备课参考高一数学北师大必修二同步练习:第2章 解析几何初步 2 含答案

合集下载

高中数学 基础知识篇 第二章解析几何初步同步练测 北师大版必修2

高中数学 基础知识篇 第二章解析几何初步同步练测 北师大版必修2

高中数学 基础知识篇 第二章解析几何初步同步练测 北师大版必修2一、选择题(本题包括12小题,每小题5分,共60分.每小题给出的四个选项中,只有一个选项正确) 1.已知圆22:40C x y x +-=,l 是过点(3,0)P 的直线,则( )( )A.l 与C 相交B.l 与C 相切C.l 与C 相离D.以上三个选项均有可能 2.设A ,B 为直线y x =与圆221x y += 的两个交点,则||AB =( ) ( ) A.1 B.2C.3D.23.圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( ) ( ) A.内切 B.相交C.外切D.相离 4.将圆平分的直线是( ) ( )A .B .C .D .5.过点(1,1)P 的直线,将圆形区域{}22(,)|4x y xy +≤分两部分,使得这两部分的面积之差最大,则该直线的方程为( ) ( )A .20x y +-=B .10y -=C .0x y -=D .340x y +-=6.在平面直角坐标系xOy 中,直线3450x y +-=与圆224x y +=相交于A 、B 两点,则弦AB 的长等于( )( )A .33B .23C.3D.17.直线220x y +-=与圆224x y +=相交于,A B 两点,则弦AB 的长度等于( )A.25B.23C.3D.18.对任意的实数,直线与圆222=+y x 的位置关系一定是( )A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心 9.直线:和2l :互相垂直,则A.-3或-1B.3或1C.-3或1D.-1或310.直线与圆相交于两点,若弦的中点,则直线的方程为( ) A. B. C. D. 11.过点A (2,3)且垂直于直线052=-+y x 的直线方程为 A.042=+-y xB.072=-+y xC.032=+-y xD.052=+-y x12.在空间直角坐标系中,点)1,0,1(A 与点)1,1,2(-B 之间的距离为( )建议用时 实际用时满分 实际得分120分钟150分A .6B . 6C .3D . 2二、填空题(本题共4小题,每小题5分,共20分.请将正确的答案填到横线上) 13.直线l过点)04(,且与圆25)2()1(22=-+-y x 交于B A 、两点,如果8=AB ,那么直线l 的方程为____________.14.直线ax +y +1=0与连结A (2,3),B (-3,2)的线段相交,则a 的取值范围是________.15.已知两直线a 1x +b 1y +1=0与a 2x +b 2y +1=0的交点是P (2,3),则过两点Q 1(a 1,b 1),Q 2(a 2,b 2)的直线方程是______________________.16.在长方体1111D C B A ABCD -中,若)3,0,5(),0,4,5(),0,0,5(),0,0,0(1A B A D ,则对角线1AC 的长为______________.三、计算题(本题共5小题,共70分.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位) 17.(12分)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,求k 的最大值. 18.(12分)若直线l 过点P (3,0)且与两条直线l 1:2x -y -2=0,l 2:x +y +3=0分别相交于两点A 、B ,且点P 平分线段AB ,求直线l 的方程. .19.(15分)已知直线l:ay=(3a-1)x-1.(1)求证:无论a为何值,直线l总过第三象限.(2)a取何值时,直线l不过第二象限?20.(15分)已知直线方程为(2+m)x+(1-2m)y +4-3m=0.(1)证明:直线恒过定点M;(2)若直线分别与x轴、y轴的负半轴交于A、B两点,求△AOB面积的最小值及此时直线的方程.21.(16分)已知A(1,2,-1),B(2,0,2).(1)在x轴上求一点P,使|PA|=|PB|;(2)在xOz平面内的点M到A点与到B点等距离,求M点的轨迹.第2章解析几何初步同步测试试卷(数学北师版必修2)答题纸得分:一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案二、填空题13. 14. 15. 16.三、计算题17.18.19.20.21.第2章 解析几何初步 同步测试试卷(数学北师版必修2)答案一、选择题1.A 解析: 22304330+-⨯=-<,所以点(3,0)P 在圆内部,故选A. 2.D 解析:直线y x =过圆221x y +=的圆心(0,0)C 则||AB =2. 3.B 解析:两圆心之间的距离为()17)10(2222=-+--=d ,两圆的半径分别为3,221==r r , 则d r r <=-112521=+<r r ,故两圆相交. 应选B.4.C 解析:圆心坐标为(1,2),将圆平分的直线必经过圆心,故选C .5.A 解析:要使直线将圆形区域分成两部分的面积之差最大,必须使过点P 的圆的弦长达到最小,所以需该直线与直线OP 垂直即可.又已知点(1,1)P ,则1OP k =,故所求直线的斜率为-1.又所求直线过点(1,1)P ,故由点斜式得,所求直线的方程为()11y x -=--,即20+-=x y .故选A.6.B 解析:圆心到直线的距离为225134d ==+,所以弦AB 的长等于22223r d -=.7.B 解析:圆心(0,0),半径2r =,弦长 222|2|||22()2313AB -=-=+.8.C 解析:法一:圆心(0,0)C 到直线10kx y -+=的距离为211211d r k =<<=+,且圆心(0,0)C 不在该直线上.法二:直线10kx y -+=恒过定点(0,1),而该点在圆C 内,且圆心不在该直线上,故选C.9.C 解析:若1=k ,直线3:1=x l ,52:2=y l ,满足两直线垂直.若1≠k ,直线21l l ,的斜率分别为321,121+-=-=k k k k k k ,由121-=⋅k k 得,3-=k ,综上1=k 或3-=k , 10.C 解析:圆心坐标为C (-1,2),设弦AB 中点D (-2,3),由垂径定理有:CD ⊥AB ,32121CD k -==--+,所以AB k =1,直线的方程为:,即,所以选C.11.A 解析:法一:设所求直线方程为02=+-C y x ,将点A 代入得,062=+-C ,所以4=C ,所以直线方程为042=+-y x ,选A.法二:直线052=-+y x 的斜率为2-,设所求直线的斜率为k ,则21=k ,代入点斜式方程得直线方程为)2(213-=-x y ,整理得042=+-y x ,选A.12.A 解析:若),,(),,,(222111z y x B z y x A ,则212212212)()()(z z y y x x AB -+-+-=.二、填空题13.020125=--y x 或4=x解析:圆心坐标为)2,1(M ,半径5=r . 因为8=AB ,所以圆心到直线l 的距离34542222=-=-=r d .当直线斜率不存在时,即直线方程为4=x ,圆心到直线的距离为3满足条件,,所以4=x 成立. 若直线斜率存在,不妨设为k ,则直线方程)4(-=x k y ,即04=--k y kx ,圆心到直线的距离为313214222=++=+--=k k k k k d ,解得125=k ,所以直线方程为)4(125-=x y ,即020125=--y x .综上满足条件的直线方程为020125=--y x 或4=x .14.或解析:∵直线过定点,当直线处在直线与之间时,必与线段相交,故应满足或,即或. 15.2x +3y +1=0解析:由条件可得2a 1+3b 1+1=0,2a 2+3b 2+1=0,显然点(a 1,b 1)与(a 2,b 2)均在直线上. 16.25解析:1C 的坐标为),,(340,253452221=++=AC 或由已知可得该长方体从同一顶点出发的棱长分别为3,4,5.三、计算题17.解:因为圆C 的方程可化为:()2241x y -+=,所以圆C 的圆心为(4,0),半径为1.由题意,直线2y kx =-上至少存在一点00(,2)A x kx -,以该点为圆心,1为半径的圆与圆C 有公共点, 所以存在,使得11AC ≤+成立,即min 2AC ≤. 因为min AC 即为点C 到直线2y kx =-的距离2421k k -+,24221k k -≤+,解得403k ≤≤. 所以k 的最大值是43. 18.解:设A (m,2m -2),B (n ,-n -3).∵线段AB 的中点为P (3,0),∴⎩⎪⎨⎪⎧m +n =6,(2m -2)+(-n -3)=0,∴⎩⎪⎨⎪⎧m +n =6,2m -n =5,∴⎩⎪⎨⎪⎧m =113,n =73.∴A (113,163).∴直线的斜率k =163-0113-3=8,∴直线的方程为y -0=8(x -3),即8x -y -24=0.19.(1)证明:由直线l :ay =(3a -1)x -1,得a (3x -y )+(-x -1)=0,由⎩⎪⎨⎪⎧ 3x -y =0-x -1=0,得⎩⎪⎨⎪⎧x =-1y =-3, 所以直线l 过定点(-1,-3),因此直线总过第三象限.(2)解:直线不过第二象限,应有斜率k =3a -1a ≥0且-1a≤0.∴时直线l 不过第二象限.20.(1)证明:(2+m )x +(1-2m )y +4-3m =0可化为(x -2y -3)m =-2x -y -4.由⎩⎪⎨⎪⎧ x -2y -3=0-2x -y -4=0得⎩⎪⎨⎪⎧x =-1y =-2,∴直线必过定点(-1,-2). (2)解:设直线的斜率为k ,则其方程为y +2=k (x +1),∴OA =2k-1,OB =k -2,S △AOB =12·|OA |·|OB |=12|(2k -1)(k -2)|=12|-(k -2)2k|.∵k <0,∴-k >0,∴S △AOB =12[-(k -2)2k ]=12[4+(-4k)+(-k )]≥4.当且仅当-4k=-k ,即k =-2时取等号,∴△AOB 的面积最小值是4,直线的方程为y +2=-2(x +1),即y +2x +4=0.21.解:(1)设,则由已知,得(a -1)2+(-2)2+12=(a -2)2+22,即a 2-2a +6=a 2-4a +8.解得a =1.所以P 点的坐标为(1,0,0).(2)设M (x,0,z ),则有(x -1)2+(-2)2+(z +1)2=(x -2)2+(z -2)2. 整理得,即.故M 点的轨迹是xOz 平面内的一条直线.。

新北师大版高中数学必修二第二章《解析几何初步》测试卷(答案解析)(2)

新北师大版高中数学必修二第二章《解析几何初步》测试卷(答案解析)(2)

一、选择题1.已知圆22:1,O x y +=点()00,P x y 在直线20x y --=上,O 为坐标原点.若圆上存在点Q 使得30OPQ ∠=,则0x 的取值范围为( )A .[]1,1-B .[]0,1C .[]0,2D .[]22-,2.已知半径为2的圆经过点()5,12,则其圆心到原点的距离的最小值为( ) A .9 B .11 C .13 D .153.已知半径为1的圆经过直线2110x y +-=和直线220x y --=的交点,那么其圆心到原点的距离的最大值为( )A .4B .5C .6D .74.如图,棱长为4的正四面体ABCD ,M ,N 分别是AB ,CD 上的动点,且3MN =,则MN 中点的轨迹长度为( )A .23πB .2πC .2πD .π5.在圆M :224410x y x y +---=中,过点N (1,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .67B .127C .24D .66.已知过点()2,1P 的直线l 与x 轴正半轴和y 轴正半轴分别交于A ,B 两点,当PA PB ⋅最小时,直线l 的方程为( )A .24x y +=B .3x y +=C .25x y +=D .35x y += 7.在空间四边形ABCD 中,AB BC =,AD DC =,则对角线AC 与BD 所成角的大小是( )A .90︒B .60︒C .45︒D .308.一个底面为正三角形的棱柱的三视图如图所示,若在该棱柱内部放置一个球,则该球的最大体积为( )A .6πB .12πC .43πD .83π 9.下图中小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该四棱锥的体积为( )A .64B .48C .32D .1610.在下面四个正方体ABCD A B C D ''''-中,点M 、N 、P 均为所在棱的中点,过M 、N 、P 作正方体截面,则下列图形中,平面MNP 不与直线A C '垂直的是( ) A . B .C .D .11.在正方体1111ABCD A BC D -中,三棱锥11A B CD -的表面积为43球的体积为( )A .43πB 6πC .323πD .86π 12.设m 、n 是两条不同的直线,α是平面,m 、n 不在α内,下列结论中错误的是( )A .m α⊥,//n α,则m n ⊥B .m α⊥,n α⊥,则//m nC .m α⊥,m n ⊥,则//n αD .m n ⊥,//n α,则m α⊥ 二、填空题13.以下四个命题中:①直线()32y ax a a R =-+∈必过定点()3,2;②直线310x y ++=的倾斜角为60︒,③将一组数据中的每个数据都乘以同一个非零常数a 后,方差也变为原来的a 倍;④基本事件空间是{}1,2,3,4,5,6Ω=,若事件{}1,2A =,{}4,5,6B =,A ,B 为互斥事件,但不是对立事件.其中正确的是________.14.已知P 是直线4100(0)kx y k +-=>上的动点,,PA PB 是圆22:2440C x y x y +-++=的两条切线,,A B 是切点,C 是圆心,若四边形PACB 的面积的最小值为22k 的值为____________.15.圆22440x y y +--=上恰有两点到直线0x y a -+=2a 的取值范围是______.16.2020年是中国传统的农历“鼠年”,有人用3个圆构成“卡通鼠”的形象,如图:(0,3)Q -是圆Q 的圆心,圆Q 过坐标原点O ;点L 、S 均在x 轴上,圆L 与圆S 的半径都等于2,圆S 、圆L 均与圆Q 外切.已知直线l 过点O .(1)若直线l 与圆L 、圆S 均相切,则l 截圆Q 所得弦长为__________;(2)若直线l 截圆L 、圆S 、圆Q 所得弦长均等于d ,则d =__________.17.在平面直角坐标系xoy 中,ABC ∆的坐标分别为()1,1A --,()2,0B ,()1,5C ,则BAC ∠的平分线所在直线的方程为_______18.若点()1,1P 为圆()2239x y -+=的弦MN 的中点,则弦MN 所在直线方程为__________.19.如图,点E 是正方体1111ABCD A BC D -的棱1DD 的中点,点M 在线段1BD 上运动,则下列结论正确的有__________.①直线AD 与直线1C M 始终是异面直线②存在点M ,使得1B M AE ⊥③四面体EMAC 的体积为定值④当12D M MB =时,平面EAC ⊥平面MAC20.张衡(78年~139年)是中国东汉时期伟大的天文学家、文学家、数学家、地理学家,他的数学著作有《算罔论》,他曾经得出结论:圆周率的平方除以十六等于八分之五,已知正方体的外接球与内切球上各有一个动点A ,B ,若线段AB 31,利用张衡的结论可得该正方体的内切球的表面积为___________.21.正方体1111ABCD A BC D -棱长为点1,点E 在边BC 上,且满足2BE EC =,动点P 在正方体表面上运动,满足1PE BD ⊥,则动点P 的轨迹的周长为__________. 22.已知四棱锥P ABCD -的底面ABCD 为矩形,且所有顶点都在球O 的表面上,侧面PAB ⊥底面ABCD ,23PA PB ==,120APB ∠=︒,4=AD ,则球O 的表面积为_______.23.在直三棱柱111ABC A B C -中,90ABC ∠=︒,13AA =,设其外接球的球心为O ,已知三棱锥O ABC -的体积为3,则球O 表面积的最小值为______.24.在矩形ABCD 中,1AB =,3AD =.将BCD 沿对角线BD 翻折,得到三棱锥A BCD -,则该三棱锥外接球的表面积为________.三、解答题25.如图所示,四棱锥P ABCD -的底面ABCD 是平行四边形,90DBA ∠=︒,2BA BD ==,10,,PA PD E F ==分别是棱,AD PC 的中点.(1)证明://EF 平面PAB ;(2)若二面角P AD B --为60︒,求点B 到平面PAD 的距离.26.如图,四棱锥P ABCD -的底面ABCD 是边长为2的菱形,60BCD ∠=,已知2PB PD ==,6PA =,E 为PA 的中点.(1)求证:PC BD ⊥;(2)求二面角B PC E --的余弦值;(3)求三棱锥P BCE -的体积.27.如图,在多面体ABCDEF 中,底面ABCD 为菱形,且∠DAB =π3,AB =2,EF //AC ,EA =ED 3BE 5(1)求证:平面EAD ⊥平面ABCD ;(2)求三棱锥F -BCD 的体积.28.如图,已知长方体1111ABCD A BC D -,2AB =,11AA =,直线BD 与平面1AAB B 所成的角为30°,AE 垂直BD 于E .(1)若F 为棱11A B 上的动点,试确定F 的位置使得//AE 平面1BC F ,并说明理由; (2)若F 为棱11A B 上的中点;求点A 到平面BDF 的距离;(3)若F 为棱11A B 上的动点(端点1A ,1B 除外),求二面角F BD A --的大小的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据圆的切线的性质,可知当过P 点作圆的切线,切线与OP 所成角是圆上的点与OP 所成角的最大值,只需此角大于等于30即可,此时半径,切线与OP 构成直角三角形,由切线与OP 所成角大于等于30可得OP 小于等于半径的2倍,再用含0x 的式子表示OP ,即可求出0x 的取值范围.【详解】设过P 的C 的切线切点为R ,根据圆的切线性质,有30OPR OPQ ∠∠=︒.反过来,如果30OPR ∠︒,则存在C 上点Q 使得30OPQ ∠=︒. ∴若圆C 上存在点Q ,使30OPQ ∠=︒,则30OPR ∠︒||1OR =,||2OP ∴>时不成立,||2OP ∴.222222000000||(2)244OP x y x x x x =+=+-=-+200240x x ∴-,解得,0002x x ∴的取值范围是[0,2]故选:C .【点睛】本题主要考查了直线与圆相切时切线的性质,以及一元二次不等式的解法,综合考查了学生的转化能力,计算能力.2.B解析:B【分析】设圆心坐标为(),a b ,则圆的圆心轨迹方程()()225124a b -+-=,再利用点与点的距离公式求解【详解】半径为2的圆经过点()5,12,设圆心坐标为(),a b ,则其方程为()()224x a y b -+-= , 由其过点()5,12,则()()225124a b -+-=,即()()225124a b -+-= 可得该圆的圆心轨迹是以()5,12为圆心,2为半径的圆,故圆心到原点的距离的最小值为()5,12到原点的距离减半径,213211=-=,故选:B .【点睛】关键点睛:本题考查轨迹问题和点与圆上的点的距离的最值,解答本题的关键是由题意得到圆心的轨迹方程()()225124a b -+-=,再根据点与圆上的点的距离的最值的求法得出答案,属于中档题. 3.C解析:C【分析】设出圆的方程,求出直线交点代入圆可得圆心在以()3,4为圆心,1为半径的圆上,即可由此求出最值.【详解】设圆的方程为()()221x a y b -+-=, 联立直线方程2110220x y x y +-=⎧⎨--=⎩,解得34x y =⎧⎨=⎩,将()3,4代入圆得()()22341a b -+-=, 则可得圆心(),a b 在以()3,4为圆心,1为半径的圆上,则()3,4到原点的距离为22345+=,则圆心(),a b 到原点的距离的最大值为516+=. 故选:C.【点睛】关键点睛:本题考查与圆相关的距离的最值问题,解题的关键是得出圆心的轨迹是以()3,4为圆心,1为半径的圆,再求出轨迹圆的圆心到原点的距离,加上半径即可. 4.D解析:D 【分析】把正四面体放在正方体中,建立空间直角坐标系,利用空间两点间距离公式、中点坐标公式以及圆的标准方程进行求解即可.【详解】把正四面体ABCD 放在正方体AFCE HBGD -中,并建立如图所示的空间直角坐标系, 设该正方体的棱长为a ,因为正四面体ABCD 的棱长为422422a a a +=⇒= 因此相应点的坐标为:(0,00),(22,0,22),(22,22,0),(0,22,22)D A B C ,, 因为N 是CD 上的动点,所以设点N 的坐标为:(0,,)n n ,设AM mAB =,000(,,)M x y z ,因此有000(22,,22)(0,22,22)x y z m --=-, 因此00022,22,2222x y m z m ===,设MN 中点为(,,)P x y z ,因此有:2(1)22xxy n yn znz⎧=⎪⎧⎪=⎪⎪⎪⎪=⇒+=⎨⎨⎪⎪-=⎪⎪⎩+=⎪⎪⎩,因为3MN=,3=,化简得:22))1(2)n n-+-=,把(1)代入(2)中得:221((4y z+=,显然MN中点的轨迹是圆,半径为12,圆的周长为:122ππ⋅=.故选:D【点睛】关键点睛:利用正方体这个模型,结合解析法是解题的关键.5.A解析:A【分析】先求得圆的圆心和半径,易知最长弦为直径,最短弦为过点()1,1与AC(直径)垂直的弦,再求得BD的长,可得面积.【详解】由224410x y x y+---=可得:22(2)(2)9x y-+-=,故圆心为(2,2),半径为3r=,由N()1,1为圆内点可知,过N(1,1)最长弦为直径,即AC=6而最短弦为过()1,1与AC垂直的弦,圆心(2,2)到()1,1的距离:d==所以BD==所以四边形ABCD的面积:12S AC BD=⋅=故选:A【点睛】本题考查了直线与圆,圆的方程,圆的几何性质,面积的求法,属于中档题.6.B解析:B【分析】 由题意结合三角函数的知识可得1sin PA θ=,2cos PB θ=,结合正弦的二倍角公式可得4sin 2PA PB θ⋅=,求出θ后即可得直线的斜率,再由点斜式即可得解. 【详解】 设()090BAO θθ∠=<<,如图:则1sin PA θ=,2cos PB θ=, 所以124sin cos sin 2PA PB θθθ⋅=⋅=, 所以当290θ=即45θ=时,PA PB ⋅最小,此时,直线的倾斜角为135,斜率tan1351k ==-,所以直线l 的方程为()12y x -=--即3x y +=.故选:B.【点睛】本题考查了三角函数、三角恒等变换的应用,考查了直线方程的求解,关键是合理转化条件,属于中档题.7.A解析:A 【分析】取AC 中点O ,根据条件分析AC 与平面BOD 的位置关系,由此得到异面直线AC 与BD 所成角的大小.【详解】取AC 中点O ,连接,,BO DO BD ,如图所示:因为AB BC =,AD DC =,所以,BO AC DO AC ⊥⊥,且BODO O =, 所以AC ⊥平面BOD ,又BD ⊂平面BOD ,所以AC BD ⊥,所以AC 与BD 所成角为90︒, 故选:A.【点睛】关键点点睛:解答问题的关键是通过找AC 中点证明线面垂直,从而确定出线线垂直关系,和常规的求解异面直线所成角的方法不同.8.C解析:C 【分析】先由三视图计算底面正三角形内切圆的半径,内切圆的直径和三棱柱的高比较大小,确定球的半径的最大值,计算球的最大体积. 【详解】由三视图知该直三棱柱的高为4,底面正三角形的高为33半径为高的三分之一,即3r =234,所以该棱柱内部可放置球的半径的最大3343433V ππ==.故选:C 【点睛】关键点点睛:本题的第一个关键是由三视图确定底面三角形的高是33定球的最大半径.9.C解析:C 【分析】在长方体中还原三视图后,利用体积公式求体积. 【详解】根据三视图还原后可知,该四棱锥为镶嵌在长方体中的四棱锥P -ABCD (补形法) 且该长方体的长、宽、高分别为6、4、4, 故该四棱锥的体积为1(64)4323V =⨯⨯⨯=. 故选C . 【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图 ;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整;(2)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.10.A解析:A 【分析】利用线面垂直的判定定理可判断BCD 选项,利用假设法推出矛盾,可判断A 选项. 【详解】对于A 选项,连接B C ',假设A C '⊥平面MNP ,在正方体ABCD A B C D ''''-中,A B ''⊥平面BB C C '',B C '⊂平面BB C C '',A B B C '''∴⊥,所以,A B C ''为直角三角形,且A CB ''∠为锐角,因为M 、N 分别为BB '、BC 的中点,则//MN B C ',所以,MN 与A C '不垂直, 这与A C '⊥平面MNP 矛盾,故假设不成立,即A C '与平面MNP 不垂直; 对于B 选项,连接B D ''、A C '',如下图所示:因为四边形A B C D ''''为正方形,则A C B D ''''⊥,CC '⊥平面A B C D '''',B D ''⊂平面A B C D '''',CC B D '''∴⊥,A C CC C ''''=,B D ''∴⊥平面A CC '',A C '⊂平面A CC '',ACB D '''∴⊥,M 、P 分别为A B ''、A D ''的中点,则//MN B D '',可得MP A C '⊥, 同理可证A C MN '⊥,MP MN M ⋂=,A C '∴⊥平面MNP ;对于C 选项,连接C D '、A N '、CN 、A P '、PC ,取A B ''的中点E ,连接C E '、PE ,因为四边形CC D D ''为正方形,则CD C D ''⊥,A D ''⊥平面CC D D '',C D '⊂平面CC D D '',C D A D '''∴⊥, CD A D D ''''=,C D '∴⊥平面A CD '',A C '⊂平面A CD '',A C C D ''∴⊥,M 、N 分别为DD '、C D ''的中点,//MN C D '∴,A C MN '∴⊥,在正方形A B C D ''''中,E 、N 分别为A B ''、C D ''的中点,//A E C N ''∴且A E C N ''=, 所以,四边形A EC N ''为平行四边形,所以,//A N C E ''且A N C E ''=, 同理可证四边形CC EP '为平行四边形,//C E CP '∴且C E CP '=, 所以,//A N CP '且A N CP '=,所以,四边形A PCN '为平行四边形, 易得A N CN '=,所以,四边形A PCN '为菱形,所以,A C PN '⊥,MN PN N =,A C '∴⊥平面MNP ;对于D 选项,连接AC 、BD ,因为四边形ABCD 为正方形,则AC BD ⊥,AA '⊥平面ABCD ,BD ⊂平面ABCD ,AA BD '∴⊥,AC AA A '⋂=,BD ∴⊥平面AAC ', A C '⊂平面AAC',A C BD '∴⊥, M 、N 分别为CD 、BC 的中点,则//MN BD ,A C MN '∴⊥,同理可证A C MP '⊥,MN MP M ⋂=,A C '∴⊥平面MNP .故选:A. 【点睛】方法点睛:证明线面垂直的方法: 一是线面垂直的判定定理; 二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.11.B解析:B 【分析】根据三棱锥的表面积进一步求出正方体的棱长,最后求出正方体的外接球的半径,进一步求出结果. 【详解】解:设正方体的棱长为a ,则1111112B D AC AB AD B C D C a ======, 由于三棱锥11A B CD -的表面积为43 所以)1213344224AB CS S a==⨯=所以2a =()()()2222226++=, 所以正方体的外接球的体积为34663ππ⎛⎫= ⎪ ⎪⎝⎭故选:B . 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.12.D解析:D 【分析】利用线面平行的性质定理和线面垂直的定义可判断A 选项的正误;由线面垂直的性质定理可判断B 选项的正误;根据已知条件判断直线n 与平面α的位置关系,可判断C 选项的正误;根据已知条件判断直线m 与平面α的位置关系,可判断D 选项的正误. 【详解】 对于A ,//n α,由线面平行的性质定理可知,过直线n 的平面β与平面α的交线l 平行于n ,m α⊥,l α⊂,m l ∴⊥,m n ∴⊥,故A 正确;对于B ,若m α⊥,n α⊥,由直线与平面垂直的性质,可得//m n ,故B 正确; 对于C ,若m α⊥,m n ⊥,则//n α或n ⊂α,又n α⊄,//n α∴,故C 正确; 对于D ,若m n ⊥,//n α,则//m α或m 与α相交或m α⊂, 而m α⊄,则//m α或m 与α相交,故D 错误. 故选:D . 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.二、填空题13.①④【分析】根据直线方程直线的倾斜角的定义方差公式对立事件的概念分别判断各命题【详解】①直线中令则∴直线必过定点①正确;②直线的斜率为倾斜角为②错误;③将一组数据中的每个数据都乘以同一个非零常数a 后解析:①④ 【分析】根据直线方程,直线的倾斜角的定义,方差公式,对立事件的概念分别判断各命题. 【详解】①直线()32y ax a a R =-+∈中,令3x =,则2y =,∴直线必过定点()3,2,①正确;②10y ++=的斜率为k =120︒,②错误;③将一组数据中的每个数据都乘以同一个非零常数a 后,方差变为原来的2a 倍,③错误;④基本事件空间是{}1,2,3,4,5,6Ω=,若事件{}1,2A =,{}4,5,6B =,A ,B 不可能同时发生,为互斥事件,但事件3发生时,,A B 都不发生.因此它们不是对立事件,④正确. 故答案为:①④ 【点睛】本题考查命题的真假判断,掌握直线方程,直线的倾斜角,方差,对立事件等概念是解题关键.本题属于中档题.14.3【分析】由面积关系与勾股定理将已知面积转化为由表示再由点到直线的距离公式求得最小值最后由面积的最小值构建方程求得参数【详解】由题可知四边形又因为所以四边形的面积的最小值为故答案为:3【点睛】本题考解析:3 【分析】由面积关系与勾股定理将已知面积转化为由PC 表示,再由点到直线的距离公式求得PC 最小值,最后由面积的最小值构建方程求得参数. 【详解】由题可知,S 四边形1222PACE PAC S PA AC r ==⨯==,又因为min C l PC d -===所以四边形PACB 的面积的最小值为2221812234k k k ⎛⎫--=⇒= ⎪+⎝⎭故答案为:3 【点睛】本题考查利用直线与圆相切的位置关系转化所求面积,还考查点与直线的最小距离,属于中档题.15.【分析】由与直线的距离为的两条平行线一条与圆相交一条与圆相离可得【详解】圆标准方程为圆心为半径为圆心到已知直线的距离为由题意解得或故答案为:【点睛】本题考查直线与圆的位置关系利用圆心到直线的距离判断 解析:()()4,04,8-【分析】由与直线0x y a -+=2 【详解】圆标准方程为22(2)8x y +-=,圆心为(0,2)C ,半径为22r =圆心C 到已知直线的距离为02222aa d -+-==,由题意2222222222a a ⎧-+>⎪⎪⎨-<,解得40a 或48a <<.故答案为:(4,0)(4,8)-.【点睛】本题考查直线与圆的位置关系,利用圆心到直线的距离判断直线与圆的位置关系是常用方法.16.【分析】(1)设出公切线方程利用圆心到直线的距离等于半径列出方程求解即可;(2)设出方程分别表示出圆心到直线的距离结合弦长公式求得即可【详解】解:(1)根据条件得到两圆的圆心坐标分别为设公切线方程为 解析:125【分析】(1)设出公切线方程,利用圆心到直线的距离等于半径列出方程求解即可; (2)设出方程,分别表示出圆心到直线的距离1d =,2d =,3d =,结合弦长公式求得k ,m 即可【详解】解:(1)根据条件得到两圆的圆心坐标分别为(4,0)-,(4,0),设公切线方程为(0)y kx m k =+≠且k存在,则22==,解得k =,0m =,故公切线方程为y =,则Q 到直线l的距离d =, 故l 截圆Q的弦长3=; (2)设方程为(0)y kx m k =+≠且k 存在,则三个圆心到该直线的距离分别为:1d =,2d =,3d =,则22221234(4)4(4)4(9)d d d d =-=-=-,即有22=,①2249-=-,②解①得0m =,代入②得2421k =, 则2416144214(4)425121d ⨯=-=+,即125d =, 故答案为:3;125. 【点睛】本题考查直线与圆的位置关系,圆与圆的位置关系,公切线方程,方程思想,数形结合思想,属于中档题.17.【分析】设的平分线与交于根据角平分线与面积关系求出利用共线向量坐标关系求出点坐标即可求解【详解】设的角平分线与交于解得所以的平分线方程为故答案为:【点睛】本题考查角平分线方程向量共线坐标应用角平分线 解析:0x y -=【分析】设BAC ∠的平分线与BC 交于D ,根据角平分线与面积关系求出||||CD DB ,利用共线向量坐标关系,求出D 点坐标,即可求解.【详解】设BAC ∠的角平分线与BC 交于(,)D a b ,1||||sin ||210||221||||10||||sin 2ACD ABD AC AD CAD S AC CD S AB DB AB AD BAD ⋅⋅∠∴=====⋅⋅∠,2,(1,5)2(2,)CD DB a b a b ∴=--=--,解得55,33a b ==,55(,)33D ∴,所以BAC ∠的平分线AD 方程为0x y -=.故答案为:0x y -=.【点睛】本题考查角平分线方程、向量共线坐标,应用角平分线性质是解题的关键,属于中档题.18.【分析】先求出直线MN 的斜率再写出直线的点斜式方程得解【详解】∵为圆的弦的中点∴圆心与点确定的直线斜率为∴弦所在直线的斜率为2则弦所在直线的方程为即故答案为:【点睛】本题主要考查直线和圆的位置关系考 解析:210x y --=【分析】先求出直线MN 的斜率,再写出直线的点斜式方程得解. 【详解】∵()1,1P 为圆()2239x y -+=的弦MN 的中点,∴圆心与点P 确定的直线斜率为101132-=--, ∴弦MN 所在直线的斜率为2,则弦MN 所在直线的方程为()121y x -=-,即210x y --=. 故答案为:210x y --= 【点睛】本题主要考查直线和圆的位置关系,考查直线的方程的求法,意在考查学生对这些知识的理解掌握水平.19.②③④【分析】取点为线段的中点可判断①建立空间直角坐标系假设存在点使得利用解出的值即可判断②;连接交于点证明线段到平面的距离为定值可判断③;求出点的坐标然后计算平面和平面的法向量即可判断④【详解】对解析:②③④. 【分析】取点M 为线段1BD 的中点可判断①,建立空间直角坐标系假设存在点M ,使得1B M AE ⊥,利用()1110AE B M AE B B BD λ⋅=⋅+=解出λ的值即可判断②;连接AC 、BD 交于点1O ,证明11//EO BD ,线段1BD 到平面AEC 的距离为定值,可判断③;求出点M 的坐标,然后计算平面AEC 和平面MAC 的法向量,即可判断④. 【详解】对于①:连接1AC 交1BD 于点O ,当点M 在O 点时直线AD 与直线1C M 相交,故①不正确,以D 为坐标原点,建立如图所示的空间直角坐标系,设正方体的边长为2,则()0,0,0D ,()10,0,2D ,()2,0,0A ,()0,2,0C ,()0,0,1E ,()2,2,0B ,()12,2,2B ,对于②:()2,0,1AE =-,假设存在点M ,使得1B M AE ⊥,()()()1110,0,22,2,22,2,22B M B B BD λλλλλ=+=-+--=---,[]0,1λ∈,所以14220AE B M λλ⋅=+-=,解得13λ=,所以当12D M MB =时1B M AE ⊥, 故②正确;对于③:连接AC 、BD 交于点1O ,因为点E 是棱1DD 的中点,此时11//EO BD ,故线段1BD 到平面AEC 的距离为定值,所以四面体EMAC 的体积为定值,故③正确;对于④:当12D M MB =时,442,,333M ⎛⎫ ⎪⎝⎭,()2,0,1AE =-,()2,2,0AC =-,设平面AEC 的法向量为()111,,m x y z =,由111120220m AE x z m AC x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩令12z =,可得11x =,11y =,可得()1,1,2m =,设平面MAC 的法向量为()222,,n x y z =,242,,333MA ⎛⎫=-- ⎪⎝⎭,由222222202420333n AC x y n MA x y z ⎧⋅=-+=⎪⎨⋅=--=⎪⎩解得:20y =,令 21x =可得22z =,所以1,1,1n,因为1111120m n ⋅=⨯+⨯-⨯=,m n ⊥所以平面EAC ⊥平面MAC ,故④正确; 故答案为:②③④. 【点睛】方法点睛:证明面面垂直的方法(1)利用面面垂直的判定定理,先找到其中一个平面的一条垂线,再证明这条垂线在另外一个平面内或与另外一个平面内的一条直线平行即可; (2)利用性质://,αββγαγ⊥⇒⊥(客观题常用); (3)面面垂直的定义(不常用);(4)向量方法:证明两个平面的法向量垂直,即法向量数量积等于0.20.【分析】设正方体的棱长为正方体的内切球半径为正方体的外接球半径再由已知条件和球的表面积公式可得答案【详解】设正方体的棱长为正方体的内切球半径为正方体的外接球半径满足:则由题意知:则该正方体的内切球的 解析:【分析】设正方体的棱长为a ,正方体的内切球半径为2a r =,正方体的外接球半径2R =,再由已知条件和球的表面积公式可得答案. 【详解】设正方体的棱长为a ,正方体的内切球半径为2a r =, 正方体的外接球半径R 满足:222222a R a ⎛⎫⎛⎫=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,则3R a =. 由题意知:3312aR r a -=-=-,则2a =,3R =, 该正方体的内切球的表面积为4π,又因为圆周率的平方除以十六等于八分之五,即25168π=,所以10π=, 所以内切球的表面积为410 故答案为:410 【点睛】关键点点睛:本题考查正方体的外接球和内切球问题,考查空间几何新定义,解决本题的关键点是利用正方体的外接球半径,内切球半径和正方体面对角线的一半组成勾股定理,得出正方体内切球半径,进而得出表面积,考查学生空间想象能力和计算能力,属于中档题.21.【分析】根据题意得平面在上取使得连接证得平面平面将空间中的动点轨迹的周长问题转化为求三角形边周长问题又代入计算即可【详解】解:如图正方体中连接:易得平面在上取使得连接易得根据线面平行判定定理证得平面解析:2. 【分析】根据题意得1BD ⊥平面1ABC ,在1,BB AB 上取,F G 使得12,2BF FB AG GB ==连接,,GE EF GF 证得平面1//AB C 平面EFG ,将空间中的动点P 轨迹的周长问题转化为求三角形EFG 边周长问题,又2GE EF GF ===,代入计算即可. 【详解】解:如图正方体中连接11,,AC B C B A :易得1BD ⊥平面1ABC ,在1,BB AB 上取,F G 使得12,2BF FB AG GB == 连接,,GE EF GF ,易得1//,//GE AC EF BC 根据线面平行判定定理证得平面1//AB C 平面EFG 所以1BD ⊥平面EFG所以线段,,GE EF GF 就是点P 的运动轨迹,因为133GE EF GF ====所以动点P 的运动轨迹周长为3GE EF GF ++==【点睛】关键点点睛:本题考查线面垂直,面面平行的概念,解题的关键是借助图形将空间问题转化为平面问题.本题中根据1BD ⊥平面1ABC 及平面1//ABC 平面EFG 得到线段,,GE EF GF 就是点P 的运动轨迹,代值计算即可.22.【分析】首先利用垂直关系和底面和侧面外接圆的圆心作出四棱锥外接球的球心再计算外接球的半径以及球的表面积【详解】连结交于点取中点连结并延长于点点是外接圆的圆心侧面底面侧面底面平面过点作平面侧面所以点是 解析:64π【分析】首先利用垂直关系和底面ABCD 和侧面ABCD 外接圆的圆心,作出四棱锥P ABCD -外接球的球心,再计算外接球的半径,以及球O 的表面积. 【详解】连结,AC BD ,交于点M ,取AB 中点N 连结AN ,MN ,并延长于点E ,点E 是PAB △外接圆的圆心,侧面PAB ⊥底面ABCD ,侧面PAB 底面ABCD AB =,MN AB ⊥MN ∴⊥平面PAB ,过点M 作MO ⊥平面ABCD ,//EO MN ,EO ∴⊥侧面PAB ,所以点O 是四棱锥P ABCD -外接球的球心,可知四边形MNEO 是矩形,右图,PA PB ==,120APB ∠=,2cos306AB PB ∴==, 点E 是PAB △外接圆的圆心,sin303PN PB ∴==,PBE △是等边三角形,PE =NE ∴==MO ∴=2211641322MC AC ==+=, 223134R OC MO MC ∴==+=+=, ∴球O 的表面积2464S R ππ==故答案为:64π 【点睛】本题考查了球与几何体的综合问题,考查空间想象能力以及化归和计算能力,(1)当三棱锥的三条侧棱两两垂直时,并且侧棱长为,,a b c ,那么外接球的直径2222R a b c =++2)当有一条侧棱垂直于底面时,先找底面外接圆的圆心,过圆心做底面的垂线,球心在垂线上,根据垂直关系建立R 的方程.(3)而本题类型,需要过两个平面外接圆的圆心作面的垂线,垂线的交点就是球心.23.【分析】设球的半径为连接交于点取中点连接即为三棱柱外接球球心根据三棱锥体积可得间关系表示出根据基本不等式可求得的最小值从而得到球的表面积的最小值【详解】如图因为三棱柱是且设球的半径为连接交于点取中点 解析:27π【分析】 设ABa ,BCb =,球的半径为r ,连接1AC ,1AC 交于点O ,取AC 中点D ,连接BD ,即O 为三棱柱外接球球心,根据三棱锥体积可得a b ,间关系,表示出r ,根据基本不等式可求得r 的最小值,从而得到球的表面积的最小值.【详解】如图,因为三棱柱111ABC A B C -是 ,且90ABC ∠=︒, 设ABa ,BCb =,球的半径为r ,连接1AC ,1AC 交于点O ,取AC 中点D ,连接BD ,则O 到三棱柱六个定点的距离相等,即O 为三棱柱外接球球心,1132OD AA ==, 又因为三棱锥O ABC -3 即1133322ab ⨯⨯=12ab =, 所以222222313332224a b r AD OD ab ⎛⎫⎛⎫+=+=+≥+=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 当且仅当a b =时等号成立,所以球O 的表面积最小值为2427S r ππ==, 故答案为:27π. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.24.【分析】作出图示求得外接球的半径由球的表面积可求得答案【详解】作出图示因为在矩形ABCD 中则连接交于点则设该三棱锥外接球的半径为则所以该三棱锥外接球的表面积故答案为:【点睛】本题考查三棱锥的外接球的 解析:4π。

