直流拖动控制系统(1).ppt
直流拖动控制系统
04
直流拖动控制系统调试与优化
系统调试
调试目的:确保系统正常 运行,满足设计要求。
检查电源是否正常;
调试内容
测试系统各部分功能是否 正常;
系统优化
优化方法
优化目标:提高系统性能, 降低能耗,减少维护成本。
01
02
03
调整电机参数;
改进控制算法;
04
05
优化系统布局和布线。
调试具有简单的结构,成本低,但寿命相对较 短,维护成本较高。
无刷直流电机
具有较高的效率和可靠性,但成本较高, 且需要复杂的电子换向电路。
步进直流电机
能够在固定角度内精确转动,常用于需要 精确定位的场合。
伺服直流电机
具有快速响应和精确控制的特点,适用于 需要高精度控制的场合。
直流电机特性
01 调速性能
的负载能力。
智能化
控制系统将集成更多的智能化功能 ,如自适应控制、预测控制等,以 提升系统的自动化和智能化水平。
网络化
通过物联网和工业互联网技术,直 流拖动控制系统将实现更广泛的连 接和远程监控,提高系统的可维护 性和可操作性。
应用领域拓展
新能源领域
随着新能源技术的快速发展,直流拖动控制 系统将在风力发电、太阳能发电等领域得到 广泛应用,为可再生能源的利用提供技术支 持。
控制方式
直流拖动控制系统采用闭环控制方式,通过传感器实时检测机械设备的速度和位置,将检测到的信号反馈给控制 器,控制器根据反馈信号与目标值的比较结果,输出相应的控制信号,调整电机的输入电压或电流,实现对机械 设备的精确控制。
应用领域
数控机床
直流拖动控制系统可用于数控机
床的进给系统,实现高精度的切
电力拖动自动控制系统PPT课件
晶闸管整流器是毫秒级,这将大大提高系统的
动态性能。
2021/3/8
42
• V-M系统的问题
– 由于晶闸管的单向导电性,它不允许电 流反向,给系统的可逆运行造成困难。
– 晶闸管对过电压、过电流和过高的dV/dt 与di/dt 都十分敏感,若超过允许值会在 很短的时间内损坏器件。
– 由谐波与无功功率引起电网电压波形畸 变,殃及附近的用电设备,造成“电力 公害”。
本章提要11直流调速系统用的可控直流电源12晶闸管电动机系统vm系统的主要问题13直流脉宽调速系统的主要问题14反馈控制闭环直流调速系统的稳态分析和设计15反馈控制闭环直流调速系统的动态分析和设计16比例积分控制规律和无静差调速系统11直流调速系统用的可控直流电源根据前面分析调压调速是直流调速系统的主要方法而调节电枢电压需要有专门向电动机供电的可控直流电源
电力拖动自动控制系统
电气信息学院
2021/3/8
1
绪论
自动控制系统的几个概念 自动控制系统的分类 自动控制系统的组成 自动控制系统的性能指标 研究自动控制系统的方法 本课程与其它课程的连接本课程的主要内容 计算机控制系统的概念
2021/3/8
2
一.自动控制系统的几个概念
1.自动控制 Automatic control 在无人直接参与的情况下,利用控制装
例子:计算机控制系统。 数学模型用差分方程描述
2021/3/8
13
二.自动控制系统的分类
4.按系统有无反馈环节分类 ①开环控制系统 ②闭环控制系统
5.按系统控制对象和方式分类,又可分为 拖动控制系统(电气控制系统、机械控 制系统)和过程控制系统(石油,化工, 制药等)
2021/3/8
直流电机的电力拖动第部分
调速系统须满足下列两个准则: (1)在整个调速范围内电机不至于过热,为此,求: Ia ;IN (2)电动机旳负载能力要尽量得到充分利用。
鉴于此,不同类型旳负载必须选择合适旳调速方式。
下面分别就不同调速方式以及多种调速方式所适合旳负载类型加以讨论。
1. 调速方式
电力拖动系统旳调速方式主要分为两大类: (1)恒转矩调速方式:在保持 Ia 不IN变旳前提下, 保Tem持不变; (2)恒功率调速方式:在保持 Ia 不IN变旳前提下, 保Pe持m 不变。
直流电机旳电力拖动
3.6 直流电动机旳调速
A、与调速有关旳性能指标
a、调速范围D:
定义: 调速范围定义为拖动系统旳最高转速(或速度)与最低转速(或
速度)之比,即:
