学业水平考试数学试题卷一、填空题(本大题共6小题,每小题3分,共18分) 1.若零上8℃记作+8℃,则零下6℃记作℃. 【答案】-6【解析】零上记为正数,则零下记为负数,故答案为-6. 2.分解因式:x 2-2x +1=. 【答案】2)1(-x【解析】本题考查公式法因式分解,222)1(112-=+⋅⋅-x x x ,故答案为2)1(-x .3.如图,若AB ∥CD ,∠1=40度,则∠2=度.【答案】40【解析】∵AB ∥CD ,∴同位角相等,∴∠1与∠2互补,∴∠2=180°-40°=140°,故答案为40°.4.若点(3,5)在反比例函数)0(≠=k xky 的图象上,则k =. 【答案】15【解析】∵点(3,5)在反比例函数x k y =上,∴35k=,∴1553=⨯=k . 5.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考 试成绩分为A 、B 、C 、D 、E 五个等级,绘制的统计图如下:根据以上统计图提供的信息,则D 等级这一组人数较多的班是 . 【答案】甲班【解析】由频数分布直方图知D 等级的人数为13人,由扇形统计图知D 等级的人数为40×30%=12,∴D 等级较多的人数是甲班,故答案为甲班.6.在平行四边形ABCD 中,∠A =30°,AD =43,BD =4,则平行四边形ABCD 的面积等于 .【答案】312或34【解析】过点D 作DE ⊥AB 于E ,∵∠A =30°,∴DE =ADsin 30°=32,AE =ADcos 30°=4,在Rt △DBE 中,BE =222=-DE BD ,∴AB =AE +BE =6,或AB =AE -BE =2,∴平行四边形ABCD 的面积为312326=⨯或34322=⨯,故答案为312或34. 二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分) 7.下列图形既是轴对称图形,又是中心对称图形的是()【答案】D【解析】根据轴对称和中心对称定义可知,A 选项是轴对称,B 选项既是轴对称又是中心对称,C 选项是轴对称,D 选项是轴对称图形,故选D8.2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记 数法表示为() A.68.8×104B.0.688×106C.6.88×105D.6.88×106【答案】C【解析】本题考查科学记数法较大数Na 10⨯,其中101<≤a ,N 为小数点移动的位数. ∴5,88.6==N a ,故选C. 9.一个十二边形的内角和等于() A.2160° B.2080° C.1980° D.1800°【答案】D【解析】多边形内角和公式为︒⨯-180)2(n ,其中n 为多边形的边的条数.∴十二边形内角和为︒=︒⨯-1800180)212(,故选D.10.要使21+x 有意义,则x 的取值范围为() A.x≤0B.x ≥-1C.x ≥0D.x≤-1【答案】B 【解析】要使21+x 有意义,则被开方数1+x 要为非负数,即01≥+x ,∴1-≥x ,故选B.11.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是() A.48π B.45π C.36π D.32π【答案】A【解析】设圆锥底面圆的半径为r ,母线长为l ,则底面圆的周长等于半圆的弧长8π, ∴2π8πr =,∴4=r ,圆锥的全面积等于2ππ16π32π48πS S rl r +=+=+=底, 故选A.12.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是() A.(-1)n -1x 2n -1B.(-1)n x 2n -1C.(-1)n -1x 2n+1D.(-1)n x 2n+1【答案】C【解析】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1)1(--n 或1)1(+-n ,(n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为12+n ,故选C.13.