北师大版高中数学必修二第二章《解析几何初步》检测(含答案解析)(2)

北师大版高中数学必修二第二章《解析几何初步》检测(含答案解析)(2)

一、选择题1.若圆C:222430x y x y ++-+=关于直线260ax by ++=对称,则由点(,)a b 向圆所作的切线长的最小值是( ) A .2B .4C .3D .62.已知直线x +y -k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,O 为坐标原点,且33OA OB AB +≥,则k 的取值范围是( )A .)+∞B .C .)+∞D .3.已知点(3,2)P ,点M 是圆221:(1)1C x y -+=上的动点,点N 是222:(2)1C x y +-=上的动点,则||||PN PM -的最大值是( )A .5-B .5+C .2D .3-4.已知圆1C :22(1)(6)25x y ++-=,圆2C :222(17)(30)x y r -+-=.若圆2C 存在一点P ,使得过点P 可作一条射线与圆1C 依次交于A 、B 两点,且满足||2||PA AB =,则半径r 的取值范围是( ) A .[5,55]B .[5,50]C .[10,50]D .[10,55]5.已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( )A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=6.在直角坐标平面内,过定点P 的直线:10l ax y +-=与过定点Q 的直线:30m x ay -+=相交于点M ,则22||||MP MQ +的值为( )A .2BC .5D .107.正方体1111ABCD A BC D -的棱长为2,E 是1CC 的中点,则点1C 到平面EBD 的距离为( )A B C D8.如图,正三棱柱111ABC A B C -的高为4,底面边长为D 是11B C 的中点,P 是线段1A D 上的动点,过BC 作截面AP α⊥于E ,则三棱锥P BCE -体积的最小值为( )A .3B .23C .43D .129.已知长方体1111ABCD A BC D -的顶点A ,B ,C ,D ,在球O 的表面上,顶点1A ,1B ,1C ,1D ,在过球心O 的一个平面上,若6AB =,8AD =,14AA =,则球O 的表面积为( ) A .169πB .161πC .164πD .265π10.在四棱锥P -ABCD 中,//AD BC ,2AD BC =,E 为PD 中点,平面ABE 交PC 于F ,则PFFC=( ) A .1B .32C .2D .311.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径意思是:球的体积V 乘16,除以9,再开立方,即为球的直径d ,由此我们可以推测当时球的表面积S 计算公式为( ) A .2278S d =B .2272S d =C .292S d =D .21114S d =12.已知在底面为菱形的直四棱柱1111ABCD A BC D -中,14,42AB BD ==,若60BAD ︒∠=,则异面直线1BC 与1AD 所成的角为( )A .90︒B .60︒C .45︒D .30︒二、填空题13.关于x 的方程29(3)4x k x -=-+有两个不同的实数解时,实数k 的取值范围是_______14.数学家默拉在1765年提出定理,三角形的外心,重心,垂心(外心是三角形三条边的垂直平分线的交点重心是三角形三条中线的交点,垂心是三角形三条高的交点)依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线,已知△ABC 的顶点(1,0),(0,3),B C AB AC -=,则△ABC 的欧拉线方程为____________________15.已知直线():0l x ay a R +=∈是圆22:4210C x y x y +--+=的一条对称轴,过点()1,P a -的直线m 与圆C 交于,A B 两点,且AB 4=,则直线m 的斜率为____.16.已知圆()2221x y +-=上一动点A ,定点()6,1B ,x 轴上一点W ,则AW BW+的最小值等于______.17.小明在解题中发现函数()32x f x x -=-,[]0,1x ∈的几何意义是:点(),x x []()0,1x ∈与点()2,3连线的斜率,因此其值域为3,22⎡⎤⎢⎥⎣⎦,类似地,他研究了函数()32x g x x -=-,[]0,1x ∈,则函数()g x 的值域为_____18.若圆1C :220x y ax by c 与圆2C :224x y +=关于直线21y x =-对称,则c =______.19.在正三棱锥P ABC -中,E ,F 分别为棱PA ,AB 上的点,3PE EA =,3BF FA =,且CE EF ⊥.若23PB =,则三棱锥P ABC -的外接球的体积为_________.20.如图①,矩形ABCD 中,2AB =,4=AD ,E 是BC 的中点,将三角形ABE 沿AE 翻折,使得平面ABE 和平面AECD 垂直,如图②,连接BD ,则异面直线BD 和AE 所成角的余弦值为______.21.如图,在四棱柱1111ABCD A BC D -中,底面ABCD 是正方形,1AA ⊥平面ABCD ,且2AB BC ==,13AA =,经过顶点A 作一个平面α,使得//α平面11CB D ,若α平面1ABCD l =,α平面112ABB A l =,则异面直线1l 与2l 所成的角的余弦值为___________.22.如图①,一个圆锥形容器的高为2a ,内装有一定量的水.如果将容器倒置,这时水面的高恰为a (如图②),则图①中的水面高度为_________.23.将底面直径为8,高为23的圆锥体石块打磨成一个圆柱,则该圆柱侧面积的最大值为______.24.已知点O 为圆锥PO 底面的圆心,圆锥PO 的轴截面为边长为2的等边三角形PAB ,圆锥PO 的外接球的表面积为______.三、解答题25.如图,长方体ABCD A B C D ''''-由,12AB =,10BC =,6AA '=,过A D ''作长方体的截面A D EF ''使它成为正方形.(1)求三棱柱AA F DD E ''-的外接球的表面积; (2)求 B A D EF V ''-.26.如图,在直三棱柱111ABC A B C -中,底面ABC 为正三角形,1AB 与1A B 交于点O ,E ,F 是棱1CC 上的两点,且满足112EF CC =.(1)证明://OF 平面ABE ;(2)当1CE C F =,且12AA AB =,求直线OF 与平面ABC 所成角的余弦值. 27.如图,直四棱柱1111ABCD A BC D -的底面ABCD 为平行四边形,133,5,cos ,,5AD AB BAD BD DD E ==∠==是1CC 的中点.(Ⅰ)求证:平面DBE ⊥平面1ADD ; (Ⅱ)求点1C 到平面BDE 的距离.28.如图,四棱锥P ABCD -中,底面ABCD 是正方形,PD ⊥平面ABCD ,226AB PD ==,O 为AC 与BD 的交点,E 为棱PB 上一点.(1)证明:平面EAC ⊥平面PBD ;(2)若//PD 平面EAC ,求三棱锥B AEC -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:222430x y x y ++-+=即22(1)(2)2x y ++-=,由已知,直线260ax by ++=过圆心(1,2)C -,即2260,3a b b a -++==-,由平面几何知识知,为使由点(,)a b 向圆所作的切线长的最小,只需圆心(1,2)C -与直线30x y --=2123()242----=,故选B .考点:圆的几何性质,点到直线距离公式.2.B解析:B 【详解】设AB 中点为D ,则⊥OD AB ,∵33OA OB AB +≥,∴323OD AB ≥,∴23AB OD ≤,∵221||44OD AB +=,∴2||1OD ≥,∵直线0x y k +-=(0k >)与圆224x y +=交于不同的两点A 、B ,∴224,4||1OD OD <∴≥>,∴241>≥,∵0k >,∴k ≤< B.3.A解析:A 【分析】由圆外的点和圆上的点的连线长度的最值关系,转化为求max minPN PM -.【详解】由条件可知||||PN PM -的最大值是max minPN PM-,2max 114PN PC =+==,1min111PMPC =-==,所以||||PN PM -的最大值是()415-=- 故选:A 【点睛】结论点睛:本题第二问考查与圆的几何性质有关的最值,具体结论如下: (1)设O 为圆的圆心,半径为r ,圆外一点A 到圆上的距离的最小值为AO r -,最大值为AO r +;(2)过圆内一点的最长弦为圆的直径,最短弦是以该点为中点的弦;(3)记圆的半径为r ,圆心到直线的距离为d ,直线与圆相离,则圆上的点到直线的最大距离为d r +,最小值为d r -.4.A解析:A 【分析】求出两个圆的圆心距,画出示意图,利用已知条件判断半径r 的取值范围即可. 【详解】解:圆1C :22(1)(6)25x y ++-=的圆心为()1,6-,半径为5. 圆2C :222(17)(30)x y r -+-=的圆心为()17,30,半径为r .30=.如图:因为||2||PA AB =,可得||AB 的最大值为直径,此时220C A =,0r >. 当半径扩大到55时,此时圆2C 上只有一点到1C 的距离为25,而且是最小值,半径再扩大,就不会满足||2||PA AB =. 故选:A. 【点睛】本题主要考查两个圆的位置关系,直线与圆的综合应用,属于中档题.5.D解析:D 【分析】由题意可判断直线与圆相离,根据圆的知识可知,四点,,,A P B M 共圆,且AB MP ⊥,根据 44PAMPM AB SPA ⋅==可知,当直线MP l ⊥时,PM AB ⋅最小,求出以MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程.【详解】圆的方程可化为()()22114x y -+-=,点 M 到直线l 的距离为2221125221d ⨯++==>+,所以直线 l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAMPM AB SPA AM PA ⋅==⨯⨯⨯=,而 24PA MP =-当直线MP l ⊥时,min 5MP =, min 1PA =,此时PM AB ⋅最小.∴()1:112MP y x -=-即 1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得, 10x y =-⎧⎨=⎩. 所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即 2210x y y +--=, 两圆的方程相减可得:210x y ++=,即为直线AB 的方程. 故选:D. 【点睛】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题.6.D解析:D 【分析】由已知得(0,1)P ,(3,0)Q -,过定点P 的直线10ax y +-=与过定点Q 的直线30x ay -+=垂直,M 位于以PQ 为直径的圆上,由此能求出22||||MP MQ +的值即可.【详解】在平面内,过定点P 的直线10ax y +-=与过定点Q 的直线30x ay -+=相交于点M ,(0,1)P ∴,(3,0)Q -,过定点P 的直线10ax y +-=与过定点Q 的直线30x ay -+=垂直,M ∴位于以PQ 为直径的圆上,||9110PQ =+=, 22||||10MP MQ ∴+=,故选:D . 【点睛】本题考查圆的轨迹方程求解,解题时要认真审题,注意两点间距离公式的合理运用.7.B解析:B 【分析】利用等体积法11C EBD D C EB V V --=,设点1C 到平面EBD 的距离为d ,利用三棱锥的体积公式代入面积即求得d . 【详解】如图,利用等体积法,11C EBD D C EB V V --=,设点1C 到平面EBD 的距离为d ,正方体1111ABCD A BC D -的棱长为2,故22,5BD BE ED ===2215232h ED BD ⎛⎫=-=- ⎪⎝⎭11223622EBDSBD h =⨯⨯=⨯= 又点D 到平面1C EB 的距离,即D 到平面11C CBB 的距离,为CD =2,111212EBC S=⨯⨯=, 由11C EBD D C EB V V --=得,1161233d =⨯⨯,故636d ==. 故选:B. 【点睛】 方法点睛:空间中求点到平面的距离的常见方法: (1)定义法:直接作垂线,求垂线段长;(2)等体积法:利用三棱锥换底求体积,结合两个面积和另一个高求未知高,即得距离; (3)向量法:过点的一个斜线段对应的向量a ,平面法向量n ,则a n d n⋅=.8.C解析:C 【分析】因为P BCE P ABC E ABC V V V ---=-则当E ABC V -取最大值时,三棱锥P BCE -体积有最小值,建立坐标系求得当点E 的高为3时,问题得解. 【详解】以点O 为原点,,,OA OD OB 分别为,,x y z 轴建立空间直角坐标系,如图所示:设点(),0,E x z ,依题意得()6,0,0A ,则()6,0,AE x z =- ,(),0,OE x z = 因为过BC 作截面AP α⊥于E ,所以AE OE ⊥则0AE OE ⋅=, 故()2600x x z -++= 所以()6z x x =-3x =时max 3z =又()143P BCE P ABC E ABC ABCV V V S z ---=-=-因为max 3z =所以三棱锥P BCE -体积的最小值()1114343643332P BCE ABC V S-=-=⋅⋅=故选:C 【点睛】关键点点晴:本题的解题关键是将问题转化为求E ABC V -的最大值,通过建系求得三棱锥E ABC -的高的最大值即可.9.C解析:C 【分析】把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体外接球的直径等于体对角线的长,求出直径,即可得出球的表面积. 【详解】 如下图所示:把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体的结构特征可得,其外接球直径等于体对角线的长, 所以球O 的半径R 满足2222688164R =++= 所以球O 的表面积24164S R ππ==.故选:C.【点睛】关键点点睛:本题主要考查几何体外接球的表面积,熟记长方体结构特征,其外接球的球心和半径与长方体的关系,以及球的表面积公式,是解决此类问题的关键.10.C解析:C 【分析】首先通过延长直线,DC AB ,交于点G ,平面BAE 变为GAE ,连结PG ,EG 交于点F ,再根据三角形中线的性质,求PFFC的值. 【详解】延长,DC AB ,交于点G ,连结PG ,EG 交PC 于点F ,//AD BC ,且2AD BC =,可得点,B C 分别是,AG DG 的中点,又点E 是PD 的中点,PC ∴和GE 是△PGD 的中线,∴点F 是重心,得2PFFC=故选:C 【点睛】关键点点睛:本题的关键是找到PC 与平面BAE 的交点,即将平面BAE 转化为平面GAE 是关键.11.A解析:A 【分析】根据已知条件结合球的体积公式3432d π⎛⎫ ⎪⎝⎭求解出π的值,然后根据球的表面积公式242d π⎛⎫⎪⎝⎭求解出S 的表示,即可得到结果. 【详解】因为3169V d =,所以33941632d d V π⎛⎫==⎪⎝⎭,所以278π=, 所以2222727442848d d S d π⎛⎫==⨯⨯= ⎪⎝⎭,故选:A. 【点睛】关键点点睛:解答本题的关键是根据球的体积公式得到π的表示,再将π带入到球的表面积公式即可完成求解.12.A解析:A 【分析】把1AD 平移到1BC ,把异面直线所成的角转化为相交直线的夹角. 【详解】 连接1,BD BC ,∵四边形ABCD 为菱形, 60,4BAD AB ︒∠==,4BD ∴=.又1BDD 为直角三角形,22211BD BD DD ∴=+,得14DD =,∴四边形11BCC B 为正方形.连接1BC 交1BC 于点O 11//BC AD ,BOC ∴∠(或其补角)为异面直线1BC 与1AD 所成的角,由于11BCC B 为正方形, 90BOC ︒∴∠=,故异面直线1BC 与1AD 所成的角为90°.故选:A. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.二、填空题13.【分析】方程左边是圆心为原点半径为3的上半圆右边为恒过的直线当直线与半圆相切时求出的值直线过点时求得的值利用图象即可确定出实数的范围【详解】设图象如图所示当直线与半圆相切时圆心到直线的距离即解得:当解析:72,243⎛⎤⎥⎝⎦【分析】方程左边是圆心为原点,半径为3的上半圆,右边为恒过(3,4)的直线,当直线AB 与半圆相切时,求出k 的值,直线过点(3,0)-时,求得k 的值,利用图象即可确定出实数k 的范围. 【详解】设1y =,2(3)4y k x =-+,图象如图所示, 当直线与半圆相切时,圆心O 到直线AB 的距离d r =3=,解得:724k =, 当直线过点(3,0)-时,可求得4023(3)3k -==--,则利用图象得:实数k 的范围为72(,]243,故答案为:72(,]243. 【点睛】此题考查了直线与圆相交的性质,利用了数形结合的思想,熟练掌握数形结合思想是解本题的关键.14.【分析】因为所以外心重心垂心都位于线段的垂直平分线上由两直线垂直斜率的关系以及两点的斜率公式得出线段的垂直平分线的斜率由中点坐标公式得出的中点坐标最后由点斜式写出方程【详解】因为所以外心重心垂心都位 解析:340x y +-=【分析】因为AB AC =,所以ABC ∆外心,重心,垂心都位于线段BC 的垂直平分线上,由两直线垂直斜率的关系以及两点的斜率公式得出线段BC 的垂直平分线的斜率,由中点坐标公式得出BC 的中点坐标,最后由点斜式写出方程. 【详解】因为AB AC =,所以ABC ∆外心,重心,垂心都位于线段BC 的垂直平分线上 设线段BC 的垂直平分线的斜率为k ,则1BC k k ⨯=-3030(1)BC k -==--,13k ∴=-又因为BC 的中点坐标为13,22⎛⎫-⎪⎝⎭所以△ABC 的欧拉线方程为311()232y x -=-+,即340x y +-= 故答案为:340x y +-= 【点睛】本题主要考查了两直线垂直斜率间的关系,中点坐标公式,点斜式写出直线方程,属于中档题.15.1【分析】由直线是圆的一条对称轴得到直线过圆心求得得到再根据得到点的直线必过圆心利用斜率公式即可求解【详解】由题意圆的圆心坐标半径为因为直线是圆的一条对称轴则直线过圆心即解得此时点又由直线与圆交于两解析:1 【分析】由直线l 是圆C 的一条对称轴,得到直线l 过圆心,求得2a =-,得到(1,2)P --,再根据4AB =,得到点P 的直线必过圆心(2,1)C ,利用斜率公式,即可求解.【详解】由题意,圆22:4210C x y x y +--+=的圆心坐标(2,1)C ,半径为2r,因为直线():0l x ay a R +=∈是圆22:4210C x y x y +--+=的一条对称轴, 则直线l 过圆心(2,1)C ,即210a +⨯=,解得2a =-,此时点(1,2)P --, 又由直线m 与圆C 交于,A B 两点,且4AB =,可得过点P 的直线必过圆心(2,1)C , 所以直线m 的斜率为1(2)12(1)k --==--.故答案为:1. 【点睛】本题主要考查了直线与圆的位置关系,其中解答中熟记直线与圆的位置关系,合理转化是解答的关键,着重考查了推理与运算能力.16.【分析】根据题意画出示意图进而数形结合求解;【详解】根据题意画出圆以及点B (61)的图象如图作B 关于x 轴的对称点连接圆心与则与圆的交点A 即为的最小值为点(02)到点(6-1)的距离减圆的半径即故答案 解析:351-【分析】根据题意画出示意图,进而数形结合求解; 【详解】根据题意画出圆()2221x y +-=,以及点B (6,1)的图象如图,作B 关于x 轴的对称点B ',连接圆心与B ',则与圆的交点A ,AB 即为AW BW +的最小值,AB 为点(0,2)到点B '(6,-1)的距离减圆的半径,即11AB ==,故答案为:1. 【点睛】考查“将军饮马”知识,数形结合的思想,画出图形,做出B 点的对称点是解决本题的突破点;17.【分析】根据斜率的几何意义表示函数图象上的点与点连线的斜率数形结合即可求解【详解】为点与点连线的斜率点在函数图像上在抛物线图象上的最大值为最小值为过点与图象相切的切线斜率设为切线方程为代入得即解得或解析:2] 【分析】根据斜率的几何意义,()32g x x =-表示函数y =(2,3)连线的斜率,数形结合,即可求解. 【详解】()g x =为点(x 与点(2,3)连线的斜率,点([0,1]x x ∈在函数[0,1]y x ∈图像上,(1,1)B 在抛物线图象上,()g x 的最大值为31221AB k -==-, 最小值为过A点与[0,1]y x =∈图象相切的切线斜率,设为k ,切线方程为(2)3y k x =-+,代入[0,1]y x =∈得,320,0,14(32)0kx k k k k -=≠∆=--=,即281210k k -+=,解得k =k =当k =3[0,1]==,当34k =3[0,1]==+ 不合题意,舍去,()g x值域为3[2]4+.故答案为:2].【点睛】本题考查函数的值域、斜率的几何意义,考查数形结合思想,属于中档题.18.【分析】两圆关于直线对称即圆心关于直线对称则两圆的圆心的连线与直线垂直且中点在直线上圆的半径也为即可求出参数的值【详解】解:因为圆:即圆心半径由题意得与关于直线对称则解得圆的半径解得故答案为:【点睛 解析:165-【分析】两圆关于直线对称即圆心关于直线对称,则两圆的圆心的连线与直线21y x =-垂直且中点在直线21y x =-上,圆1C 的半径也为2,即可求出参数,,a b c 的值. 【详解】 解:因为圆1C :220xyax by c ,即22224224ab a b cxy , 圆心111,22C a b ⎛⎫-- ⎪⎝⎭,半径224a b c r +-=由题意,得111,22C a b ⎛⎫--⎪⎝⎭与()20,0C 关于直线21y x =-对称, 则112,122112221,22b a ba ⎧-⎪=-⎪⎪-⎨⎪--⎪⎪=⨯-⎩解得85=-a ,45b =,圆1C 的半径2242a bc r +-==,解得165c =-. 故答案为:165- 【点睛】本题考查圆关于直线对称求参数的值,属于中档题.19.【分析】证明与垂直得线面垂直从而得正三棱锥的三条侧棱两两垂直结合正方体的性质得三条侧棱的平方和为外接球直径的平方求得球半径后可得球体积【详解】∵∴∴又∴取中点连接如图由于是正三棱锥∴而平面∴平面又平 解析:36π【分析】证明PB 与,CE AC 垂直得线面垂直,从而得正三棱锥的三条侧棱两两垂直,结合正方体的性质得三条侧棱的平方和为外接球直径的平方,求得球半径后可得球体积. 【详解】∵3PE EA =,3BF FA =,∴AE AFAP AB=,∴//EF PB ,又CE EF ⊥,∴PB CE ⊥,取AC 中点D ,连接,PD BD ,如图,由于P ABC -是正三棱锥,∴,PD AC BD AC ⊥⊥,而PD BD D ⋂=,,PD BD ⊂平面PBD ,∴AC ⊥平面PBD ,又PB ⊂平面PBD , ∴AC PB ⊥,∵ACCE C =,,AC CE ⊂平面PAC ,∴PB ⊥平面PAC ,而,PA PC ⊂平面PAC ,∴,PB PA PB PC ⊥⊥,同理正三棱锥中,PA PC ⊥. 设三棱锥P ABC -外接球半径为R ,则22222(2)3(23)R PA PB PC =++=⨯,3R =,球的体积为343363V ππ=⨯=. 故答案为:36π.【点睛】结论点睛:三棱锥的外接球问题,解题关键是找到外接球的球心,三棱锥的外接球球心在过各面外心且与该面垂直的直线上.当从同一顶点出发的三条棱两两垂直时,可以把三棱锥补成一个长方体,而长方体的对角线就是三棱锥外接球的直径.20.【分析】取的中点作交延长线于则是异面直线和所成角或其补角可结合原矩形求出然后由直角三角形得出再用余弦定理求得结论【详解】取的中点作交延长线于则是异面直线和所成角或其补角连接∵所以又平面平面平面平面平解析:66【分析】取AE 的中点O ,作//DF AE 交EC 延长线于F ,则BDF ∠是异面直线BD 和AE 所成角或其补角,可结合原矩形求出,OD OF ,然后由直角三角形得出,BD BF ,再用余弦定理求得结论. 【详解】取AE 的中点O ,作//DF AE 交EC 延长线于F ,则BDF ∠是异面直线BD 和AE 所成角或其补角,连接,OB OF ,OD , ∵AB BE =,所以BO AE ⊥, 又平面ABE ⊥平面ECDA ,平面ABE 平面ECDA AE =,BO ⊂平面ABE ,∴BO ⊥平面ECDA ,而,OD OF ⊂平面ECDA ,所以BO OF ⊥,BO OD ⊥, 又∵90ABE ∠=︒,2AB BE ==,所以2BO =,2AO EO ==,22AE =,//DF AE ,//AD EF ,则ADFE 是平行四边形,4,22EF AD DF AE ====,在原矩形中45BAE BEA ∠=∠=︒,则45,135DAE CEA ∠=︒∠=︒,22222cos 4542242102OD AD AO AD AO =+-⋅︒=+-⨯⨯⨯=, 22222cos135********OF EF EO EF EO =+-⋅︒=++⨯⨯⨯=, 22212BD BO OD =+=,22228BF BO OF =+=,在BDF 中,222cos 2BD DF BF BDF BD DF +-∠=⋅128286621222+-==-⨯⨯, 所以异面直线BD 和AE 所成角的余弦为66. 故答案为:66.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.21.【分析】先利用线面平行的性质定理和平面扩展得到异面直线所成角即BD 与所成的角再结合长方体棱长的条件在中求其余弦值即可【详解】如图设平面平面平面平面因为平面所以故异面直线与所成的角即与所成的角延长AD 解析:2613【分析】先利用线面平行的性质定理和平面扩展,得到异面直线所成角即BD 与1A B 所成的角1A BD ∠,再结合长方体棱长的条件在1A BD 中求其余弦值即可.【详解】如图,设平面11CB D ⋂平面1ABCD l '=,平面11CB D ⋂平面112ABB A l '=,因为//α平面11CB D ,所以1122//,//l l l l '',故异面直线1l 与2l 所成的角,即1l '与2l '所成的角.延长AD 至E ,使AD DE =,连接CE ,则易见BD 与CE 平行且相等,又BD 与11B D 平行且相等,故BD 与11B D 平行且相等,即四边形11D B CE 是平行四边形,CE 就是交线1l '.同理可知1B F 就是交线2l '.又知BD //CE ,11//B F A B ,故1l '与2l '所成的角,即BD 与1A B 所成的角1A BD ∠,依题意可知,2AB BC ==,13AA =,故1A BD中,11A B A D BD ===故1112cos BDA BD AB ∠===. 【点睛】 方法点睛:求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果.22.【分析】由第二个图可知水的体积占整个圆锥体积的在第一个图中水的体积占圆锥的上面小圆锥体积占大圆锥体积的根据小圆锥体积与大圆锥体积比是其高的三次方的比即可解得a 的值【详解】在图②中水形成的小圆锥和大圆解析:(2a【分析】由第二个图可知,水的体积占整个圆锥体积的18,在第一个图中,水的体积占圆锥的18,上面小圆锥体积占大圆锥体积的78,根据小圆锥体积与大圆锥体积比是其高的三次方的比,即可解得a 的值. 【详解】在图②中,水形成的小“圆锥”和大圆锥形容器高的比为12,底面半径比为12,故其底面积的比为14,所以体积比为18,则在图①中,无水部分形成的小“圆锥”和大圆锥形容器的体积比为78,设水面高度为h ,则小“圆锥”和大圆锥形容器的高的比为22a h a-,体积比为327(=28a h a -),解的h=(2a .故答案为: 3(27)a - 【点睛】本题考查了圆锥的体积的计算,属于中档题目,解题中的关键是要准确利用圆锥体积公式得到大小圆锥体积比与大小圆锥的高比的关系.23.【分析】欲使圆柱侧面积最大需使圆柱内接于圆锥设圆柱的高为h 底面半径为r 用r 表示h 从而求出圆柱侧面积的最大值【详解】欲使圆柱侧面积最大需使圆柱内接于圆锥;设圆柱的高为h 底面半径为r 则解得;所以;当时取 解析:43π【分析】欲使圆柱侧面积最大,需使圆柱内接于圆锥,设圆柱的高为h ,底面半径为r ,用r 表示h ,从而求出圆柱侧面积的最大值. 【详解】欲使圆柱侧面积最大,需使圆柱内接于圆锥; 设圆柱的高为h ,底面半径为r , 23423h r -=,解得3232h =; 所以()23222334S rh r r r πππ⎛⎫===- ⎪ ⎪⎝⎭圆柱侧; 当2r时,S 圆柱侧取得最大值为43π故答案为:43π. 【点睛】本题考查了求圆柱侧面积的最值,考查空间想象能力,将问题转化为函数求最值,属于中档题.24.【分析】由题意知圆锥的轴截面为外接球的最大截面即过球心的截面且球心在上由等边三角形性质有即求得外接球的半径为R 进而求外接球的表面积【详解】设外接球球心为连接设外接球的半径为R 依题意可得在中有即解得故解析:163π【分析】由题意知圆锥PO 的轴截面为外接球的最大截面,即过球心的截面且球心在PO 上,由等边三角形性质有Rt AO O '△,即222O A AO O O ''=+求得外接球的半径为R ,进而求外接球的表面积. 【详解】设外接球球心为O ',连接AO ',设外接球的半径为R ,依题意可得1AO =,3PO =,在Rt AO O '△中,有222O A AO O O ''=+,即)22213R R =+,解得3R =, 故外接球的表面积为24164433S R πππ==⋅=. 故答案为:163π. 【点睛】本题考查了求圆锥体的外接球面积,由截面是等边三角形,结合等边三角形的性质求球半径,进而求外接球面积,属于基础题.三、解答题25.(1)200π(2)80 【分析】(1)根据直三棱柱底面为为直角三角形可得外接球球心的位置,利用勾股定理求半径,即可求解;(2)根据等体积法及几何体的割补法可转化为求三棱锥A BEF V '-即可. 【详解】(1)因为截面A D EF ''为正方形, 所以10A F BC A D '==='',在Rt A AF '△中,222AA AF A F ''+=, 即222610AF +=,解得8AF =,在直三棱柱AA F DD E ''-中,底面Rt A AF '△的外接圆半径为1110522A F '=⨯=, 直三棱柱AA F DD E ''-的外接球球心到面A AF '的距离为11052⨯=, 设三棱柱的外接球半径为R , 则225552R =+=,24200S R ππ∴==(2)因为22B A EF A B B A D EF EF V V V ''-'--'==, 在长方体中AA '⊥平面BEF , 所以三棱锥A BEF '-的高为6AA '=,所以B A D EF V ''-111226332BEF S A A EF BF ⎛⎫'=⨯⨯⨯=⨯⨯⨯⨯⨯ ⎪⎝⎭△11210468032=⨯⨯⨯⨯⨯=.【点睛】关键点点睛:根据直三棱柱外接球的的性质可知球心到底面的距离为高的一半,求出底面外接圆的半径即可利用勾股定理求解即可,利用分割法可把四棱锥转化为三棱锥求体积即可.26.(1)证明见解析;(2)32. 【分析】(1)取AB 中点G ,连结OG 、EG ,可证明四边形OGEF 为平行四边形,则 OF EG ∥,由线面平行的判定定理即可求证;(2)由(1)可知,OF EG ∥,则直线OF 与平面ABC 所成角即为直线EG 与平面ABC 所成角,EC ⊥平面ABC ,则EGC ∠即为直线EG 与平面ABC 所成的角,在EGC 中即可求EGC ∠的余弦值.【详解】(1)取AB 中点G ,连结OG 、EG ,在直三棱柱111ABC A B C -中,1OG BB ∥,则OG EF ∥,又112EF CC =,则OG EF =, 所以四边形OGEF 为平行四边形,则 OF EG ∥, 又EG ⊂平面ABE ,OF ⊄平面ABE , 故//OF 平面ABE .(2)由(1)可知,OF EG ∥,则直线OF 与平面ABC 所成角即为直线EG 与平面ABC 所成角,连接CG ,由直三棱柱111ABC A B C -可得EC ⊥平面ABC , 则EGC ∠即为直线EG 与平面ABC 所成的角, 设2AB =,则114AA CC ==,又1CE C F =,则1CE =,CG ,得2EG =,所以,直线EG 与平面ABC 所成角的余弦值为2,故直线OF 与平面ABC 【点睛】方法点睛:证明直线与平面平行的常用方法(1)定义法:证明直线与平面没有公共点,通常要借助于反证法来证明;(2)判定定理:在利用判断定理时,关键找到平面内与已知直线平行的直线,常考虑利用三角形中位线、平行四边形的对边平行或过已知直线作一平面,找其交线进行证明; (3)利用面面平行的性质定理:直线在一平面内,由两平面平行,推得线面平行;直线在两平行平面外,且与其中一平面平行,这这条直线与另一个平行.27.(Ⅰ)证明见解析;(Ⅱ)13. 【分析】(Ⅰ)由余弦定理求出BD ,可得AD BD ⊥,再由1DD BD ⊥可得BD ⊥平面1ADD ,即得证;(Ⅱ)在平面1BCC 内作1C F BE ⊥,可得1C F ⊥平面BDE ,则1C F 的长就是点1C 到平面BDE 的距离,求出即可. 【详解】(Ⅰ)由题意可得2222cos 16BD AD AB AB AD BAD =+-⨯∠=, 所以222AD BD AB +=,因此AD BD ⊥,在直四棱柱1111ABCD A BC D -中,1DD ⊥平面ABCD ,所以1DD BD ⊥, 又因为1ADDD D =,所以BD ⊥平面1ADD ,因为BD ⊂平面DBE ,所以平面DBE ⊥平面1ADD . (Ⅱ)如图,在平面1BCC 内作1C F BE ⊥,垂足为F .。

北师大版高中数学必修二第二章《解析几何初步》测试(含答案解析)(2)

北师大版高中数学必修二第二章《解析几何初步》测试(含答案解析)(2)