b、静差率 :
D nmax vmax nmin vmin
(3-46)
定义: 对调速系统旳静差率即转速变化率,它是指理想空载转速与额定
老式旳可调压电源可采用如图3.24所示旳发电机-电动机旋转机组方案。
图3.24 直流发电机-电动机机组旳可调直流电源 目前应用较为广泛旳是静止变流器方案,如相控变流器和斩控变流器,有关内容已在 《电力电子技术》中简介过。
2. 弱磁升速
图3.25给出了他励直流电动机弱磁调速时旳人工机械特征。
图3.25 励磁变化情况下旳直流电动机人工机械特征和负载特征
结论: 基速下列,他励直流电动机采用恒转矩调速方式,而基速以上,
则采用恒功率调速方式。
图3.27a、b分别给出了他励直流电动机在整个调速过程中旳机械特征与负载能力曲线。
图3.27 他励直流电动机调速过程中所允许旳转矩和功率
2. 调速方式旳选择
电力拖动ppt课件
目 录
• 电力拖动概述 • 电力拖动系统的电动机 • 电力拖动系统的控制电路 • 电力拖动系统的应用实例 • 电力拖动系统的维护与故障排除
01
电力拖动概述
定义与原理
定义
电力拖动是指利用电动机作为原 动机来拖动生产机械的工作机构 使之运转的一种方法。
原理
利用电动机产生的转矩和转速, 通过传动机构来驱动生产机械的 工作机构运转。
电力拖动系统能够精确控制生产线的速度、位置和运动轨迹,提高生产效率和产品 质量。
工业自动化生产线通常需要高可靠性和高稳定性的电力拖动系统,以确保生产线的 正常运行和生产安全。
电梯控制系统
电梯是电力拖动系统在垂直运 输领域的典型应用,通过电机 驱动曳引绳或链条实现升降运 动。
电力拖动系统能够精确控制电 梯的速度和位置,提供安全、 舒适、高效的运输服务。
按控制方式分类
手动控制、半自动控制和自动控制等 。
机械传动、液压传动和气压传动等。
02
电力拖动系统的电动机
电动机的种类与特点
直流电动机
具有良好的调速性能, 适用于需要平滑调速的 场合。但结构复杂,维
护成本高。
交流电动机
结构简单,维护方便, 但调速性能较差。常见 的有异步电动机和同步
电动机。
伺服电动机
应确保所选电动机符合安全标准,并具有 必要的安全保护功能。
03
电力拖动系统的控制电 路
控制电路的组成与原理
组成
控制电路主要由控制电器、保护电器和测量仪表组成,用于实现对电动机的启 动、调速、制动和反向等控制操作。
原理
通过控制电路中的电器元件,实现对电动机的电源通断、调速和转向的控制, 从而达到生产工艺的要求。
电力拖动自动控制系统--动控制系统(1)-
1.2 晶闸管-电动机系统(V-M系统)的主要问题
on
• ton不变,变 T —脉冲频率调制(PFM); • t 和 T 都可调,改变占空比—混合型。
on
40
• PWM系统的优点
1 主电路线路简单,需用的功率器件少; 2 开关频率高,电流容易连续,谐波少,电机损耗及发热
都较小; 3 低速性能好,稳速精度高,调速范围宽,可达1:10000左
右; 4 若与快速响应的电机配合,则系统频带宽,动态响应快
可调的直流电压。 • 直流斩波器或脉宽调制变换器——用恒定直流电源或不
控整流电源供电,利用电力电子开关器件斩波或进行脉 宽调制,以产生可变的平均电压。
28
1.1.1 旋转变流机组( G-M系统, Ward-Leonard系统)
图1-1旋转变流机组供电的直流调速系统(G-M系统)
29
• G-M系统特性
15
4. 电枢绕组的反电势
E是电枢旋转时,绕组切割主磁通Φ的结果,故和Φ与转速n的乘积
成正比。
式中:Ke—电动势结构系数,Ce —恒磁通电动势结构系数;
n—电动机转速,在此转速下,电动机的电磁转矩
Te正好与负
载转矩Tl相平衡,系统处于稳定运行状态。
16
5. 直流电动机的机械特性方程
1 理想空载转速n0 当Te=0时,n=n0;
34
35
➢ 晶闸管对过电压、过电流和过高的dV/dt与di/dt 都十分敏感,若超过允许 值会在很短的时间内损坏器件。 ➢ 当系统处在深调速状态,即在较低速运行时,晶闸管的导通角很小,使得 系统的功率因数很低,并产生较大的谐波电流,引起电网电压波形畸变,殃 及附近的用电设备。由谐波与无功功率引起电网电压波形畸变,殃及附近的 用电设备,造成“电力公害”。