如图,△ABC 的内切圆⊙O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且AB =5,BC =13,CA =12,则阴影部分(即四边形AEOF )的面积是()A.4B.6.25C.7.5D.9【答案】A【解析】∵AB =5,BC =13,CA =12,∴AB 2+AC 2=BC 2,∴△ABC 为直角三角形,且∠A =90°,∵⊙O 为△ABC 内切圆,∴∠AFO =∠AEO =90°,且AE =AF ,∴四边形AEOF 为正方形,设⊙O 的半径为r ,∴OE =OF =r ,∴S 四边形AEOF =r ²,连接AO ,BO ,CO ,∴S △ABC =S △AOB +S △AOC +S △BOC ,∴AC AB BC AC AB ⋅=++21)(21,∴r =2,∴S 四边形AEOF =r ²=4,故选A. 14.若关于x 的不等式组⎩⎨⎧--02)1(2<>x a x 的解集为x >a ,则a 的取值范围是()A.a <2B.a ≤2C.a >2D.a ≥2【答案】D【解析】解不等式组得2>x ,a x >,根据同大取大的求解集的原则,∴2>a ,当2=a 时,也满足不等式的解集为2>x ,∴2≥a ,故选D. 三、解答题(本大题共9小题,共70分)15.(本小题满分6分)计算:2013π51----()().解:原式=9+1-2-1=7.16.(本小题满分6分)如图,AB =AD ,CB =CD .求证:∠B =∠D .证明:在△ABC 和△ADC 中,⎪⎩⎪⎨⎧===AC AC DC BC AD AB ,∴△ABC ≌ADC (SSS ),∴∠B =∠D .17.(本小题满分8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.解:(1)这15名销售人员该月销售量数据的平均数为278,中位数为180,众数为90. (2)解:中位数最适合作为月销售目标.理由如下:在这15人中,月销售额不低于278(平均数)件的有2人,月销售额不低于180(中位数)件的有8人,月销售额不低于90(众数)件的有15人.所以,如果想让一半左右的营销人员都能够达到月销售目标,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标.18.(本小题满分6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动,已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.解:设甲校师生所乘大巴车的平均速度为x km/h ,则乙校师生所乘大巴车的平均速度为1.5x km/h.根据题意得15.1270240=-xx , 解得x =60,经检验,x =60是原分式方程的解. 1.5x =90.答:甲、乙两校师生所乘大巴车的平均速度分别为60km/h 和90km/h.19.(本小题满分7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x 、y 表示.若x +y 为奇数,则甲获胜;若x +y 为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x ,y )所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由. 解:(1)方法一:列表法如下:(x ,y )所有可能出现的结果共有16种. 方法二:树形图(树状图)法如下:(x ,y )所有可能出现的结果共有16种. (2)这个游戏对双方公平.理由如下:由列表法或树状图法可知,在16种可能出现的结果中,它们出现的可能性相等.∵x +y 为奇数的有8种情况,∴P (甲获胜)=21168=, ∵x +y 为偶数的有8种情况,∴P (乙获胜)=21168=, ∴P (甲获胜)=P (乙获胜).∴这个游戏对双方公平.20.(本小题满分8分)如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO =OC ,BO =OD ,且∠AOB =2∠OAD .(1)求证:四边形ABCD 是矩形;(2)若∠AOB ∶∠ODC =4∶3,求∠ADO 的度数.(1)证明:∵AO =OC ,BO =OD ,∴四边形ABCD 是平行四边形, 又∵∠AOB =2∠OAD ,∠AOB 是△AOD 的外角, ∴∠AOB =∠OAD +∠ADO . ∴∠OAD =∠ADO ,∴AO =OD .又∵AC =AO +OC =2AO ,BD =BO +OD =2OD ,∴AC =BD . ∴四边形ABCD 是矩形.(2)解:设∠AOB =4x ,∠ODC =3x ,则∠ODC =∠OCD =3x. 在△ODC 中,∠DOC +∠OCD +∠CDO =180°, ∴4x +3x +3x =180°,解得x =18.