一、选择题1.已知方程2234-+=-kx k x 有两个不同的解,则实数k 的取值范围是( ) A .13,24⎡⎤⎢⎥⎣⎦B .53,124C .13,24⎛⎫⎪⎝⎭D .53,124⎛⎫⎪⎝⎭ 2.圆()()22211x y r -++=上有且仅有四个点到直线43110x y +-=的距离等于32,则半径r 的取值范围为( ) A .72r >B .72r <C .12r >D .1722r << 3.已知实数x ,y 满足()2221x y +-=,则2232x y x y++的最大值为( )A .12B .3 C .1D .274.已知直线:20l x y ++=与圆22220x y x y a ++-+=所截的弦长为4,则实数a 为( ) A .2- B .4-C .2D .45.直线3y x m =-+与圆221x y += 在第一象限内有两个不同的交点,则m 的取值范围是( ) A .(3,2)B .(3,3)C .323,⎛⎫ ⎪ ⎪⎝⎭D .231,⎛⎫⎪ ⎪⎝⎭6.在平面直角坐标系xoy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =+上至少存在一点,使得以该点为圆心,半径为1的圆与圆C 有公共点,则k 的最小值是( ) A .43-B .54-C .35D .53-7.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为正方形,PA AB =,E 为AP 的中点,则异面直线PC 与DE 所成的角的正弦值为( ).A .25B 5C 15D 108.已知点A ,B ,C 在半径为5的球面上,且214AB AC ==,27BC =,P 为球面上的动点,则三棱锥P ABC -体积的最大值为( )A .5673B .5273 C .4973D .14739.已知平面图形PABCD ,ABCD 为矩形,4AB =,是以P 为顶点的等腰直角三角形,如图所示,将PAD △沿着AD 翻折至P AD '△,当四棱锥P ABCD '-体积的最大值为163,此时四棱锥P ABCD '-外接球的表面积为( )A .12πB .16πC .24πD .32π10.如图,在矩形ABCD 中,1AB =,3BC =,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥A BCD -正视图和俯视图如图,则三棱锥A BCD -中AC 长为( )A .32B 3C .102D .211.已知一个正三棱锥的四个顶点都在一个球的球面上,且这个正三棱锥的所有棱长都为22 ) A .4π B .8πC .12πD .24π12.蹴鞠,又名蹴球,筑球等,蹴有用脚踢、踏的含义,鞠最早系外包皮革、内实含米糠的球.因而蹴鞠就是指古人以脚踢、踏皮球的活动,类似现在的足球运动.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录.3D 打印属于快速成形技术的一种,它是一种以数字模型为基础,运用粉末状金属或塑料等可粘合材料,通过逐层堆叠积累的方式来构造物体的技术.过去常在模具制造、工业设计等领域被用于制造模型,现正用于一些产品的直接制造,特别是一些高价值应用(比如人体的髋关节、牙齿或飞机零部件等).已知某蹴鞠的表面上有四个点A .B .C .D ,满足任意两点间的直线距离为6cm ,现在利用3D 打印技术制作模型,该模型是由蹴鞠的内部挖去由ABCD 组成的几何体后剩下的部分,打印所用原材料的密度为31g/cm ,不考虑打印损耗,制作该模型所需原材料的质量约为( )(参考数据)π 3.14≈ 1.41≈ 1.73≈ 2.45≈. A .101gB .182gC .519gD .731g二、填空题13.在平面直角坐标系xOy 中,设直线y =-x +2与圆x 2+y 2=r 2(r >0)交于A ,B 两点.若圆上存在一点C ,满足5344OC OA OB =+,则r 的值为________. 14.若圆222(3)(5)r x y -++=上有且只有两个点到直线432x y -=的距离为1,则半径r 的取值范围是______.15.经过两直线11370x y +-=和12190x y +-=的交点,且与()3,2A -,()1,6B -等距离的直线的方程是______.16.已知直线l 斜率的取值范围是(),则l 的倾斜角的取值范围是______.17.在平面直角坐标xOy 系中,设将椭圆()2222110y x a a a +=>-绕它的左焦点旋转一周所覆盖的区域为D ,P 为区域D 内的任一点,射线()02x y x =≥-上的点为Q ,若PQ 的最小值为a ,则实数a 的取值为_____.18.已知圆221:10C x y +=与圆222:22140C x y x y +++-=相交,则两圆的公共弦长为__________.19.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为24,则这个球的体积为____________.20.在直三棱柱111ABC A B C -中,90ABC ∠=︒,1AA O ,已知三棱锥O ABC -O 表面积的最小值为______.21.在三棱锥P ABC -中,4PA PB ==,BC =8AC =,AB BC ⊥.平面PAB ⊥平面ABC ,若球O 是三棱锥P ABC -的外接球,则球O 的半径为_________.22.在棱长为2的正方体1111ABCD A BC D -中,P 是11A B 的中点,过点1A 作与平面1PBC 平行的截面,则此截面的面积是_______________.23.已知某几何体的三视图如图所示,则该几何体的体积是__________.24.已知点O 为圆锥PO 底面的圆心,圆锥PO 的轴截面为边长为2的等边三角形PAB ,圆锥PO 的外接球的表面积为______.三、解答题25.如图,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD//QA ,112QA AB PD ===.(1)证明:直线PQ ⊥平面DCQ ; (2)求二面角D QB A --的余弦值.26.如图,四面体ABCD 中,O 是BD 的中点,点G 、E 分别在线段AO 和BC 上,2BE EC =,2AG GO =,2CA CB CD BD ====,2AB AD ==.(1)求证://GE 平面ACD ; (2)求证:平面ABD ⊥平面BCD .27.如图,在直四棱柱1111ABCD A BC D -中,底面ABCD 是梯形,,//AB CD AB AD ⊥,22CD AB AD ==.(1)求证:BD ⊥平面1BCC ;(2)在线段11C D 上是否存在一点E ,使//AE 面1BC D .若存在,确定点E 的位置并证明;若不存在,请说明理由.28.在三棱锥P ABC -中,AE BC ⊥于点,E CF AB ⊥于点F ,且AE CF O ⋂=,若点P 在平面ABC 上的射影为点O .(1)证明:AC PB ⊥;(2)若ABC 是正三角形,点,G H 分别为,PA PC 的中点.证明:四边形EFGH 是矩形.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】如图,当直线在AC 位置时,斜率303224k -==+,当直线和半圆相切时,由半径22002321k k --+=+解得k 值,即得实数k 的取值范围.【详解】 由题意得,半圆24y x =-与直线32y kx k =+-有两个交点,又直线323(2)y kx k y k x =+-⇒-=-过定点C (2,3),如图所示,又点(2,0),(2,0)A B -,当直线在AC 位置时,斜率303224k -==+. 当直线和半圆相切时,由半径2002321k k --+=+解得512k =, 故实数k 的取值范围为53(,]124故选:B 【点睛】关键点点睛:由函数解析式转化为直线与半圆有两个公共点,根据直线与圆的位置关系,点到直线的距离公式的应用,求出直线在AC 位置时的斜率k 值及切线CD 的斜率,是解题的关键.2.A解析:A 【分析】圆()()22211x y r -++=上有且仅有四个点到直线43110x y +-=的距离等于32,先求圆心到直线的距离,再根据题意求半径的范围即可. 【详解】由()()22211x y r -++=可知圆心为()1,1-,圆心到直线43110x y +-=的距离为22431123+4--=,因为圆上有且仅有四个点到直线43110x y +-=的距离等于32,所以322->r,解得72r >. 故选:A 【点睛】本题主要考查直线与圆的位置关系,属于中档题.3.B解析:B 【分析】设(),P x y 为圆()2221x y +-=上的任意一点,构造直线:30l x y +=,过点p 作PM l ⊥,将2232x y x y++转化为点p 到直线30x y +=的距离和到原点的距离的比,即223sin 2x y PMPOM OPx y +==∠+,然后利用数形结合法求得POM ∠的范围求解. 【详解】 如图所示:设(),P x y 为圆()2221x y +-=上的任意一点,则点P 30x y +=的距离为3x y PM +=点P 到原点的距离为22OP x y =+223sin 2x y PMPOM OPx y +==∠+,设圆()2221x y +-=与直线y kx =相切1=,解得k =所以POM ∠的最小值为0,最大值为60,所以0sin POM ≤∠≤即0≤≤故选:B 【点睛】本题主要考查点到直线的距离,直线与圆的位置关系以及三角函数的性质的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.4.B解析:B 【分析】根据圆的标准方程确定圆心和半径,由距离公式得出圆心到直线:20l x y ++=的距离d ,最后由弦长公式得出实数a .【详解】由22(1)(1)2x y a ++-=-可知,圆心为(1,1)-,半径2r a < 圆心到直线:20l x y ++=的距离d ==∣242r =r ∴=4a ∴=-故选:B 【点睛】本题主要考查了由直线与圆相交的弦长求参数的值,属于中档题.5.D解析:D 【分析】求出直线过(0,1)时m 的值,以及直线与圆相切时m 的值,即可确定出满足题意m 的范围. 【详解】 解:如图所示:当直线过(0,1)时,将(0,1)代入直线方程得:1m =;当直线与圆相切时,圆心到切线的距离d r =,即21313=⎛⎫+ ⎪ ⎪⎝⎭,解得:233m =或233m =-(舍去), 则直线与圆在第一象限内有两个不同的交点时,m 的范围为231m <<. 故选:D .【点睛】本题考查了直线与圆相交的性质,利用了数形结合的思想,熟练掌握数形结合法是解本题的关键,属于中档题.6.A解析:A 【分析】化圆C 的方程为22(4)1x y -+=,求出圆心与半径,由题意,只需22(4)4x y -+=与直线2y kx =+有公共点即可. 【详解】 解:圆C 的方程为228150x y x +-+=,整理得:22(4)1x y -+=,即圆C 是以(4,0)为圆心,1为半径的圆;又直线2y kx =+上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,∴只需圆22:(4)4C x y '-+=与直线2y kx =+有公共点即可.设圆心(4,0)C 到直线2y kx =+的距离为d , 则221d k=+,即234k k -,403k ∴-. k ∴的最小值是43-. 故选:A . 【点睛】本题考查直线与圆的位置关系,将条件转化为“22(4)4x y -+=与直线2y kx =+有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.7.D解析:D 【分析】先取正方形的中心O ,连接OE ,由PC //OE 知OED ∠为异面直线PC 与DE 所成的角,再在OED 中求OED ∠的正弦即可. 【详解】连AC ,BD 相交于点O ,连OE 、BE ,因为E 为AP 的中点,O 为AC 的中点,有PC //OE ,可得OED ∠为异面直线PC 与DE 所成的角,不妨设正方形中,2AB =,则2PA =,由PA ⊥平面ABCD ,可得,PA AB PA AD ⊥⊥, 则145BE DE ==+=1122222OD BD ==⨯= 因为BE DE =,O 为BD 的中点,所以90EOD ∠=︒,210sin 5OD OED DE ∠===故选:D. 【点睛】 方法点睛:求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果.8.A解析:A 【分析】求出球心到平面ABC 的距离,由这个距离加上球半径得P 到平面ABC 距离的最大值,再由体积公式可得P ABC -体积的最大值. 【详解】如图,M 是ABC 的外心,O 是球心,OM ⊥平面ABC ,当P 是MO 的延长线与球面交点时,P 到平面ABC 距离最大,由214AB AC ==,27BC =,得72cos 214ACB ∠==,则14sin 4ACB ∠=, 21428sin 144AB AM CB ===∠,4AM =, 2222543OM OA AM =-=-=,358PM =+=,又1114sin 2142777224ABC S AC BC ACB =⋅⋅∠=⨯⨯⨯=△, 所以最大的156777833P ABC V -=⨯⨯=. 故选:A .【点睛】本题考查求三棱锥的体积,解题关键是确定三棱锥体积最大时P 点在球面上的位置,根据球的性质易得结论.当底面ABC 固定,M 是ABC 外心,当PM ⊥平面ABC ,且球心O 在线段PM 上时,P 到平面ABC 距离最大.9.C解析:C 【分析】分析出当平面P AD '⊥平面ABCD 时,四棱锥P ABCD '-的体积取最大值,求出AD 、P A '的长,然后将四棱锥P ABCD '-补成长方体P AMD QBNC '-,计算出该长方体的体对角线长,即为外接球的直径,进而可求得外接球的表面积. 【详解】取AD 的中点E ,连接P E ',由于P AD '△是以P '为顶点的等腰直角三角形,则P E AD '⊥,设AD x =,则1122P E AD x '==, 设二面角P AD B '--的平面角为θ,则四棱锥P ABCD '-的高为1sin 2h x θ=, 当90θ=时,max 12h x =, 矩形ABCD 的面积为4S AB AD x =⋅=,2111216433233P ABCD V Sh x x x '-=≤⨯⨯==,解得22x =.将四棱锥P ABCD '-补成长方体P AMD QBNC '-, 所以,四棱锥P ABCD '-的外接球直径为22222226R P N P A P D P Q AD AB ''''==++=+=,则6R =,因此,四棱锥P ABCD '-的外接球的表面积为2424R ππ=.故选:C.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.10.C解析:C 【分析】先由正视图、俯视图及题意还原三棱锥,过A 作AM ⊥BD 于点M ,连结MC ,把AC 放在直角三角形AMC 中解AC . 【详解】根据三棱锥A BCD -正视图和俯视图,还原后得到三棱锥的直观图如图示,由图可知:平面ABD ⊥平面CBD ,过A 作AM ⊥BD 于点M ,连结MC ,则AM ⊥平面CBD , ∴△MCA 为直角三角形. 过C 作CN ⊥BD 于点N ,在直角三角形ABD 中,AB =1,AD 3∴222BD AB AD =+=所以∠ABD=60°,∠ADB=30°,则在直角三角形ABM 中,AB =1,∠ABM=60°,∴13,2BM AM ==同理,在直角三角形CBD 中,13,2DN CN ==. ∴MN =BD -BM -DN =112122--=, ∴222237()122CM CN MN =+=+= 在直角三角形AMC 中,22227310()22AC CM AM ⎛⎫=+=+⎪ ⎪⎝⎭故选:C 【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图 ;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整.(2)立体几何中求线段长度:①、把线段放在特殊三角形中,解三角形;②、用等体积法求线段.11.C解析:C 【分析】将正三棱锥补成一个正方体,计算出正方体的棱长,可得出正方体的体对角线长,即为外接球的直径,进而可求得这个球的表面积. 【详解】设该正三棱锥为A BCD -,将三棱锥A BCD -补成正方体AEBF GCHD -,如下图所示:则正方体AEBF GCHD -的棱长为22222⨯=,该正方体的体对角线长为23 所以,正三棱锥A BCD -的外接球直径为223R =3R 该球的表面积为2412S R ππ==. 故选:C. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.12.B解析:B 【分析】由题意可知所需要材料的体积即为正四面体外接球体积与正四面体体积之差,求出正四面体体积、外接球体积,然后作差可得所需要材料的体积,再乘以原料密度可得结果. 【详解】由题意可知,几何体ABCD 是棱长为6cm 的正四面体, 所需要材料的体积即为正四面体外接球体积与正四面体体积之差,设正四面体的棱长为a 2223632aa a ⎛⎫-⨯= ⎪ ⎪⎝⎭设正四面体外接球半径为R ,则222623()()3a R R =+,解得R =6a 所以3D 打印的体积为:323346113662343223812V a a a a ππ⎛⎫=-⋅=- ⎪ ⎪⎝⎭,又336216a ==,所以276182207.71125.38182.331182V π=-≈-=≈, 故选:B 【点睛】关键点点睛:本题考查正四面体与正四面体的外接球,考查几何体的体积公式,解决本题的关键点是求出正四面体外接球体积与正四面体体积,考查学生空间想象能力和计算能力,属于中档题.二、填空题13.【详解】即整理化简得cos ∠AOB =-过点O 作AB 的垂线交AB 于D 则cos ∠AOB =2cos2∠AOD -1=-得cos2∠AOD =又圆心到直线的距离为OD =所以cos2∠AOD ===所以r2=10r = 解析:10【详解】22225325539OC OA OB OA 2OA OB OB 44164416⎛⎫=+=+⋅⋅+ ⎪⎝⎭即222225159r r r cos AOB r 16816=+∠+,整理化简得cos ∠AOB =-35,过点O 作AB 的垂线交AB 于D ,则cos ∠AOB =2cos 2∠AOD -1=-35,得cos 2∠AOD =15.又圆心到直线的距离为OD =22=,所以cos 2∠AOD =15=22OD r=22r ,所以r 2=10,r =10. 14.【详解】∵圆心P(3−5)到直线4x−3y=2的距离等于由|5−r|<1解得:4<r<6则半径r 的范围为(46)故答案为:(46)当时满足题意考点:1直线和圆的位置关系;2点到直线的距离 解析:46r <<【详解】∵圆心P (3,−5)到直线4x −3y =2的距离等于,由|5−r |<1,解得:4<r <6, 则半径r 的范围为(4,6). 故答案为:(4,6),当46r <<时满足题意.考点:1、直线和圆的位置关系;2、点到直线的距离.15.或【分析】直接求两直线的交点与等距离的直线一条过AB 的中点一条平行AB 【详解】两直线和的交点为的中点为因为所求直线过且与等距离故所求直线过的中点或与直线平行当直线过的中点时直线方程为即当直线与直线平解析:790x y +-=或210x y ++= 【分析】直接求两直线的交点,与(3,2),(1,6)A B --等距离的直线,一条过AB 的中点,一条平行AB . 【详解】两直线11370x y +-=和12190x y +-=的交点为(2,5)-,(3,2),(1,6)A B --的中点为(1,2),因为所求直线过(2,5)-且与()3,2A -,()1,6B -等距离, 故所求直线过AB 的中点或与直线AB 平行, 当直线过AB 的中点时,2(5)712k --==--, 直线方程为27(1)y x -=--,即790x y +-=, 当直线与直线AB 平行时,26823(1)4k ---===---,直线方程为52(2)y x +=--,即210x y ++=. 故答案为:790x y +-=或210x y ++= 【点睛】本题主要考查了直线交点,直线的平行,直线的斜率,直线方程,属于中档题.16.【分析】根据斜率与倾斜角的关系即可求解【详解】因为直线斜率的取值范围是所以当斜率时倾斜角当斜率时倾斜角综上倾斜角的取值范围故答案为:【点睛】本题主要考查了直线的斜率直线的倾斜角属于中档题解析:20,,43πππ⎡⎫⎛⎫⎪⎪⎢⎣⎭⎝⎭【分析】根据斜率与倾斜角的关系即可求解. 【详解】因为直线l 斜率的取值范围是(), 所以当斜率01k ≤<时,倾斜角04πα≤<,当斜率0k <时,倾斜角23παπ<<, 综上倾斜角的取值范围20,,43πππ⎡⎫⎛⎫⎪⎪⎢⎣⎭⎝⎭, 故答案为:20,,43πππ⎡⎫⎛⎫⎪⎪⎢⎣⎭⎝⎭【点睛】本题主要考查了直线的斜率,直线的倾斜角,属于中档题.17.【分析】先确定轨迹再根据射线上点与圆的位置关系求最值即得结果【详解】所以为以为圆心为半径的圆及其内部设射线的端点为所以的最小值为故答案为:【点睛】本题考查动点轨迹以及点与圆位置关系考查数形结合思想以【分析】先确定D 轨迹,再根据射线上点与圆的位置关系求最值,即得结果. 【详解】2222222(1)1,111,y x c a a c a a =+∴=--=∴=-, 所以D 为以(1,0)F -为圆心,1a +为半径的圆及其内部, 设射线()02x y x =≥-的端点为(2,2)A ,所以PQ 的最小值为||(1),12,AF a a a a -+===【点睛】本题考查动点轨迹以及点与圆位置关系,考查数形结合思想以及基本分析求解能力,属中档题.18.【分析】求出公共弦的方程再利用垂径定理求解即可【详解】由题圆与圆的公共弦方程为化简得又圆圆心到弦的距离故弦长为故答案为:【点睛】本题主要考查了求相交圆的公共弦长问题需要利用两个圆的方程相减求出公共弦解析:【分析】求出公共弦的方程,再利用垂径定理求解即可. 【详解】由题, 圆221:10C x y +=与圆222:22140C x y x y +++-=的公共弦方程为()()22222214100xy x y x y +++--+-=,化简得20x y +-=.又圆1C 圆心()0,0到弦20x y +-=的距离d ==故弦长为=故答案为:【点睛】本题主要考查了求相交圆的公共弦长问题,需要利用两个圆的方程相减求出公共弦的方程,再利用垂径定理求解.属于中档题.19.【分析】根据正方体的表面积可得正方体边长然后计算外接球的半径利用球的体积的公式可得结果【详解】设正方体边长正方体外接球的半径为R 由正方体的表面积为24所以则又所以所以外接球的体积为:故答案为:【点睛解析:【分析】根据正方体的表面积,可得正方体边长a ,然后计算外接球的半径R =,利用球的体积的公式,可得结果. 【详解】设正方体边长a ,正方体外接球的半径为R , 由正方体的表面积为24,所以2624a =,则2a =,又R =,所以R =所以外接球的体积为:334433R ππ==.故答案为:. 【点睛】方法点睛:求多面体的外接球的表面积和体积问题关键是要求出外接球的半径,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.20.【分析】设球的半径为连接交于点取中点连接即为三棱柱外接球球心根据三棱锥体积可得间关系表示出根据基本不等式可求得的最小值从而得到球的表面积的最小值【详解】如图因为三棱柱是且设球的半径为连接交于点取中点 解析:27π【分析】 设ABa ,BCb =,球的半径为r ,连接1AC ,1AC 交于点O ,取AC 中点D ,连接BD ,即O 为三棱柱外接球球心,根据三棱锥体积可得a b ,间关系,表示出r ,根据基本不等式可求得r 的最小值,从而得到球的表面积的最小值.【详解】如图,因为三棱柱111ABC A B C -是 ,且90ABC ∠=︒, 设ABa ,BCb =,球的半径为r ,连接1AC ,1AC 交于点O ,取AC 中点D ,连接BD ,则O 到三棱柱六个定点的距离相等,即O 为三棱柱外接球球心,11322OD AA ==, 又因为三棱锥O ABC -3 即1133322ab ⨯⨯=12ab =, 所以2222223133322242a b r AD OD ab ⎛⎫⎛⎫+=+=+≥+=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 当且仅当a b =时等号成立,所以球O 的表面积最小值为2427S r ππ==, 故答案为:27π. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.21.4【分析】取中点连接再根据题意依次计算进而得球的球心即为(与重合)【详解】解:因为所以又因为所以所以因为平面平面平面平面平面所以平面取中点连接所以所以平面所以此时所以即球的球心球心即为(与重合)半径解析:4 【分析】取,AB AC 中点,D E ,连接DE ,DP ,再根据题意依次计算4EA EB EC EP ====,进而得球O 的球心O 即为E (O 与E 重合)【详解】解:因为BC =8AC =,AB BC ⊥,所以AB =4PA PB ==, 所以222PA PB AB +=,所以PA PB ⊥,因为平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,AB BC ⊥,BC ⊂平面ABC ,所以BC ⊥平面PAB ,取,AB AC 中点,D E ,连接DE ,DP所以//DE BC ,DE =DP =所以DE ⊥平面PAB ,所以DE PD ⊥,此时,142EB AC EA EC ====, 4EP =, 所以4EA EB EC EP ====,即球O 的球心球心O 即为E (O 与E 重合),半径为4EA =. 故答案为:4.【点睛】本题解题的关键在于寻找球心,在本题中,,PAB ABC △△均为直角三角形,故易得AC 中点即为球心.考查空间思维能力,运算求解能力,是中档题.22.【分析】取的中点分别为连接先证明四边形是平行四边形再利用面面平行的判断定理证明平面平面可得平行四边形即为所求的截面再计算其面积即可【详解】取的中点分别为连接因为所以四边形是平行四边形所以因为所以四边 解析:26【分析】取AB ,11D C 的中点分别为,M N ,连接11,,,,A M MC CN A N PM ,先证明四边形1A MCN 是平行四边形,再利用面面平行的判断定理证明平面1//PBC 平面1A MCN ,可得平行四边形1A MCN 即为所求的截面,再计算其面积即可.【详解】取AB ,11D C 的中点分别为,M N ,连接11,,,,A M MC CN A N PM ,因为11A P NC ,所以四边形11A PC N 是平行四边形,所以11A N PC ,因为1PM CC 所以四边形1PMCC 是平行四边形,所以1MC PC , 所以1A N MC ,所以四边形1A MCN 是平行四边形,因为11//PC A N ,1PC ⊄平面1A MCN ,1A N ⊂平面1AMCN , 所以1//PC 平面1A MCN ,同理可证//PB 平面1A MCN ,因为1PC PB P ⋂=,所以平面1//PBC 平面1A MCN ,因此过点1A 作与平面1PBC 平行的截面,即是平行四边形1AMCN , 连接MN ,作1A H MN ⊥于点H ,由11AM A N ==,MN =可得1A H ==所以111122A MN S MN A H =⨯⨯=⨯=所以平行四边形1A MCN 的面积为12A MN S=故答案为:【点睛】 关键点点睛:本题的关键点是找出过点1A 与平面1PBC 平行的截面,所以想到作平行线,利用面面平行的判断定理证明所求的截面即是平行四边形1A MCN ,先求四边形一半的面积,乘以2即可得所求平行四边形的面积,也可以直接求菱形的面积.23.【分析】先根据三视图得到几何体是底面是直角三角形的一个三棱锥再根据锥体的体积计算公式求解即可【详解】利用正方体法还原三视图如图所示根据三视图可知该几何体是底面直角边为2的等腰直角三角形高为2的三棱锥 解析:43. 【分析】先根据三视图得到几何体是底面是直角三角形的一个三棱锥,再根据锥体的体积计算公式求解即可.【详解】利用正方体法还原三视图,如图所示,根据三视图,可知该几何体是底面直角边为2的等腰直角三角形,高为2的三棱锥S-ABC ,故其体积114222323V =⨯⨯⨯⨯=. 故答案为:43. 【点睛】本题主要考查三视图还原几何体,锥体的体积公式,考查考生的观察分析能力与空间想象能力及运算能力,属于中档题. 24.【分析】由题意知圆锥的轴截面为外接球的最大截面即过球心的截面且球心在上由等边三角形性质有即求得外接球的半径为R 进而求外接球的表面积【详解】设外接球球心为连接设外接球的半径为R 依题意可得在中有即解得故 解析:163π 【分析】由题意知圆锥PO 的轴截面为外接球的最大截面,即过球心的截面且球心在PO 上,由等边三角形性质有Rt AO O '△,即222O A AO O O ''=+求得外接球的半径为R ,进而求外接球的表面积.【详解】设外接球球心为O ',连接AO ',设外接球的半径为R ,依题意可得1AO =,3PO =,在Rt AO O '△中,有222O A AO O O ''=+,即()22213R R =+-,解得3R =, 故外接球的表面积为24164433S R πππ==⋅=. 故答案为:163π. 【点睛】 本题考查了求圆锥体的外接球面积,由截面是等边三角形,结合等边三角形的性质求球半径,进而求外接球面积,属于基础题.三、解答题25.(1)证明见解析(2)3 【分析】(1)由CD PQ ⊥,PQ DQ ⊥可证得结论成立;(2)取BQ 的中点E ,连DE 、AE ,则AED ∠是二面角D QB A --的平面角,在Rt ADE △中,通过计算可得结果.【详解】(1)因为QA ⊥平面ABCD ,∴QA CD ⊥,又四边形ABCD 为正方形,∴CD AD ⊥,又因为QA AD A =,∴CD ⊥平面AQPD ,则CD PQ ⊥,因为1AQ AD ==,AQ AD ⊥,∴2DQ =,因为4PDQ π∠=,2PD =,∴2DQP π∠=,即PQ DQ ⊥, 因为CD DQ D =,所以PQ ⊥平面DCQ .(2)取BQ 的中点E ,连DE 、AE ,如图:因为2BD DQ =BE EQ =,∴DE BQ ⊥,AE BQ ⊥,所以AED ∠是二面角D QB A --的平面角,因为QA ⊥平面ABCD ,所以QA AD ⊥,又AD AB ⊥,AB AQ A =,∴AD ⊥平面BAQ ,∴AD AE ⊥,因为1AB AQ ==,所以2BQ =,所以2AE =,在Rt ADE △中,221612DE AD AE =+=+=, 所以232cos 6AE ADE DE ∠===. 所以二面角D QB A --的余弦值为3. 【点睛】关键点点睛:根据二面角的平面角的定义作出平面角是本题解题关键.26.(1)证明见解析;(2)证明见解析.【分析】(1)先依题意得到G 为ABD △的重心,即得到21BG BE GM EC ==,证得//GE MC ,再利用线面平行的判定定理即证结论;(2)先在ABD △中,证得AO BD ⊥,求得1AO =,在BCD △中,求得3OC =,结合勾股定理证得AO OC ⊥,再利用线面垂直的判定定理证明AO ⊥平面BCD ,即证平面ABD ⊥平面BCD .【详解】证明:(1)连接BG 并延长,交AD 于M ,连接MC ,在ABD △中,O 为BD 中点,G 在AO 上,2AG GO =,∴G 为ABD △的重心∴21BG GM =, 又21BE EC =∴BG BE GM EC=∴//GE MC , ∵GE ⊄平面ACD ,AC ⊂平面ACD ,∴//GE 平面ACD ;(2)在ABD △中,O 为BD 中点,2BD =,2AB AD ==∴AO BD ⊥∴221AO AB BO -=,在BCD △中,2BC CD BD ===,O 为BD 中点,连接OC ,则OC = 又2CA =,∴222OA OC CA +=,∴AO OC ⊥由AO OC ⊥,AO BD ⊥,OCBD O =,,OC BD ⊂平面BCD ,得AO ⊥平面BCD ,又AO ⊂平面ABD ,∴平面ABD ⊥平面BCD .【点睛】思路点睛:证明线面平行时运用线面平行的判定定理证得,或者利用面面平行的性质证得;证明线面垂直时,运用其判定定理需要证明一条直线与相交的两条直线垂直,当题目条件中给出长度时可以采用勾股定理逆定理证得线线垂直,或者运用面面垂直的性质定理证得线面垂直.27.(1)证明见解析(2)存在,点E 是11C D 的中点,证明见解析【分析】(1)根据线面垂直的判定定理即可证明BD ⊥平面1BDC ;(2)存在点E 是11C D 的中点,使//AE 平面1BDC ,由线面平行的判定定理进行证明即可得到结论.【详解】(1)因为1AA ⊥底面ABCD ,所以1CC ⊥底面ABCD ,因为BD ⊂底面ABCD ,所以1CC BD ⊥,因为底面ABCD 是梯形,//AB DC ,90BAD ∠=︒, 22CD AB AD ==,设1AB =,则1AD =,2CD =所以BD =,BC所以在BCD ∆中,222BD BC CD +=,所以90CBD ∠=︒,所以BD BC ⊥,又因为1CC BD ⊥,且1CC BC C ⋂=所以BD ⊥平面1BCC .(2)存在点E 是11C D 的中点,使//AE 平面1BDC证明如下:取线段11C D 的中点为点E ,连结AE ,如图,。

新版高中数学北师大版必修2习题:第2章解析几何初步 2.1.5.1

新版高中数学北师大版必修2习题:第2章解析几何初步 2.1.5.1

1.5平面直角坐标系中的距离公式第1课时两点间的距离公式1.假设点A为(1, -3),点B为(5, -1),那么原点到线段AB中点的距离是()A.1B.√13C.13D.2√10解析:因为线段AB中点为M(3, -2),所以|OM| =√32+(-2)2=√13.答案:B2.点A(2k, -1),B(k,1),且|AB| =√13,那么实数k等于()A.±3B.3C. -3D.0解析:|AB| =√(2k-k)2+(-1-1)2=√13,解得k =±3.答案:A3.点P的横坐标是7,点P到点Q( -1,5)的距离为10,那么点P的纵坐标是()A.11B. -1C.11或 -1D.41解析:设点P的纵坐标为y,那么√(-1-7)2+(5-y)2 =10,解得y =11或y = -1.答案:C4.过点A(4,a)和点B(5,b)的直线与y =2x平行,那么|AB|的值为()A.5B.√5C.2D.√2=b -a,又因为过点A,B的直线与y =2x平行,所以b -a =2,解析:k AB =b-a5-4所以|AB| =√(5-4)2+(b-a)2=√5.答案:B5.两点M(a,b),N(c,d),且√a2+b2−√c2+d2 =0,那么()A.原点一定是线段MN的中点B.M,N一定都与原点重合C.原点一定在线段MN上但不一定是中点D.点M,N到原点的距离相等解析:将等式√a2+b2−√c2+d2 =0变形为√a2+b2=√c2+d2,根据两点间的距离公式可知,点M(a,b)到原点的距离与点N(c,d)到原点的距离相等.答案:D6.过两直线x -√3y +1 =0和√3x +y -√3 =0的交点,并与原点的距离等于1的直线有( )A.0条B.1条C.2条D.3条 解析:两直线交点为A (12,√32),得|AO| =1,那么适合题意的直线只有1条.应选B .答案:B★7.A (1,3),B (5, -2),点P 在x 轴上,那么使|AP| -|BP|取最|大值的点P 的坐标是( )A .(4,0)B .(13,0)C .(5,0)D .(1,0)解析:点A (1,3)关于x 轴的对称点为A'(1, -3),连接A'B 并延长交x 轴于点P ,即为所求.直线A'B 的方程是y +3 =-2+35-1(x -1),即y =14x -134.令y =0,得x =13.答案:B8.△ABC 的顶点坐标为A (3,2),B (1,0),C (2 +√3,1 -√3),那么AB 边上的中线CM 的长为 . 解析:由中点公式得AB 的中点的坐标为M (2,1).由两点间的距离公式,有|CM| =√(2+√3-2)2+(1-√3-1)2=√6.所以AB 边上的中线CM 的长为√6.答案:√69.点A ( -3,5),B (2,15),点P 在直线l :3x -4y +4 =0上,那么|PA| +|PB|的最|小值为 . 解析:设点A 关于l :3x -4y +4 =0的对称点为C (a ,b ),那么{3·a -32-4·b+52+4=0,b -5a+3=-43, 解得{a =3,b =-3,所以|PA| +|PB|的最|小值为|CB| =√(2-3)2+[15-(-3)]2 =5√13. 答案:5√13★10.假设点P (x ,y )在直线4x +3y =0上,且满足 -14≤x -y ≤7,那么点P 到坐标原点距离的取值范围是 .解析:由4x +3y =0得y = -43x ,那么x -y =73x.由 -14≤x -y ≤7可知 -6≤x ≤3,所以x 2∈[0,36],所以点P 到坐标原点的距离为√x 2+y 2=√x 2+169x 2=53√x 2.因为x 2∈[0,36],所以53√x 2∈[0,10].答案:[0,10]★11.在平行四边形ABCD 中,A (1,1),B (7,1),D (4,6),M 是线段AB 的中点,线段CM 与BD 交于点P ,求线段AP 的长.解AB 的中点为M (4,1),因为四边形ABCD 为平行四边形,所以AC 的中点与BD 的中点重合,设点C 的坐标为(x ,y ),那么{x+12=7+42,y+12=1+62,解得点C (10,6). 所以直线CM 的方程为y -1 =6-110-4(x -4), 即5x -6y -14 =0.又直线BD 的方程为y -1 =6-14-7(x -7),即5x +3y -38 =0.由{5x -6y -14=0,5x +3y -38=0,得P (6,83). 所以由两点间的距离公式得|AP| =√(6-1)2+(83-1)2=5√103.。