电力拖动电力拓东自动控制系统ppt课件
第一篇 直流拖动控制系统 一.前言直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。
由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。
因此,为了保持由浅入深的教学顺序,应该首先很好地掌握直流拖动控制系统。
二.主要内容简介 1. 支流调速方法 2. 支流调速电源 3. 直流调速控制三.根据直流电动机转速方程(1)式中:n — 转速(r/min ) U —电枢电压(V ) I —电枢电流(A ) R —电枢回路电阻( - Φ—励磁磁通(WB )e K —由电动机结构确定的电动势常数。
由式(1-1)可以看出,有三种方法调节电动机的转速: (1)调节电枢供电电压 U 。
(2)减弱励磁磁通 Φ。
(3)改变电枢回路电阻 R 。
(1)调压调速⏹ 工作条件: 保持励磁 Φ = ΦN ; 保持电阻 R = R a⏹ 调节过程: 改变电压 U N → U ↓U ↓ →n ↓, n 0 ↓⏹ 调速特性: 转速下降,机械特性曲线平行下移。
(2)调阻调速⏹ 工作条件: 保持励磁 Φ = ΦN ; 保持电压 U =U N ;⏹ 调节过程: 增加电阻 R a → R ↑ R ↑ →n ↓,n 0不变;调速特性: 转速下降,机械特性曲线变软。
(3)调磁调速⏹ 工作条件: 保持电压 U =U N ; 保持电阻 R = R a ;调节过程: 减小励磁 ΦN → Φ↓ Φ ↓ → n ↑, n 0 ↑ ⏹ 调速特性: 转速上升,机械特性曲线变软。
Φe K IRU n -=三种调速方法的性能与比较对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式为最好。
改变电阻只能有级调速;减弱磁通虽然能够平滑调速,但调速范围不大,往往只是配合调压方案,在基速(额定转速)以上作小范围的弱磁升速。
因此,自动控制的直流调速系统往往以调压调速为主。
直流电机——电机拖动控制(机电传动控制)课件PPT
Ia
n0
n
n
U Ke
Ra KeKm2
T
n0
n
特点:特性硬度变软,n0变大,∆n变大、起动力矩Tst变小。
注意:Φ=0时,理论上n→∞,实际上n上升到超过机械强度
容许的值,发生“飞车”。
他励直流电动机运行中,决不允许励磁电路短开或If=0。 措施:1)起动前先加励磁;2)设置“失磁”保护。
n
Φn>Φ1>Φ2>Φ3
图3--17
5.他励电动机的人为机械特性 固有机械特性
n
U Ke
Ra Ke
Ia
n
U Ke
Ra KeKm2
T
获得人为机械特性的方法只有3种(改变U、φ、Rad): ☆电枢回路中串接电阻Rad ☆改变电枢电压U ☆改变磁通φ
(1)电枢回路中串接电阻 Rad的人为机械特性
n
UN Ke
Ra Rad KeKm2
机电传动控制
第三章 直流电机的工作原理及特性
3.1 直流电机的基本结构和工作原理 3.2 直流电动机的机械特性 3.3 直流他励电动机的启动特性 3.4 直流他励电动机的调速特性 3.5 直流他励电动机的制动特性 3.6 串励直流电动机
3.1 直流电机的基本结构和工作原理
一、 直流电机的工作原理
二、直流电机的基本结构
n0 A
nA Δn
B
0
T1
图3-26
T2
T
二、调速方法:
n
U Ke
Ra Rad KeKm2
T
☆改变电动机电枢电路外串电阻Rad调速 ☆改变电动机电枢电压U调速 ☆改变电动机主磁通φ调速
1. 改变电枢电路外串电阻Rad调速
电机拖动系统电路图和流程图(第一章)PPT课件
返回
U in
R0
VST 1 VST 2
R1
C1
Rbal
U ex
图1-40 稳压管钳位的内限幅电路
返回
C
i
U in
i
R0
A + +
U ex
Rbal
a)
图1-43 积分调节器
U in U ex U ex