∴∠ODC =3×18°=54°, ∴∠ADO =90°-∠ODC =90°-54°=36°.21.(本小题满分8分)已知k 是常数,抛物线y =x 2+(k 2+k -6)x +3k 的对称轴是y 轴,并且与x 轴有两个交点. (1)求k 的值:(2)若点P 在抛物线y =x 2+(k 2+k -6)x +3k 上,且P 到y 轴的距离是2,求点P 的坐标.解:(1)∵抛物线y =x 2+(k 2+k -6)x +3k 的对称轴是y 轴,∴0262=-+=k k x ,即k 2+k -6=0.解得k =-3或k =2. 当k =2时,二次函数解析式为y =x 2+6,它的图象与x 轴无交点,不满足题意,舍去, 当k =-3时,二次函数解析式为y =x 2-9,它的图象与x 轴有两个交点,满足题意. ∴k =-3.(2)∵P 到y 轴的距离为2,∴点P 的横坐标为-2或2. 当x =2时,y =-5;当x =-2时,y =-5. ∴点P 的坐标为(2,-5)或(-2,-5).22.(本小题满分9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y (千克)与销售单价x (元/千克)的函数关系如下图所示:(1)求y 与x 的函数解析式(也称关系式); (2)求这一天销售西瓜获得的利润的最大值.解:(1)当6≦x ≤10时,由题意设y =x +b (k =0),它的图象经过点(6,1000)与点(10,200). ∴⎩⎨⎧+=+=b k b k 1020061000,解得⎩⎨⎧=-=2200200b k ,∴当10<x ≤12时,y =200.答:y 与x 的函数解析式为⎩⎨⎧≤≤≤≤+-=1210,200106,2200200x x x y .(2)当6≦x ≤10时,y =-200x +2200,W =(x -6)y =(x -6)(-200x +200)=-2002217)(-x +1250, ∵-200<0,6≦x ≤10, 当x =217时,即最大,且即W 的最大值为1250. 当10<x ≤12时,y =200,W =(x -6)y =200(x -6)=200x -1200. ∴200>0,∴W =200x -1200随x 增大而增大,又∵10<x ≤12,∴当x =12时,即最大,且W 的最大值为1200.1250>1200, ∴W 的最大值为1250.答:这一天销售西瓜获得利润的最大值为1250元.23.(本小题满分12分)如图,B 是⊙C 的直径,M 、D 两点在AB 的延长线上,E 是OC 上的点,且DE 2=DB · DA .延长AE 至F ,使AE =EF ,设BF =10,cos ∠BED 54=(1)求证:△DEB ∽△DAE ; (2)求DA ,DE 的长;(3)若点F 在B 、E 、M 三点确定的圆上,求MD 的长. (1)证明:DE 2=DB ·DA ,∴DEDBDA DE =, 又∵∠BDE =∠EDA ,∴△BED ∽△DAE . (2)解:∵AB 是⊙C 的直径,E 是⊙C 上的点,∴∠AEB =90°,即BE ⊥AF .又∵AE =EF ;BF =10,∴AB =BF =10,∴ADEB ∽△DAE ,cos ∠BED =54, ∴∠EAD =∠BED ,cos ∠EAD =cos ∠BED =54, 在Rt △ABE 中,由于AB =10,cos ∠EAD =54,得AE =AB cos ∠EAD =8,∴622=-=AE AB BE ,∴△DEB ∽△DAE ,∴4386====AE EB DE DB DA DE , ∵DB =DA -AB =DA -10,∴⎪⎪⎩⎪⎪⎨⎧=-=431043DE DA DA DE ,解得⎪⎪⎩⎪⎪⎨⎧==71207160DE DA.经检验,⎪⎪⎩⎪⎪⎨⎧==71207160DE DA 是⎪⎪⎩⎪⎪⎨⎧=-=431043DE DA DA DE 的解,∴⎪⎪⎩⎪⎪⎨⎧==71207160DE DA ,(3)解:连接FM .∵BE ⊥AF ,即∠BEF =90°,∴BF 是B 、E 、F 三点确定的圆的直径.∵点F 在B 、E 、M 三点确定的圆上,即四点F 、E 、B 、M 在同一个圆上, ∴点M 在以BF 为直径的圆上,∴FM ⊥AB . 在Rt △AMF 中,由cos ∠F AM =AF AM,得AM =AF cos ∠F AM =2AE cos ∠EAB =2×8×54=564, ∴MD =DA -AM =353525647160=-,∴MD =35352.。