高一数学北师大版必修二第二章 解析几何初步练习题及答案解析课时作业21

高一数学北师大版必修二第二章 解析几何初步练习题及答案解析课时作业21

一、选择题1.若直线x+y=1与圆x+y=r(r>0)相切,则实数r的值等于( )A.22B.1C.2【解析】【答案】由d=r得AD.2|-1|2=r,∴r=.1+12.直线l:y=kx+2与圆C:x+y=16的位置关系是()A.相离C.相交【解析】B.相切D.不确定直线l恒过定点A(0,2),又0+2=4<16,∴A在圆C内,从而直线与圆相交.【答案】C3.若直线l:ax+by=1与⊙C:x关系是( )+y=1相交,则点P(a,b)与⊙C的位置A.点P在圆内C.点P在圆上B.点P在圆外D.不确定【解析】圆心C到直线l的距离d=a 1<1,即a+b>1.故点P在22圆外.【答案】B4.(2013·三明高一检测)直线2x-y-1=0被圆(x-1)+y=2所截得的弦长为( )A.305B.35522222222222222+b22C.2 30 5D .6 5 5【解析】 圆心为(1,0),半径为 2,|2-0-1| 1= , 圆心到直线的距离 d =5 51 6 5 弦长 l =2r -d =2 2- = .【答案】 D5.(2013· 咸阳高一检测)若过点 A (4,0)的直线 l 与圆(x -2) 则直线 l 的斜率的取值范围为()A .[- 3, 3]B .(- 3, 3)3 33 3C .[- , ]D .(- , )+y=1 有公共点,【解析】由题意知,直线 l 的斜率存在,设直线 l 的方程为 y =k (x -4),即 kx -y -4k =0,则圆心到直线 l 的距离为 d =|2k -4k |k +1,若直线 l 与圆(x -2) +y=1 有公共点,|2k -4k |则 d = ≤1,k +13 3 解得 k ∈[- , ].【答案】C 二、填空题6.若直线 4ax -3by +6=0(a ,b ∈R )始终平分圆 x +y +6x -8y +1=0 的周 长,则 a 、b 满足的条件是__________.【解析】圆心(-3,4)在直线 4ax -3by +6=0 上,所以 2a +2b -1=0.【答案】2a +2b -1=07.已知圆 C 的圆心是直线 x -y +1=0 与 x 轴的交点,且圆 C 与直线 x +y +3=0 相切,则圆 C 的方程为________.【解析】 由题意得圆心为 C (-1,0).由点到直线的距离公式得圆心 C 到直2 2 5 5 2 23 3 3 3 2 22 23 3 2 2线 x +y +3=0 的距离 d =|-1+0+3|2= 2,即圆半径 r = 2.∴圆的方程为(x + 1) +y =2. 【答案】(x +1)+y=28.直线 x +y +a =0(a >0)与圆 x +y =4 交于 A ,B 两点,且 S △OAB= 3,则 a =________.【解析】 |a |∵圆心到直线 x +y +a =0 的距离 d = ,|AB |=2×2a 4- ,∴S△1= ×2×OABa |a | 4- × = 3,2解得 a2=6 或 a 2=2.又 a >0,∴a = 6或 2.【答案】6或 2三、解答题9.(2013· 松原高一检测)已知圆的方程是 x+y=2,直线 y =x +b ,当 b 为何值时,(1)圆与直线有两个公共点;(2)只有一个公共点;(3)没有公共点.【解】法一圆心到直线 y =x +b 的距离 d =|b | 2,(1)当 d <r ,即|b | 2< 2,-2<b <2 时,直线与圆相交,有两个公共点;|b |(2)当 d =r ,即 = 2,b =±2 时,直线与圆相切,有一个公共点;2(3)当 d >r ,即|b |2> 2,b <-2 或 b >2 时,直线与圆相离,没有公共点.法二x +y =2,联立方程组 消去 y 得,y =x +b ,2x +2bx +b -2=0, ∴Δ=16-4b .(1)当 Δ>0,即-2<b <2 时,有两个公共点;(2)当 Δ=0,即 b =±2 时,有一个公共点;(3)当 Δ<0,即 b >2 或 b <-2 时,无公共点.10.(2013· 武威高一检测)已知圆 C 满足以下条件:2 2 222 2 2 2 22 2 2 22 222 2(1)圆上一点 A 关于直线 x +2y =0 的对称点 B 仍在圆上,(2)圆心在直线 3x -2y -8=0 上,(3)与直线 x -y +1=0 相交截得的弦长为 2 2,求圆 C 的方程.【解】设圆的方程为(x -a ) +(y -b ) =r 2(r >0),∵圆上的点关于直线 x +2y =0 的对称点仍在圆上, ∴圆心在 x +2y =0 上,∴a +2b =0.又∵3a -2b -8=0,∴a =2,b =-1.∵圆被直线 x -y +1=0 截得的弦长为 2 2,|a -b +1| ∴(2 2+( 2) =r2 ,∴r2=10,∴圆的方程为(x -2) +(y +1) =10.11.已知圆 M 过两点 E (1,-1),F(-1,1)且圆心 M 在 x +y -2=0 上. (1)求圆 M 的方程;(2)设 P 是直线 3x +4y +8=0 上的动点,PA 、PB 是圆 M 的两条切线,A ,B 为切点,求四边形 PAMB 面积的最小值.【解】(1)设圆 M 的方程为(x -a ) +(y -b ) =r (r >0),1-a +-1-b =r 根据题意得-1-a 2+1-b 2=r 2a +b -2=0解得 a =b =1,r =2,故所求圆 M 的方程为(x -1) +(y -1) =4. (2)由题知,四边形 PAMB 的面积为S =S △ PA M+S△PBM 1 1= |AM ||PA |+ |BM ||PB |,又|AM |=|BM |=2,|PA |=|PB |, 所以 S =2|PA |,而|PA |= |PM | -|AM | = |PM | -4,2 2)2 2 22 2 22 2 2222 22 2 2即 S =2 |PM | -4,因此要求 S 的最小值,只需求|PM |的最小值即可, 即在直线 3x +4y +8=0 上找一点 P ,使得|PM |的值最小.所以|PM | = min|3×1+4×1+8| 3 +4=3,所以四边形 PAMB 面积的最小值为S =2 |PM | -4=2 3 -4=2 5. 2 2 2 2 2。

新版高中数学北师大版必修2习题:第2章解析几何初步 2.3.3

新版高中数学北师大版必修2习题:第2章解析几何初步 2.3.3

3.3空间两点间的距离公式1.点A(2, -3,5)关于xOy平面的对称点为A',那么|AA'|等于()A.4B.6C.10D.√38答案:C2.以下各点到坐标原点距离最|小的是()A.(1, -1,1)B.(3,0,4)C.( -2,3,5)D.(2,2,1)解析:点(1, -1,1),(3,0,4),( -2,3,5),(2,2,1)到原点(0,0,0)的距离分别为√3,5,√38,3,应选A.答案:A3.点A在z轴上,它到点(3,2,1)的距离是√13,那么点A的坐标是()A.(0,0, -1)B.(0,1,1)C.(0,0,1)D.(0,0,13)解析:设点A(0,0,c),那么√32+22+(1-c)2=√13,解得c =1.所以点A的坐标为(0,0,1).答案:C4.如下图,在空间直角坐标系中,有一棱长为a的正方体ABCD -A'B'C'D',那么A'C的中点E与AB的中点F之间的距离为()A.√2aaB.√22C.aD.a2解析:由题意知,F(a,a2,0),E(a2,a2,a2),所以|EF| =√(a2)2+(a2)2=√22a.应选B.答案:B5.正方体的每条棱都平行于坐标轴,两个顶点为A( -6, -6, -6),B(8,8,8),且两点不在正方体的同一个面上,那么正方体的对角线长为()A.14√3B.3√14C.5√42D.42√5解析:|AB| =√(-6-8)2+(-6-8)2+(-6-8)2 =14√3.答案:A6.在空间直角坐标系中,与点A(3,1,2),B(4, -2, -2),C(0,5,1)等距离的点有()A.1个B.2个C.3个D.无数个解析:由两点间距离公式可得|AB| =√26,|BC| =√74,|AC| =√26.因为A,B,C三点不共线,所以三点可确定一个平面,在△ABC所在平面内可找到一点到A,B,C的距离相等.而过该点与平面ABC垂直的直线上的每一点到A,B,C的距离均相等.应选D.答案:D7.点P在x轴上,且它到点P1(0,√2,3)的距离是到点P2(0,1, -1)的距离的2倍,那么点P的坐标是.解析:点P在x轴上,设P(x,0,0),那么|PP1| =√x2+(√2)2+32=√x2+11,|PP2| =√x2+(-1)2+12=√x2+2.∵|PP1| =2|PP2|,∴2+11 =2√x2+2,解得x =±1.故点P的坐标为(1,0,0)或( -1,0,0).答案:(1,0,0)或( -1,0,0)8.在空间直角坐标系O -xyz中,满足z =1的所有点构成的图形是.解析:因为z =1,所以满足条件的点到xOy面的距离为1,所以满足条件的点构成一个平面,即与xOy平面平行,与z轴交点为(0,0,1)的平面.答案:与xOy平面平行且与z轴交点为(0,0,1)的平面★9.在平面xOy内的直线3x -y +6 =0上确定点P,使点P到定点M(2,2,3)的距离最|小,那么点P的坐标为.解析:由可设点P(x,3x +6,0),那么|PM|=√(2x-x)2+[(2x+5)-(3x+6)]2+[(x+2)-0]2=√x2+(x+1)2+(x+2)2=√3x2+6x+5=√3(x+1)2+2.所以,当x = -1时,|PM|取最|小值为√2.故在xOy平面内的直线3x -y +6 =0上,取点P( -1,3,0)时,点P到点M的距离最|小.答案:( -1,3,0)10.如下图,正方体ABCD -A1B1C1D1的棱长为1,且E是棱DD1的中点,求BE,A1E的长.解以点A为坐标原点,AB,AD,AA1所在的直线分别为x轴、y轴、z轴,建立如下图的空间直角坐标系.依题意,可得B (1,0,0),E (0,1,12),A 1(0,0,1), 所以|BE| =√(1-0)2+(0-1)2+(0-12)2=32,|A 1E| =√(0-0)2+(0-1)2+(1-12)2=√52. 故BE 的长为32,A 1E 的长为√52.11.在空间直角坐标系中,A (3,0,1),B (1,0, -3).(1)在y 轴上是否存在点M ,使|MA| =|MB|成立?(2)在y 轴上是否存在点M ,使△MAB 为等边三角形?假设存在,求出点M 的坐标;假设不存在,说明理由. 解(1)假设在y 轴上存在点M ,满足|MA| =|MB|,可设点M (0,y ,0),那么√(3-0)2+(0-y )2+(1-0)2=√(1-0)2+(0-y )2+(-3-0)2,由于上式对任意实数都成立,故y 轴上的所有点都能使|MA| =|MB|成立.(2)假设在y 轴上存在点M (0,y ,0),使△MAB 为等边三角形.由(1)可知y 轴上的所有点都能使|MA| =|MB|成立,所以只要再满足|AB| =|MA|,就可以使△MAB 为等边三角形.因为|AB| =2√5,|MA| =√(3-0)2+(0-y )2+(1-0)2=√10+y 2,于是√10+y 2 =2√5,解得y =±√10.故y 轴上存在点M ,使△MAB 为等边三角形,此时点M 的坐标为(0,√10,0)或(0, -√10,0).★12.正方形ABCD ,ABEF 的边长都是1,而且平面ABCD 与平面ABEF 互相垂直,点M 在AC 上移动,点N 在BF 上移动,CM =BN =a (0<a<√2).求:(1)MN 的长;(2)a 为何值时,MN 的长最|小?分析(1)此题首|先应画出图形,然后选择适宜的点作为原点,建立空间直角坐标系,借助空间两点间距离公式求解.(2)利用(1)中|MN|的表达式转化为求二次函数的最|小值.解(1)因为平面ABCD ⊥平面ABEF ,平面ABCD ∩平面ABEF =AB ,AB ⊥BE ,所以BE ⊥平面ABC.所以AB ,BC ,BE 两两互相垂直.所以以B 为原点,以BA ,BE ,BC 所在直线分别为x 轴、y 轴和z 轴,建立如下图的空间直角坐标系,那么M ( √22a ,0,1 -√22a ),N ( √22a ,√22a ,0 ).所以 |MN| =( √22a -√22a ) 2+( 0-√22a ) 2+( 1-√22a -0 ) 2=√a 2=( a -√22 ) +12(0<a<√2), 即MN 的长为( a -√22 ) 2+12(0<a<√2).(2)由(1)知|MN| =( a -√22 ) 2+12,因为0<a<√2,所以当a =√22时,|MN|min =√22,即当a =√22时,MN 的长最|小.。

北师大版高中数学必修二第二章《解析几何初步》测试卷(答案解析)(2)

北师大版高中数学必修二第二章《解析几何初步》测试卷(答案解析)(2)

一、选择题1.动圆M 与定圆22:40C x y x ++=相外切,且与直线:2l x =相切,则动圆M 的圆心(),x y 满足的方程为( )A .212120y x -+=B .212120y x +-=C .280y x +=D .280y x -=2.两圆22440x y x y ++-=和22280x y x ++-=相交于两点,M N ,则线段MN 的长为A .4B C D 3.已知半径为2的圆经过点()5,12,则其圆心到原点的距离的最小值为( ) A .9B .11C .13D .154.已知点(,0)A m -,(,0)B m ,R m ∈,若圆22:(3)(3)2C x y -+-=上存在点P ,满足PA PB ⊥,则m 最大值是( )A .B .C .D .5.已知圆C 与直线30x y ++=相切,直线10mx y ++=始终平分圆C 的面积,则圆C方程为( ) A .2222x y y +-= B .2222x y y ++= C .2221x y y +-= D .2221x y y ++=6.直线3y x m =-+与圆221x y += 在第一象限内有两个不同的交点,则m 的取值范围是( )A .B .C .⎝⎭D .⎛ ⎝⎭7.在三棱锥P ABC -中,PA ⊥平面ABC ,1204BAC AP AB AC ∠====,则三棱锥P ABC -的外接球的表面积是( ) A .18πB .36πC .40πD .72π8.已知m ,n 是两条直线,α,β是两个平面,则下列命题中错误的是( ) A .若m n ⊥,m α⊥,n β⊥,则αβ⊥ B .若m α⊂,//αβ,则//m βC .若m n ⊥,m α⊥,βn//,则αβ⊥D .若l αβ=,//m α,//m β,则//m l9.如图,在矩形ABCD 中,1AB =,BC ,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥A BCD -正视图和俯视图如图,则三棱锥A BCD -中AC 长为( )A .32B .3C .10 D .210.《九章算术》是古代中国乃至东方的第一步自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3πD .2π 11.已知长方体1111ABCD A BC D -的顶点A ,B ,C ,D ,在球O 的表面上,顶点1A ,1B ,1C ,1D ,在过球心O 的一个平面上,若6AB =,8AD =,14AA =,则球O 的表面积为( ) A .169πB .161πC .164πD .265π12.在四棱锥P -ABCD 中,//AD BC ,2AD BC =,E 为PD 中点,平面ABE 交PC 于F ,则PFFC=( ) A .1B .32C .2D .3二、填空题13.当点P 在圆221x y +=上运动时,它与定点()30Q -,的连线PQ 的中点的轨迹方程是________________.14.若圆222(3)(5)r x y -++=上有且只有两个点到直线432x y -=的距离为1,则半径r 的取值范围是______.15.以下四个命题中:①直线()32y ax a a R =-+∈必过定点()3,2;②直线10y ++=的倾斜角为60︒,③将一组数据中的每个数据都乘以同一个非零常数a后,方差也变为原来的a 倍;④基本事件空间是{}1,2,3,4,5,6Ω=,若事件{}1,2A =,{}4,5,6B =,A ,B 为互斥事件,但不是对立事件.其中正确的是________.16.直线()10,0ax by a b +=>>与曲线222410x y x y +--+=交于A 、B ,且AB 4=,则11a b+的最小值为__________ 17.在平面直角坐标系xOy 中,过点(0,3)M -的直线l 与圆223x y +=交于A ,B 两点,且2MB MA =,则直线l 的方程为________.18.过点1,12⎛⎫-⎪⎝⎭的直线l 满足原点到它的距离最大,则直线l 的一般式方程为___________.19.四棱锥V ABCD -中,底面ABCD 是正方形,各条棱长均为2.则异面直线VC 与AB所成角的大小为______.20.已知四棱锥P ABCD -的底面ABCD 为矩形,且所有顶点都在球O 的表面上,侧面PAB ⊥底面ABCD ,PA PB ==,120APB ∠=︒,4=AD ,则球O 的表面积为_______.21.在三棱柱111ABC A B C -中侧棱垂直底面且底面是ABC 为等边三角形且12A A AB =,E 在棱1AA 上,112AE A A =,则异面直线1AC 与BE 所成角的余弦值___________.22.将半径为3,圆心角为23π的扇形围成一个圆锥,则该圆锥内切球的体积为________. 23.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,且ABCD 为矩形,π2DPA ∠=,AD =2AB =,PA PD =,则四棱锥P ABCD -的外接球的体积为________.24.在矩形ABCD 中,1AB =,AD =.将BCD 沿对角线BD 翻折,得到三棱锥A BCD -,则该三棱锥外接球的表面积为________.三、解答题25.已知四棱锥P ABCD -中,//AB CD ,AB AD ⊥,4AB =,AD =,2CD =,PA ⊥平面ABCD ,4PA =.(1)设平面PAB ⋂平面PCD m =,求证:CD //m ;(2)若E 是PA 的中点,求四面体PBEC 的体积.26.如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PA ⊥底面ABCD ,PA AB =,点M 是棱PD 的中点.(1)求证://PB 平面ACM ; (2)求三棱锥P ACM -的体积.27.在三棱锥A BCD -中,BCD △为等腰直角三角形,点E ,G 分别是线段BD ,CD 的中点,点F 在线段AB 上,且2BF FA =.若1AD =,3AB =,2CB CD ==.(Ⅰ)求证://AG 平面CEF ; (Ⅱ)求直线AD 与平面CEF 所成的角.28.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,E 为PD 的中点.(1)证明://PB 平面AEC ;(2)设1AP =,3AD =P ABCD -的体积为1,求证:平面PAC ⊥平面PBD .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】设M 点坐标为(x ,y ),C (﹣2,0),动圆的半径为r ,则根据两圆相外切及直线与圆相切的性质可得,MC=2+r ,d=r ,从而|MC|﹣d=2,由此能求出动圆圆心轨迹方程. 【详解】设M 点坐标为(x ,y ),C (﹣2,0),动圆的半径为r , 则根据两圆相外切及直线与圆相切的性质可得,MC=2+r ,d=r ∴|MC|﹣d=222(2)x y ++2﹣x )=2, 化简得: y 2+12x -12=0.∴动圆圆心轨迹方程为y 2+12x -12=0. 故选B . 【点睛】本题考查动圆圆心轨迹方程的求法,考查直线方程、圆、两点间距离公式、两圆相外切、直线与圆相切等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.2.C解析:C 【分析】求出圆心和半径以及公共弦所在的直线方程,再利用点到直线的距离公式,弦长公式,求得公共弦的长.【详解】∵两圆为x 2+y 2+4x ﹣4y=0①,x 2+y 2+2x ﹣8=0,② ①﹣②可得:x ﹣2y+4=0.∴两圆的公共弦所在直线的方程是x ﹣2y+4=0,∵x 2+y 2+4x ﹣4y=0的圆心坐标为(﹣2,2),半径为∴圆心到公共弦的距离为=∴公共弦长==故答案为:C 【点睛】本题主要考查圆与圆的位置关系,考查两圆的公共弦长的计算,意在考查学生对这些知识的掌握水平和分析推理计算能力.3.B解析:B 【分析】设圆心坐标为(),a b ,则圆的圆心轨迹方程()()225124a b -+-=,再利用点与点的距离公式求解 【详解】半径为2的圆经过点()5,12,设圆心坐标为(),a b ,则其方程为()()224x a y b -+-= ,由其过点()5,12,则()()225124a b -+-=,即()()225124a b -+-=可得该圆的圆心轨迹是以()5,12为圆心,2为半径的圆, 故圆心到原点的距离的最小值为()5,12到原点的距离减半径, 213211=-=, 故选:B . 【点睛】关键点睛:本题考查轨迹问题和点与圆上的点的距离的最值,解答本题的关键是由题意得到圆心的轨迹方程()()225124a b -+-=,再根据点与圆上的点的距离的最值的求法得出答案,属于中档题.4.C解析:C 【分析】首先设点(),P x y ,利用0AP BP ⋅=,转化为m =m 的最大值. 【详解】由圆的方程可知,圆的圆心()3,3C (),P x y 则(),AP x m y =+,(),BP x m y =-,()()20AP BP x m x m y ⋅=+-+=,即222m x y m =+⇒=的几何意义可知,m 的最大值就是圆上的点到原点的距离的最大值,即圆心到原点的距离加半径,即OC r +== 故选:C 【点睛】结论点睛:与圆的几何性质有关的最值,具体结论如下:(1)设O 为圆的圆心,半径为r ,圆外一点A 到圆上的距离的最小值为AO r -,最大值为AO r -;(2)过圆内一点的最长弦为圆的直径,最短弦是以该点为中点的弦;(3)记圆的半径为r ,圆心到直线的距离为d ,直线与圆相离,则圆上的点到直线的最大距离为d r +,最小值为d r -;5.D解析:D 【分析】计算出直线10mx y ++=所过定点的坐标,由题意得出定点是圆C 的圆心,然后利用点到直线的距离公式计算出圆C 的半径长,即可得出圆C 的方程. 【详解】在直线10mx y ++=的方程中,令0x =,则1y =-,则直线10mx y ++=过定点()0,1-.由于直线10mx y ++=始终平分圆C 的面积,则点()0,1-是圆C 的圆心,又圆C 与直线30x y ++=相切,则圆C 的半径r ==.因此,圆C 的方程为()2212x y ++=,即2221x y y ++=.故选D. 【点睛】本题考查圆的方程的求解,同时也考查了直线过定点问题,求出圆的圆心坐标为解题的关键,考查运算求解能力,属于中等题.6.D解析:D【分析】求出直线过(0,1)时m 的值,以及直线与圆相切时m 的值,即可确定出满足题意m 的范围. 【详解】 解:如图所示:当直线过(0,1)时,将(0,1)代入直线方程得:1m =;当直线与圆相切时,圆心到切线的距离d r =,即21313=⎛⎫+ ⎪ ⎪⎝⎭,解得:233m =或233m =-(舍去), 则直线与圆在第一象限内有两个不同的交点时,m的范围为231m <<. 故选:D .【点睛】本题考查了直线与圆相交的性质,利用了数形结合的思想,熟练掌握数形结合法是解本题的关键,属于中档题.7.D解析:D 【分析】先找出ABC 的外接圆的半径,然后取ABC 的外接圆的圆心N ,过N 作平面ABC 的垂线NG ,作PA 的中垂线,交NG 于O ,则O 是外接球球心, OA 为外接球半径,求解半径并求表面积即可. 【详解】如图所示,1204BAC AB AC ∠===,,取BC 中点M ,连接AM 并延长到N 使AM =MN ,则四边形ABNC 是两个等边三角形组成的菱形,AN =BN =CN ,点N 是ABC 的外接圆圆心,过N 作平面ABC 的垂线NG ,则球心一定在垂线NG 上,因为PA ⊥平面ABC ,则PA //NG ,PA 与NG 共面,在面内作PA 的中垂线,交NG 于O ,则O 是外接球球心,半径R =OA ,Rt AON 中,12ON AP ==4AN =,故R =2441872S R πππ==⨯=.故选:D. 【点睛】求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.本题就是采用这个方法.本题使用了定义法.8.C解析:C 【分析】利用直二面角可判断A 的正误,利用面面平行或线面平行性质定理即判断定理可判断BD 的正误,从而可得正确的选项,利用反例可判断C 是错误的. 【详解】 对于A ,如图,设l αβ=,空间中取一点O (O 不在平面,αβ内,也不在直线,m n上),过O 作直线,a b ,使得,////a m b n ,且,a A b B αβ⋂=⋂=,故a b ⊥. 因为m α⊥,故a α⊥,而l α⊂,故a l ⊥,同理b l ⊥, 因为a b O ⋂=,故l ⊥平面OAB . 设平面OAB 交l 与C ,连接,AC BC ,因为,AC BC ⊂平面OAB ,故,,l AC l BC ⊥⊥所以ACB ∠为l αβ--的平面角. 因为a α⊥,AC α⊂,故OA AC ⊥,同理OB BC ⊥,而OA OB ⊥, 故在四边形OACB 中,90ACB ∠=︒即αβ⊥,故A 正确.对于B ,由面面平行的性质可得若m α⊂,//αβ,则//m β,故B 正确. 对于D ,如图,过m 作平面γ,使得a γα=,过m 作平面η,使得b ηβ⋂=,因为//m α,m γ⊂,故//a m ,同理//b m ,故//a b , 而a β⊄,b β⊂,故//a β,而a α⊂,l αβ=,故//a l ,所以//m l ,故D 正确.对于C ,在如图所示的正方体中,//AD 平面11A D CB ,1AA ⊥平面ABCD ,1AD AA ⊥,但是平面11A D CB 与平面ABCD 不垂直,故C 错误.故选:C. 【点睛】思路点睛:对于立体几何中与位置有关的命题的真假判断,一般根据性质定理和判定定理来处理,反例一般可得正方体中寻找.9.C解析:C 【分析】先由正视图、俯视图及题意还原三棱锥,过A 作AM ⊥BD 于点M ,连结MC ,把AC 放在直角三角形AMC 中解AC . 【详解】根据三棱锥A BCD -正视图和俯视图,还原后得到三棱锥的直观图如图示,由图可知:平面ABD ⊥平面CBD ,过A 作AM ⊥BD 于点M ,连结MC ,则AM ⊥平面CBD , ∴△MCA 为直角三角形. 过C 作CN ⊥BD 于点N ,在直角三角形ABD 中,AB =1,AD 3∴222BD AB AD =+=所以∠ABD=60°,∠ADB=30°,则在直角三角形ABM 中,AB =1,∠ABM=60°,∴13,2BM AM ==同理,在直角三角形CBD 中,13,2DN CN ==. ∴MN =BD -BM -DN =112122--=, ∴222237()12CM CN MN =+=+= 在直角三角形AMC 中,22227310()22AC CM AM ⎛⎫=+=+ ⎪ ⎪⎝⎭故选:C 【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图 ;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整.(2)立体几何中求线段长度:①、把线段放在特殊三角形中,解三角形;②、用等体积法求线段.10.D解析:D 【分析】过点F 作//FG AE 交AB 于点G ,连接CG ,则异面直线AE 与CF 所成角为CFG ∠或其补角,然后在CFG △中求解. 【详解】如下图所示,在平面ABFE 中,过点F 作//FG AE 交AB 于点G ,连接CG , 则异面直线AE 与CF 所成角为CFG ∠或其补角,设1EF =,则3AB =,2BC CF AE ===,因为//EF AB ,//FG AE ,所以,四边形AEFG 为平行四边形, 所以,2FG AE ==,1AG =,2BG =, 由于2ABC π∠=,由勾股定理可得2222CG BC BG =+=所以,222CG CF FG =+,则2CFG π∠=.故选:D. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.11.C解析:C 【分析】把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体外接球的直径等于体对角线的长,求出直径,即可得出球的表面积. 【详解】 如下图所示:把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体的结构特征可得,其外接球直径等于体对角线的长, 所以球O 的半径R 满足2222688164R =++=, 所以球O 的表面积24164S R ππ==. 故选:C.【点睛】关键点点睛:本题主要考查几何体外接球的表面积,熟记长方体结构特征,其外接球的球心和半径与长方体的关系,以及球的表面积公式,是解决此类问题的关键.12.C解析:C 【分析】首先通过延长直线,DC AB ,交于点G ,平面BAE 变为GAE ,连结PG ,EG 交于点F ,再根据三角形中线的性质,求PFFC的值. 【详解】延长,DC AB ,交于点G ,连结PG ,EG 交PC 于点F ,//AD BC ,且2AD BC =,可得点,B C 分别是,AG DG 的中点,又点E 是PD 的中点,PC ∴和GE 是△PGD 的中线,∴点F 是重心,得2PFFC=故选:C 【点睛】关键点点睛:本题的关键是找到PC 与平面BAE 的交点,即将平面BAE 转化为平面GAE 是关键.二、填空题13.【分析】设动点的中点由中点坐标公式可解出将点点的坐标代入已知圆的方程化简可得到所求中点的轨迹方程【详解】解:设动点的中点由题意可得:解得:又点在圆上运动化简得:即为所求的轨迹方程故答案为:【点睛】方 解析:()22+3124y x +=【分析】设动点00(,)P x y ,P ,Q 的中点(,)M x y ,由中点坐标公式可解出0x ,0y ,将点P 点的坐标代入已知圆的方程,化简可得到所求中点的轨迹方程. 【详解】解:设动点00(,)P x y ,P ,Q 的中点(,)M x y , 由题意可得:032x x -+=,02y y =, 解得:023x x =+,02y y =, 又点P 在圆221x y +=上运动,22(23)(2)1x y ∴++=,化简得:()22+3124y x +=,即为所求的轨迹方程. 故答案为:()22+3124y x +=.【点睛】方法点睛:求轨迹方程的基本步骤:①建立适当的平面直角坐标系,设(,)P x y 是轨迹上的任意一点;②寻找动点(,)P x y 所满足的条件;③用坐标(,)x y 表示条件,列出方程0(),f x y =;④化简方程0(),f x y =为最简形式;⑤证明所得方程即为所求的轨迹方程,注意验证.14.【详解】∵圆心P(3−5)到直线4x−3y=2的距离等于由|5−r|<1解得:4<r<6则半径r 的范围为(46)故答案为:(46)当时满足题意考点:1直线和圆的位置关系;2点到直线的距离 解析:46r <<【详解】∵圆心P (3,−5)到直线4x −3y =2的距离等于,由|5−r |<1,解得:4<r <6, 则半径r 的范围为(4,6). 故答案为:(4,6),当46r <<时满足题意.考点:1、直线和圆的位置关系;2、点到直线的距离.15.①④【分析】根据直线方程直线的倾斜角的定义方差公式对立事件的概念分别判断各命题【详解】①直线中令则∴直线必过定点①正确;②直线的斜率为倾斜角为②错误;③将一组数据中的每个数据都乘以同一个非零常数a 后解析:①④ 【分析】根据直线方程,直线的倾斜角的定义,方差公式,对立事件的概念分别判断各命题. 【详解】①直线()32y ax a a R =-+∈中,令3x =,则2y =,∴直线必过定点()3,2,①正确;②310x y ++=的斜率为3k =-120︒,②错误;③将一组数据中的每个数据都乘以同一个非零常数a 后,方差变为原来的2a 倍,③错误;④基本事件空间是{}1,2,3,4,5,6Ω=,若事件{}1,2A =,{}4,5,6B =,A ,B 不可能同时发生,为互斥事件,但事件3发生时,,A B 都不发生.因此它们不是对立事件,④正确. 故答案为:①④ 【点睛】本题考查命题的真假判断,掌握直线方程,直线的倾斜角,方差,对立事件等概念是解题关键.本题属于中档题.16.【分析】由得可知圆心为半径为2而所以可得直线过圆心由此得所以可化为然后利用基本不等式可求得其最小值【详解】解:由得所以曲线表示圆其圆心为半径为2因为直线与曲线交于且所以直线过圆心所以所以当且仅当即时解析:3+【分析】由222410x y x y +--+=得,22(1)(2)4x y -+-=,可知圆心为(1,2),半径为2,而AB 4=,所以可得直线过圆心,由此得21a b +=,所以11a b+可化为112a b a b ⎛⎫+⋅+ ⎪⎝⎭(),然后利用基本不等式可求得其最小值 【详解】解:由222410x y x y +--+=得,22(1)(2)4x y -+-=, 所以曲线222410x y x y +--+=表示圆,其圆心为(1,2),半径为2,因为直线()10,0ax by a b +=>>与曲线222410x y x y +--+=交于A 、B ,且AB 4=,所以直线()10,0ax by a b +=>>过圆心(1,2), 所以21a b +=,所以11112a b a b a b ⎛⎫+=+⋅+ ⎪⎝⎭()2333b a a b =++≥+=+当且仅当2b aa b =,即212a b ==时,取等号故答案为:3+【点睛】此题考查的是直线与圆的位置关系,利用基本不等式求最值,属于中档题17.【分析】根据题意知点为的中点设再由得利用韦达定理建立方程解得即可【详解】由题知点为的中点设直线设将直线带入圆的方程得则由得即所以解得故直线方程为:故答案为:【点睛】本题考查直线和圆的位置关系属于基础题解析:3y =-【分析】根据题意知,点A 为MB 的中点,设()11,A x y ,()22,B x y ,再由2MB MA =得122x x =,利用韦达定理建立方程,解得即可.【详解】由题知,点A 为MB 的中点,设直线:3l y kx =-,设()11,A x y ,()22,B x y ,将直线带入圆的方程得()221660k x kx +-+=,则12261k x x k +=+,12261x x k⋅=+, 由2MB MA =,得122x x =,即2221k x k =+,1241kx k =+, 所以,21222246111k k x x k k k ⋅=⨯=+++,解得k =3y =-.故答案为:3y =-. 【点睛】本题考查直线和圆的位置关系,属于基础题.18.【分析】过作于连接可得直角三角形中从而得到当时原点到直线的距离最大利用垂直求出的斜率从而得到的方程【详解】设点过坐标系原点作于连接则为原点到直线的距离在直角三角形中为斜边所以有所以当时原点到直线的距 解析:2450x y --=【分析】过O 作OB l ⊥于B ,连接OA ,可得直角三角形AOB 中OB OA <,从而得到当OA l ⊥时,原点O 到直线l 的距离最大,利用垂直,求出l 的斜率,从而得到l 的方程. 【详解】 设点1,12A ⎛⎫-⎪⎝⎭,过坐标系原点O 作OB l ⊥于B ,连接OA , 则OB 为原点O 到直线l 的距离, 在直角三角形AOB 中,OA 为斜边, 所以有OB OA <,所以当OA l ⊥时,原点O 到直线l 的距离最大, 而1212OA k -==-,所以12l k =,所以l 的直线方程为11122y x ⎛⎫+=- ⎪⎝⎭, 整理得:2450x y --=【点睛】本题考查根据点到直线的距离求斜率,点斜式写直线方程,属于简单题.19.60°【分析】根据AB∥CD得到异面直线与所成角即为∠VCD由△VCD为等边三角形即可求解【详解】如图示因为是正方形所以AB∥CD所以异面直线与所成角即为∠VCD又各条棱长均为2所以△VCD为等边三解析:60°【分析】根据AB∥CD,得到异面直线VC与AB所成角即为∠VCD,由△ VCD为等边三角形,即可求解.【详解】如图示,因为ABCD是正方形,所以AB∥CD,所以异面直线VC与AB所成角即为∠VCD.又各条棱长均为2,所以△ VCD为等边三角形,所以∠VCD=60°,异面直线VC与AB所成角的大小为60°.故答案为:60°【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.20.【分析】首先利用垂直关系和底面和侧面外接圆的圆心作出四棱锥外接球的球心再计算外接球的半径以及球的表面积【详解】连结交于点取中点连结并延长于点点是外接圆的圆心侧面底面侧面底面平面过点作平面侧面所以点是 解析:64π【分析】首先利用垂直关系和底面ABCD 和侧面ABCD 外接圆的圆心,作出四棱锥P ABCD -外接球的球心,再计算外接球的半径,以及球O 的表面积. 【详解】连结,AC BD ,交于点M ,取AB 中点N 连结AN ,MN ,并延长于点E ,点E 是PAB △外接圆的圆心,侧面PAB ⊥底面ABCD ,侧面PAB 底面ABCD AB =,MN AB ⊥MN ∴⊥平面PAB ,过点M 作MO ⊥平面ABCD ,//EO MN ,EO ∴⊥侧面PAB ,所以点O 是四棱锥P ABCD -外接球的球心,可知四边形MNEO 是矩形,右图,PA PB ==,120APB ∠=,2cos306AB PB ∴==, 点E 是PAB △外接圆的圆心,sin303PN PB ∴==,PBE △是等边三角形,PE =NE ∴==MO ∴=12MC AC ==4R OC ∴===, ∴球O 的表面积2464S R ππ==故答案为:64π 【点睛】本题考查了球与几何体的综合问题,考查空间想象能力以及化归和计算能力,(1)当三棱锥的三条侧棱两两垂直时,并且侧棱长为,,a b c ,那么外接球的直径2222R a b c =++,(2)当有一条侧棱垂直于底面时,先找底面外接圆的圆心,过圆心做底面的垂线,球心在垂线上,根据垂直关系建立R 的方程.(3)而本题类型,需要过两个平面外接圆的圆心作面的垂线,垂线的交点就是球心.21.【分析】取的中点连接可得所以或其补角即为异面直线与所成角在中求即可求解【详解】取的中点连接因为所以且所以或其补角即为异面直线与所成角设则所以因为是等边三角形所以因为平面平面所以所以在中因为异面直线所 解析:310【分析】取11AC 的中点1O ,连接1EO ,1AC ,可得11//EO AC ,所以1BEO ∠或其补角即为异面直线1AC 与BE 所成角,在1BEO 中,求1cos BEO ∠即可求解. 【详解】取11AC 的中点1O ,连接1EO ,11B O ,EB ,EC ,1BO ,1AC , 因为112AE A A =,所以11//EO AC 且111=2EO AC ,所以1BEO ∠或其补角即为异面直线1AC 与BE 所成角, 设1AB =,则12AA =,所以111=2EO AC ==,BE == 因为111A B C △是等边三角形,112AE A A =,所以11B O == 因为1BB ⊥平面111A B C ,11B O ⊂平面111A B C ,所以 1BB ⊥11B O ,所以1BO === 在1BEO中,22211115192cos 220BE EO BO BEO BE EO +-+-∠===-⨯, 因为异面直线所成的角为锐角或直角,所以异面直线1AC 与BE所成角的余弦值为20,【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.22.【分析】根据圆锥底面圆周长为扇形弧长得圆锥底面半径设内切球半径为r ﹐圆锥高为h 结合轴截面图形计算得最后计算体积即可【详解】解:设圆锥底面半径为R 则所以设内切球半径为r ﹐圆锥高为h 则如图是圆锥轴截面三解析:3【分析】根据圆锥底面圆周长为扇形弧长得圆锥底面半径1R =,设内切球半径为r ﹐圆锥高为h ,结合轴截面图形计算得22r,最后计算体积即可.【详解】解:设圆锥底面半径为R ,则2233R ππ=⨯,所以1R =. 设内切球半径为r ﹐圆锥高为h ,则9122h =-=, 如图,是圆锥轴截面三角形图, 所以3r Rh r =-,解得:2r , 故3442223383r V πππ==⨯=. 故答案为:23π【点睛】本题考查圆锥的侧面展开图,圆锥的内切球的体积,考查空间想象能力,是中档题.23.【分析】由矩形的边长可得底面外接圆的半径再由为等腰直角三角形可得其外接圆的半径又平面平面可得底面外接圆的圆心即为外接球的球心由题意可得外接球的半径进而求出外接球的体积【详解】解:取矩形的对角线的交点 解析:323π【分析】由矩形的边长可得底面外接圆的半径,再由PAD △为等腰直角三角形可得其外接圆的半径,又平面PAD ⊥平面ABCD 可得底面外接圆的圆心即为外接球的球心,由题意可得外接球的半径,进而求出外接球的体积. 【详解】解:取矩形的对角线的交点O 和AD 的中点E ,连接OE ,OP ,OE , 则O 为矩形ABCD 的外接圆的圆心,而2DPA π∠=,23AD =2AB =,PA PD =,则//OE AB ,112OE AB ==,132PE AD ==, 所以E 为PAD △的外接圆的圆心,因为平面PAD ⊥平面ABCD , 所以O 为外接球的球心,OP 为外接球的半径,在POE △中,222222(3)14R OP PE OE ==+=+=,所以2R =, 所以外接球的体积343233V R ππ==, 故答案为:323π.【点睛】本题考查四棱锥的棱长与外接球的半径的关系及球的体积公式,属于中档题.24.【分析】作出图示求得外接球的半径由球的表面积可求得答案【详解】作出图示因为在矩形ABCD 中则连接交于点则设该三棱锥外接球的半径为则所以该三棱锥外接球的表面积故答案为:【点睛】本题考查三棱锥的外接球的 解析:4π【分析】作出图示,求得外接球的半径,由球的表面积可求得答案. 【详解】作出图示,因为在矩形ABCD 中,1AB =,3AD =.则2==AC BD ,连接AC BD ,交于点O ,则1AO BO CO DO ====,设该三棱锥外接球的半径为R ,则1R =, 所以该三棱锥外接球的表面积244S R ππ==, 故答案为:4π.【点睛】本题考查三棱锥的外接球的表面积计算,关键在于求得外接球的球心位置和半径,属于中档题.三、解答题25.(1)证明见解析;(2)3.【分析】(1)先证//CD 平面PAB ,然后由线面平行性质定理可得结论;(2)由线面平行的性质,把体积利用等高进行转换PBEC C PBE D PBE V V V --==,然后由体积公式计算, 【详解】(1)证明:因为//AB CD ,CD ⊄平面PAB ,AB平面PAB ,所以//CD 平面PAB .因为CD ⊂平面PCD ,平面PAB ⋂平面PCD m =,所以//CD m .(2)解:1114222PBE PBA S S PA AB ==⨯⨯⨯=△△, ∵//CD 平面PAB ,所以,C D 两点到平面PAB 的距离相等.由条件易得DA ⊥平面PAB 且AD =∴114333PBEC C PBE D PBE PBE V V V S DA --===⋅=⨯⨯=△. 【点睛】关键点点睛:本题考查证明线线平行,考查求棱锥的体积.在立体几何的证明中,注意掌握线面间关系的判定定理和性质定理,下结论时需要满足定理的所有条件,一个不缺,一一列举,然后得出结论,否则证明过程不完整. 26.(1)证明见解析;(2)23. 【分析】(1)连接BD 交AC 于点O ,由中位线定理得//OM PB ,从而得证线面平行; (2)由M 是PD 中点,得12M ACD P ACD V V --=,求出三棱锥P ACD -的体积后可得. 【详解】(1)如图,连接BD 交AC 于点O ,连接OM ,则O 是BD 中点,又M 是PD 中点, ∴//OM PB ,又PB ⊄平面ACM ,OM ⊂平面ACM , 所以//PB 平面ACM ; (2)由已知12222ACDS=⨯⨯=,11422333P ACD ACD V S PA -=⋅=⨯⨯=△,又M 是PD 中点,所以1223M ACD P ACD V V --==,所以23P ACM P ACD M ACD V V V ---=-=.【点睛】思路点睛:本题考查证明线面平行,求三棱锥的体积.求三棱锥的体积除掌握体积公式外,还需要注意割补法,不易求体积的三棱锥(或一个不规则的几何体)的体积可通过几个规则的几何体(柱、锥、台等)的体积加减求得.三棱锥的体积还可通过转化顶点,转移底面利用等体积法转化为求其他三棱锥的体积,从而得出结论. 27.(Ⅰ)证明见解析;(Ⅱ)6π. 【分析】(Ⅰ)连接BG 交EC 于H ,连接FH ,即可得到2BHHG=,又2BF FA =,所以//FH AG ,从而得证;(Ⅱ)依题意利用余弦定理求出EF ,从而得到EF BD ⊥,即可证明BD ⊥平面CEF . 过F 作AD 的平行线FP ,交BD 于P .则PE ⊥平面CEF .所以直线FP 与平面CEF 所成角为PFE ∠,再利用锐角三角函数计算可得; 【详解】解:(Ⅰ)连接BG 交EC 于H ,连接FH . 则点H 为BCD △的重心,有2BHHG=. 因为2BF BHFA HG==, 所以//FH AG ,且FH ⊂平面CEF ,AG ⊄平面CEF ,所以//AG 平面CEF .。