U exm
0
t
b)
L/dB
0
L
-20 1
0
2
返回
U n
0
t
U ct
U ct 12
2
1
0
t
图1-47 比例积分调节器的输入和输出动态过程 返回
M
图1-3 晶闸管可控整流器供电的直流调速系统
返回
n
1
变流机组
n
n
响应时间/s
10 1
10 2 10 3
0
Te
a)
汞弧整流器
晶闸管整流器
10 1 10 2 10 3 10 4 10 5 功率放大倍数
Te
b)
Te
c)
图1-5 V-M系统的运行范围
图1-4各种交流装置技术性能的比较
V
+
T
U s 强迫关断电路 VD L
b)
Ud0s
图1-33 晶闸管触发和整流装置动态结构图 返回
IdLs
RTls1
U
* n
s
Uns
Uns
K
Ucts
p
Ks Tss 1
Ud0s
1 Ce
ns
TmTls2 Tms 1
图1-34 反馈控制闭环调速系统的动态结构 图
电力拖动自动控制系统(陈伯时)ppt1-2-3直流拖动控制系统
n
2U 2
cos[sin(
6
)
sin(
6
)ectg
]
Ce (1 ectg )
(1-10)
Id
3 2U2
2R
[cos(
6
) cos(
6
)
Ce n]
2U 2
式中 arctg L ; — 一个电流脉波的导通角。
R
89电电力力拖传动动自控动制控系制统系统
21
(3)电流断续机械特性计算
当阻抗角 值已知时,对于不同的控制 角 ,可用数值解法求出一族电流断续时的
1
LP
VT
T
c1
2
c2
L
b1 a1
b2 M
a2
并联多重联结的12脉波整流电路
89电电力力拖传动动自控动制控系制统系统
17
1.2.4 晶闸管-电动机系统的机械特性
当电流连续时,V-M系统的机械特性方程式为
n
1 Ce
(U d0
Id R)
1 Ce
m ( π Um
sin
π m
cos
Id R)
(1-9)
式中 Ce = KeN —电机在额定磁通下的电动势系数。 式(1-9)等号右边 Ud0 表达式的适用范围如第1.2.1节
R— 主电路等效电阻;
且有 R = Rrec + Ra + RL;
89电电力力拖传动动自控动制控系制统系统
8
对ud0进行积分,即得理想空载整流电 压平均值Ud0 。
用触发脉冲的相位角 控制整流电压的平 均值Ud0是晶闸管整流器的特点。
Ud0与触发脉冲相位角 的关系因整流电
路的形式而异,对于一般的全控整流电路,
电机拖动(动力学).课件
05
电机拖动系统的优化与设 计
电机拖动系统的能效优化
电机拖动系统的能效评估
评估电机拖动系统的能效水平,识别能效瓶 颈。
控制系统优化
优化控制算法,提高电机拖动系统的响应速 度和稳定性。
电机选型优化
根据实际需求选择合适的电机类型,如直流 电机、交流电机、步进电机等。
能源回收技术
利用能量回馈装置,将制动能量回收再利用 ,提高能源利用效率。
组成
电机拖动系统通常由电机、传动 装置、控制器和负载等部分组成 。
电机拖动系统的分类
01
02
03
按电机类型分类
直流电机拖动系统、交流 电机拖动系统、步进电机 拖动系统等。
按控制方式分类
开环控制电机拖动系统、 闭环控制电机拖动系统。
按应用场景分类
工业电机拖动系统、汽车 电机拖动系统、航空电机 拖动系统等。
神经网络控制
利用神经网络算法实现电机拖 动系统的非线性控制。
模糊控制
通过模糊逻辑数变化自适应调整 控制策略。
预测控制
利用模型预测算法,对电机拖 动系统的未来状态进行预测和
优化控制。
感谢您的观看
THANKS
直流电机的拖动特性
转矩特性
直流电机在一定电流下产 生的转矩与转速之间的关 系。
调速特性
改变电机的输入电压或电 流,可以改变电机的转速 。
启动和制动特性
描述电机在启动和制动过 程中的性能表现。
直流电机拖动系统的控制方法
调压控制
通过调节电机的输入电压来控制 电机的转速和转矩。
弱磁控制
在电机接近于磁场饱和时,通过减 小磁场强度来提高电机的转速。
通过分析动态特性,可以对电机拖动系统的性能进行评估和优化,以满足不同的 应用需求。