2019年云南省中考数学试题题(word版,含解析)

2019年云南省中考数学试题题(word版,含解析)

2019年云南省初中学业水平考试数学试题卷(全卷三个大题,共23个小题,共8页;满分120分,考试用时120分钟) 注意事项:1.本卷为试题卷。

考生必须在答题卡上解题作答。

答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效。

2.考试结束后,请将试题卷和答题卡一并交回。

y 一、填空题(本大题共6小题,每小题3分,共18分) 1.若零上8℃记作+8℃,则零下6℃记作 ℃. 2.分解因式:x 2-2x +1= .3.如图,若AB℃CD ,℃1=40度,则℃2= 度.4.若点(3,5)在反比例函数)0(≠=k xky 的图象上,则k = . 5.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考 试成绩分为A 、B 、C 、D 、E 五个等级,绘制的统计图如下:根据以上统计图提供的信息,则D 等级这一组人数较多的班是 . 6.在平行四边形ABCD 中,℃A =30°,AD =34,BD =4,则平行四边形ABCD 的面积等于.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.下列图形既是轴对称图形,又是中心对称图形的是8.2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为A.68.8×104B.0.688×106C.6.88×105D.6.88×1069.一个十二边形的内角和等于A.2160°B.2080°C.1980°D.1800°10.要使21x有意义,则x的取值范围为A.x≤0B.x≥-1C.x≥0D.x≤-111.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是A.48πB.45πC.36πD.32π12.按一定规律排列的单项式:x3,-x5,x7,-x9,x11,……第n个单项式是A.(-1)n-1x2n-1B.(-1)n x2n-1C.(-1)n-1x2n+1D.(-1)n x2n+113.如图,℃ABC的内切圆℃O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是A.4B.6.25C.7.5D.914.若关于x 的不等式组⎩⎨⎧--02)1(2<>x a x 的解集为x >a ,则a 的取值范围是A.a <2B. a ≤2C.a >2D.a ≥2 三、解答题(本大题共9小题,共70分) 15.(本小题满分6分)计算: 1021453--+---)()(π16.(本小题满分6分) 如图,AB =AD ,CB =CD. 求证:℃B =℃D.17.(本小题满分8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部 门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.18.(本小题满分6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动,已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.19.(本小题满分7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.20.(本小题满分8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且℃AOB=2℃OAD.(1)求证:四边形ABCD是矩形;(2)若℃AOB℃℃ODC=4℃3,求℃ADO的度数.21.(本小题满分8分)已知k是常数,抛物线y=x2+(k2+k-6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值:(2)若点P在抛物线y=x2+(k2+k-6)x+3k上,且P到y轴的距离是2,求点P的坐标.22.(本小题满分9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润的最大值.23.(本小题满分12分)如图,B 是℃C 的直径,M 、D 两点在AB 的延长线上,E 是OC 上的点,且DE 2=DB· DA.延长AE 至F ,使AE =EF ,设BF =10,cos℃BED 54(1)求证:℃DEB℃℃DAE ; (2)求DA ,DE 的长;(3)若点F 在B 、E 、M 三点确定的圆上,求MD 的长.参考答案及解析一、填空题(本大题共6小题,每小题3分,共18分) 1.若零上8℃记作+8℃,则零下6℃记作 ℃. 【解析】零上记为正数,则零下记为负数,故答案为-6 2.分解因式:x 2-2x +1= .【解析】本题考查公式法因式分解,222)1(112-=+⋅⋅-x x x ,故答案为2)1(-x 3.如图,若AB℃CD ,℃1=40度,则℃2= 度.【解析】℃AB℃CD ,℃同位角相等,℃℃1与℃2互补,℃℃2=180°-40°=140°,故答案为40°4.若点(3,5)在反比例函数)0(≠=k xky 的图象上,则k = . 【解析】℃点(3,5)在反比例函数x k y =上,℃35k=,℃1553=⨯=k 5.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考 试成绩分为A 、B 、C 、D 、E 五个等级,绘制的统计图如下:根据以上统计图提供的信息,则D 等级这一组人数较多的班是 . 【解析】由频数分布直方图知D 等级的人数为13人,由扇形统计图知D 等级的人数为40×30%=12,℃D 等级较多的人数是甲班,故答案为甲班6.在平行四边形ABCD 中,℃A =30°,AD =43,BD =4,则平行四边形ABCD 的面积等于 .【解析】过点D 作DE℃AB 于E ,℃℃A=30°,℃DE=ADsin30°=32,AE=ADcos30°=4,在Rt℃DBE 中,BE=222=-DE BD ,℃AB=AE+BE=6,或AB=AE -BE=2,℃平行四边形ABCD 的面积为312326=⨯或34322=⨯,故答案为312或34 二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分) 7.