高一数学北师大版必修二第二章 解析几何初步练习题及答案解析课时作业22

高一数学北师大版必修二第二章 解析几何初步练习题及答案解析课时作业22

一、选择题1.圆x2+y2=1与圆(x-1)2+y2=1的公共弦所在的直线方程为()A.x=1 B.x=1 2C.y=x D.x=3 2【解析】[(x-1)2+y2-1]-(x2+y2-1)=0,得x=1 2.【答案】B2.两圆(x-a)2+(y-b)2=c2和(x-b)2+(y-a)2=c2相切,则()A.(a-b)2=c2B.(a-b)2=2c2C.(a+b)2=c2D.(a+b)2=2c2【解析】圆心距d=(a-b)2+(b-a)2=2(a-b)2=2|c|,∴(a-b)2=2c2.【答案】 B3.与两圆x2+y2+4x-4y+7=0和x2+y2-4x-10y+13=0都相切的直线有()A.1条B.2条C.3条D.4条【解析】两圆的圆心距为5,两圆半径和为5,故两圆外切.因此有两条外公切线和一条内公切线共3条,故选C.【答案】 C4.两圆相交于点A(1,3),B(m,-1),两圆的圆心均在直线x-y+c=0上,则m+c的值为()A.-1 B.2C.3 D.0【解析】由题意知直线x-y+c=0垂直平分线段AB,∵k AB =3-(-1)1-m =41-m, AB 中点为(1+m 2,1),∴⎩⎪⎨⎪⎧ 41-m =-11+m 2-1+c =0, ∴⎩⎨⎧m =5c =-2, ∴m +c =3.故选C.【答案】 C5.半径长为6的圆与x 轴相切,且与圆x 2+(y -3)2=1内切,则此圆的方程为( )A .(x -4)2+(y -6)2=6B .(x ±4)2+(y -6)2=6C .(x -4)2+(y -6)2=36D .(x ±4)2+(y -6)2=36【解析】 ∵所求圆的半径为6,而A 、B 中的圆的半径为6,不符合题意,∴排除A 、B.所求圆的圆心为(4,6)时,两圆的圆心距d =42+(6-3)2=5=6-1,这时两圆内切,当所求圆的圆心为(-4,6)时,圆心距d =(-4)2+(6-3)2=5=6-1,这时两圆内切.∴所求圆的圆心为(±4,6),半径为6.【答案】 B二、填空题6.两圆x 2+y 2=1和(x +4)2+(y -a )2=25相切,则实数a 的值为________.【解析】 ∵圆心分别为(0,0)和(-4,a ),半径为1和5,两圆外切时有(-4-0)2+(a -0)2=1+5,∴a =±25, 两圆内切时有(-4-0)2+(a -0)2=5-1,∴a =0.综上a =±25或a =0.【答案】 ±25或07.(2013·合肥高一检测)已知圆(x -2)2+(y +3)2=13和圆(x -3)2+y 2=9交于A ,B 两点,则弦AB 的垂直平分线的方程是________.【解析】 两圆圆心坐标为(2,-3),(3,0),∴AB 的垂直平分线的方程是:y -0-3-0=x -32-3,∴3x -y -9=0. 【答案】 3x -y -9=08.两圆相交于A (1,3)及B (m ,-1),两圆的圆心均在直线x -y +n =0上,则m +n 的值为__________.【解析】 由直线x -y +n =0垂直平分线段AB 得⎩⎪⎨⎪⎧ -1-3m -1·1=-1,m +12--1+32+n =0,⇒⎩⎨⎧m =5n =-2, ∴m +n =5+(-2)=3.【答案】 3三、解答题9.圆A 的方程为x 2+y 2-2x -2y -7=0,圆B 的方程为x 2+y 2+2x +2y -2=0,判断圆A 和圆B 是否相交、若相交,求过两交点的直线的方程;若不相交,说明理由.【解】 圆A 的方程可写为(x -1)2+(y -1)2=9,圆B 的方程可写为(x +1)2+(y +1)2=4,∴两圆心之间的距离满足3-2<|AB |=(1+1)2+(1+1)2=22<3+2,即两圆心之间的距离小于两圆半径之和且大于两圆半径之差,∴两圆相交.圆A 的方程与圆B 的方程左、右两边分别相减得-4x -4y -5=0,即4x +4y +5=0为过两圆交点的直线的方程.10.(2013·杭州高一检测)已知两圆M :x 2+y 2=10和N :x 2+y 2+2x +2y -14=0.求过两圆交点且圆心在x +2y -3=0上的圆的方程.【解】 由题可设经过两圆交点的圆的方程为x 2+y 2+2x +2y -14+λ(x 2+y 2-10)=0(λ≠-1).即x 2+y 2+21+λx +21+λy -14+10λ1+λ=0(λ≠-1), 圆心(-11+λ,-11+λ), 又圆心在x +2y -3=0上,则-11+λ-21+λ-3=0,解得λ=-2, ∴所求圆的方程为x 2+y 2-2x -2y -6=0,即(x -1)2+(y -1)2=8.11.(2013·三明高一检测)已知圆C :(x -3)2+(y -4)2=4,(1)若直线l 1过定点A (1,0),且与圆C 相切,求l 1的方程;(2)若圆D 的半径为3,圆心在直线l 2:x +y -2=0上,且与圆C 外切,求圆D 的方程.【解】 (1)①若直线l 1的斜率不存在,即直线是x =1,符合题意.②若直线l 1的斜率存在,设直线l 1为y =k (x -1),即kx -y -k =0.由题意知,圆心(3,4)到已知直线l 1的距离等于半径2,即|3k -4-k |k 2+1=2,解之得k =34.所求直线l 1的方程为x =1或3x -4y -3=0.(2)依题意设D (a,2-a ),又已知圆C 的圆心(3,4),r =2,由两圆外切,可知|CD |=5,∴可知(a -3)2+(2-a -4)2=5,解得a =3,或a =-2,∴D (3,-1)或D (-2,4).∴所求圆的方程为(x -3)2+(y +1)2=9或(x +2)2+(y -4)2=9.。

最新北师大版高中数学必修二第二章《解析几何初步》测试卷(包含答案解析)(2)

最新北师大版高中数学必修二第二章《解析几何初步》测试卷(包含答案解析)(2)

一、选择题1.若关于x 320kx k -+=有且只有两个不同的实数根,则实数k 的取值范围是( )A .5,12⎡⎫+∞⎪⎢⎣⎭B .5,112⎛⎤⎥⎝⎦C .50,12⎛⎤⎥⎝⎦D .53,1242.在空间直角坐标系中,点P(-2,1,4)关于xOy 平面的对称点的坐标是 A .(-2,1,-4) B .(-2,-1,-4) C .(2,-1,4)D .(2,1,-4)3.若直线y x b =+与曲线y =b 的取值范围为( )A .[]22-,B .2,⎡-⎣C .-⎡⎣D .(-4.已知(),x y 为半圆22:(2)(1)1(1)C x y y -+-=≥上一动点,则1y x-最大值为( )A .3B .2C .12D 5.已知圆()()22:122C x y -++=,若直线24y kx =-上存在点P ,使得过点P 的圆C 的两条切线互相垂直,则实数k 的取值范围是( )A .23k ≤-或0k ≥B .38k ≤-C .38k ≤-或0k ≥D .23k ≤-6.数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称为三角形的欧拉线.在平面直角坐标系中作ABC ,在ABC 中,4AB AC ==,点(1,3)B -,点(4,2)C -,且其“欧拉线”与圆222(3)x y r -+=相切,则该圆的半径r 为( )A .1BC .2D .7.正方体1111ABCD A B C D -的棱长为2,E 是1CC 的中点,则点1C 到平面EBD 的距离为( )A B C D .38.如图,正三棱柱111ABC A B C -的高为4,底面边长为D 是11B C 的中点,P 是线段1A D 上的动点,过BC 作截面AP α⊥于E ,则三棱锥P BCE -体积的最小值为( )A .3B .3C .43D .129.已知E ,F 是四面体的棱AB ,CD 的中点,过EF 的平面与棱AD ,BC 分别相交于G ,H ,则( ) A .GH 平分EF ,BH AGHC GD = B .EF 平分GH ,BH GDHC AG = C .EF 平分GH ,BH AGHC GD= D .GH 平分EF ,BH GDHC AG= 10.在四棱锥P -ABCD 中,//AD BC ,2AD BC =,E 为PD 中点,平面ABE 交PC 于F ,则PFFC=( ) A .1 B .32C .2D .311.αβ是两个不重合的平面,在下列条件中,可判定平面α与β平行的是( )A .m 、n 是α内的两条直线,且//m β,βn//B .α、β都垂直于平面γC .α内不共线三点到β的距离相D .m 、n 是两条异面直线,m α⊂,n β⊂,且//m β,//n α12.空间四边形PABC 的各边及对角线长度都相等,D 、E 、F 外别是AB 、BC 、CA 的中点,下列四个结论中不成立的是( ) A .//BC 平面PDF B . DF ⊥平面PAE C .平面PDE ⊥平面ABCD .平面PAE ⊥平面ABC二、填空题13.圆22220x y x y a ++-+=截直线20x y ++=所得弦的长度为4,则实数a 的值是________.14.已知直线():0l x ay a R +=∈是圆22:4210C x y x y +--+=的一条对称轴,过点()1,P a -的直线m 与圆C 交于,A B 两点,且AB 4=,则直线m 的斜率为____.15.若点()1,1P 为圆()2239x y -+=的弦MN 的中点,则弦MN 所在直线方程为__________. 16.若圆1C :220x y ax by c 与圆2C :224x y +=关于直线21y x =-对称,则c =______.17.已知A 是直角坐标平面内一定点,点(0,0)O ,若圆22()(–12)3x y -+=上任意一点M 到定点A 与点(0,0)O 的距离之比是一个定值λ,则这个定值λ的大小是________. 18.若点P 在直线1:30l x y ++=上,过点P 的直线2l 与曲线()22:54C x y -+=相切于点M ,则PM 的最小值为__________.19.如图,点E 是正方体1111ABCD A B C D -的棱1DD 的中点,点M 在线段1BD 上运动,则下列结论正确的有__________. ①直线AD 与直线1C M 始终是异面直线 ②存在点M ,使得1B M AE ⊥ ③四面体EMAC 的体积为定值④当12D M MB =时,平面EAC ⊥平面MAC20.在三棱锥P ABC -中,PA ⊥平面ABC ,22AB =3BC =,4PA =,4ABC π∠=,则该三棱锥的外接球体积为___________.21.在三棱柱111ABC A B C -中侧棱垂直底面且底面是ABC 为等边三角形且12A A AB =,E 在棱1AA 上,112AE A A =,则异面直线1AC 与BE 所成角的余弦值___________.22.若三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形,23AB =7SA SB SC ===,则该三棱锥的外接球的表面积为__________.23.在三棱锥P ABC -中,PA ⊥平面ABC ,60BAC ∠=︒,23AB AC ==,2PA =,则三棱锥P ABC -外接球的半径为____________.24.在矩形ABCD 中,1AB =,3AD =.将BCD 沿对角线BD 翻折,得到三棱锥A BCD -,则该三棱锥外接球的表面积为________. 三、解答题25.如图,在四棱锥P ABCD -中,PAB △是等边三角形,CB ⊥平面,//PAB AD BC 且22PB BC AD F ===,为PC 中点.(1)求证://DF 平面PAB ;(2)求直线AB 与平面PDC 所成角的正弦值.26.如图,在多面体ABCDEF 中,底面ABCD 为菱形,且∠DAB =π3,AB =2,EF //AC ,EA =ED =3,BE =5.(1)求证:平面EAD ⊥平面ABCD ; (2)求三棱锥F -BCD 的体积.27.如图,在直三棱柱111ABC A B C -中,底面是等腰直角三角形,90ACB ∠=︒且AC a =,侧棱12AA =,D ,E 分别是1CC ,11A B 的中点.(1)求直三棱柱111ABC A B C -的体积(用字母a 表示); (2)若点E 在平面ABD 上的射影是三角形ABD 的重心G , ①求直线EB 与平面ABD 所成角的余弦值; ②求点1A 到平面ABD 的距离28.如图,在三棱锥M 中,M 为BC 的中点,3PA PB PC AB AC =====,26BC =.(1)求二面角P BC A --的大小; (2)求异面直线AM 与PB 所成角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先将方程根的情况转化为一个半圆与一条直线交点的情况,再用数形结合,先求出相切时的斜率,再得到有两个交点的情况. 【详解】将方程24320x kx k ---+=转化为:半圆24y x =-,与直线32y kx k =+-有两个不同交点.当直线与半圆相切时,221k =+,512k =,∴半圆24y x =-32y kx k =+-有两个不同交点时.直线32(2)3y kx k k x =+-=-+,一定过(2,3), 由图象知直线过(2,0)-时直线的斜率k 取最大值为34, 53,124k ⎛⎤∴∈ ⎥⎝⎦.故选:D. 【点睛】本题主要考查用解析几何法来解决方程根的情况,关键是能够转化为一些特定的曲线才能用数形结合求解.2.A解析:A 【解析】过点P 向xOy 平面作垂线,垂足为N ,则N 就是点P 与它关于xOy 平面的对称点P′连线的中点,又N (-2,1,0),所以对称点为P′(-2,1,-4),故选A.3.B解析:B 【分析】直线y x b =+与曲线24y x =-y x b =+与半圆()224,0x y y +=≥有交点,分析几何图形得出有交点的临界情况.【详解】 由24y x =-()224,0x y y +=≥,表示圆心 (0,0),2r =的半圆,当y x b =+经过(2,0)时,此时2b =-;当y x b =+与此半圆相切时,222221(1)r b ==⇒=+-,作出半圆与直线的图象如下,由图象可知,要使直线y x b =+与曲线24y x =-则2,22b ⎡∈-⎣.故选:B 【点睛】 关键点点睛:由24y x =-y x b =+与其有公共点的临界情况,是解决问题的关键.4.A解析:A 【分析】1y x -表示点(),P x y 到点()0,1A 的斜率,当直线PA 与半圆相切时斜率最大,计算得到答案.【详解】1y x-表示点(),P x y 到点()0,1A 的斜率,如图所示:当直线PA 与半圆相切时斜率最大, 此时1PC =,2AC =,3PA =3tan 3PAC ∠=. 故选:A.【点睛】本题考查了直线和圆的位置关系,意在考查学生的计算能力和转化能力,将1y x-转化为点(),P x y 到点()0,1A 的斜率是解题关键.5.A解析:A 【分析】直接利用直线与圆的位置关系,由于存在点P 使圆的两条切线垂直,得到四边形为正方形,进一步利用点到直线的距离公式求出k 的取值范围. 【详解】解:设过点P 的圆C 的两条切线分别与圆相切于,A B , 因为过点P 的圆C 的两条切线互相垂直,所以四边形APBC 为正方形,此时正方形的对角线长为2, 所以只需圆心(1,2)-到直线的距离小于等于2, 222441k k +-+≤2, 1k -241k +,解得23k ≤-或0k ≥, 故选:A 【点睛】此题考查直线与圆的位置关系的应用,点到直线的距离公式,考查运算能力和转化能力,属于中档题.6.B解析:B 【分析】由等腰三角形的性质可得BC 边上的高线、垂直平分线和中线合一,其“欧拉线”为ABC 边BC 的垂直平分线,运用中点坐标公式和两直线垂直的条件,求得BC 边上的垂直平分线方程,再由直线和圆相切的条件:d r =,可得所求值. 【详解】解:在ABC 中,4AB AC ==,点(1,3)B -,点(4,2)C -, 可得BC 边上的高线、垂直平分线和中线合一,则其“欧拉线”为ABC 边BC 的垂直平分线,可得BC 的中点为3(2,1)2,直线BC 的斜率为32114+=---, 则BC 的垂直平分线的斜率为1, 可得BC 的垂直平分线方程为1322y x -=-,即为10x y --=, 其“欧拉线”与圆222(3)x y r -+=相切,可得圆心(3,0)到“欧拉线”的距离为|301|22d --==, 即有半径2r =,故选:B . 【点睛】本题考查直线方程、三角形的“欧拉线”的定义,以及直线和圆相切的条件,考查推理能力与计算能力.7.B解析:B 【分析】利用等体积法11C EBD D C EB V V --=,设点1C 到平面EBD 的距离为d ,利用三棱锥的体积公式代入面积即求得d . 【详解】如图,利用等体积法,11C EBD D C EB V V --=,设点1C 到平面EBD 的距离为d ,正方体1111ABCD A B C D -的棱长为2,故22,5BD BE ED ===,如图,2215232h ED BD ⎛⎫=-=-= ⎪⎝⎭,即11223622EBDSBD h =⨯⨯=⨯⨯=, 又点D 到平面1C EB 的距离,即D 到平面11C CBB 的距离,为CD =2,111212EBC S=⨯⨯=, 由11C EBD D C EB V V --=得,1161233d ⨯⨯=⨯⨯,故636d ==. 故选:B. 【点睛】 方法点睛:空间中求点到平面的距离的常见方法: (1)定义法:直接作垂线,求垂线段长;(2)等体积法:利用三棱锥换底求体积,结合两个面积和另一个高求未知高,即得距离; (3)向量法:过点的一个斜线段对应的向量a ,平面法向量n ,则a n d n⋅=.8.C解析:C 【分析】因为P BCE P ABC E ABC V V V ---=-则当E ABC V -取最大值时,三棱锥P BCE -体积有最小值,建立坐标系求得当点E 的高为3时,问题得解. 【详解】以点O 为原点,,,OA OD OB 分别为,,x y z 轴建立空间直角坐标系,如图所示:设点(),0,E x z ,依题意得()6,0,0A ,则()6,0,AE x z =- ,(),0,OE x z = 因为过BC 作截面AP α⊥于E ,所以AE OE ⊥则0AE OE ⋅=,故()2600x x z -++= 所以z =3x =时max 3z =又()143P BCE P ABC E ABC ABC V V V S z ---=-=-因为max 3z =所以三棱锥P BCE -体积的最小值()111436332P BCE ABC V S -=-=⋅⋅=故选:C【点睛】 关键点点晴:本题的解题关键是将问题转化为求E ABC V -的最大值,通过建系求得三棱锥E ABC -的高的最大值即可.9.C解析:C【分析】举特例舍去不正确选项,可得正确答案.【详解】过EF 的平面为平面ABF 时,G 在A 点, H 在B 点,所以0BH AG HC GD ==,EF 平分GH , 即BH AG HC GD=,所以舍去ABD ,选C 故选:C10.C解析:C【分析】首先通过延长直线,DC AB ,交于点G ,平面BAE 变为GAE ,连结PG ,EG 交于点F ,再根据三角形中线的性质,求PF FC的值. 【详解】 延长,DC AB ,交于点G ,连结PG ,EG 交PC 于点F ,//AD BC ,且2AD BC =,可得点,B C 分别是,AG DG 的中点,又点E 是PD 的中点,PC ∴和GE 是△PGD 的中线,∴点F 是重心,得2PF FC=故选:C【点睛】关键点点睛:本题的关键是找到PC 与平面BAE 的交点,即将平面BAE 转化为平面GAE 是关键.11.D解析:D【分析】取a αβ⋂=,且//m a ,//n a ,利用线面平行的判定定理可判断A 选项;根据αγ⊥,βγ⊥判断平面α与β的位置关系,可判断B 选项;设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,判断出A 、B 、C 三点到平面β的距离相等,可判断C 选项;过直线n 作平面γ,使得a αγ⋂=,利用线面平行、面面平行的判定定理可判断D 选项.【详解】对于A 选项,若a αβ⋂=,且//m a ,//n a ,m β⊄,n β⊄,则//m β,βn//,但α与β相交;对于B 选项,若αγ⊥,βγ⊥,则α与β平行或相交;对于C 选项,设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,如下图所示:D 、E 分别为AB 、AC 的中点,则//DE BC ,DE β⊂,BC β⊄,//BC β∴,所以,点B 、C 到平面β的距离相等,由于D 为AB 的中点,则点A 、B 到平面β的距离相等,所以,点A 、B 、C 三点到平面β的距离相等,但平面α与平面β相交;对于D 选项,如下图所示:由于//n α,过直线n 作平面γ,使得a αγ⋂=,则//a n ,//n a ,a β⊄,n β⊂,//a β∴,//m β,m a A =,m α⊂,a α⊂,//αβ∴.故选:D.【点睛】方法点睛:证明或判断两个平面平行的方法有:①用定义,此类题目常用反证法来完成证明;②用判定定理或推论(即“线线平行”⇒“面面平行”),通过线面平行来完成证明; ③根据“垂直于同一条直线的两个平面平行”这一性质进行证明;④借助“传递性”来完成.12.C解析:C【分析】由线面平行的判定定理可判断A ;由线面垂直的判定定理可判断B ;反证法可说明C ;由面面垂直的判定定理可判断D.【详解】对于A ,D ,F 外别是AB ,CA 的中点,//BC DF ∴,DF ⊂平面PDF ,∴//BC 平面PDF ,故A 正确,不符合题意;对于B ,各棱长相等,E 为BC 中点,,BC AE BC PE ∴⊥⊥,PE AE E =,BC ∴⊥平面PAE ,//BC DF ,∴DF ⊥平面PAE ,故B 正确,不符合题意;对于C ,假设平面PDE ⊥平面ABC ,设DE BF O ⋂=,连接PO ,则O 是DE 中点,PO DE ∴⊥,平面PDE 平面ABC DE =,PO ∴⊥平面ABC ,BF ⊂平面ABC ,PO BF ∴⊥,则PB PF =,与PB PF ≠矛盾,故C 错误,符合题意;对于D ,由B 选项 DF ⊥平面PAE , DF ⊂平面ABC ,∴平面PAE ⊥平面ABC ,故D 正确,不符合题意.故选:C.【点睛】本题考查线面关系和面面关系的判定,解题的关键是正确理解判断定理,正确理解垂直平行关系.二、填空题13.-4【分析】将圆的方程化为标准方程求出圆心坐标与半径利用点到直线的距离公式算出圆心到直线的距离再根据截得弦的长度为得到关于的方程解出即可【详解】由圆可得圆心为半径直线方程为圆心到直线的距离截得弦的长解析:-4【分析】将圆的方程化为标准方程,求出圆心坐标与半径r ,利用点到直线的距离公式,算出圆心到直线l 的距离,再根据截得弦的长度为4,得到关于a 的方程,解出即可【详解】由圆22220x y x y a ++-+=可得()()22112x y a ++-=-∴圆心为()11-,,半径)2r a =<直线方程为20x y ++=∴圆心到直线的距离d ==截得弦的长度为4 2222a ∴+=-,解得4a =-故答案为4-【点睛】结合弦长的长度求出圆的标准方程,只需将圆化为标准方程,然后运用弦长公式的求法求出参量即可14.1【分析】由直线是圆的一条对称轴得到直线过圆心求得得到再根据得到点的直线必过圆心利用斜率公式即可求解【详解】由题意圆的圆心坐标半径为因为直线是圆的一条对称轴则直线过圆心即解得此时点又由直线与圆交于两 解析:1【分析】由直线l 是圆C 的一条对称轴,得到直线l 过圆心,求得2a =-,得到(1,2)P --,再根据 4AB =,得到点P 的直线必过圆心(2,1)C ,利用斜率公式,即可求解.【详解】由题意,圆22:4210C x y x y +--+=的圆心坐标(2,1)C ,半径为2r, 因为直线():0l x ay a R +=∈是圆22:4210C x y x y +--+=的一条对称轴,则直线l 过圆心(2,1)C ,即210a +⨯=,解得2a =-,此时点(1,2)P --,又由直线m 与圆C 交于,A B 两点,且4AB =,可得过点P 的直线必过圆心(2,1)C , 所以直线m 的斜率为1(2)12(1)k --==--. 故答案为:1.【点睛】本题主要考查了直线与圆的位置关系,其中解答中熟记直线与圆的位置关系,合理转化是解答的关键,着重考查了推理与运算能力. 15.【分析】先求出直线MN 的斜率再写出直线的点斜式方程得解【详解】∵为圆的弦的中点∴圆心与点确定的直线斜率为∴弦所在直线的斜率为2则弦所在直线的方程为即故答案为:【点睛】本题主要考查直线和圆的位置关系考 解析:210x y --=【分析】先求出直线MN 的斜率,再写出直线的点斜式方程得解.【详解】∵()1,1P 为圆()2239x y -+=的弦MN 的中点, ∴圆心与点P 确定的直线斜率为101132-=--, ∴弦MN 所在直线的斜率为2, 则弦MN 所在直线的方程为()121y x -=-,即210x y --=.故答案为:210x y --=【点睛】本题主要考查直线和圆的位置关系,考查直线的方程的求法,意在考查学生对这些知识的理解掌握水平.16.【分析】两圆关于直线对称即圆心关于直线对称则两圆的圆心的连线与直线垂直且中点在直线上圆的半径也为即可求出参数的值【详解】解:因为圆:即圆心半径由题意得与关于直线对称则解得圆的半径解得故答案为:【点睛 解析:165-【分析】两圆关于直线对称即圆心关于直线对称,则两圆的圆心的连线与直线21y x =-垂直且中点在直线21y x =-上,圆1C 的半径也为2,即可求出参数,,a b c 的值.【详解】解:因为圆1C :220x y ax by c ,即22224224a b a b c x y , 圆心111,22C a b ⎛⎫-- ⎪⎝⎭,半径r = 由题意,得111,22C a b ⎛⎫-- ⎪⎝⎭与()20,0C 关于直线21y x =-对称, 则112,122112221,22b a b a ⎧-⎪=-⎪⎪-⎨⎪--⎪⎪=⨯-⎩解得85=-a ,45b =,圆1C 的半径22r ==,解得165c =-. 故答案为:165- 【点睛】 本题考查圆关于直线对称求参数的值,属于中档题.17.【分析】设按距离之比为定值求出点的轨迹方程它就是方程比较后可得【详解】设则整理得:易知方程化为已知圆的一般式方程为所以解得故答案为:【点睛】本题考查平面轨迹方程解题时由点到两点距离之比为常数求出的轨【分析】设(,)A m n ,(,)M x y ,按距离之比为定值求出M 点的轨迹方程,它就是方程22()(–12)3x y -+=,比较后可得λ.【详解】设(,)A m n ,(,)M x y,则MA MO λ==,整理得:222222(1)(1)220x y mx ny m n λλ-+---++=,易知210λ-≠,方程化为2222222220111m n m n x y x y λλλ++--+=---, 已知圆22()(–12)3x y -+=的一般式方程为222420x y x y +--+=, 所以2222222124121m n m n λλλ⎧=⎪-⎪⎪=⎨-⎪⎪+=⎪-⎩,解得2545m n λ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩.故答案为:5. 【点睛】本题考查平面轨迹方程,解题时由M 点到,A O 两点距离之比为常数λ,求出M 的轨迹方程,它就是已知圆,比较系数可得结论. 18.【分析】求出圆心坐标圆的半径结合题意利用圆的到直线的距离半径满足勾股定理求出就是最小值【详解】解:因为的圆心半径为则圆心到直线的距离为:点在直线上过点的直线与曲线只有一个公共点则的最小值:故答案为:解析:27 【分析】 求出圆心坐标,圆的半径,结合题意,利用圆的到直线的距离,半径,||PM 满足勾股定理,求出||PM 就是最小值.【详解】解:因为()22:54C x y -+=的圆心(5,0),半径为2,则圆心到直线1:30l x y ++=的距离为:422=,点P 在直线1:30l x y ++=上,过点P 的直线2l 与曲线()22:54C x y -+=只有一个公共点M ,则||PM 的最小值:()2242227-=.故答案为:27【点睛】 本题考查点到直线的距离公式,直线与圆的位置关系,勾股定理的应用,考查计算能力,转化思想的应用,属于基础题.19.②③④【分析】取点为线段的中点可判断①建立空间直角坐标系假设存在点使得利用解出的值即可判断②;连接交于点证明线段到平面的距离为定值可判断③;求出点的坐标然后计算平面和平面的法向量即可判断④【详解】对解析:②③④.【分析】取点M 为线段1BD 的中点可判断①,建立空间直角坐标系假设存在点M ,使得1B M AE ⊥,利用()1110AE B M AE B B BD λ⋅=⋅+=解出λ的值即可判断②;连接AC 、BD 交于点1O ,证明11//EO BD ,线段1BD 到平面AEC 的距离为定值,可判断③;求出点M 的坐标,然后计算平面AEC 和平面MAC 的法向量,即可判断④.【详解】对于①:连接1AC 交1BD 于点O ,当点M 在O 点时直线AD 与直线1C M 相交,故①不正确,以D 为坐标原点,建立如图所示的空间直角坐标系,设正方体的边长为2,则()0,0,0D ,()10,0,2D ,()2,0,0A ,()0,2,0C ,()0,0,1E ,()2,2,0B ,()12,2,2B ,对于②:()2,0,1AE =-,假设存在点M ,使得1B M AE ⊥,()()()1110,0,22,2,22,2,22B M B B BD λλλλλ=+=-+--=---,[]0,1λ∈, 所以14220AE B M λλ⋅=+-=,解得13λ=,所以当12D M MB =时1B M AE ⊥, 故②正确;对于③:连接AC 、BD 交于点1O ,因为点E 是棱1DD 的中点,此时11//EO BD ,故线段1BD 到平面AEC 的距离为定值,所以四面体EMAC 的体积为定值,故③正确; 对于④:当12D M MB =时,442,,333M ⎛⎫ ⎪⎝⎭,()2,0,1AE =-,()2,2,0AC =-,设平面AEC 的法向量为()111,,m x y z =,由111120220m AE x z m AC x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ 令12z =,可得11x =,11y =,可得()1,1,2m =,设平面MAC 的法向量为()222,,n x y z =,242,,333MA ⎛⎫=-- ⎪⎝⎭,由222222202420333n AC x y n MA x y z ⎧⋅=-+=⎪⎨⋅=--=⎪⎩解得:20y =,令 21x =可得22z =,所以1,1,1n ,因为1111120m n ⋅=⨯+⨯-⨯=,m n ⊥所以平面EAC ⊥平面MAC ,故④正确;故答案为:②③④.【点睛】方法点睛:证明面面垂直的方法(1)利用面面垂直的判定定理,先找到其中一个平面的一条垂线,再证明这条垂线在另外一个平面内或与另外一个平面内的一条直线平行即可;(2)利用性质://,αββγαγ⊥⇒⊥(客观题常用);(3)面面垂直的定义(不常用);(4)向量方法:证明两个平面的法向量垂直,即法向量数量积等于0.20.【分析】利用余弦定理求得利用正弦定理计算出的外接圆直径可计算出三棱锥的外接球半径然后利用球体体积公式可求得结果【详解】如下图所示圆柱的底面圆直径为圆柱的母线长为则的中点到圆柱底面圆上每点的距离都相等解析:13263π【分析】利用余弦定理求得AC,利用正弦定理计算出ABC的外接圆直径2r,可计算出三棱锥P ABC-的外接球半径R,然后利用球体体积公式可求得结果.【详解】如下图所示,圆柱12O O的底面圆直径为2r,圆柱的母线长为h,则12O O的中点O到圆柱底面圆上每点的距离都相等,所以,圆柱12O O的外接球直径为()2222R r h=+.本题中,作出ABC的外接圆2O,由于PA⊥平面ABC,可将三棱锥P ABC-放在圆柱12O O中,在ABC中,22AB=3BC=,4ABCπ∠=,由余弦定理可得222cos5AC AB BC AB BC ABC+-⋅∠=,由正弦定理可知,ABC的外接圆直径为5210sin2ACrABC===∠则三棱锥P ABC-的外接球直径为()222226R PA r=+=262R=,因此,三棱锥P ABC -的外接球的体积为334426132633V R πππ⎛⎫==⨯= ⎪ ⎪⎝⎭. 故答案为:13263π. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.21.【分析】取的中点连接可得所以或其补角即为异面直线与所成角在中求即可求解【详解】取的中点连接因为所以且所以或其补角即为异面直线与所成角设则所以因为是等边三角形所以因为平面平面所以所以在中因为异面直线所 解析:310【分析】取11A C 的中点1O ,连接1EO ,1AC ,可得11//EO AC ,所以1BEO ∠或其补角即为异面直线1AC 与BE 所成角,在1BEO 中,求1cos BEO ∠即可求解. 【详解】取11A C 的中点1O ,连接1EO ,11B O ,EB ,EC ,1BO ,1AC , 因为112AE A A =,所以11//EO AC 且111=2EO AC , 所以1BEO ∠或其补角即为异面直线1AC 与BE 所成角, 设1AB =,则12AA =, 所以2211115=1222EO AC =+=,112BE =+=因为111A B C △是等边三角形,112AE A A =,所以11B O == 因为1BB ⊥平面111A B C ,11B O ⊂平面111A B C ,所以 1BB ⊥11B O ,所以12BO ===, 在1BEO中,22211115192cos 220BE EO BO BEO BE EO +-+-∠===-⨯,因为异面直线所成的角为锐角或直角,所以异面直线1AC 与BE所成角的余弦值为20,故答案为:20【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.22.【详解】取的中点由题意可得:所以面ABC 所以球心在直线上所以得所以 解析:494π【详解】取AB 的中点,由题意可得:2222,3,SD DC SD DC SC ==+=,所以,SD AB SD DC ⊥⊥,SD ⊥面ABC.所以球心在直线SD 上,所以()2232R R =+-,得74R =, 所以24944S R ππ==. 23.【分析】先在等边三角形中求出外接圆半径从而可求该三棱锥的外接球的半径【详解】详解:因为所以为等边三角形所以等边外接圆的半径为如图三棱锥外接球球心为半径为设球心到平面的距离为外接圆圆心为连接则平面取中 5【分析】先在等边三角形ABC 中求出23BC =,外接圆半径2r ,从而可求该三棱锥的外接球的半径. 【详解】详解:因为023,60AB AC BAC ==∠=,所以ABC 为等边三角形, 所以23BC =ABC 外接圆的半径为23r,如图,三棱锥P ABC -外接球球心为O ,半径为R , 设球心O 到平面ABC 的距离为d ,ABC 外接圆圆心为'O , 连接,','AO AO OO ,则'OO ⊥平面ABC , 取PA 中点,D OP OA =,所以OD PA ⊥,又PA ⊥平面ABC ,所以//PA OO ',则四边形'ADOO 是矩形, 所以在PDO △和'OAO △中,由勾股定理可得()222222222R d R d ⎧=+⎪⎨=+-⎪⎩,解得:1,5dR ==. 故答案为:5.【点睛】本题主要考查了三棱锥外接球的表面积,其中根据几何体的结构特征和球的性质,求得三棱锥的外接球的半径是解答的关键,着重考查了空间想象能力,以及推理与运算能力.24.【分析】作出图示求得外接球的半径由球的表面积可求得答案【详解】作出图示因为在矩形ABCD 中则连接交于点则设该三棱锥外接球的半径为则所以该三棱锥外接球的表面积故答案为:【点睛】本题考查三棱锥的外接球的 解析:4π【分析】作出图示,求得外接球的半径,由球的表面积可求得答案. 【详解】作出图示,因为在矩形ABCD 中,1AB =,3AD =.则2==AC BD ,连接AC BD,交于点O ,则1AO BO CO DO ====,设该三棱锥外接球的半径为R ,则1R =, 所以该三棱锥外接球的表面积244S R ππ==, 故答案为:4π.【点睛】本题考查三棱锥的外接球的表面积计算,关键在于求得外接球的球心位置和半径,属于中档题.三、解答题25.(1)证明见解析;(2)24【分析】(1)取PB 边的中点E ,即可证明四边形AEFD 为平行四边形,再根据线面平行的判定定理即可证明;(2)取BC 边的中点G ,由//DG AB ,即可得到直线AB 与平面PDC 所成角即为DG 与平面PDC 所成角,再由等体积法求得22G PCD d -=,即可求得直线AB 与平面PDC 所成角的正弦值. 【详解】解:(1)如图所示:取PB 边的中点E ,连,AE FE , 则三角形中位线可知://EF BC 且12EF BC =, 由题可知://AD BC 且12AD BC =, //AD EF ∴且AD EF =, 即四边形AEFD 为平行四边形, //DF AE ∴又DF ⊄平面,PAB AE ⊂平面PAB ,故//DF 平面PAB ; (2)取BC 边的中点G , 则//DG AB ,且2DG AB ==,直线AB 与平面PDC 所成角即为DG 与平面PDC 所成角, 又1CDGS=,且易得DC PD =,所以11223622CDPSPC DF =⋅=⨯⨯= 由等体积法,1113633P CDG G PCD G PCD V V d ---==⨯⨯=⨯⨯,得22G PCD d -=, DG ∴与平面PDC 所成角的正弦值为2222=, 故直线AB 与平面PDC 所成角的正弦值为2. 【点睛】关键点点睛:本题解题的关键是利用等体积法求出G 点到平面PCD 的距离. 26.(1)证明见详解;(2)6. 【分析】(1)取AD 的中点O ,连接EO ,BO.,可证EO ⊥平面ABCD 再根据面面垂直判定定理可证;(2)因为EF //AC 得点F 到平面ABCD 的距离等于点E 到平面ABCD 的距离,由体积公式可求出结果. 【详解】解:(1)如图,取AD 的中点O ,连接EO ,BO.∵EA =ED ,∴EO ⊥AD.由题意知△ABD 为等边三角形,∴AB =BD =AD =2,∴BO 3 在△EAD 中,EA =ED 3,AD =2, ∴EO 22-2AE AO又BE 5∴ 222EO BO BE +=,∴EO BO ⊥, ∵AD OB O ⋂=,AD ⊂平面ABCD ,BO ⊂平面ABCD , ∴EO ⊥平面ABCD.又EO ⊂平面EAD ,∴平面EAD ⊥平面ABCD. (2)由题意得1123322BCDABDSSAD OB ==⋅=⨯= ∵EF ∥AC ,∴点F 到平面ABCD 的距离等于点E 到平面ABCD 的距离,为EO ,∴11333F BCD BCDV S EO -=⋅==. 【点晴】关键点点晴:证明面面垂直的关键在于找到线面垂直.27.(1)2a ;(2);.【分析】(1)直接由体积公式计算;(2)取AB 的中点F ,连接1,,,EF FC EC BG ,得1EFCC 是矩形,由G 是DAB 的重心,EG ⊥平面DAB ,求出a ,①EBG ∠是直线EB 与平面DAB 所成的角,在直角三角形中计算可得; ②由点1A 到平面ABD 的距离等于点E 到平面ABD 的距离可得. 【详解】(1)由题意111221122ABC A B C ABC V S AA a a -=⋅=⨯=△; (2)如图,取AB 的中点F ,连接1,,,EF FC EC BG , 由AC BC =,90ACB ∠=︒,F 是AB 中点得CF AB ⊥,12CF AB =,由直三棱柱111ABC A B C -可得1EFCC 是矩形,设CF x =,则ED FD ==,2EF =.11C D =,G 是DAB 的重心,则23DG DF ==GF =又EG ⊥平面DAB ,DF ⊂平面DAB ,∴EG DF ⊥,∴2222EF FG ED DG -=-,即222144(1)(1)(1)99x x x -+=+-+,解得x = ∴AC AB a ===①由EG ⊥平面DAB ,知EBG ∠是直线EB 与平面DAB 所成的角,3EG ==,3EB ==,∴BG ==∴cos BG EBG BE ∠===②∵1//A E AB ,AB平面DAB ,1A E ⊄面DAB ,∴1//A E 面DAB ,∴点1A 到平面ABD 的距离等于点E 到平面ABD 的距离为303EG =.【点睛】关键点点睛:本题考查求棱柱的体积,求直线与平面所成的角及点到平面的距离.本题关键是由点E 在平面ABD 上的射影是三角形ABD 的重心G 求出a ,然后根据直线与平面所成角的定义得出这个角后计算即可得. 28.(1)23π;(23 【分析】(1)连接PM ,则可证得PMA ∠就是二面角P BC A --的平面角,根据勾股定理和余弦定理求解;(2)取PC 中点N ,连接,MN AN ,则AMN ∠就是异面直线AM 与PB 所成的角,根据余弦定理求解即可. 【详解】解:(1)连接PM ,因为M 为BC 的中点,3PB PC AB AC ====, 所以,PM BC AM BC ⊥⊥,所以PMA ∠就是二面角P BC A --的平面角. 在直角PMC △中,3,6PC MC ==,则3PM =,同理可得3AM =在PMA △中,由余弦定理得1cos 2233PMA ∠==-⨯⨯,所以23PMA π∠=,即二面角P BC A --的大小为23π。