【培训课件】电机学课件--直流电动机的电力拖动
(1)必要条件:电动机的机械特性与负载的转矩特性必须有交点, 即存在Tem=TL
(2)充分条件:在交点的转速以上存在Tem<TL,而在交点的转速以 下存在Tem>TL
•21
•稳定运行
• 不稳定运行
•22
§3
§3.1 电枢回路串电阻起动 §3.2 降压起动
•23
起动过程:电动机接通电源后,由静止状态加速到稳定运行状态的过程。 起动转矩Tst:电动机起动瞬间的电磁转矩。 起动电流Ist:起动瞬间的电枢电流。
电力拖动系统的组成:电源、控制设备、电动机、传动和工作机构。
一、运动方程式
1、单轴系统
•3
•2、实用表达式
• 通常将转动惯量J用飞轮矩GD2来表示,它们之间的关系
为J=mp
• 式中 m与G-转动部分的质量与重量;
•
p与D-惯性半径与直径(m);
•
g=9.81m/s2 -重力加速度;
•
再将机械角速度用转速n表示 可得:
•38
•2、机械特性 •由上所述,可能在第四象限,也 可能在第二象限。
•3、分析 •回馈制动过程中,有功率UIa回 馈电网,能量损耗最少。
•4、使用场合 •用于高速匀速下放重物和降压、 增加磁通调速过程中自动加快减 速过程。
•39
§4.4 直流电动机的反转
许多生产机械要求电动机做正、反转运行,直流电机的转向由电枢 电流方向和主磁场方向确定。
• 足,另选T1或m值,直到满足条件。
•三、三点起动器(简单了解) • 人工手动办法起动
•27
§3.2 降压起动 当直流电源电压可调时可采用降压起动方法。 发展:过去可调的直流电源采用直流的发电机-电动机
电机拖动控制系统课程讲义ppt课件
2
第二节 主电路器件的计算与选择
一、整流元件的额定电压
U TN
U ( 2 ~ 3 ) U TN Tm
表3-3 整流元件的最大峰值电压和额定电流的 计算系数 二、整流元件额定电流
I ( 1 . 5 ~ 2 ) K I TN fb d
I K 为计算 式中,为晶闸管的额定电流( A); 系数,示于表3-3内;为最大负载电流。
第一节 整流变压器额定参数的计算
整流变压器参数的计算,首先根据整流电路的 型式和负载所要求的整流电压和整流电流,计 算二次电压、二次电流和一次电流,进而计算 其一次、二次容量、及平均计算容量S。最后 根据上述数据选用现有电力变压器系列产品或 自行设计。
一、二次侧相电压
变压器二次测相电压的计算公式为
直流调速系统拖动方案的确定
一、系统的技术指标要求 (一)调速系统的稳态指标 1. 调速范围D 2. 静差率S (二)调速系统的动态指标 1. 跟随性能指标 2.抗扰性能指标
二、电力拖动方案及供电方案的确定 和电动机的选择
方案实质上就是晶闸管(或功率晶体管)变流 装置主电路的接线方式和直流电动机的选择两 个问题 (一)晶闸管变流装置主电路接线方式的选择 晶闸管整流装置可以是单相、三相或更多相数, 有半波、全波、半控、全控等类型 单相晶闸管整流电路电压脉动大、脉动频率低。 影响三相电网的平衡运行,一般多用于5KW以 下的拖动系统。
U RI n U dm ax d VT U 2 I2 A (cos Cu ) m in k I2 N
在要求不太精确的情况下,可由简化式确定:
U ( 1 . 2 1 . 5 ) U / A 2 d m ax
电力拖动自动控制系统课件
场效应管
具有高速开关特性和低 噪声性能,常用于开关
电源和逆变器。
IGBT
大功率电子器件,广泛 应用于电机控制和电网
调节。
运算放大器
用于信号处理和运算, 具有高精度和低噪声特
性。
控制电路与保护电路
控制电路
用于实现各种控制逻辑和算法,如速度、位置和电流控制等。
保护电路
用于检测系统异常并采取相应措施,如过流、过压和欠压保护等。
电力拖动自动控制系统应用
工业自动化生产线控制
自动化生产线是电力拖动自动控制系统的重要应用领域之一 。通过使用电力拖动自动控制系统,可以实现生产线的自动 化控制,提高生产效率,降低人工成本。
电力拖动自动控制系统能够精确控制生产线上各个设备的运 行状态,确保生产过程的稳定性和可靠性,减少设备故障和 生产事故的发生。