下列图形既是轴对称图形,又是中心对称图形的是【解析】根据轴对称和中心对称定义可知,A 选项是轴对称,B 选项既是轴对称又是中心对称,C 选项是轴对称,D 选项是轴对称图形,故选D8.2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记 数法表示为A.68.8×104B.0.688×106C.6.88×105D.6.88×106【解析】本题考查科学记数法较大数Na 10⨯,其中101<≤a ,N 为小数点移动的位数.℃5,88.6==N a ,故选C9.一个十二边形的内角和等于A.2160°B.2080°C.1980°D.1800°【解析】多边形内角和公式为︒⨯-180)2(n ,其中n 为多边形的边的条数.℃十二边形内角和为︒=︒⨯-1800180)212(,故选D10.要使21+x 有意义,则x 的取值范围为 A.x≤0 B.x ≥-1 C.x ≥0 D.x≤-1【解析】要使21+x 有意义,则被开方数1+x 要为非负数,即01≥+x ,℃1-≥x ,故选B11.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是 A.48π B.45π C.36π D.32π【解析】设圆锥底面圆的半径为r ,母线长为l ,则底面圆的周长等于半圆的弧长8π,℃ππ82=r ,℃4=r ,圆锥的全面积等于πππππ4832162=+=+=+r rl S S 底侧,故选A12.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是 A.(-1)n -1x 2n -1 B.(-1)n x 2n -1 C.(-1)n -1x 2n+1 D.(-1)n x 2n+1【解析】观察可知,奇数项系数为正,偶数项系数为负,℃可以用1)1(--n 或1)1(+-n ,(n为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为12+n ,故选C13.如图,℃ABC 的内切圆℃O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且AB =5,BC =13,CA =12,则阴影部分(即四边形AEOF )的面积是 A.4 B.6.25 C.7.5 D.9【解析】,℃AB=5,BC=13,CA=12,℃AB 2+AC 2=BC 2,℃℃ABC 为直角三角形,且℃A=90°,℃℃O 为℃ABC 内切圆,℃℃AFO=℃AEO=90°,且AE=AF ,℃四边形AEOF 为正方形,设℃O的半径为r ,℃OE=OF=r ,℃S 四边形AEOF =r²,连接AO ,BO ,CO ,℃S ℃ABC =S ℃AOB +S ℃AOC +S ℃BOC ,℃AC AB BC AC AB ⋅=++21)(21,℃r=2,℃S 四边形AEOF =r²=4,故选A 14.若关于x 的不等式组⎩⎨⎧--02)1(2<>x a x 的解集为x >a ,则a 的取值范围是A.a <2B. a ≤2C.a >2D.a ≥2【解析】解不等式组得2>x ,a x >,根据同大取大的求解集的原则,℃2>a ,当2=a 时,也满足不等式的解集为2>x ,℃2≥a ,故选D 三、解答题(本大题共9小题,共70分) 15.(本小题满分6分)计算: 1021453--+---)()(π 【解析】解:原式=9+1-2-1 ……………………………………………………………………4分=7. ……………………………………………………………………6分16.(本小题满分6分) 如图,AB =AD ,CB =CD. 求证:℃B =℃D.【解析】证明:在℃ABC 和℃ADC 中,⎪⎩⎪⎨⎧===AC AC DC BC ADAB ……………………………………………3分 ℃℃ABC℃ADC (SSS )…………………………………4分 ℃℃B =℃D.…………………………………………………6分 17.(本小题满分8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.【解析】(1)这15名销售人员该月销售量数据的平均数为278,中位数为180,众数为90…………………………………………………6分(2)解:中位数最适合作为月销售目标.理由如下:在这15人中,月销售额不低于278(平均数)件的有2人,月销售额不低于180(中位数)件的有8人,月销售额不低于90(众数)件的有15人.所以,如果想让一半左右的营销人员都能够达到月销售目标,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标.…………………………………8分18.(本小题满分6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动,已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.【解析】解:设甲校师生所乘大巴车的平均速度为x km/h ,则乙校师生所乘大巴车的平均速度为1.5x km/h.根据题意得15.1270240=-xx ………………………………3分 解得x =60,经检验,x =60是原分式方程的解. 1.5x =90.答:甲、乙两校师生所乘大巴车的平均速度分别为60km/h 和90km/h…………………6分 19.(本小题满分7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x 、y 表示.若x +y 为奇数,则甲获胜;若x +y 为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x ,y )所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由. 【解析】解:(1)方法一:列表法如下:2 (2,1) (2,2) (2,3) (2,4)3 (3,1) (3,2) (3,3) (3,4) 4(4,1)(4,2)(4,3)(4,4)(x ,y )所有可能出现的结果共有16种.………………………………4分 方法二:树形图(树状图)法如下:(x ,y )所有可能出现的结果共有16种。