新北师大版高中数学必修二第二章《解析几何初步》测试题(包含答案解析)(2)

新北师大版高中数学必修二第二章《解析几何初步》测试题(包含答案解析)(2)

一、选择题1.已知直线x +y -k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,O 为坐标原点,且33OA OB AB +≥,则k 的取值范围是( ) A .()3,+∞B .)2,22⎡⎣C .)2,⎡+∞⎣D .)3,22⎡⎣2.已知方程2234-+=-kx k x 有两个不同的解,则实数k 的取值范围是( )A .13,24⎡⎤⎢⎥⎣⎦B .53,124C .13,24⎛⎫⎪⎝⎭D .53,124⎛⎫⎪⎝⎭3.如图,棱长为4的正四面体ABCD ,M ,N 分别是AB ,CD 上的动点,且3MN =,则MN 中点的轨迹长度为( )A .23π B .2πC .2π D .π4.已知0a ≠,直线()240ax b y +++=与直线()230ax b y +--=互相垂直,则ab 的最大值为( ) A .0B .2C .4D 25.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB ⋅的最大值是( ) A .4B .10C .5D 106.直线l 经过()2,1A ,()23,B t ,(22t -≤点,则直线l 倾斜角的取值范围是( ) A .30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭B .0,C .0,4⎡⎤⎢⎥⎣⎦πD .30,,424πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦7.设1l 、2l 、3l 是三条不同的直线,α、β、γ是三个不同的平面,则下列命题是真命题的是( )A .若1//l α,2//l α,则12l l //B .若1l α⊥,2l α⊥,则12l l ⊥C .若12//l l ,1l α⊂,2l β⊂,3l αβ⋂=,则13//l lD .若αβ⊥,1l αγ=,2l βγ⋂=,则12l l //8.现有一个三棱锥形状的工艺品P ABC -,点P 在底面ABC 的投影为Q ,满足12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△,22222213QA QB QC AB BC CA ++=++,93ABCS =,若要将此工艺品放入一个球形容器(不计此球形容器的厚度)中,则该球形容器的表面积的最小值为( )A .42πB .44πC .48πD .49π9.如图,在Rt ABC △中,1AC =,BC x =,D 是斜边AB 的中点,将BCD △沿直线CD 翻折,若在翻折过程中存在某个位置,使得CB AD ⊥,则x 的取值范围是( )A .(0,3⎤⎦B .2,2⎛⎤ ⎥ ⎝⎦C .3,23D .(]2,4 10.一个几何体的三视图如图所示,则该几何体的外接球的表面积是( )A .2πB .3πC .4πD .16π11.已知E ,F 是四面体的棱AB ,CD 的中点,过EF 的平面与棱AD ,BC 分别相交于G ,H ,则( ) A .GH 平分EF ,BH AGHC GD= B .EF 平分GH ,BH GDHC AG= C .EF 平分GH ,BH AGHC GD = D .GH 平分EF ,BH GDHC AG= 12.在正方体1111ABCD A BC D -中,M 和N 分别为11AB ,和1BB 的中点.,那么直线AM 与CN 所成角的余弦值是( )A .25B .10 C .35D .3 二、填空题13.2020年是中国传统的农历“鼠年”,有人用3个圆构成“卡通鼠”的形象,如图:(0,3)Q -是圆Q 的圆心,圆Q 过坐标原点O ;点L 、S 均在x 轴上,圆L 与圆S 的半径都等于2,圆S 、圆L 均与圆Q 外切.已知直线l 过点O .若直线l 截圆L 、圆S 、圆Q 所得弦长均等于d ,则d =_____.14.已知点()()2,3,3,2P Q -,直线20ax y ++=与线段PQ 相交,则实数a 的取值范围是____;15.若三条直线20x y -=,30x y +-=,50mx ny ++=相交于同一点,则点(,)m n 到原点的距离的最小值为________.16.经过两直线11370x y +-=和12190x y +-=的交点,且与()3,2A -,()1,6B -等距离的直线的方程是______.17.已知定点()5,2A ,()3,4B ,动点P 在直线40x y --=上,则PA PB +的最小值为______ .18.若点()1,1P 为圆()2239x y -+=的弦MN 的中点,则弦MN 所在直线方程为__________.19.如图,正方体1111ABCD A BC D -的棱长为1,线段11B D 上有两个动点E ,F ,且2EF =,现有如下四个结论:①AC BE ⊥; ②//EF 平面ABCD ;③三棱锥A BEF -的体积为定值; ④直线AE 与平面BEF 所成的角为定值, 其中正确结论的序号是______.20.正四面体ABCD 棱长为2,AO ⊥平面BCD ,垂足为O ,设M 为线段AO 上一点,且90BMC ︒∠=则二面角M BC O --的余弦值为________.21.在三棱锥P ABC -中,P 在底面ABC 的射影为ABC 的重心,点M 为棱PA 的中点,记二面角P BC M --的平面角为α,则tan α的最大值为___________.22.有一个半径为4的球是用橡皮泥制作的,现要将该球所用的橡皮泥重新制作成一个圆柱和一个圆锥,使得圆柱和圆锥有相等的底面半径和相等的高,若它们的高为8,则它们的底面圆的半径是___________.23.如图在长方形ABCD 中,AB 6=,BC 2=.E 为线段DC 上一动点,现将△AED 沿AE 折起.使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C .则K 所形成轨迹的长度为_____.24.在一个密闭的容积为1的透明正方体容器内装有部分液体,如果任意转动该正方体,液面的形状都不可能是三角形,那么液体体积的取值范围是 .三、解答题25.如图所示,在边长为2的菱形ABCD 中,60BAC ∠=,沿BD 将三角形BCD 向上折起到PBD 位置,E 为PA 中点,若F 为三角形ABD 内一点(包括边界),且//EF 平面PBD .(1)求点F 轨迹的长度;(2)若EF ⊥平面ABD ,求证:平面PBD ⊥平面ABD ,并求三棱锥P ABD -的体积. 26.如图,三枝锥D ABC -中,90ABC ∠=︒,1AB =,2BC CD DB ===.(1)若平面BCD ⊥平面ABC .求证:AB CD ⊥; (2)若1AD =,求CD 与平面ABC 所成的角. 27.如图,在三棱柱ABC -A 1B 1C 1中,F 为AC 中点.(1)若此三棱柱为正三棱柱,且1112A A AC =,求异面直线1AB 与BF 所成角的大小; (2)求证:1AB //平面1BFC .28.我市论语广场准备设置一些多面体形或球形的石凳供市民休息,如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是3160dm 3.(Ⅰ)求正方体石块的棱长;(Ⅱ)若将图(2)的正方体石块打磨成一个球形的石凳,求此球形石凳的最大体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【详解】设AB 中点为D ,则⊥OD AB ,∵33OA OB AB +≥,∴323OD AB ≥,∴23AB OD ≤,∵221||44OD AB +=,∴2||1OD ≥,∵直线0x y k +-=(0k >)与圆224x y +=交于不同的两点A 、B ,∴224,4||1OD OD <∴≥>,∴24(12k ->≥,∵0k >,∴ 222k ≤<,故选B.2.B解析:B 【分析】如图,当直线在AC位置时,斜率303 224k-==+,当直线和半圆相切时,由半径22002321kk--+=+解得k值,即得实数k的取值范围.【详解】由题意得,半圆24y x=-与直线32y kx k=+-有两个交点,又直线323(2)y kx k y k x=+-⇒-=-过定点C(2,3),如图所示,又点(2,0),(2,0)A B-,当直线在AC位置时,斜率303224k-==+.当直线和半圆相切时,由半径2002321kk--+=+解得512k=,故实数k的取值范围为53(,]124故选:B【点睛】关键点点睛:由函数解析式转化为直线与半圆有两个公共点,根据直线与圆的位置关系,点到直线的距离公式的应用,求出直线在AC位置时的斜率k值及切线CD的斜率,是解题的关键.3.D解析:D【分析】把正四面体放在正方体中,建立空间直角坐标系,利用空间两点间距离公式、中点坐标公式以及圆的标准方程进行求解即可.【详解】把正四面体ABCD放在正方体AFCE HBGD-中,并建立如图所示的空间直角坐标系,设该正方体的棱长为a,因为正四面体ABCD 的棱长为422422a a a +=⇒=因此相应点的坐标为:(0,00),(22,0,22),(22,22,0),(0,22,22)D A B C ,, 因为N 是CD 上的动点,所以设点N 的坐标为:(0,,)n n ,设AM mAB =,000(,,)M x y z ,因此有000(22,,22)(0,22,22)x y z m --=-, 因此00022,22,2222x y m z m ===, 设MN 中点为(,,)P x y z ,因此有:22222222(1)2222222222x x m n y m n y m n z m n z ⎧=⎪⎧⎪=⎪⎪+⎪⎪=⇒+=⎨⎨⎪⎪-=⎪⎪⎩+=⎪⎪⎩, 因为3MN =,222(22)(22)(2222)3m n m n +-+--=,化简得:22(22)(2222)1(2)m n m n -+-=,把(1)代入(2)中得:221(2)(2)4y z +=,显然 MN 中点的轨迹是圆,半径为12,圆的周长为:122ππ⋅=. 故选:D 【点睛】关键点睛:利用正方体这个模型,结合解析法是解题的关键.4.B解析:B 【分析】根据两直线垂直,得到关于,a b 的等式224a b +=,再利用基本不等式即可求出ab 的最大值. 【详解】因为直线()240ax b y +++=与直线()230ax b y +--=互相垂直, 所以2(2)(2)0a b b ++-=,即224a b +=, 因为222a b ab +≥, 所以24ab ≤,即2ab ≤, 故选:B. 【点睛】本题将两直线位置关系与基本不等式相结合进行考查,难度不大.5.C解析:C 【分析】由题意结合直线位置关系的判断可得两直线互相垂直,由直线过定点可得定点A 与定点B ,进而可得22210PA PB AB +==,再利用基本不等式,即可得解.【详解】由题意直线0x my +=过定点(0,0)A ,直线30mx y m --+=可变为(1)30m x y --+=,所以该直线过定点()1,3B ,所以2221310AB =+=,又()110m m ⨯+⨯-=,所以直线0x my +=与直线30mx y m --+=互相垂直, 所以22210PA PB AB +==,所以22102PA PB PA PB =+≥⋅即5PA PB ⋅≤,当且仅当=PA PB , 所以PA PB ⋅的最大值为5. 故选:C. 【点睛】本题考查了直线位置关系的判断及直线过定点的应用,考查了基本不等式的应用,合理转化条件是解题关键,属于中档题.6.A解析:A 【分析】求出斜率的取值范围,然后可得倾斜角的范围. 【详解】由已知直线的斜率为221132t k t -==--,∵t ≤≤11k -≤≤,记直线l 的倾斜角为θ,[)0,θπ∈,即1tan 1θ-≤≤,所以3[0,][,)44ππθπ∈. 故选:A . 【点睛】本题考查直线的倾斜角和斜率的关系,直线的倾斜角的范围是[0,]π,斜率为正时,倾斜角为锐角,斜率为负时,倾斜角为钝角,因此一般要分类讨论.7.C解析:C 【分析】利用已知条件判断1l 与2l 的位置关系,可判断AD 选项的正误;利用线面垂直的性质定理可判断B 选项的正误;利用线面平行的性质定理可判断C 选项的正误. 【详解】对于A 选项,若1//l α,2//l α,则1l 与2l 平行、相交或异面,A 选项错误; 对于B 选项,若1l α⊥,2l α⊥,由线面垂直的性质定理可得12//l l ,B 选项错误; 对于C 选项,12//l l ,1l α⊂,2l β⊂,α、β不重合,则1l β⊄,1//l β∴,1l α⊂,3l αβ⋂=,13//l l ∴,C 选项正确;对于D 选项,若αβ⊥,1l αγ=,2l βγ⋂=,则1l 与2l 相交或平行,D 选项错误.故选:C. 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.8.D解析:D 【分析】作QM AB ⊥,连接PM ,易证AB PM ⊥,由112122QAB PABAB QMS S AB PM ⨯⨯==⨯⨯△△,得到2PM QM =,再根据12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△,由对称性得到AB BC AC ==,然后根据22222213QA QB QCAB BC CA ++=++,ABCS=6,AB AQ ==,在AOQ△中,由222AO OQ AQ =+求解半径即可.【详解】 如图所示:作QM AB ⊥与M ,连接PM , 因为PQ ⊥平面ABC ,所以PQ AB ⊥,又QM PQ Q ⋂=, 所以AB ⊥平面PQM , 所以AB PM ⊥,所以112122QAB PAB AB QM S S AB PM ⨯⨯==⨯⨯△△, 2PM QM =,因为12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△, 由对称性得AB BC AC ==,又因为22222213QA QB QC AB BC CA ++=++,93ABCS=所以21sin 60932ABCSAB =⨯⨯= 解得6,23AB AQ ==所以3,23,3QM PM PQ ==, 设外接球的半径为r ,在AOQ △中,222AO OQ AQ =+,即()(222323r r =-+, 解得72r =, 所以外接球的表面积为2449S r ππ==, 即该球形容器的表面积的最小值为49π. 故选:D 【点睛】关键点点睛:本题关键是由1 2QAB QAC QBCPAB PAC PBCS S SS S S===△△△△△△得到三棱锥是正棱锥,从而找到外接球球心的位置而得解..9.A解析:A【分析】取BC中点E,连接DE,AE,若CB AD⊥,则可证明出BC ⊥平面ADE,则可得BC AE⊥. 根据题目中各边长的关系可得出AE,AD关于x的表达式,然后在ADE 中,利用三边关系求解即可.【详解】由题意得BC x=,则212xAD CD BD+===,如图所示,取BC中点E,翻折前,在图1中,连接DE,CD ,则1122DE AC==,翻折后,在图2中,若CB AD⊥,则有:∵BC DE⊥,BC AD⊥,AD DE D⋂=,且,AD DE平面ADE,∴BC⊥平面ADE,∴BC AE⊥,又BC AE⊥,E为BC中点,∴1AB AC==∴2114AE x=-21xAD+=在ADE中,由三边关系得:①221111224xx++>-,22111124xx+<-,③0x>;由①②③可得03x<<故选:A.【点睛】本题考查折叠性问题,考查线面垂直的判定及性质在解题中的运用,解答本题的主要思路分析在于将异面直线间的垂直转化为线面垂直关系,即作出辅助线DE与AE,根据题目条件确定出BC ⊥平面ADE ,得到BC AE ⊥,从而通过几何条件求解.10.C解析:C 【分析】由三视图还原出原几何体,确定其结构,再求出外接球的半径得球的表面积. 【详解】由三视图,知原几何体是一个四棱锥P ABCD -,如图,底面ABCD 是边长为1的正方形,PB ⊥底面ABCD ,由PB ⊥底面ABCD ,AD ⊂面ABCD ,得PB AD ⊥,又AD AB ⊥,AB PB B ⋂=,,AB PB ⊂平面PAB ,所以AD ⊥平面PAB ,而PA ⊂平面PAB ,所以AD PA ⊥,同理DC PC ⊥,同样由PB ⊥底面ABCD 得PB BD ⊥,所以PD 中点O 到四棱锥各顶点距离相等,即为其外接球球心,PD 为球直径,222222PD PB BD PA AD AB =+=++=,∴外接球半径为12ADr ==, 表面积为2414S ππ=⨯=. 故选:C .【点睛】关键点点睛:本题考查由三视图还原几何体,考查棱锥的外接球表面积.解题关键是确定外接球的球心.棱锥的外接球球心在过各面外心(外接圆圆心)且与该面垂直的直线上.11.C解析:C 【分析】举特例舍去不正确选项,可得正确答案. 【详解】过EF 的平面为平面ABF 时,G 在A 点, H 在B 点, 所以0BH AGHC GD==,EF 平分GH ,即BH AGHC GD=,所以舍去ABD ,选C 故选:C12.A解析:A 【分析】作出异面直线AM 和CN 所成的角,然后解三角形求出两条异面直线所成角的余弦值. 【详解】设,E F 分别是1,AB CC 的中点,由于,M N 分别是111,A B BB 的中点,结合正方体的性质可知11//,//B E AM B F CN ,所以1EB F ∠是异面直线AM 和CN 所成的角或其补角, 设异面直线AM 和CN 所成的角为θ,设正方体的边长为2,2211125B E B F ==+=,2221216EF =++=,则1cos cos EB F θ=∠=55625255+-=⨯⨯.故选:A.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.二、填空题13.【分析】圆L 与圆S 关于原点对称直线l 过原点求出圆L 与圆S 的圆心坐标设出直线l 方程由三个弦长相等得直线方程从而可得弦长d 【详解】由题意圆与圆关于原点对称设则即设方程为则三个圆心到该直线的距离分别为:则 解析:125【分析】圆L 与圆S 关于原点对称,直线l 过原点,求出圆L 与圆S 的圆心坐标,设出直线l 方程,由三个弦长相等得直线方程,从而可得弦长d . 【详解】由题意圆L 与圆S 关于原点对称,设(),0(0)S a a >23,4a =+=,即()()4,04,0S L ∴-,. 设方程为(0y kx k =≠),则三个圆心到该直线的距离分别为:1d =2d =,3d =,则()()()2222123444449d d d d =-=-=-,即有222449⎛⎫⎛⎫⎛⎫-=-=-,解得2421k =, 则24161442144425121d ⎛⎫⨯ ⎪=-= ⎪ ⎪+⎝⎭,即125d =. 故答案为: 125. 【点睛】本题考查直线与圆的位置关系,考查直线与圆相交弦长问题.求出圆心到直线的距离,用勾股定理求得弦长是求圆弦长的常用方法.14.【详解】由直线即此时直线恒过点则直线的斜率直线的斜率若直线与线段相交则即所以实数的取值范围是点睛:本题考查了两条直线的位置关系的应用其中解答中把直线与线段有交点转化为直线间的斜率之间的关系是解答的关解析:41,32⎡⎤-⎢⎥⎣⎦【详解】由直线20ax y ++=,即2y ax =--,此时直线恒过点(0,2)A -, 则直线PA 的斜率12(3)1022k ---==--,直线QA 的斜率2224033k --==-,若直线20ax y ++=与线段PQ 相交,则1423a -≤-≤,即4132a -≤≤,所以实数a 的取值范围是41[,]32-. 点睛:本题考查了两条直线的位置关系的应用,其中解答中把直线与线段有交点转化为直线间的斜率之间的关系是解答的关键,同时要熟记直线方程的各种形式和直线过定点的判定,此类问题解答中把直线与线段有交点转化为定点与线段端点斜率之间关系是常见的一种解题方法,着重考查了学生分析问题和解答问题的能力.15.【分析】联立解得交点代入可得:再利用两点之间的距离公式二次函数的性质即可得出【详解】解:联立解得把代入可得:点到原点的距离当时取等号点到原点的距离的最小值为故答案为:【点睛】本题考查了两条直线的交点【分析】 联立23y xx y =⎧⎨+=⎩,解得交点(1,2),代入50mx ny ++=可得:250m n ++=.再利用两点之间的距离公式、二次函数的性质即可得出. 【详解】解:联立23y xx y =⎧⎨+=⎩,解得1x =,2y =.把(1,2)代入50mx ny ++=可得:250m n ++=.52m n ∴=--.∴点(,)m n 到原点的距离5d ,当2n =-,1m =-时,取等号.∴点(,)m n【点睛】本题考查了两条直线的交点、两点之间的距离公式、二次函数的性质,考查了推理能力和计算能力,属于中档题.16.或【分析】直接求两直线的交点与等距离的直线一条过AB 的中点一条平行AB 【详解】两直线和的交点为的中点为因为所求直线过且与等距离故所求直线过的中点或与直线平行当直线过的中点时直线方程为即当直线与直线平解析:790x y +-=或210x y ++= 【分析】直接求两直线的交点,与(3,2),(1,6)A B --等距离的直线,一条过AB 的中点,一条平行AB . 【详解】两直线11370x y +-=和12190x y +-=的交点为(2,5)-,(3,2),(1,6)A B --的中点为(1,2),因为所求直线过(2,5)-且与()3,2A -,()1,6B -等距离, 故所求直线过AB 的中点或与直线AB 平行, 当直线过AB 的中点时,2(5)712k--==--, 直线方程为27(1)y x -=--,即790x y +-=, 当直线与直线AB 平行时,26823(1)4k ---===---,直线方程为52(2)y x +=--,即210x y ++=. 故答案为:790x y +-=或210x y ++= 【点睛】本题主要考查了直线交点,直线的平行,直线的斜率,直线方程,属于中档题.17.【分析】先判断在直线的同侧作A 关于直线的对称点C 当三点共线时最小【详解】如图所示:在直线的同侧设点关于直线的对称点位则解得即当三点共线时最小故答案为:【点睛】本题主要考查利用点关于直线对称求线段和最 解析:32【分析】先判断,A B 在直线40x y --=的同侧,作A 关于直线的对称点C ,当,,B P C 三点共线时,PA PB +最小. 【详解】 如图所示:,A B 在直线40x y --=的同侧,设点()5,2A 关于直线40x y --=的对称点位(),C a b ,则5240222115a b b a ++⎧--=⎪⎪⎨-⎪⨯=-⎪-⎩,解得61a b =⎧⎨=⎩ 即()6,1C , 当,,B P C 三点共线时,PA PB +最小,()min+===PA PB BC故答案为:【点睛】本题主要考查利用点关于直线对称求线段和最小问题,还考查了数形结合的思想,属于中档题.18.【分析】先求出直线MN 的斜率再写出直线的点斜式方程得解【详解】∵为圆的弦的中点∴圆心与点确定的直线斜率为∴弦所在直线的斜率为2则弦所在直线的方程为即故答案为:【点睛】本题主要考查直线和圆的位置关系考 解析:210x y --=【分析】先求出直线MN 的斜率,再写出直线的点斜式方程得解. 【详解】∵()1,1P 为圆()2239x y -+=的弦MN 的中点,∴圆心与点P 确定的直线斜率为101132-=--, ∴弦MN 所在直线的斜率为2,则弦MN 所在直线的方程为()121y x -=-,即210x y --=. 故答案为:210x y --= 【点睛】本题主要考查直线和圆的位置关系,考查直线的方程的求法,意在考查学生对这些知识的理解掌握水平.19.①②③【分析】由线面垂直的判定可得平面再由线面垂直的性质可判断①;由线面平行的判定可判断②;由锥体的体积公式可判断③;由线面角的概念可判断④【详解】连接交于点由可知平面而平面故①正确;由且平面平面可解析:①②③ 【分析】由线面垂直的判定可得AC ⊥平面11BB D D ,再由线面垂直的性质可判断①;由线面平行的判定可判断②;由锥体的体积公式可判断③;由线面角的概念可判断④. 【详解】连接,BD AC 交于点O ,由AC BD ⊥,1AC DD ⊥可知AC ⊥平面11BB D D , 而BE ⊂平面11BB D D ,AC BE ∴⊥,故①正确; 由//EF BD ,且EF ⊄平面ABCD ,BD ⊂平面ABCD , 可得//EF 平面ABCD ,故②正确; 由正方体的性质可得BEF S 为定值,且点A到平面BEF 的距离为定值AO ,所以A BEF V -为定值,故③正确;点A 到平面BEF 的距离为AO ,设直线AE 与平面BEF 所成的角为α, 则sin AOAEα=不是定值,所以直线AE 与平面BEF 所成的角不为定值,故④错误. 故答案为:①②③. 【点睛】关键点点睛:解决本题的关键是空间位置关系的转化及锥体体积的相关运算,在求解锥体体积相关问题时,选取一个合适底面能事半功倍.20.【分析】连接延长交于则是中点可得是二面角的平面角求出可得结论【详解】由已知是中心连接延长交于则是中点连接则而∴平面平面∴∴是二面角的平面角由对称性又由平面平面得∴故答案为:【点睛】关键点点睛:本题考 解析:33【分析】连接DO 延长交BC 于E ,则E 是BC 中点,可得MEO ∠是二面角M BC O --的平面角.求出,ME OE 可得结论. 【详解】由已知O 是BCD △中心,连接DO 延长交BC 于E ,则E 是BC 中点,连接AE ,则BC AE ⊥,BC DE ⊥,而AEDE E =,∴BC ⊥平面AED ,M E ⊂平面AED ,∴BC ME ⊥,∴MEO ∠是二面角M BC O --的平面角.2BC =,90BMC ︒∠=,由对称性2BM CM ==112ME BC ==,又1133233EO DE ==⨯⨯=, 由AO ⊥平面BCD ,EO ⊂平面BCD ,得AO EO ⊥,∴3cos 3EO MEO ME ∠==. 故答案为:33.【点睛】关键点点睛:本题考查求二面角,解题关键是作出二面角的平面角.这可根据平面角的定义作出(并证明),然后在直角三角形中求角即得.注意一作二证三计算三个步骤.21.【分析】取中点为过分别作底面的垂线根据题中条件得到;过分别作的垂线连接由二面角的定义结合线面垂直的判定定理及性质得到为二面角的平面角;为二面角的平面角得出令进而可求出最值【详解】取中点为过分别作底面解析:34【分析】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN ,根据题中条件,得到AN NO OE ==,2PO MN =;过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG ,由二面角的定义,结合线面垂直的判定定理及性质,得到MHN ∠为二面角MBC A--的平面角;PGO ∠为二面角A BC P --的平面角,得出tan 4tan PGO MHN ∠=∠,()23tan tan tan 14tan MHNPGO MHN MHNα∠=∠-∠=+∠,令tan 0x MHN =∠>,进而可求出最值. 【详解】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN , 则O 为ABC 的重心,MN ⊥平面ABC ;PO ⊥平面ABC ; 由于点M 为棱PA 的中点,所以有AN NO OE ==,2PO MN =; 过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG , 因为BC ⊂平面ABC ,所以MN BC ⊥,同理PO BC ⊥; 又MN NH N ⋂=,MN ⊂平面MNH ,NH ⊂平面MNH , 所以BC ⊥平面MNH ;因为MH ⊂平面MNH ,所以BC MH ⊥, 所以MHN ∠为二面角MBC A --的平面角;同理BC PG ⊥,所以PGO ∠为二面角A BC P --的平面角, 所以tan PO PGO OG ∠=,tan MNMHN HN∠=, 因为NO OE =,//OG NH ,所以12OG NH =; 因此2tan 4tan 12PO MNPGO MHNOG HN∠===∠, 所以()2tan tan 3tan tan tan 1tan tan 14tan PGO MHN MHNPGO MHN PGO MHN MHNα∠-∠∠=∠-∠==+∠⋅∠+∠,令tan 0x MHN =∠>,则2333tan 1444x x x x α=≤=+, 当且仅当214x =,即12x =时,等号成立. 故答案为:34. 【点睛】 关键点点睛:求解本题的关键在于确定二面角M BC A --、A BC P --以及P BC M --三者之间的关系,由题中条件得出二面角A BC P --是二面角MBC A --的4倍,进而可求得结果.22.【详解】设它们的底面圆的半径为()依题意得化简得所以故答案为: 解析:22【详解】设它们的底面圆的半径为r (0r >). 依题意得3443V π=⨯球V V =+圆柱圆锥221(+)83r r ππ=⨯, 化简得28r =,所以22r =. 故答案为:22.23.【分析】由题意分析可得可知K 所形成轨迹为一个圆弧求出圆心角再求弧长即可【详解】由题意D′K ⊥AE 所以K 的轨迹是以AD′为直径的一段圆弧D′K 设AD′的中点为O ∵长方形ABCD′中ABBC ∴∠D′AC 解析:2π 【分析】由题意分析可得DK AE ⊥可知K 所形成轨迹为一个圆弧,求出圆心角再求弧长即可. 【详解】由题意,D ′K ⊥AE ,所以K 的轨迹是以AD ′为直径的一段圆弧D ′K ,设AD ′的中点为O , ∵长方形ABCD ′中,AB 6=,BC 2=,∴∠D ′AC =60°, ∴∠D ′OK =120°23π=, ∴K 所形成轨迹的长度为222323ππ⨯=,2【点睛】本题主要考查了空间中的轨迹问题,主要是找到定量关系分析轨迹,属于中等题型.24.【详解】试题分析:如图正方体ABCD-EFGH 此时若要使液面不为三角形则液面必须高于平面EHD 且低于平面AFC 而当平面EHD 平行水平面放置时若满足上述条件则任意转动该正方体液面的形状都不可能是三角形解析:15,66⎛⎫⎪⎝⎭【详解】试题分析:如图,正方体ABCD-EFGH ,此时若要使液面不为三角形,则液面必须高于平面EHD ,且低于平面AFC .而当平面EHD 平行水平面放置时,若满足上述条件,则任意转动该正方体,液面的形状都不可能是三角形.所以液体体积必须>三棱柱G-EHD 的体积16,并且<正方体ABCD-EFGH 体积-三棱柱B-AFC 体积15166-=考点:1.棱柱的结构特征;2.几何体的体积的求法三、解答题25.(132)证明见解析,三棱锥P ABD -3 【分析】(1)取AB 、AD 中点为M 、N ,连接MN ,证明出平面//PBD 平面EMN ,可得出点F 的轨迹为线段MN ,求出BD 的长,可求得线段MN 的长,即可得解; (2)连接AF 延长交BD 于点O ,利用面面平行的性质定理可得出//EF PO ,可得出PO ⊥平面ABD ,利用面面垂直的判定定理可证得平面PBD ⊥平面ABD ,可得出三棱锥P ABD -的高为PO ,利用锥体的体积公式可求得结果.【详解】(1)如图,取AB 、AD 中点为M 、N ,连接MN ,则点F 在线段MN 上,证明如下:连接EM 、EN ,因为E 为PA 中点,M 为AB 中点,所以//EM PB ,EM ⊄平面PBD ,PB ⊂平面PBD ,//EM ∴平面PBD ,同理可证//EN 平面PBD ,又EMEN E =,所以平面//PBD 平面EMN ,EF ⊂平面EMN ,所以//EF 平面PBD ,所以点F 的轨迹为线段MN ,因为60BAC ∠=,所以120BAD ∠=,2sin 23BD AB BAC ∴=∠=, 所以132MN BD ==,即点F 的轨迹的长度为3; (2)连接AF 延长交BD 于点O ,因为平面//PBD 平面EMN , 且平面APO平面EMN EF =,平面APO平面PBD PO =,所以//EF PO ,因为EF ⊥平面ABD ,所以PO ⊥平面ABD , 又PO ⊂平面PBD ,所以平面PBD ⊥平面ABD ,可得PO 为三棱锥P ABD -的高,且cos 1PO AO AB BAC ==∠=,1113231332P ABD ABD V S PO -=⨯⨯=⨯⨯=△. 【点睛】方法点睛:求空间几何体体积的方法如下:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.26.(1)证明见解析(2)30【分析】(1)先由面面垂直证明AB ⊥平面BCD ,再由线面垂直的性质证明AB CD ⊥; (2)过点D 作AC 的垂线,垂足于点E ,连接BE ,先证明AC ⊥平面BDE ,进而得出D ABC V -,再由等体积法求出点D 到平面ABC 的距离,最后由直角三角形的边角关系得出线面角. 【详解】 (1)90ABC ∠=︒,AB BC ∴⊥又平面BCD ⊥平面ABC ,平面BCD平面ABC BC =,AB平面ABCAB ∴⊥平面BCD CD ⊂平面BCDAB CD ∴⊥(2)过点D 作AC 的垂线,垂足于点E ,连接BEABC ACD ≅△△,BE AC ∴⊥,且AB BC DE BE AC ⋅====又BE DE E ⋂=,,BE DE ⊂平面BDEAC ∴⊥平面BDE222213cos 423BED +--∠===-,120BED ︒∴∠=112sin120223BED S ︒∴==⨯=△1136D ABC A BDE C BDE V V V ---∴=+==设点D 到平面ABC 的距离为h ,CD 与平面ABC 所成的角为θ1111332D ABC ABC V S h h -=⋅⋅=⨯⨯=△166h ∴=,2h =1sin 2h CD θ===,[]0,90θ∈︒30θ∴=︒【点睛】关键点睛:在解决第二问时,关键是利用等体积法求出点D 到平面ABC 的距离h ,进而由sin hCDθ=求出线面角. 27.(1)60;(2)证明见解析 【分析】(1)取11AC 中点E ,连接1,,B E EF AE ,可得1//B E BF ,得出1ABE ∠即为异面直线1AB 与BF 所成角,求出即可;(2)先通过1//B E 平面1BFC 和//AE 平面1BFC 得出平面1//AB E 平面1BFC ,即可证明. 【详解】(1)取11AC 中点E ,连接1,,B E EF AE , 在三棱柱中,,E F 是中点,则11EF AA BB ,∴四边形1EFBB 是平行四边形,1//B E BF ∴,1AB E ∴∠即为异面直线1AB 与BF 所成角或其补角,三棱柱为正三棱柱,设底面边长为2,111222A A AC ∴= 则()222213AE =+=,()22122223AB =+=1323B E == 11cos 22233AB E ∴∠==⨯⨯,160AB E ∴∠=,所以异面直线1AB 与BF 所成角的大小为60;(2)由(1)可知1//B E BF ,1B E ⊄平面1BFC ,BF ⊂平面1BFC ,1//B E ∴平面1BFC ,,E F 是中点,1EC AF ∴,∴四边形1AFC E 是平行四边形,1//AE C F ∴, AE ⊄平面1BFC ,1C F ⊂平面1BFC ,//AE ∴平面1BFC ,1B E AE E ⋂=,∴平面1//AB E 平面1BFC ,1AB ⊂平面1AB E ,∴1AB //平面1BFC .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角. 28.(Ⅰ)4dm ;(Ⅱ)332dm 3π. 【分析】(Ⅰ)设正方体石块的棱长为a (dm ),根据题意列出关于a 的方程,求出a 的值即可; (Ⅱ)仔细审题知,当球形石凳的面与正方体的各个面都相切时球形石凳的体积最大,此时正方体的棱长正好是球的直径,然后计算体积即可. 【详解】(Ⅰ)设正方体石块的棱长为a (dm ), 则每个截去的四面体的体积为331132248a a ⎛⎫⨯⨯= ⎪⎝⎭,由题意可得331608483a a ⨯+=,解得4dm a =, 故正方体石块的棱长为4dm ;(Ⅱ)当球形石凳的面与正方体的各个面都相切时球形石凳的体积最大,此时正方体的棱长正好是球的直径,球形石凳的最大体积:334432dm 323V ππ⎛⎫=⨯= ⎪⎝⎭.【点睛】关键点点睛:本题考查多面体体积的求法,考查空间想象能力与运算求解能力,第二问的解题关键是要明确当球形石凳的面与正方体的各个面都相切时球形石凳的体积最大,进而利用体积公式进行计算.。