Байду номын сангаас
工作原理与控制方式
工作原理
电力拖动自动控制系统通过控制器对电动机进行控制,实现 机械设备的运动。控制器根据传感器反馈的信息,对电动机 的输入电压或电流进行调整,以实现对机械设备运动的精确 控制。
控制方式
常见的控制方式包括开环控制、闭环控制和复合控制等。开 环控制方式简单,但精度较低;闭环控制方式精度较高,但 需要反馈传感器;复合控制方式结合了开环和闭环的优点, 具有更高的控制精度和稳定性。
05
电力拖动自动控制系统发展趋势与挑战
新型电机与电力电子器件的发展
永磁同步电机
具有高效率、高转矩密度和优秀的动 态性能,是现代电力拖动系统的重要 发展方向。
开关磁阻电机
电力电子器件
随着宽禁带半导体材料的发展,电力 电子器件的性能得到大幅提升,为电 力拖动系统的优化提供了更多可能性 。
电机原理及拖动 ppt1
直驱力矩电机是永磁同步旋转电机。顾名思义, 它能产生很大的力矩驱动负载。因此在低速大扭 矩的应用场合可以省去减速装置,使你的设计变 得更加紧凑。另外它还有可靠性高,免维护,长 寿命,加速性能优秀,无震荡等诸多优点,可广 泛应用于各种精密定位分度工作台。
直线电机是一种将电能直接转换成直线运动机械能,而不 需要任何中间转换机构的传动装置。它可以看成是一台旋 转电机按径向剖开,并展成平面而成. 步进电机原理是将电脉冲信号转变为角位移或线位移的开 环控制元件。步进电机原理在非超载的情况下,电机的转 速、停止的位置只取决于脉冲信号的频率和脉冲数,而不 受负载变化的影响,步进电机原理即给电机加一个脉冲信 号,电机则转过一个步距角。 步进电机原理这一线性关系的存在,加上步进电机只有周 期性的误差而无累积误差等特点。步进电机原理使得在速 度、位置等控制领域用步进电机来控制变的非常的简单。
本课程的主要授课内容(32)
直流电机调速 交流电机调速
一、变频调速系统控 制方式 二.几种典型变频调 速系统介绍 一、单闭环调速系 统 二.双闭环调速系统
教材及参考书 电力拖动运动控制
教材 电力拖动自动控制 系统 ,陈伯时 编,机械工业出版 社,(第三版) 2003 系统, 丁学文 参考书 编,机械工业出版 社 ,2007.9
为什么讲这门课?
调速系统的概念 调速系统的分类 调速系统的发展 调速系统的应用
调速系统的概念
运动控制系统是以机械运动的驱动设备--电 调速 动机为控制对象,以控制器为核心,以电力电 系统 子功率变换装置作为驱动机构,在自动控制理 论的指导下组成的电气传动自动控制系统。
电机
调速系统的分类
电力拖动与运动 控制系统,罗飞 等编, 化学工业 出版社, 2007.5
第一章交直流调速系统PPT课件
的地方仍然使用这种系统。 但是这种由机组供电的直流调速系统需要旋
转变流机组,至少包含两台与调速直流电动机 容量相当的旋转电机(原动机和直流发电机) 和一台容量小一些的励磁发电机,因而设备多 、体积大、效率低、安装需打地基、运行有噪 音、维护不方便。为了克服这些缺点,在20世 纪50年代开始采用静止变流装置来代替旋转变 流机组,直流调速系统进入了由静止变流装置 供电的时代。
K K
晶闸管相当于PNP和NPN型两个晶体管的组合
晶闸管由P1、N1、P2、N2四层半导体材料交替组成,其结构 及图形符号如图所示。P1区引出的电极为阳极A,N2层引出的 电极为阴极K,由中间P2层引出的电极为控制极G。为更好的理 解晶闸管的工作原理,常将其N1、P2两个区域分解成两部分, 分别构成一个NPN型和一个PNP型的三极管。分解后的情况如图
晶闸管也像半导体二极管那样具有单向导电性, 但它的导通时间是可控的,主要用于整流、逆变、调 压及开关等方面。
优点: 体积小、重量轻、效率高、动作迅速、维修简单、
操作方便、寿命长、 容量大(正向平均电流达千安、 正向耐压达数千伏)。
常用晶闸管的结构
螺栓型晶闸管
晶闸管模块
平板型晶闸管外形及结构
一、基本结构
对系统的调速性能要求不高时,可直接由励