2019年云南省昆明市中考数学试卷及答案(Word解析版)

2019年云南省昆明市中考数学试卷及答案(Word解析版)

云南省昆明市2019年中考数学试卷一、选择题(每小题3分,满分24分,在每小题给出的四个选项中,只有一项是正确的。

)1.(3分)(2019•云南)﹣6的绝对值是()A.﹣6 B.6C.±6 D.考点:绝对值.专题:计算题.分析:根据绝对值的性质,当a是负有理数时,a 的绝对值是它的相反数﹣a,解答即可;解答:解:根据绝对值的性质,|﹣6|=6.故选B.点评:本题考查了绝对值的性质,熟记:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2019•昆明)下面几何体的左视图是()A.B.C.D.考点:简单几何体的三视图.分析:根据左视图是从图形的左面看到的图形求解即可.解答:解:从左面看,是一个等腰三角形.故选A.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.(3分)(2019•昆明)下列运算正确的是()A.x6+x2=x3B.C.(x+2y)2=x2+2xy+4y2D.考点:完全平方公式;立方根;合并同类项;二次根式的加减法分析:A、本选项不能合并,错误;B、利用立方根的定义化简得到结果,即可做出判断;C、利用完全平方公式展开得到结果,即可做出判断;D、利用二次根式的化简公式化简,合并得到结果,即可做出判断.解答:解:A、本选项不能合并,错误;B、=﹣2,本选项错误;C、(x+2y)2=x2+4xy+4y2,本选项错误;D、﹣=3﹣2=,本选项正确.故选D点评:此题考查了完全平方公式,合并同类项,以及负指数幂,幂的乘方,熟练掌握公式及法则是解本题的关键.4.(3分)(2019•昆明)如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为()A.50°B.60°C.70°D.80°考点:三角形中位线定理;平行线的性质;三角形内角和定理.分析:在△ADE中利用内角和定理求出∠AED,然后判断DE∥BC,利用平行线的性质可得出∠C.解答:解:由题意得,∠AED=180°﹣∠A﹣∠ADE=70°,∵点D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,∴∠C=∠AED=70°.故选C.点评:本题考查了三角形的中位线定理,解答本题的关键是掌握三角形中位线定理的内容:三角形的中位线平行于第三边,并且等于第三边的一半.5.(3分)(2019•昆明)为了了解2019年昆明市九年级学生学业水平考试的数学成绩,从中随机抽取了1000名学生的数学成绩.下列说法正确的是()A.2019年昆明市九年级学生是总体B.每一名九年级学生是个体C.1000名九年级学生是总体的一个样本D.样本容量是1000考点:总体、个体、样本、样本容量.分析:根据总体、个体、样本、样本容量的概念结合选项选出正确答案即可.解答:解:A、2019年昆明市九年级学生的数学成绩是总体,原说法错误,故本选项错误;B、每一名九年级学生的数学成绩是个体,原说法错误,故本选项错误;C、1000名九年级学生的数学成绩是总体的一个样本,原说法错误,故本选项错误;D、样本容量是1000,该说法正确,故本选项正确.故选D.点评:本题考查了总体、个体、样本、样本容量的知识,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.(3分)(2019•昆明)一元二次方程2x2﹣5x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定考点:根的判别式.分析:求出根的判别式△,然后选择答案即可.解答:解:∵△=(﹣5)2﹣4×2×1=25﹣8=17>0,∴方程有有两个不相等的实数根.故选A.点评:总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.(3分)(2019•昆明)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.100×80﹣100x﹣80x=7644 B.(100﹣x)(80﹣x)+x2=7644C.(100﹣x)(80﹣x)=7644 D.100x+80x=356考点:由实际问题抽象出一元二次方程.专题:几何图形问题.分析:把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.解答:解:设道路的宽应为x米,由题意有(100﹣x)(80﹣x)=7644,故选C.点评:此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.8.