高中数学北师大版必修二同步配套精品 第二章 解析几何初步 2.1.5

高中数学北师大版必修二同步配套精品 第二章 解析几何初步 2.1.5

探究一
探究二
探究三
易错辨析
变式训练2若点(1,a)到直线4x-3y-4=0的距离不大于3,则a的取值 范围是( ) A.[0,5] B.[0,15] C.[-5,5] D.[- 5, 5]
解析:由点到直线的距离公式得
答案:C
|4-3������ -4| 4 2 +(-3)
2
≤3,解得-5≤a≤5.
|������������0 +������������0 +������| ������2 +������2
.
【做一做2】 点(1,-1)到直线x-y+1=0的距离是 (
1 2 3 2 C. 2
)
A.
B.
2 D. 2 |1-(-1)+1| 3 2 解析:d= = . 2 2
3 2
答案:C
3.解析法 根据图形特点,建立适当的直角坐标系,利用坐标解决有关问题,这 种方法叫坐标的方法,也称为解析法. 知识拓展解析法中建立平面直角坐标系的原则:如果有对称中心, 那么可选择对称中心为坐标原点;如果有对称轴,那么可选择对称 轴为坐标轴;使图形上的特殊点尽可能多地在坐标轴上.例如,通常 以直角三角形的两条直角边所在直线为坐标轴;以斜三角形的一边 为x轴,以这一边的中点为原点;以矩形的相邻两边为坐标轴;以平行 四边形的一边为坐标轴,该边的一个端点为原点;以菱形的对角线 所在的直线为坐标轴等等.
由|PA|=|PB|,得x=1, 所以点P的坐标为(1,0),
������ 2 -4������ + 11,
且|PA|= (1 + 1)2 + (0-2)2 =2 2.
探究一
探究二
探究三

北师大版高中数学必修二第二章《解析几何初步》测试(有答案解析)(2)

北师大版高中数学必修二第二章《解析几何初步》测试(有答案解析)(2)

一、选择题1.已知圆C 与直线30x y ++=相切,直线10mx y ++=始终平分圆C 的面积,则圆C 方程为( ) A .2222x y y +-= B .2222x y y ++= C .2221x y y +-=D .2221x y y ++=2.已知直线:20()l kx y k R +-=∈是圆22:6260C x y x y +-++=的一条对称轴,若点(2,)A k ,B 为圆C 上任意的一点,则线段AB 长度的最小值为( ) A .52+B .2C .5D .52-3.已知两个不相等的实数a ,b 满足以下关系式:2sin cos 02a a πθθ+-=,2sin cos 02b b πθθ+-=,则连接()2,A a a ,()2,B b b 两点的直线与圆心在原点的单位圆的位置关系为() A .相交B .相切C .相离D .相切或相交4.在平面直角坐标系xOy 中,过x 轴上的点P 分别向圆221(1)(4)7:C x y -++=和圆222:(2)(5)9C x y -+-=引切线,记切线长分别为12,d d .则12d d +的最小值为( )A .22B .32C .42D .525.在平面直角坐标系xOy 中,若圆()()222x a y a -+-=与圆()2268x y +-=外切,则实数a 的值为( ) A .1B .2C .3D .46.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称为三角形的欧拉线已知ABC 的顶点(1,0),(0,2),B C AB AC -=,则ABC 的欧拉线方程为( )A .2430x y --=B .2430x y ++=C .4230--=x yD .2430x y +-=7.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为正方形,PA AB =,E 为AP 的中点,则异面直线PC 与DE 所成的角的正弦值为( ).A .25B .55C .155D .1058.如图,在四棱锥E ABCD -中,底面ABCD 是正方形,且平面ABCD ⊥平面AEB ,则( )A .DEC ∠可能为90︒B .若AEB △是等边三角形,则DEC 也是等边三角形C .若AEB △是等边三角形,则异面直线DE 和AB 所成角的余弦值为2D .若AEB △是直角三角形,则BE⊥平面ADE9.一个几何体的三视图如图所示,则该几何体的外接球的表面积是( )A .2πB .3πC .4πD .16π10.已知四面体ABCD ,AB ⊥平面BCD ,1AB BC CD BD ====,若该四面体的四个顶点都在球O 的表面上,则球O 的表面积为( ) A .73π B .7π C .712π D .79π 11.已知三棱锥D ABC -,记二面角C AB D --的平面角是θ,直线DA 与平面ABC所成的角是1θ,直线DA 与BC 所成的角是2θ,则( ) A .1θθ≥B .1θθ≤C .2θθ≥D .2θθ≤12.如果一个水平放置的平面图形的斜二测直观图是如图所示的直角梯形,其中2O A ''=,45B A O '''∠=,//B C O A ''''.则原平面图形的面积为( )A .32B .62C .322D .34二、填空题13.已知直线1:210l x my ++=与2:310l x y --=平行,则m 的值为__________. 14.过点(1,1)C -和点(1,3)D ,且圆心在x 轴上的圆的方程是__________.15.已知平面向量a ,b ,c ,满足1a =,2b =,3c =,01λ<<,若0b c ⋅=,则()1a b c λλ---所有取不到的值的集合为______.16.已知直线22(2)0x y y λ+++-=与两坐标轴围成一个三角形,该三角形的面积记为()S λ,当(1,)λ∈+∞时,()S λ的最小值是__________. 17.若直线()():1210l m x m y m -+--=与曲线()2:422C y x =--+有公共点,则直线l 的斜率的最小值是_________.18.已知直线40Ax By A +-=与圆O :2236x y +=交于M ,N 两点,则线段MN 中点G 的轨迹方程为______.19.如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PAD △为等边三角形,四边形ABCD 为矩形,24AB AD ==,则四棱锥P ABCD -的外接球的表面积为________.20.已知一个几何体的三视图如图所示,俯视图为等腰三角形,则该几何体的外接球表面积为_________.21.如图,圆柱的体积为16π,正方形ABCD 为该圆柱的轴截面,F 为AB 的中点,E 为母线BC 的中点,则异面直线AC ,EF 所成的角的余弦值为______.22.如图,在三棱锥P ABC -中,PA ⊥平面ABC ,AB BC ⊥,2PA AB ==,22AC =,M 是BC 的中点,则过点M 的平面截三棱锥P ABC -的外接球所得截面的面积最小值为___23.如图,在正方体1111ABCD A BC D -中,E ,F ,G 分别是棱11A B ,1BB ,11B C 的中点,则下列结论中:①FG BD ⊥; ②1B D ⊥面EFG ;③面//EFG 面11ACC A ; ④//EF 面11CDD C . 正确结论的序号是________.24.若三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形,23AB =,7SA SB SC ===,则该三棱锥的外接球的表面积为__________. 三、解答题25.如图,在四棱锥P ABCD -中,PAB △是等边三角形,CB ⊥平面,//PAB AD BC 且22PB BC AD F ===,为PC 中点.(1)求证://DF 平面PAB ;(2)求直线AB 与平面PDC 所成角的正弦值. 26.如图,三棱柱111ABC A B C -中,12AB BC AC BB ===,1B 在底面ABC 上的射影恰好是点A ,E 是11AC 的中点.(1)证明:1//A B 平面1BCE ; (2)求1A B 与平面11BCC B 所成角的正弦值.27.如图,四边形ABCD 为梯形,//,60,2,3,6AB CD C AB BC CD ∠=︒===,点M 在边CD 上,且13CM CD =.现沿AM 将ADM △折起至AQM 的位置,使3QB =.(Ⅰ)求证:QB ⊥平面ABCM ;(Ⅱ)求直线BM 与平面AQM 所成角的正弦值. 28.如图,在三棱柱ABC -A 1B 1C 1中,F 为AC 中点.(1)若此三棱柱为正三棱柱,且1112A A AC =,求异面直线1AB 与BF 所成角的大小; (2)求证:1AB //平面1BFC .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】计算出直线10mx y ++=所过定点的坐标,由题意得出定点是圆C 的圆心,然后利用点到直线的距离公式计算出圆C 的半径长,即可得出圆C 的方程. 【详解】在直线10mx y ++=的方程中,令0x =,则1y =-,则直线10mx y ++=过定点()0,1-.由于直线10mx y ++=始终平分圆C 的面积,则点()0,1-是圆C 的圆心,又圆C 与直线30x y ++=相切,则圆C 的半径r ==.因此,圆C 的方程为()2212x y ++=,即2221x y y ++=.故选D. 【点睛】本题考查圆的方程的求解,同时也考查了直线过定点问题,求出圆的圆心坐标为解题的关键,考查运算求解能力,属于中等题.2.D解析:D 【分析】由直线l 是圆C 的一条对称轴,求得1k =,得到点(2,1)A ,再结合圆的性质,即可求解. 【详解】由题意,圆22:6260C x y x y +-++=,可得圆心(3,1)C -,半径为2r因为直线:20l kx y +-=是圆22:6260C x y x y +-++=的一条对称轴, 则(3,1)C -在直线l 上,即3120k --=,解得1k =,所以(2,1)A ,则AC ==,所以线段AB 长度的最小值为min ||||2AB AC r =-=.2. 【点睛】本题主要考查了直线与圆的位置关系及其应用,其中解答中熟练应用直线与圆的位置关系求得k 的值,转化为点与圆的位置关系,结合圆的性质求解是解得关键,着重考查转化思想,以及计算能力.3.C解析:C 【分析】由题意可得直线AB 的方程为sin cos 02x y πθθ⋅+⋅-=,由点到直线的距离公式可得圆心()0,0到直线AB 的距离,即可得解. 【详解】因为实数a 满足关系式2sin cos 02a a πθθ+-=,实数b 满足关系式2sin cos 02b b πθθ+-=,且实数a ,b 不相等,所以点()2,A a a ,()2,B b b 为直线sin cos 02x y πθθ⋅+⋅-=上的两点,所以直线AB 的方程为sin cos 02x y πθθ⋅+⋅-=,因为圆心()0,0到直线AB的距离12d π==>,所以直线AB 与圆心在原点的单位圆的位置关系为相离. 故选:C. 【点睛】本题考查了直线方程的应用及直线与圆位置关系的应用,考查了运算求解能力与转化化归思想,属于中档题.4.D解析:D 【分析】利用两点间的距离公式,将切线长的和转化为到两圆心的距离和,利用三点共线距离最小即可求解. 【详解】221(1)(4)7:C x y -++=,圆心()1,4-,半径1r =222:(2)(5)9C x y -+-=,圆心()2,5,半径33r =设点P ()0,0x , 则12d d +===即()0,0x 到()1,3-与()2,4两点距离之和的最小值, 当()0,0x 、()1,3-、()2,4三点共线时,12d d +的和最小,即12d d +==故选:D 【点睛】本题考查了两点间的距离公式,需熟记公式,属于基础题.5.C解析:C 【分析】根据题意,求出两个圆的圆心以及半径,由圆与圆的位置关系可得222(6)a a +-=,解可得a 的值,即可得答案.【详解】根据题意,圆22()()2x a y a -+-=的圆心为(,)a a ,半径1r 22(6)8x y +-=的圆心为(0,6),半径2r =若圆22()()2x a y a -+-=与圆22(6)8x y +-=相外切,则有222(6)a a +-=, 解可得:3a =; 故选:C. 【点睛】本题考查圆与圆的位置关系,注意圆与圆外切的判断条件,属于基础题.6.D解析:D 【分析】根据题意得出ABC 的欧拉线即为线段BC 的垂直平分线,然后求出线段BC 的垂直平分线的方程即可. 【详解】因为(1,0),(0,2)B C -,所以线段BC 的中点的坐标1,12⎛⎫-⎪⎝⎭,线段BC 所在直线的斜率2BC k =,则线段BC 的垂直平分线的方程为11122y x ⎛⎫-=-+ ⎪⎝⎭,即2430x y +-=,因为AB AC =,所以ABC 的外心、重心、垂心都在线段BC 的垂直平分线上,所以ABC 的欧拉线方程为2430x y +-=.故选:D 【点睛】本题主要考走查直线的方程,解题的关键是准确找出欧拉线,属于中档题.7.D解析:D 【分析】先取正方形的中心O ,连接OE ,由PC //OE 知OED ∠为异面直线PC 与DE 所成的角,再在OED 中求OED ∠的正弦即可. 【详解】连AC ,BD 相交于点O ,连OE 、BE ,因为E 为AP 的中点,O 为AC 的中点,有PC //OE ,可得OED ∠为异面直线PC 与DE 所成的角,不妨设正方形中,2AB =,则2PA =,由PA ⊥平面ABCD ,可得,PA AB PA AD ⊥⊥, 则145BE DE ==+=1122222OD BD ==⨯= 因为BE DE =,O 为BD 的中点,所以90EOD ∠=︒,210sin 5OD OED DE ∠===故选:D. 【点睛】 方法点睛:求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果.8.C解析:C 【分析】对A ,直角三角形的斜边大于直角边可判断;对B ,由>=EC EB DC 可判断;对C ,可得CDE ∠即异面直线DE 和AB 所成角,即可求出;对D ,EAB ∠(或EBA ∠)为直角时,BE 与平面ADE 不垂直. 【详解】对A ,由题意,若90DEC ∠=︒,则DC EC >,但EC BC CD >=,故A 不正确; 对B ,若AEB △是等边三角形,显然有>=EC EB DC ,所以DEC 不会是等边三角形,故B 不正确;对C ,若AEB △是等边三角形,设边长为2,则22DE EC ==,//AB CD ,则CDE ∠即异面直线DE 和AB 所成角,易求2cos 22CDE ∠==,故C 正确; 对D ,当AEB △是以AEB ∠为直角的直角三角形时,BE ⊥平面ADE ,当AEB △是以EAB ∠(或EBA ∠)为直角的直角三角形时,BE 与平面ADE 不垂直,故D 不正确.故选:C. 【点睛】本题考查四棱锥的有关位置关系的判断,解题的关键是正确理解长度关系,正确理解位置关系的变化.9.C解析:C 【分析】由三视图还原出原几何体,确定其结构,再求出外接球的半径得球的表面积. 【详解】由三视图,知原几何体是一个四棱锥P ABCD -,如图,底面ABCD 是边长为1的正方形,PB ⊥底面ABCD ,由PB ⊥底面ABCD ,AD ⊂面ABCD ,得PB AD ⊥,又AD AB ⊥,AB PB B ⋂=,,AB PB ⊂平面PAB ,所以AD ⊥平面PAB ,而PA ⊂平面PAB ,所以AD PA ⊥,同理DC PC ⊥,同样由PB ⊥底面ABCD 得PB BD ⊥,所以PD 中点O 到四棱锥各顶点距离相等,即为其外接球球心,PD 为球直径,222222PD PB BD PA AD AB =+=++=,∴外接球半径为12ADr ==, 表面积为2414S ππ=⨯=. 故选:C .【点睛】关键点点睛:本题考查由三视图还原几何体,考查棱锥的外接球表面积.解题关键是确定外接球的球心.棱锥的外接球球心在过各面外心(外接圆圆心)且与该面垂直的直线上.10.A解析:A 【分析】本题首先可根据题意将四面体ABCD 看作底面是等边三角形的直三棱柱的一部分,然后求出直三棱柱的外接球的半径,最后根据球的表面积计算公式即可得出结果. 【详解】因为AB ⊥平面BCD ,1AB BC CD BD ====,所以可将四面体ABCD 看作底面是等边三角形的直三棱柱的一部分,如图所示:则四面体ABCD 的外接球即直三棱柱的外接球,因为底面三角形BCD 的外心到三角形BCD 的顶点的长度为222131323, 所以直三棱柱的外接球的半径221372312r, 则球O 的表面积2277π4π4π123S r , 故选:A. 【点睛】关键点点睛:本题考查四面体的外接球的表面积的计算,能否将四面体ABCD 看作底面是等边三角形的直三棱柱的一部分是解决本题的关键,考查直三棱柱的外接球的半径的计算,是中档题.11.A解析:A 【分析】设三棱锥D -ABC 是棱长为2的正四面体,取AB 中点E ,DC 中点M ,AC 中点M ,连结DE 、CE 、MN 、EN ,过D 作DO CE ⊥,交CE 于O ,连结AO ,则DEC θ∠=,1DAO θ∠=,2MNE θ∠=,排除B ,C .当二面角C AB D --是直二面角时,2θθ≥,排除D .由此能求出结果. 【详解】设三棱锥D -ABC 是棱长为2的正四面体,取AB 中点E ,DC 中点M ,AC 中点M ,连结DE 、CE 、MN 、EN , 过D 作DO ⊥CE ,交CE 于O ,连结AO ,则DEC θ∠=,1DAO θ∠=,2MNE θ∠=,413DE CE ==-2DC =, ∴1cos 3233θ==⨯⨯,22333AO CO CE ===,∴12333cos 33AO AD θ===, 取BC 中点F ,连结DF 、AF ,则DF BC ⊥,AF BC ⊥, 又DF AF F ⋂=,∴BC ⊥平面AFD ,∴BC AD ⊥,∴290θ=︒,∴21θθθ≥≥,排除B ,C ,当二面角C AB D --是直二面角时,2θθ≥,排除D , 故选:A . 【点睛】关键点点睛:将三棱锥看成特殊的正四面体,采用排除法,充分理解线线角、线面角以及面面的概念是解题的关键.12.A解析:A 【分析】作出原平面图形,然后求出面积即可. 【详解】45B A O '''∠=B O A '''=∠,则O A B '''△是等腰直角三角形,∴2A B OB '''==,又O C C B ''''⊥,45C O B '''∠=︒,∴1B C ''=, 在直角坐标系中作出原图形为:梯形OABC ,//OA BC ,2,1OA BC ==,高22OB = ∴其面积为1(21)22322S =+⨯= 故选:A 【点睛】方法点睛:本题考查斜二测法画平面图形直观图,求原图形的面积,可能通过还原出原平面图形求得面积,也可以通过直观图到原图形面积的关系求解:直观图面积为S ',原图形面积为S ,则24S S '=二、填空题13.【分析】解方程即得解【详解】由题得当时两直线不重合故答案为:【点睛】结论点睛:直线和直线平行则且两直线不重合 解析:23-【分析】解方程230m ⨯⨯=(-1)-即得解. 【详解】由题得2230,3m m ⨯⨯=∴=-(-1)-. 当23m =-时,两直线不重合. 故答案为:23-. 【点睛】结论点睛:直线1111:0l a x b y c ++=和直线2222:0l a x b y c ++=平行,则12210a b a b -=且两直线不重合.14.【解析】设圆的方程为将和代入得解得:∴圆方程是故答案为点睛:求圆的方程主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理如:①圆心在过切点且与切线垂直的直线上;②圆心在任意 解析:22(2)10x y -+=【解析】设圆O 的方程为222()x a y r -+=,将(1,1)C -和(1,3)D ,代入得()()22221119a r a r⎧++=⎪⎨-+=⎪⎩, 解得:2a =,210r =, ∴圆方程是22(2)10x y -+=, 故答案为22(2)10x y -+=. 点睛:求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.15.【分析】设由于则在线段上又在以为圆心1为半径的圆上问题转化为求线段上的点到圆上点的距离的最大值和最小值然后可得结论【详解】∵∴可取∵∴是单位圆上如图设由于则在线段上易得直线方程是即到线段的距离为斜边解析:,1(4,)⎛-∞-+∞ ⎝⎭【分析】()()11a b c a b c λλλλ⎡⎤---=-+-⎣⎦,设,,OA a OB b OC c ===,()1b c OP λλ+-=,由于01λ<<,则P 在线段BC 上,又A 在以O 为圆心,1为半径的圆O 上,问题转化为求线段BC 上的点P 到圆O 上点A 的距离的最大值和最小值,然后可得结论. 【详解】∵0b c ⋅=,2b =,3c =,∴可取(2,0)b OB ==,(0,3)c OC ==,a OA =,∵1a =,∴A 是单位圆O 上,如图,()()11a b c a b c λλλλ⎡⎤---=-+-⎣⎦,设()1b c OP λλ+-=,由于01λ<<,则P 在线段BC 上,()()11a b c a b c PA λλλλ⎡⎤---=-+-=⎣⎦,易得直线BC 方程是123x y+=即3260x y +-=,O 到线段BC 的距离为OBC 斜边BC 边上高,即2361323d ==+,∴min 61311PA d =-=-,又3OC =,∴min314PA=+=,∴PA 的取值范围是6131,413, ∴()1a b c λλ---所有取不到的值的集合为613,1(4,)13⎛⎫-∞-+∞ ⎪ ⎪⎝⎭. 故答案为:613,1(4,)⎛⎫-∞-+∞ ⎪ ⎪⎝⎭.【点睛】本题考查求向量模的取值范围,解题关键是取(2,0)b OB ==,(0,3)c OC ==,把所有向量的起点都移到原点,由几何意义得出动点所成轨迹,从而由几何意义得出模的范围,最后求其在实数集上的补集即可.16.8【分析】先求出直线与坐标轴的交点然后用表示出三角形的面积最后利用基本不等式即可求得本题答案【详解】由直线可得与x 轴y 轴的交点坐标分别为所以三角形的面积当且仅当时取等号所以的最小值是8故答案为:8【解析:8 【分析】先求出直线与坐标轴的交点,然后用λ表示出三角形的面积,最后利用基本不等式,即可求得本题答案. 【详解】由直线22(2)0x y y λ+++-=,可得与x 轴,y 轴的交点坐标分别为22(1,0),0,1λλλ+⎛⎫-- ⎪-⎝⎭,(1,)λ∈+∞, 所以三角形的面积12244()(1)(1)42(1)482111S λλλλλλλλ+=+⋅=-++≥-⋅+=---,当且仅当3λ=时取等号,所以()S λ的最小值是8. 故答案为:8 【点睛】本题主要考查基本不等式的实际应用问题,考查学生的转化能力和运算求解能力.17.【分析】将直线的方程化为可求出直线所过的定点坐标作出曲线的图象利用数形结合思想可得出当直线与曲线有公共点时直线的斜率的最小值【详解】将直线的方程化为由得则直线过定点将曲线的方程变形为曲线为圆的上半圆解析:15【分析】将直线l 的方程化为()()210m x y x y +--+=,可求出直线l 所过的定点坐标,作出曲线C 的图象,利用数形结合思想可得出当直线l 与曲线C 有公共点时,直线l 的斜率的最小值. 【详解】将直线l 的方程化为()()210m x y x y +--+=,由2100x y x y +-=⎧⎨+=⎩,得11x y =-⎧⎨=⎩. 则直线l 过定点()1,1P -,将曲线C 的方程变形为()()()222242x y y -+-=≥,曲线C 为圆()()22224x y -+-=的上半圆,如下图所示:由图象可知,当直线l 过点A 时,直线l 的斜率取最小值211415PA k -==+.故答案为:15. 【点睛】本题考查利用直线与圆的位置关系求直线斜率的最值,考查数形结合思想的应用,属于中等题.18.【分析】直线过定点设代入方程利用点差法计算得到答案【详解】直线过定点设则两式相减得到即故整理得到:故答案为:【点睛】本题考查了轨迹方程意在考查学生对于点差法的理解和掌握 解析:()2224x y -+=【分析】直线40Ax By A +-=过定点()4,0,设()()1122,,,M x y N x y ,(),G x y ,代入方程利用点差法计算得到答案. 【详解】直线40Ax By A +-=过定点()4,0,设()()1122,,,M x y N x y ,(),G x y ,则221136x y +=,222236x y +=,两式相减得到()()()()121212120x x x x y y y y +-++-=,即220x ky +=. 故2204y x y x +=-,整理得到:()2224x y -+=. 故答案为:()2224x y -+=.【点睛】本题考查了轨迹方程,意在考查学生对于点差法的理解和掌握.19.【分析】先根据面面垂直取平面的外接圆圆心G 平面的外接圆圆心H 分别过两点作对应平面的垂线找到交点为外接球球心再通过边长关系计算半径代入球的表面积公式即得结果【详解】如图取的中点的中点连在上取点使得取的 解析:643π【分析】先根据面面垂直,取平面PAD 的外接圆圆心G ,平面ABCD 的外接圆圆心H ,分别过两点作对应平面的垂线,找到交点为外接球球心O ,再通过边长关系计算半径,代入球的表面积公式即得结果. 【详解】如图,取AD 的中点E ,BC 的中点F ,连EF ,PE ,在PE 上取点G ,使得2PG GE =,取EF 的中点H ,分别过点G 、H 作平面PAD 、平面ABCD 的垂线,两垂线相交于点O ,显然点O 为四棱锥P ABCD -外接球的球心,由2AD =,4AB =,可得3PE =3GE OH ==2222125AH AE EH +=+ 则半径22343(5)3r OA ⎛⎫==+= ⎪ ⎪⎝⎭故四棱锥P ABCD -外接球的表面积为24364433ππ⎛⨯= ⎝⎭. 故答案为:643π. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.20.【分析】首先把三视图转换为直观图进一步求出几何体的外接球的半径最后求出球的表面积【详解】根据几何体的三视图可知该几何体是底面为等腰三角形高为2的三棱锥体如图所示:设底面外接圆的半径为t 圆心为H 则解得解析:414π【分析】首先把三视图转换为直观图,进一步求出几何体的外接球的半径,最后求出球的表面积. 【详解】根据几何体的三视图可知该几何体是底面为等腰三角形,高为2的三棱锥体.如图所示:设底面外接圆的半径为t ,圆心为H ,则2221(2)t t =+-,解得54t =, 设外接球的半径r ,球心为O ,则OH ⊥底面,且1OH =, 则22541()144r =+=所以41414().164S ππ=⨯⨯= 故答案为:414π 【点睛】关键点点睛:球心与底面外接圆圆心连线垂直底面,且OH 等于棱锥高的一半,利用勾股定理求出球的半径,由面积公式计算即可.21.【分析】由圆柱体积求得底面半径母线长设底面圆心为可得为异面直线与所成的角(或其补角)在对应三角形中求解可得【详解】设圆柱底面半径为则母线长为由得设底面圆心为连接则所以为异面直线所成的角在中所以故答案 6【分析】由圆柱体积求得底面半径,母线长,设底面圆心为O ,可得OEF ∠为异面直线AC 与EF 所成的角(或其补角).在对应三角形中求解可得. 【详解】设圆柱底面半径为r ,则母线长为2r ,由2216r r ππ⋅=得2r.设底面圆心为O ,连接OE ,OF .则//OE AC ,所以OEF ∠为异面直线AC ,EF 所成的角.在Rt OEF △中,2OF =,22OE =23EF = 所以6cos 3OE OEF EF ∠==.故答案为:6.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.22.【分析】将三棱锥补成长方体计算出三棱锥的外接球半径计算出球心到过点的截面的距离的最大值可求得截面圆半径的最小值利用圆的面积可求得结果【详解】平面将三棱锥补成长方体则三棱锥的外接球直径为所以设球心为点 解析:π【分析】将三棱锥P ABC -补成长方体ABCD PEFN -,计算出三棱锥P ABC -的外接球半径R ,计算出球心到过点M 的截面的距离d 的最大值,可求得截面圆半径的最小值,利用圆的面积可求得结果. 【详解】PA ⊥平面ABC ,AB BC ⊥,将三棱锥P ABC -补成长方体ABCD PEFN -,则三棱锥P ABC -的外接球直径为22222223R PC PA AB AD PA AC ==+++=,所以,3R =设球心为点O ,则O 为PC 的中点,连接OM ,O 、M 分别为PC 、BC 的中点,则//OM PB ,且2211222OM PB PA AB ==+= 设过点M 的平面为α,设球心O 到平面α的距离为d . ①当OM α⊥时,2d OM ==②当OM 不与平面α垂直时,2d OM <=.综上,2d OM ≤=设过点M 的平面截三棱锥P ABC -的外接球所得截面圆的半径为r ,则221r R d =-,因此,所求截面圆的面积的最小值为2r ππ=. 故答案为:π. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.23.②④【分析】由是正三角形可判断①;判断出平面平面平面可判断②;假设面面则可以推出可判断③;由平面平面平面可判断④【详解】连接分别是的中点对于①因方是正三角形所以与不垂直;对于②连接因为且所以平面平面解析:②④. 【分析】由1//FG BC ,1BDC 是正三角形,可判断①;判断出1DB ⊥平面11AC B ,平面11//AC B 平面EFG ,可判断②;假设面//EFG 面11ACC A ,则可以推出1//AA EF 可判断③;由平面11//ABB A 平面11DCC D ,EF ⊂平面11ABB A ,可判断④. 【详解】连接11AC ,1A B ,1BC ,BD ,1B D ,E ,F ,G 分别是1A B ,1BB ,11B C 的中点. 对于①,因方1//FG BC ,1BDC 是正三角形,所以FG 与BD 不垂直; 对于②,连接11D B ,因为1111111AC B D ,AC BB ⊥⊥,且1111B D BB B ⋂=,所以11AC ⊥平面11BDD B ,1DB ⊂平面11BDD B ,所以111AC DB ⊥,同理11BC DB ⊥,且1111AC BC C ,所以1DB ⊥平面11AC B ,因为1//A B EF ,11//ACEG ,且111A B AC A ⋂=,EF EG E =,所以平面11//AC B 平面EFG ,所以1BD ⊥平面EFG .正确;对于③,如果面//EFG 面11ACC A ,由平面EFG 平面11ABB A EF =,平面11CC A A平面111BB A A A A =,则1//AA EF ,显然不正确;对于④,因为平面11//ABB A 平面11DCC D ,EF ⊂平面11ABB A ,所以//EF 平面11CDD C ,正确故选:②④. 【点睛】方法点睛:本题主要考查了正方体中垂直与平行关系,考查了线线垂直、线面垂直的判定、线面平行的判断、面面平行的判断与性质,对于证明线线关系、线面关系,面面关系等方面的问题,必须在熟练掌握有关的定理和性质的前提下,再利用已知来进行证明, 属于中档题.24.【详解】取的中点由题意可得:所以面ABC 所以球心在直线上所以得所以 解析:494π【详解】取AB 的中点,由题意可得:2222,3,SD DC SD DC SC ==+=, 所以,SD AB SD DC ⊥⊥,SD ⊥面ABC.所以球心在直线SD 上,所以()2232R R =+-,得74R =, 所以24944S R ππ==. 三、解答题25.(1)证明见解析;(22【分析】(1)取PB 边的中点E ,即可证明四边形AEFD 为平行四边形,再根据线面平行的判定定理即可证明;(2)取BC 边的中点G ,由//DG AB ,即可得到直线AB 与平面PDC 所成角即为DG 与平面PDC 所成角,再由等体积法求得2G PCD d -=,即可求得直线AB 与平面PDC 所成角的正弦值. 【详解】解:(1)如图所示:取PB 边的中点E ,连,AE FE , 则三角形中位线可知://EF BC 且12EF BC =, 由题可知://AD BC 且12AD BC =, //AD EF ∴且AD EF =,即四边形AEFD 为平行四边形,//DF AE ∴又DF ⊄平面,PAB AE ⊂平面PAB ,故//DF 平面PAB ; (2)取BC 边的中点G , 则//DG AB ,且2DG AB ==,直线AB 与平面PDC 所成角即为DG 与平面PDC 所成角, 又1CDGS=,且易得DC PD =,所以11223622CDPSPC DF =⋅=⨯=由等体积法,1113633P CDG G PCD G PCD V V d ---==⨯=,得22G PCD d -=, DG ∴与平面PDC 所成角的正弦值为2222= 故直线AB 与平面PDC 所成角的正弦值为24. 【点睛】关键点点睛:本题解题的关键是利用等体积法求出G 点到平面PCD 的距离. 26.(1)证明见解析;(2105. 【分析】(1)连接1BC 与1BC 相交于M ,连接EM ,证明1//EM A B ,再由线面平行的判定定理证明即可;(2)证明平面1AB F ⊥平面11BCC B ,得出NO ⊥平面11BCC B ,结合线面角的定义得出OBN ∠即为1A B 与平面11BCC B 所成角,再由相似三角形、勾股定理、直角三角形边角关系得出1A B 与平面11BCC B 所成角的正弦值. 【详解】(1)连接1BC 与1BC 相交于M ,连接EM由于E ,M 分别是11AC ,1BC 的中点,则1//EM A B因为EM ⊂平面1BCE ,1A B ⊄平面1BCE ,所以1//A B 平面1BCE .(2)取BC 中点F ,连接AF ,1B F ,则AF BC ⊥ 因为1B A ⊥平面ABC ,所以1B A BC ⊥又1,AF B A ⊂平面1AB F ,1AF B A A ⋂=,所以BC ⊥平面1AB F又BC ⊂平面11BCC B ,所以平面1AB F ⊥平面11BCC B ,过N 作1NO B F ⊥于O 因为NO ⊂平面1AB F ,平面1AB F ⋂平面111BCC B B F =所以NO ⊥平面11BCC B ,连接OB ,则OBN ∠即为1A B 与平面11BCC B 所成角 设12BB =,易知22110222BN AN AB =+=+=,6AF =,114B F =由11ONB AFB △△,1142B N ON AF B F =⋅=所以105sin ON OBN BN ∠==.【点睛】关键点睛:解决第一问的关键在于由中位线定理证明线线平行,再由线面平行的判定定理证明线面平行;解决第二问的关键在于由线面垂直找出线面角,再由直角三角形边角关系求出正弦值.27.(Ⅰ)证明见解析;(Ⅱ)37. 【分析】(Ⅰ)设DB AM O ⋂=,证明所以AM ⊥平面QOB ,得QB AM ⊥,再由勾股定理证明QB BO ⊥, 后可得证线面垂直;(Ⅱ)作BP QO ⊥于P ,证明BMP ∠即是BM 与平面AQM 所成的角.在直角三角形中计算可得. 【详解】(Ⅰ)解:因为3,6,60BC CD C ==∠=︒,所以由余弦定理得2236236cos6033BD =+-⨯⨯︒=,从而222BD BC CD +=,所以DB BC ⊥,由已知得ABMC ,所以ABCM 为平行四边形,所以DB AM ⊥,设DB AM O ⋂=,则折后可得,AM QO AM BO ⊥⊥,又QOBO O =,,QO BO ⊂平面BQO ,所以AM ⊥平面QOB ,QB ⊂平面QOB ,所以QB AM ⊥, 因为23,3,3QO OB QB ===,即222QB BO QO +=,所以QB BO ⊥, 因为AM BO O ⋂=,,AM BO ⊂平面ABCM ,所以QB ⊥平面ABCM ;(Ⅱ)在平面BOQ 内作BP QO ⊥于P ,则由AM ⊥平面QOB ,得AM BP ⊥, 又QOAM O =,,QO AM ⊂平面AQM , 所以BP ⊥平面AQM ,。