磁电源供电,要求较高的闭环直流调速系统一 般都通过放大装置(G-M系统的放大装置多采用 交磁放大机或磁放大器)进行控制。如果改变 if的方向,则U的极性和n的转向都跟着改变, 因此G-M系统的可逆运行是很容易的。
G-M系统具有很好的的调速性能,在20世纪50 年代曾广泛地使用,至今在尚未进行设备更新
Ra
调改速变特电性压:UN U n , n0
转速下降,机械特性曲线平行下移。
交直流拖动系统控制
目录
CONTENTS
• 交直流拖动系统概述 • 交直流拖动系统的基本原理 • 交直流拖动系统的控制策略 • 交直流拖动系统的优化与改进 • 交直流拖动系统的未来展望
01 交直流拖动系统概述
CHAPTER
定义与特点
定义
交直流拖动系统是指利用交流或直流电源驱动电机,通过 控制系统实现对电机速度、方向和位置的精确控制,以达 到自动化生产或设备运行的目的。
选择质量可靠、性能稳定的直流电动机。
加强维护保养
02
定期对直流电动机进行维护保养,确保其正常运行。
优化控制策略
03
采用先进的控制策略,提高直流电动机的运行稳定性。
改进控制策略的稳定性
引入反馈控制
通过引入反馈控制,提高系统的响应速度和稳定性。
优化PID参数
根据系统运行情况,调整PID参数,提高控制系统的稳定性。
三相交流电
常见的交流电动机使用三 相交流电,产生旋转磁场, 驱动转子旋转。
调速与控制
交流电动机的转速可以通 过改变输入的交流电的频 率、电压或电流进行控制。
直流电动机的工作原理
电磁场与电流
直流电动机利用电磁场和 电流的作用产生转矩,推 动转子旋转。
换向器与电刷
直流电动机通过换向器与 电刷将直流电引入电动机 内部,产生磁场和电流。
采用多变量控制策略
采用多变量控制策略,减小系统间的耦合,提高控制系统的稳定 性。
05 交直流拖动系统的未来展望
CHAPTER
高效能电动机的发展趋势
永磁同步电动机
利用高性能永磁材料,提高电动 机的效率和功率密度。
开关磁阻电动机
采用磁阻式转子结构,具有较高 的启动转矩和调速性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 直流斩波器的基本结构
控制电路
+
VT
Us
VD
_
a)原理图
u
+ Us ton Ud
M
_O
t
T
b)电压波形图
图1-5 直流斩波器-电动机系统的原理图和电压波形
2. 斩波器的基本控制原理
在原理图中,VT 表示电力电子开关器 件,VD 表示续流二极管。当VT 导通时, 直流电源电压 Us 加到电动机上;当VT 关 断时,直流电源与电机脱开,电动机电枢 经 VD 续流,两端电压接近于零。如此反 复,电枢端电压波形如图1-5b ,好像是电 源电压Us在ton 时间内被接上,又在 T – ton 时间内被斩断,故称“斩波”。
直流斩波器或脉宽调制变换器——用恒定 直流电源或不控整流电源供电,利用电力 电子开关器件斩波或进行脉宽调制,以产 生可变的平均电压。
1.1.1 旋转变流机组
图1-1旋转变流机组供电的直流调速系统(G-M系统)
• G-M系统工作原理
由原动机(柴油机、交流异步或同步 电动机)拖动直流发电机 G 实现变流, 由 G 给需要调速的直流电动机 M 供电, 调节G 的励磁电流 if 即可改变其输出电 压 U,从而调节电动机的转速 n 。
1.1 直流调速系统用的可控直流电源
根据前面分析,调压调速是直 流调速系统的主要方法,而调节电 枢电压需要有专门向电动机供电的 可控直流电源。
本节介绍几种主要的可控直流 电源。
常用的可控直流电源有以下三种
旋转变流机组——用交流电动机和直流发 电机组成机组,以获得可调的直流电压。
静止式可控整流器——用静止式的可控整 流器,以获得可调的直流电压。
直流调速方法
根据直流电机转速方程
n U IR Ke
(1-1)
式中 n — 转速(r/min);
U — 电枢电压(V);
I — 电枢电流(A); R — 电枢回路总电阻( ); — 励磁磁通(Wb); Ke — 由电机结构决定的电动势常数。
由式(1-1)可以看出,有三种方法调 节电动机的转速:
3. 输出电压计算