(3分)(2019•昆明)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论有()A.5个B.4个C.3个D.2个考点:相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;正方形的性质分析:依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形,从而作出判断.解答:解:∵四边形ABCD是正方形,∴∠BAC=∠DAC=45°.∵在△APE和△AME中,,∴△APE≌△AME,故①正确;∴PE=EM=PM,同理,FP=FN=NP.∵正方形ABCD中AC⊥BD,又∵PE⊥AC,PF⊥BD,∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE∴四边形PEOF是矩形.∴PF=OE,∴PE+PF=OA,又∵PE=EM=PM,FP=FN=NP,OA=AC,∴PM+PN=AC,故②正确;∵四边形PEOF是矩形,∴PE=OF,在直角△OPF中,OF2+PF2=PO2,∴PE2+PF2=PO2,故③正确.∵△BNF是等腰直角三角形,而△POF不一定是,故④错误;∵△AMP是等腰直角三角形,当△PMN∽△AMP时,△PMN是等腰直角三角形.∴PM=PN,又∵△AMP和△BPN都是等腰直角三角形,∴AP=BP,即P时AB的中点.故⑤正确.故选B.点评:本题是正方形的性质、矩形的判定、勾股定理得综合应用,认识△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形是关键.二、填空题(每小题3分,满分18分)9.(3分)(2019•昆明)据报道,2019年一季度昆明市共接待游客约为12340000人,将12340000人用科学记数法表示为 1.234×107人.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将12340000用科学记数法表示为1.234×107.故答案为:1.234×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(3分)(2019•昆明)已知正比例函数y=kx的图象经过点A(﹣1,2),则正比例函数的解析式为y=﹣2x.考点:待定系数法求正比例函数解析式.分析:把点A的坐标代入函数解析式求出k值即可得解.解答:解:∵正比例函数y=kx的图象经过点A(﹣1,2),∴﹣k=2,解得k=﹣2,∴正比例函数的解析式为y=﹣2x.故答案为:y=﹣2x.点评:本题考查了待定系数法求正比例函数解析式,把点的坐标代入函数解析式计算即可,比较简单.11.(3分)(2019•昆明)求9的平方根的值为±3.考点:平方根.分析:根据平方根的定义解答.解答:解:∵(±3)2=9,∴9的平方根的值为±3.故答案为:±3.点评:本题考查了平方根的定义,是基础题,熟记概念是解题的关键.12.(3分)(2019•昆明)化简:=x+2.考点:分式的加减法.专题:计算题.分析:先转化为同分母(x﹣2)的分式相加减,然后约分即可得解.解答:解:+=﹣==x+2.故答案为:x+2.点评:本题考查了分式的加减法,把互为相反数的分母化为同分母是解题的关键.13.(3分)(2019•昆明)如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是cm.考点:圆锥的计算.专题:计算题.分析:设圆锥的底面圆的半径为r,由于∠AOB=90°得到AB为⊙O的直径,则OB=AB=2cm,根据弧长公式计算出扇形OAB的弧AB的长,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长进行计算.解答:解:设圆锥的底面圆的半径为r,连结AB,如图,∵扇形OAB的圆心角为90°,∴∠AOB=90°,∴AB为⊙O的直径,∴AB=4cm,∴OB=AB=2cm,∴扇形OAB的弧AB的长==π,∴2πr=π,∴r=(cm).故答案为.点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理和弧长公式.14.(3分)(2019•昆明)在平面直角坐标系xOy中,已知点A(2,3),在坐标轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有8个.考点:等腰三角形的判定;坐标与图形性质.专题:数形结合.分析:建立网格平面直角坐标系,然后作出符合等腰三角形的点P的位置,即可得解.解答:解:如图所示,使得△AOP是等腰三角形的点P共有8个.故答案为:8.点评:本题考查了等腰三角形的判定,作出图形,利用数形结合的思想求解更形象直观.三、解答题(共9题,满分58分。

云南省2019年中考数学真题试题

云南省2019年中考数学真题试题

2019 年云南省初中学业水平考试数学试题卷(全卷三个大题,共23 个小题,共8 页;满分120 分,考试用时120 分钟)注意事项:1.本卷为试题卷。

考生一定在答题卡上解题作答。

答案应书写在答题卡的相应地点上,在试题卷、底稿纸上作答无效。

2.考试结束后,请将试题卷和答题卡一并交回。

y一、填空题(本大题共 6 小题,每题 3 分,共 18 分)1.若零上 8℃记作+ 8℃,则零下 6℃记作℃.2.分解因式: x2-2x+1=.3.如图,若 AB∥CD,∠ 1= 40 度,则∠ 2=度 .4.若点( 3, 5)在反比率函数yk(k 0) 的图象上,则k=.x5.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40 人,每个班的考试成绩分为 A、 B、 C、 D、 E 五个等级,绘制的统计图以下:依据以上统计图供给的信息,则 D 等级这一组人数许多的班是.6. 在平行四边形ABCD中,∠ A=30°, AD=43 ,BD=4,则平行四边形ABCD的面积等于.二、选择题(本大题共8 小题,每题只有一个正确选项,每题 4 分,共 32 分)7.以下图形既是轴对称图形,又是中心对称图形的是8.2019 年“五一”时期,某景点招待国内外旅客共688000 人次, 688000 这个数用科学记数法表示为A.68.8 ×10 4B.0.688 ×10 6C.6.88 ×10 5D.6.88 ×10 69.一个十二边形的内角和等于A.2160°B.2080°C.1980°D.1800°10. 要使x 1存心义,则 x 的取值范围为2A. x≤0B. x≥- 1C. x≥0D. x≤- 111.一个圆锥的侧面睁开图是半径为8 的半圆,则该圆锥的全面积是A.48 πB.45πC.36 πD.32π12.按必定规律摆列的单项式: x3,- x5, x7,- x9, x11,第n个单项式是A. (- 1)n-1x2n-1B. (- 1)n x2n-1C.(- 1)n-1x2n+1D. (- 1)n x2n+113. 如图,△ ABC 的内切圆⊙O 与 BC、CA、AB分别相切于点D、E、F,且 AB= 5,BC= 13, CA =12,则暗影部分(即四边形 AEOF)的面积是A.4D.92(x1)>214. 若对于x的不等式组的解集为x> a,则 a 的取值范围是A. a< 2B.a≤2C. a> 2D. a≥2三、解答题(本大题共9 小题,共70 分)15.(本小题满分 6 分)计算: 32(4 (15)1)16.(本小题满分 6 分)如图, AB=AD, CB=CD.求证:∠ B=∠ D.17.(本小题满分 8 分)某企业销售部有营业员 15 人,该企业为了调换营业员的踊跃性,决定推行目标管理,依据目标达成的状况对营业员进行合适的奖赏,为了确立一个合适的月销售目标,企业相关部门统计了这15 人某月的销售量,以下表所示:月销售量 / 件数177048022018012090人数113334(1)直接写出这15 名营业员该月销售量数据的均匀数、中位数、众数;(2)假如想让一半左右的营业员都能达到月销售目标,你以为(1)中的均匀数、中位数、众数中,哪个最合适作为月销售目标?请说明原因.温馨提示:确立一个合适的月销售目标是一个重点问题,假如目标定得太高,多半营业员完不可任务,会使营业员失掉信心;假如目标定得太低,不可以发挥营业员的潜力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13. 14. 15. 16.
17.
18.
19.
20. 21.
22. 23.
示:
(1) 求y与x的函数解析式(也称关系式); (2) 求这一天销售西瓜获得的利润的最大值. 23. 如图,AB是⊙C的直径,M、D两点在AB的延长线上,E是⊙C上的点,且DE2=DB· DA.延长AE至F,使AE=EF ,设BF=10,cos∠BED= .
(1) 求证:△DEB∽△DAE; (2) 求DA,DE的长; (3) 若点F在B、E、M三点确定的圆上,求MD的长. 参考答案 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.
云南省2019年中考数学试卷
一、单选题
1. 下列图形既是轴对称图形,又是中心对称图形的是( )
A.
B.
C.
D.
2. 2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为( ) A . 68.8×104 B . 0.688×106 C . 6.88×105 D . 6.88×106
A . 4 B . 6.25 C . 7.5 D . 9 8. 若关于x的不等式组 A . a<2 B . a≤2 C . a>2 D . a≥2
的解集为x>a,则a的取值范围是( )
二、填空题
9. 若零上8℃记作+8℃,则零下6℃记作________℃.. 10. 分解因式:x2-2x+1=________. 11. 如图,若AB∥CD,∠1=40度,则∠2=________度.
(1) 求证:四边形ABCD是矩形; (2) 若∠AOB∶∠ODC=4∶3,求∠ADO的度数. 21. 已知k是常数,抛物线y=x2+(k2+k-6)x+3k的对称轴是y轴,并且与x轴有两个交点. (1) 求k的值: (2) 若点P在抛物线y=x2+(k2+k-6)x+3k上,且P到y轴的距离是2,求点P的坐标. 22. 某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不 低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所
பைடு நூலகம்三、解答题
15. 计算:
.
16. 已知:如图,AB=AD,BC=DC.求证:∠B=∠D.
17. 某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业 员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:
月销售量/件数
3. 一个十二边形的内角和等于( )
A . 2160° B . 2080° C . 1980° D . 1800°
4. 要使
有意义,则x的取值范围为( )
A . x≤0 B . x≥-1 C . x≥0 D . x≤-1 5. 一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( ) A . 48π B . 45π C . 36π D . 32π 6. 按一定规律排列的单项式:x3 , -x5 , x7 , -x9 , x11 , ……第n个单项式是( ) A . (-1)n-1x2n-1 B . (-1)nx2n-1 C . (-1)n-1x2n+1 D . (-1)nx2n+1 7. 如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB=5,BC=13,CA=12,则阴影部分(即 四边形AEOF)的面积是( )
12. 若点(3,5)在反比例函数
的图象上,则k=________.
13. 某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、 E五个等级,绘制的统计图如下:
根据以上统计图提供的信息,则D等级这一组人数较多的班是________
14. 在平行四边形ABCD中,∠A=30°,AD= ,BD=4,则平行四边形ABCD的面积等于 ________.
1770
480
220
180
120
90
人数
1
1
3
3
3
4
(1) 直接写出这15名营业员该月销售量数据的平均数、中位数、众数; (2) 如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月 销售目标?请说明理由. 18. 为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分 师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动,已知乙校师生所 乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙 两所学校师生所乘大巴车的平均速度. 19. 甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异) .从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号, 两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜. (1) 用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数; (2) 你认为这个游戏对双方公平吗?请说明理由. 20. 如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.
相关文档
最新文档