这样,电动机得到的平均电压为
Ud
ton T
Us
Us
(1-2)
式中 其中
T — 晶闸管的开关周期; ton — 开通时间;
晶闸管-电动机调速系统(简称V-M系 统,又称静止的Ward-Leonard系统), 图中VT是晶闸管可控整流器,通过调节 触发装置 GT 的控制电压 Uc 来移动触发 脉冲的相位,即可改变整流电压Ud ,从 而实现平滑调速。
• V-M系统的特点
与G-M系统相比较:
晶闸管整流装置不仅在经济性和可靠性上都有 很大提高,而且在技术性能上也显示出较大的 优越性。晶闸管可控整流器的功率放大倍数在 10 4 以上,其门极电流可以直接用晶体管来控 制,不再像直流发电机那样需要较大功率的放 大器。
这样的调速系统简称G-M系统,国际 上通称Ward-Leonard系统。
• G-M系统特性
第II象限
-TL
n
第I象限
n0
n1
n2
O
TL
Te
第III象限
第IV象限
图1-2 G-M系统机械特性
1.1.2 静止式可控整流器
图1-3 晶闸管可控整流器供电的直流调速系统(V-M系统)
• V-M系统工作原理
(2)调阻调速
工作条件:
n
保持励磁 = N ; 保持电压 U =UN ;
n0
调节过程:
增加电阻 Ra R
nN
n1
Ra
n2 n3
R1
R2
R n ,n0不变;
R3
调速特性:
O
IL
I
转速下降,机械特性
曲线变软。
调阻调速特性曲线
(3)调磁调速
工作条件:
n
保持电压 U =UN ; 保持电阻 R = R a ; 调节过程:
在控制作用的快速性上,变流机组是秒级,而 晶闸管整流器是毫秒级,这将大大提高系统的 动态性能。
• V-M系统的问题
由于晶闸管的单向导电性,它不允许电 流反向,给系统的可逆运行造成困难。
晶闸管对过电压、过电流和过高的dV/dt 与di/dt 都十分敏感,若超过允许值会在 很短的时间内损坏器件。
由谐波与无功功率引起电网电压波形畸 变,殃及附近的用电设备,造成“电力 公害”。
1.1.3 直流斩波器或脉宽调制变换器
在干线铁道电力机车、工矿电力机 车、城市有轨和无轨电车和地铁电机车 等电力牵引设备上,常采用直流串励或 复励电动机,由恒压直流电网供电,过 去用切换电枢回路电阻来控制电机的起 动、制动和调速,在电阻中耗电很大。
电力拖动自动控制系统
直流拖动控制系统
内容提要
直流调速方法 直流调速电源 直流调速控制
引言
直流电动机具有良好的起、制动性能, 宜于在大范围内平滑调速,在许多需要调 速和快速正反向的电力拖动领域中得到了 广泛的应用。
由于直流拖动控制系统在理论上和实 践上都比较成熟,而且从控制的角度来看, 它又是交流拖动控制系统的基础。因此, 为了保持由浅入深的教学顺序,应该首先 很好地掌握直流拖动控制系统。
因此,自动控制的直流调速系统往往以 调压调速为主。
第1章 闭环控制的直流调速系统
本章着重讨论基本的闭环控制系统 及其分析与设计方法。
本章提要
1.1 直流调速系统用的可控直流电源 1.2 晶闸管-电动机系统(V-M系统)的主要问题 1.3 直流脉宽调速系统的主要问题 1.4 反馈控制闭环直流调速系统的稳态分析和设计 1.5 反馈控制闭环直流调速系统的动态分析和设计 1.6 比例积分控制规律和无静差调速系统
(1)调节电枢供电电压 U; (2)减弱励磁磁通 ; (3)改变电枢回路电阻 R。
(1)调压调速
工作条件:
n
保持励磁 = N ;
n0
保持电阻 R = Ra
调节过程:
改变电压 UN U
U n , n0
调速特性:
O
转速下降,机械特性
曲线平行下移。
nN
n1
UN
n2
U1
n3
U2
U3
IL
I
调压调速特性励磁 N
1
n , n0
调速特性: 转速上升,机械特性
O
TL
2 3
Te
曲线变软。
调磁调速特性曲线
▪ 三种调速方法的性能与比较
对于要求在一定范围内无级平滑调速 的系统来说,以调节电枢供电电压的方式 为最好。改变电阻只能有级调速;减弱磁 通虽然能够平滑调速,但调速范围不大, 往往只是配合调压方案,在基速(即电机 额定转速)以上作小范围的弱磁升速。