新北师大版高中数学必修二第二章《解析几何初步》检测(包含答案解析)(2)

新北师大版高中数学必修二第二章《解析几何初步》检测(包含答案解析)(2)

一、选择题1.在棱长为2的正方体1111ABCD A B C D -中,点,E F 分别是棱1,BC CC 的中点,P 是侧面11BCC B 内一点,若1A P 平行于平面AEF ,则线段1A P 长度的最小值是( )A 33B .324C 33D .3222.已知0a ≠,直线()240ax b y +++=与直线()230ax b y +--=互相垂直,则ab 的最大值为( ) A .0B .2C .4D 23.如果圆()()228x a y a -+-=2的点,则实数a 的取值范围是( )A .()()3,11,3--⋃B .()3,3-C .[]1,1-D .[][]3,11,3--⋃4.在平面直角坐标系xOy 中,过x 轴上的点P 分别向圆221(1)(4)7:C x y -++=和圆222:(2)(5)9C x y -+-=引切线,记切线长分别为12,d d .则12d d +的最小值为( )A .2B .2C .2D .25.若直线440(0,0)ax by a b --=>>被圆224240x y x y +-+-=截得的弦长为6,则4b aab+的最小值为( ) A .32 B .322+C .5D .76.直线33y x m =-+与圆221x y += 在第一象限内有两个不同的交点,则m 的取值范围是( ) A .3,2)B .3,3)C .323⎝⎭D .231,3⎛⎫⎪ ⎪⎝⎭7.如图,在三棱锥P ABC -中,AB AC ⊥,AB AP =,D 是棱BC 上一点(不含端点)且PD BD =,记DAB ∠为α,直线AB 与平面PAC 所成角为β,直线PA 与平面ABC 所成角为γ,则( )A .,γβγα≤≤B .,βαβγ≤≤C .,βαγα≤≤D .,αβγβ≤≤8.如图所示,A ,B 为正方体的两个顶点,M ,N 为其所在棱的中点,则异面直线AB 与MN 所成角的大小为( )A .30°B .45°C .60°D .90°9.如图,在四棱锥P ABCD -中,底面ABCD 是矩形.其中3AB =,2AD =,PAD △是以A ∠为直角的等腰直角三角形,若60PAB ∠=︒,则异面直线PC 与AD 所成角的余弦值是( )A .2211B .2211-C .77D .111110.在下面四个正方体ABCD A B C D ''''-中,点M 、N 、P 均为所在棱的中点,过M 、N 、P 作正方体截面,则下列图形中,平面MNP 不与直线A C '垂直的是( )A .B .C .D .11.如图是某个四面体的三视图,则下列结论正确的是( )A .该四面体外接球的体积为48πB .该四面体内切球的体积为23π C .该四面体外接球的表面积为323π D .该四面体内切球的表面积为2π12.在四棱锥P -ABCD 中,//AD BC ,2AD BC =,E 为PD 中点,平面ABE 交PC 于F ,则PFFC=( )A .1B .32C .2D .3二、填空题13.若圆221x y +=与圆22()(4)25x a y -++=相交,则实数a 的取值范围是______. 14.在平面直角坐标系xOy 中,设直线y =-x +2与圆x 2+y 2=r 2(r >0)交于A ,B 两点.若圆上存在一点C ,满足5344OC OA OB =+,则r 的值为________. 15.圆22220x y x y a ++-+=截直线20x y ++=所得弦的长度为4,则实数a 的值是________.16.已知(3,1)P 为圆224x y +=上的一点,,E F 为y 轴上的两点,PEF 是以P 为顶点的等腰三角形,直线,PE PF 分别交圆于点,D C ,直线CD 交y 轴于点A ,则CAO ∠=_______.17.在平面上给定相异两点A ,B ,设P 点在同一平面上且满足PA PBλ=,当0λ>且1λ≠时,P 点的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故我们称这个圆为阿波罗尼斯圆,现有双曲线22221x y a b-=(0a >,0b >),A ,B 为双曲线的左、右顶点,C ,D 为双曲线的虚轴端点,动点P 满足2PA PB=,PAB ∆面积的最大值为643,PCD ∆面积的最小值为4,则双曲线的离心率为______. 18.将一张坐标纸折叠一次,使点(10,0)与点(6,8)-重合,则与点(4,2)-重合的点是______.19.如图所示,Rt A B C '''∆为水平放置的ABC ∆的直观图,其中A C B C ''''⊥,2B O O C ''''==,则ABC ∆的面积是________________.20.如图,平面四边形ABCD 中,1AB AD ==,2,3,BD CD BD CD ==⊥将其沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,则四面体A BCD '-的外接球的球心到平面ACD '的距离等于__________.21.在直三棱柱111ABC A B C -中,90ABC ∠=︒,13AA =,设其外接球的球心为O ,已知三棱锥O ABC -的体积为3,则球O 表面积的最小值为______.22.已知正三棱柱木块111ABC A B C -,其中2AB =,13AA =,一只蚂蚁自A 点出发经过线段1BB 上的一点M 到达点1C ,当沿蚂蚁走过的最短路径,截开木块时,两部分几何体的体积比为______.23.已知A ,B ,C 三点都在球O 的表面上,球心O 到平面ABC 的距离是球半径的13,且22AB =,AC BC ⊥,则球O 的表面积是______.24.已知点O 为圆锥PO 底面的圆心,圆锥PO 的轴截面为边长为2的等边三角形PAB ,圆锥PO 的外接球的表面积为______. 三、解答题25.如图所示,在边长为2的菱形ABCD 中,60BAC ∠=,沿BD 将三角形BCD 向上折起到PBD 位置,E 为PA 中点,若F 为三角形ABD 内一点(包括边界),且//EF 平面PBD .(1)求点F 轨迹的长度;(2)若EF ⊥平面ABD ,求证:平面PBD ⊥平面ABD ,并求三棱锥P ABD -的体积. 26.如图,四棱锥P ABCD -中,2PC PD DC AD ===,底面ABCD 为矩形,平面PCD ⊥平面ABCD ,O 、E 分别是棱CD 、PA 的中点.(1)求证://OE 平面PBC ; (2)求二面角PAB C 的大小.27.如图,在矩形ABCD 中,2AB AD =,M 为DC 的中点,将ADM △沿AM 折起使平面ADM ⊥平面ABCM .(1)求证:BM AD ⊥;(2)求直线DC 与平面DAB 所成角的正弦值.28.如图,正三棱柱111ABC A B C -的棱长均为2,M 是侧棱1AA 的中点.(1)在图中作出平面ABC 与平面1MBC 的交线l (简要说明),并证明l ⊥平面11CBB C ;(2)求点C 到平面1MBC 的距离.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法能求出线段1A P 长度取最小值. 【详解】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,(2A ,0,0),(1E ,2,0),(0F ,2,1),1(2A ,0,2),(1AE =-,2,0),(2AF =-,2,1),设平面AEF 的法向量(n x =,y ,)z ,则20220n AE x y n AF x y z ⎧⋅=-+=⎪⎨⋅=-++=⎪⎩,取1y =,得(2n =,1,2), 设(P a ,2,)c ,02a ,02c ,则1(2A P a =-,2,2)c -, 1A P 平行于平面AEF ,∴12(2)22(2)0A P n a c ⋅=-++-=,整理得3a c +=,∴线段1A P 长度222222139||(2)2(2)(2)4(1)2()22A P a c a a a =-++-=-++-=-+当且仅当32a c ==时,线段1A P 长度取最小值322. 故选:D . 【点睛】空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.2.B解析:B 【分析】根据两直线垂直,得到关于,a b 的等式224a b +=,再利用基本不等式即可求出ab 的最大值.因为直线()240ax b y +++=与直线()230ax b y +--=互相垂直, 所以2(2)(2)0a b b ++-=,即224a b +=, 因为222a b ab +≥, 所以24ab ≤,即2ab ≤, 故选:B. 【点睛】本题将两直线位置关系与基本不等式相结合进行考查,难度不大.3.D解析:D 【详解】圆心(),a a ,半径r =d ,因为圆()()228x a y a -+-=,则圆()()228x a y y a -+-=与圆222x y +=有公共点,'''r r r r r ∴=∴-≤≤+,,即13a ≤≤,解得13a ≤≤或31a -≤≤-,所以实数a 的取值范围是[][]3,11,3--⋃,故选D. 4.D解析:D 【分析】利用两点间的距离公式,将切线长的和转化为到两圆心的距离和,利用三点共线距离最小即可求解. 【详解】221(1)(4)7:C x y -++=,圆心()1,4-,半径1r = 222:(2)(5)9C x y -+-=,圆心()2,5,半径33r =设点P ()0,0x ,则12d d +===即()0,0x 到()1,3-与()2,4两点距离之和的最小值, 当()0,0x 、()1,3-、()2,4三点共线时,12d d +的和最小,即12d d +==故选:D 【点睛】本题考查了两点间的距离公式,需熟记公式,属于基础题.5.B解析:B 【分析】由题意结合直线与圆的位置关系可得直线经过圆心即12ab +=,再由基本不等式即可得解. 【详解】由题得圆的方程可以化为22(2)(1)9x y -++=,所以圆心为(2,1)-,半径为3r =, 因为直线440(0,0)ax by a b --=>>被圆224240x y x y +-+-=截得的弦长为6, 所以直线经过圆心,所以2440a b +-=,即12ab +=,所以441433322b a a b a b ab a b a b +⎛⎫⎛⎫=++=++≥+=+ ⎪⎪⎝⎭⎝⎭当且仅当41a b =-=时取等号,所以4b aab +的最小值为3+ 故选:B. 【点睛】本题考查了直线与圆位置关系、基本不等式求最值的应用,考查了运算求解能力与转化化归思想,属于中档题.6.D解析:D 【分析】求出直线过(0,1)时m 的值,以及直线与圆相切时m 的值,即可确定出满足题意m 的范围. 【详解】 解:如图所示:当直线过(0,1)时,将(0,1)代入直线方程得:1m =;当直线与圆相切时,圆心到切线的距离d r =1=,解得:m =或m =(舍去), 则直线与圆在第一象限内有两个不同的交点时,m的范围为1m << 故选:D .【点睛】本题考查了直线与圆相交的性质,利用了数形结合的思想,熟练掌握数形结合法是解本题的关键,属于中档题.7.A解析:A 【分析】由AB AP =,PD BD =,可得ABD △≌APD △,从而得DAB DAP α∠=∠=,而直线PA 与平面ABC 所成角为γ,由最小角定理可得γα≤,再由P ABC B PAC V V --=,PACABCSS≤,进而可比较,βγ的大小【详解】解:因为AB AP =,PD BD =,所以ABD △≌APD △, 所以DAB DAP α∠=∠=,因为直线PA 与平面ABC 所成角为γ, 所以由最小角定理可得γα≤, 因为AB AC ⊥,所以12ABCS AB AC =⋅, 因为1sin 2PACS AC AP PAC =⋅∠,AB AP =, 所以PACABCSS≤,令点P 到平面ABC 的距离为1d ,点B 到平面PAC 的距离为2d , 因为P ABC B PAC V V --=,1211,33P ABC ABC B PACPACV S d V S d --=⋅=⋅所以12d d ≤,因为直线AB 与平面PAC 所成角为β,直线PA 与平面ABC 所成角为γ,所以21sin ,sin d d AB PAβγ== 因为AB AP =, 所以sin sin βγ≥因为,(0,]2πβγ∈所以βγ≥,【点睛】关键点点睛:此题考查直线与平面所成的角,考查推理能力,解题的关键是利用了等体积法转换,属于中档题8.C解析:C【分析】由MN 与正方体的面对角线平行,可得异面直线所成的角,此角是正三角形的内角,由此可得.【详解】作如图所示的辅助线,由于M ,N 为其所在棱的中点,所以//MN PQ ,又因为//AC PQ ,所以//AC MN ,所以CAB ∠即为异面直线AB 与MN 所成的角(或补角),易得AB AC BC ==,所以60CAB ∠=︒.故选:C .9.D解析:D【分析】在图形中找到(并证明)异面直线所成的角,然后在三角形中计算.【详解】因为//AD BC ,所以PCB ∠是异面直线PC 与AD 所成角(或其补角),又PA AD ⊥,所以PA BC ⊥,因为AB BC ⊥,AB PA A ⋂=,,AB PA ⊂平面PAB ,所以BC ⊥平面PAB , 又PB ⊂平面PAB ,所以PB BC ⊥.由已知2PA AD ==,所以22222cos 23223cos607PB PA AB PA AB PAB =+-⋅∠=+-⨯⨯︒= 22211cos (7)2BC PCB PC ∠===+, 所以异面直线PC 与AD 所成角的余弦值为1111.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角. 10.A解析:A【分析】利用线面垂直的判定定理可判断BCD 选项,利用假设法推出矛盾,可判断A 选项.【详解】对于A 选项,连接B C ',假设A C '⊥平面MNP ,在正方体ABCD A B C D ''''-中,A B ''⊥平面BB C C '',B C '⊂平面BB C C '',A B B C '''∴⊥,所以,A B C ''为直角三角形,且A CB ''∠为锐角,因为M 、N 分别为BB '、BC 的中点,则//MN B C ',所以,MN 与A C '不垂直, 这与A C '⊥平面MNP 矛盾,故假设不成立,即A C '与平面MNP 不垂直;对于B 选项,连接B D ''、A C '',如下图所示:因为四边形A B C D ''''为正方形,则A C B D ''''⊥,CC '⊥平面A B C D '''',B D ''⊂平面A B C D '''',CC B D '''∴⊥,A C CC C ''''=,B D ''∴⊥平面A CC '',A C '⊂平面A CC '',A CB D '''∴⊥, M 、P 分别为A B ''、A D ''的中点,则//MN B D '',可得MP AC '⊥,同理可证A C MN '⊥,MP MN M ⋂=,A C '∴⊥平面MNP ;对于C 选项,连接C D '、A N '、CN 、A P '、PC ,取A B ''的中点E ,连接C E '、PE ,因为四边形CC D D ''为正方形,则CD C D ''⊥,A D ''⊥平面CC D D '',C D '⊂平面CC D D '',C D A D '''∴⊥,CD A D D ''''=,C D '∴⊥平面A CD '',A C '⊂平面A CD '',A C C D ''∴⊥, M 、N 分别为DD '、C D ''的中点,//MN C D '∴,A C MN '∴⊥,在正方形A B C D ''''中,E 、N 分别为A B ''、C D ''的中点,//A E C N ''∴且A E C N ''=, 所以,四边形A EC N ''为平行四边形,所以,//A N C E ''且A N C E ''=,同理可证四边形CC EP '为平行四边形,//C E CP '∴且C E CP '=,所以,//A N CP '且A N CP '=,所以,四边形A PCN '为平行四边形,易得A N CN '=,所以,四边形A PCN '为菱形,所以,A C PN '⊥,MN PN N =,A C '∴⊥平面MNP ;对于D 选项,连接AC 、BD ,因为四边形ABCD 为正方形,则AC BD ⊥,AA '⊥平面ABCD ,BD ⊂平面ABCD ,AA BD '∴⊥,AC AA A '⋂=,BD ∴⊥平面AA C ',A C '⊂平面AA C ',AC BD '∴⊥, M 、N 分别为CD 、BC 的中点,则//MN BD ,A C MN '∴⊥,同理可证A C MP '⊥,MN MP M ⋂=,A C '∴⊥平面MNP .故选:A.【点睛】方法点睛:证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.11.D解析:D【分析】先找到几何体原图,再求出几何体的外接球的半径和内切球的半径,再判断每一个选项得解.【详解】由三视图得几何体为下图中的三棱锥A BCD -,AB ⊥平面BCD ,AB =2CE DE ==,2BE =,由题得2CBD π∠=.设外接球的球心为,O 外接球的半径为R ,则OE ⊥平面BCD , 连接,OB OA ,取AB 中点F ,连接OF .由题得12OE BF AB ===,所以2222,R R =+∴=所以外接球的体积为343π⨯=,所以选项A 错误;所以外接球的表面积为2448ππ⨯=,所以选项C 错误;由题得AC AD ===所以△ACD △6=,设内切球的半径为r ,则11111112446)243222232r ++⨯⨯+⨯⨯=⨯⨯⨯⨯所以2r ,所以内切球的体积为3422)323ππ⨯=(,所以选项B 错误; 所以内切球的表面积为224()22ππ⨯=,所以选项D 正确. 故选:D【点睛】方法点睛:求几何体外接球的半径一般有两种方法:模型法和解三角形法.模型法就是把几何体放在长方体中,使几何体的顶点和长方体的若干个顶点重合,则几何体的外接球和长方体的外接球是重合的,长方体的外接球的半径22212r a b c =++几何体的外接球半径.如果已知中有多个垂直关系,可以考虑用此种方法.解三角形法就是找到球心O 和截面圆的圆心O ',找到OO '、球的半径OA 、截面圆的半径O A '确定的Rt OO A '△,再解Rt OO A '△求出球的半径OA .12.C解析:C【分析】 首先通过延长直线,DC AB ,交于点G ,平面BAE 变为GAE ,连结PG ,EG 交于点F ,再根据三角形中线的性质,求PF FC的值. 【详解】 延长,DC AB ,交于点G ,连结PG ,EG 交PC 于点F ,//AD BC ,且2AD BC =,可得点,B C 分别是,AG DG 的中点,又点E 是PD 的中点,PC ∴和GE 是△PGD 的中线,∴点F 是重心,得2PF FC=故选:C【点睛】关键点点睛:本题的关键是找到PC 与平面BAE 的交点,即将平面BAE 转化为平面GAE 是关键.二、填空题13.【分析】求出圆心距解不等式可得其中分别是两圆半径【详解】两圆圆心分别为半径分别为15两圆相交则解得且故答案为:【点睛】本题考查圆与圆的位置关系解题关键是把问题转化为两圆相交圆与圆的位置关系:两圆圆心 解析:(5,0)(0,25)-【分析】 求出圆心距d ,解不等式R r d R r -<<+可得,其中,R r 分别是两圆半径.【详解】两圆圆心分别为(0,0)O ,(,4)C a -,半径分别为1,5,216OC a =+,两圆相交,则24166a <+,解得2525a -<<0a ≠, 故答案为:(5,0)(0,25)- 【点睛】本题考查圆与圆的位置关系,解题关键是把问题转化为两圆相交.圆与圆的位置关系: 两圆圆心距离为d ,半径分别为,r R ,则相离d R r ⇔>+,外切d R r ⇔=+,相交R r d R r ⇔-<<+,内切d R r ⇔=-,内含d R r ⇔<-.14.【详解】即整理化简得cos ∠AOB =-过点O 作AB 的垂线交AB 于D 则cos ∠AOB =2cos2∠AOD -1=-得cos2∠AOD =又圆心到直线的距离为OD =所以cos2∠AOD ===所以r2=10r = 10【详解】22225325539OC OA OB OA 2OA OB OB 44164416⎛⎫=+=+⋅⋅+ ⎪⎝⎭ 即222225159r r r cos AOB r 16816=+∠+,整理化简得cos ∠AOB =-35,过点O 作AB 的垂线交AB 于D ,则cos ∠AOB =2cos 2∠AOD -1=-35,得cos 2∠AOD =15.又圆心到直线的距离为OD=,所以cos 2∠AOD =15=22OD r =22r ,所以r 2=10,r . 15.-4【分析】将圆的方程化为标准方程求出圆心坐标与半径利用点到直线的距离公式算出圆心到直线的距离再根据截得弦的长度为得到关于的方程解出即可【详解】由圆可得圆心为半径直线方程为圆心到直线的距离截得弦的长 解析:-4【分析】将圆的方程化为标准方程,求出圆心坐标与半径r ,利用点到直线的距离公式,算出圆心到直线l 的距离,再根据截得弦的长度为4,得到关于a 的方程,解出即可【详解】由圆22220x y x y a ++-+=可得()()22112x y a ++-=-∴圆心为()11-,,半径)2r a =<直线方程为20x y ++=∴圆心到直线的距离d ==截得弦的长度为4 2222a ∴+=-,解得4a =-故答案为4-【点睛】结合弦长的长度求出圆的标准方程,只需将圆化为标准方程,然后运用弦长公式的求法求出参量即可16.或【分析】根据题意作出图形过点作x 轴的平行线交圆于点是的角平分线所以为弧的中点再根据中垂线结合平面几何知识求解【详解】过点作x 轴的平行线交圆于点是的角平分线所以为弧的中点所以所以如图1:所以如图2: 解析:30︒或150︒【分析】根据题意,作出图形,过点P 作x 轴的平行线,交圆于点()G PG 是DPC ∠的角平分线,所以G 为弧 CD 的中点,再根据中垂线 OG CD ⊥,结合平面几何知识求解.【详解】过点3,1)P 作x 轴的平行线,交圆于点()3,1G - PG 是DPC ∠的角平分线,所以G 为弧 CD 的中点,所以 OG CD ⊥ ,tan 3GOE ∠=60GOE ∠= ,如图1:090GOA CA ∠+∠= , 所以030CA ∠=,如图2:0150CA ∠=故答案为:30︒或150︒【点睛】本题主要考查直线与圆的位置关系以及平面几何的知识,还考查了数形结合的思想和推理论证的能力,属于中档题.17.【分析】根据为双曲线的左右顶点可设由两点间距离公式并化简可得动点的轨迹方程由为双曲线的左右顶点可知当位于圆的最高点时的面积最大根据面积最大值求得当位于圆的最左端时的面积最小结合最小面积可求得即可求得 解析:54【分析】根据,A B 为双曲线的左、右顶点可设(),0A a =-,(),0B a ,(),P x y ,由两点间距离公式并化简可得动点P 的轨迹方程.由,A B 为双曲线的左、右顶点可知当P 位于圆的最高点时PAB ∆的面积最大,根据面积最大值求得a .当P 位于圆的最左端时PCD ∆的面积最小,结合最小面积可求得b ,即可求得双曲线的离心率.【详解】设(),0A a =-,(),0B a ,(),P x y ,依题意,得2PA PB =, ()()22222x a y x a y ++=-+两边平方化简得2225433a x y a ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,则圆心为5,03a ⎛⎫ ⎪⎝⎭,半径43a r =, 当P 位于圆的最高点时PAB ∆的面积最大,最大面积为14642233a a ⨯⨯=, 解得4a =;当P 位于圆的最左端时PCD ∆的面积最小,最小面积为154242333a b a a b ⎛⎫⨯⨯-=⨯= ⎪⎝⎭, 解得3b =,故双曲线的离心率为54e ==. 故答案为:54【点睛】本题考查了两点间距离公式的应用,轨迹方程的求法,圆与双曲线的综合应用,双曲线离心率的求法,属于中档题. 18.【分析】先求得点的垂直平分线的方程然后根据点关于直线对称点的求法求得的对称点由此得出结论【详解】已知点点可得中点则∴线段AB 的垂直平分线为:化为设点关于直线的对称点为则解得∴与点重合的点是故答案为: 解析:()4,2-【分析】先求得点()()10,0,6,8-的垂直平分线的方程,然后根据点关于直线对称点的求法,求得()4,2-的对称点,由此得出结论.【详解】已知点(10,0)A ,点(6,8)B -,可得中点(2,4)M . 则816102AB k ==---. ∴线段AB 的垂直平分线为:42(2)y x -=-,化为20x y -=.设点()4,2-关于直线20x y -=的对称点为(,)P a b , 则2214422022b a a b -⎧⨯=-⎪⎪--⎨-++⎪⨯-=⎪⎩,解得42a b =⎧⎨=-⎩. ∴与点()4,2-重合的点是()4,2-.故答案为:()4,2-.【点睛】本小题主要考查线段垂直平分线方程的求法,考查点关于直线对称点的坐标的求法,属于中档题.19.【分析】根据直观图和原图的之间的关系由直观图画法规则将还原为如图所示是一个等腰三角形直接求解其面积即可【详解】由直观图画法规则将还原为如图所示是一个等腰三角形则有所以故答案为:【点睛】关键点点睛:根 解析:82【分析】 根据直观图和原图的之间的关系,由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,直接求解其面积即可.【详解】由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,则有2BO OC B O O C ''''====,242AO A O ''==所以114428222ABC S BC AO =⋅=⨯⨯= 故答案为:2【点睛】关键点点睛:根据斜二测画法的规则,可得出三角形的直观图,并求出对应边长,根据面积公式求解.20.【分析】取的中点为可证明为四面体外接球的球心利用等体积可得答案【详解】取的中点为连接因为平面平面平面平面平面故平面因为平面故因为故故又故平面因为平面故而为的中点故又所以故为四面体外接球的球心设球心到 解析:12【分析】取BC 的中点为M ,可证明M 为四面体A BCD '-外接球的球心,利用等体积可得答案.【详解】取BC 的中点为M ,连接,A M DM ',因为平面A BD '⊥平面BCD ,BD CD ⊥,平面A BD '平面BCD BD =, CD ⊂平面BCD ,故CD ⊥平面A BD ',因为BA '⊂平面A BD ',故CD BA '⊥,因为1A B A D ''==,2BD =222BD A B A D ''=+,故''⊥BA A D ,又A D DC D '⋂=,故'⊥BA 平面ACD ',因为A C '⊂平面ACD ',故A D A C ''⊥,而M 为BC 的中点,故MA MB MC '==,又BD DC ⊥,所以MD MB =,故M 为四面体A BCD '-外接球的球心.设球心M 到平面ACD '的距离为h ,因为2B A CD M A CD V V ''--=,所以11233A CD A CD SA B S h '''=⨯,即12h =. 故答案为:12. 【点睛】 本题考查四面体的外接球,此类问题一般是先确定球心的位置,再把球的半径放置在可解的平面图形中处理,如果球心的位置不易确定,则可以通过补体的方法来处理. 21.【分析】设球的半径为连接交于点取中点连接即为三棱柱外接球球心根据三棱锥体积可得间关系表示出根据基本不等式可求得的最小值从而得到球的表面积的最小值【详解】如图因为三棱柱是且设球的半径为连接交于点取中点 解析:27π【分析】设AB a ,BC b =,球的半径为r ,连接1AC ,1A C 交于点O ,取AC 中点D ,连接BD ,即O 为三棱柱外接球球心,根据三棱锥体积可得a b ,间关系,表示出r ,根据基本不等式可求得r 的最小值,从而得到球的表面积的最小值.【详解】如图,因为三棱柱111ABC A B C -是 ,且90ABC ∠=︒,设AB a ,BC b =,球的半径为r ,连接1AC ,1A C 交于点O ,取AC 中点D ,连接BD ,则O 到三棱柱六个定点的距离相等,即O 为三棱柱外接球球心,11322OD AA ==, 又因为三棱锥O ABC -3 即113332ab ⨯=,即12ab =, 所以2222223133322242a b r AD OD ab ⎛⎫⎛⎫+=+=+≥+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 当且仅当a b =时等号成立, 所以球O 的表面积最小值为2427S r ππ==,故答案为:27π.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.22.【分析】将正三棱柱的侧面沿棱展开成平面连接与的交点即为满足最小时的点可知点为棱的中点即可计算出沿着蚂蚁走过的路径截开木块时两几何体的体积之比【详解】将正三棱柱沿棱展开成平面连接与的交点即为满足最小时 解析:1:1【分析】将正三棱柱111ABC A B C -的侧面沿棱1BB 展开成平面,连接1AC 与1BB 的交点即为满足1AM MC +最小时的点M ,可知点M 为棱1BB 的中点,即可计算出沿着蚂蚁走过的路径截开木块时两几何体的体积之比.【详解】将正三棱柱111ABC A B C -沿棱1BB 展开成平面,连接1AC 与1BB 的交点即为满足1AM MC +最小时的点M .由于2AB =,13AA =,再结合棱柱的性质,可得,一只蚂蚁自A 点出发经过线段1BB 上的一点M 到达点1C ,当沿蚂蚁走过的最短路径, M ∴为1BB 的中点,因为三棱柱是正三棱柱,所以当沿蚂蚁走过的最短路径,截开木块时,两部分几何体的体积比为:1111:1:1C AMB A A CBMC V V --=.故答案为:1:1.【点睛】本题考查棱柱侧面最短路径问题,涉及棱柱侧面展开图的应用以及几何体体积的计算,考查分析问题解决问题能力,是中档题.23.【分析】先在直角三角形中列关系求得再求球的表面积即可【详解】是直角三角形外接圆圆心为的中点因为三点都在球的表面上球心到平面的距离为是球半径的所以中即故解得所以球的表面积故答案为:【点睛】本题考查了球 解析:9π【分析】先在直角三角形中列关系,求得R ,再求球的表面积即可.【详解】22AB =,AC BC ⊥,ABC ∆是直角三角形,外接圆圆心为AB 的中点M , 因为A ,B ,C 三点都在球O 的表面上,球心O 到平面ABC 的距离为OM ,是球半径的13, 所以OMB ∆中()()222OA OM MA =+,即2221132R R AB ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭ 故222112232R R ⎛⎫⎛⎫=+⨯ ⎪ ⎪⎝⎭⎝⎭,解得29=4R ,所以球O 的表面积29=4494S R πππ=⋅=. 故答案为:9π.【点睛】本题考查了球的表面积,属于中档题. 24.【分析】由题意知圆锥的轴截面为外接球的最大截面即过球心的截面且球心在上由等边三角形性质有即求得外接球的半径为R 进而求外接球的表面积【详解】设外接球球心为连接设外接球的半径为R 依题意可得在中有即解得故 解析:163π 【分析】由题意知圆锥PO 的轴截面为外接球的最大截面,即过球心的截面且球心在PO 上,由等边三角形性质有Rt AO O '△,即222O A AO O O ''=+求得外接球的半径为R ,进而求外接球的表面积.【详解】设外接球球心为O ',连接AO ',设外接球的半径为R ,依题意可得1AO =,3PO =,在Rt AO O '△中,有222O A AO O O ''=+,即)22213R R =+,解得3R =, 故外接球的表面积为24164433S R πππ==⋅=. 故答案为:163π. 【点睛】本题考查了求圆锥体的外接球面积,由截面是等边三角形,结合等边三角形的性质求球半径,进而求外接球面积,属于基础题.三、解答题25.(1)3;(2)证明见解析,三棱锥P ABD -的体积为33. 【分析】(1)取AB 、AD 中点为M 、N ,连接MN ,证明出平面//PBD 平面EMN ,可得出点F 的轨迹为线段MN ,求出BD 的长,可求得线段MN 的长,即可得解;(2)连接AF 延长交BD 于点O ,利用面面平行的性质定理可得出//EF PO ,可得出PO ⊥平面ABD ,利用面面垂直的判定定理可证得平面PBD ⊥平面ABD ,可得出三棱锥P ABD -的高为PO ,利用锥体的体积公式可求得结果. 【详解】(1)如图,取AB 、AD 中点为M 、N ,连接MN ,则点F 在线段MN 上,证明如下:连接EM 、EN ,因为E 为PA 中点,M 为AB 中点,所以//EM PB ,EM ⊄平面PBD ,PB ⊂平面PBD ,//EM ∴平面PBD ,同理可证//EN 平面PBD , 又EM EN E =,所以平面//PBD 平面EMN ,EF ⊂平面EMN ,所以//EF 平面PBD ,所以点F 的轨迹为线段MN ,因为60BAC ∠=,所以120BAD ∠=,2sin 23BD AB BAC ∴=∠=所以132MN BD ==,即点F 3; (2)连接AF 延长交BD 于点O ,因为平面//PBD 平面EMN , 且平面APO平面EMN EF =,平面APO 平面PBD PO =,所以//EF PO ,因为EF ⊥平面ABD ,所以PO ⊥平面ABD ,又PO ⊂平面PBD ,所以平面PBD ⊥平面ABD ,可得PO 为三棱锥P ABD -的高,且cos 1PO AO AB BAC ==∠=,1113231332P ABD ABD V S PO -=⨯⨯=⨯⨯=△. 【点睛】方法点睛:求空间几何体体积的方法如下:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.26.(1)证明见解析;(2)3π. 【分析】(1)取PB 中点F ,连接,EF FC ,证明EFCO 是平行四边形,得线线平行后可证得线面平行;(2)取AB 中点G ,连接,,OG PG OP ,可证PGO ∠(或其补角)是二面角PAB C 的平面角.然后在PGO △中求解.【详解】(1)取PB 中点F ,连接,EF FC , 因为E 是PA 中点,∴//EF AB ,且12EF AB =, 又ABCD 是矩形,//,AB CD AB CD =,O 是CD 中点,∴//,EF OC EF OC =,∴EFCO 是平行四边形,∴//OE CF ,而OE ⊄平面PBC ,CF ⊂平面PBC ,∴//OE 平面PBC .(2)取AB 中点G ,连接,,OG PG OP ,ABCD 是矩形,O 是CD 中点,则OG AB ⊥,又PA PC CD ==,∴PO CD ⊥,而平面PCD ⊥平面ABCD ,平面PCD 平面ABCD CD =,PO ⊂平面PCD , ∴PO ⊥平面ABCD ,∵,OG AB ⊂平面ABCD ,∴PO AB ⊥,PO OG ⊥.。

新北师大版高中数学必修二第二章《解析几何初步》测试卷(含答案解析)(2)

新北师大版高中数学必修二第二章《解析几何初步》测试卷(含答案解析)(2)

一、选择题1.若圆C:222430x y x y ++-+=关于直线260ax by ++=对称,则由点(,)a b 向圆所作的切线长的最小值是( ) A .2B .4C .3D .62.若关于x 的方程24320x kx k ---+=有且只有两个不同的实数根,则实数k 的取值范围是( )A .5,12⎡⎫+∞⎪⎢⎣⎭B .5,112⎛⎤⎥⎝⎦C .50,12⎛⎤⎥⎝⎦D .53,1243.已知点(3,2)P ,点M 是圆221:(1)1C x y -+=上的动点,点N 是222:(2)1C x y +-=上的动点,则||||PN PM -的最大值是( )A .522-B .522+C .222-D .322-4.已知圆()()()222:0C x a y a a a -++=>和直线:20l x y ++=,则2a =是圆C 和直线l 相交的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.已知动直线:20(0,0)l ax by c a c ++-=>>恒过点(1,)P m 且(4,0)Q 到动直线l 的最大距离为3,则122a c+的最小值为( ) A .92 B .94C .1D .96.直线l 经过()2,1A ,()2(,)1B m m R ∈两点,那么直线l 的倾斜角的取值范围为( )A .0,B .30,,44πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦C .0,4⎡⎤⎢⎥⎣⎦πD .0,,42πππ⎡⎤⎛⎫ ⎪⎢⎥⎣⎦⎝⎭7.如图,在Rt ABC △中,1AC =,BC x =,D 是斜边AB 的中点,将BCD △沿直线CD 翻折,若在翻折过程中存在某个位置,使得CB AD ⊥,则x 的取值范围是( )A .(0,3⎤⎦B .2,2⎛⎤⎥⎝⎦C .3,23D .(]2,4 8.如图,在长方体1111ABCD A BC D -中,1AB AD ==,12AA =,M 为棱1DD 上的一点.当1A M MC +取得最小值时,1B M 的长为( )A 3B 6C .23D .269.已知正方体1111ABCD A BC D -的棱长为2,E 为棱1AA 的中点,截面1CD E 交棱AB 于点F ,则四面体1CDFD 的外接球表面积为( ) A .394πB .414πC .12πD .434π10.已知正三棱柱111ABC A B C -中,1AB AA =,M 是1CC 的中点,则异面直线AM 与1A B 所成角的大小为( )A .π6B .π4C .π3D .π211.一个几何体的三视图如图所示,则该几何体的外接球的表面积是( )A .2πB .3πC .4πD .16π12.平行六面体1111ABCD A BC D -的六个面都是菱形,那么点1A 在面11AB D 上的射影一定是11AB D 的________心,点1A 在面1BC D 上的射影一定是1BC D 的________心( )A .外心、重心B .内心、垂心C .外心、垂心D .内心、重心二、填空题13.某中学为了了解学生年龄与身高的关系,采用分层抽样的方法分别从高一400名,高二300名,高三250名学生中共抽取19名学生进行调查,从高一、高二、高三抽取的学生人数分别为,,a b c ,若圆222:()()A x a y b c -+-=与圆223:()254B x m y m ⎛⎫-+-= ⎪⎝⎭外切,则实数m 的值为______________.14.直线()10,0ax by a b +=>>与曲线222410x y x y +--+=交于A 、B ,且AB 4=,则11a b+的最小值为__________ 15.直线y kx =与函数2143y x x -=-+-k 的最小值是______.16.在平面直角坐标系xOy 中,设直线12y x b =+与圆22640x y x +-+=相交于,A B 两点,若圆上存在一点C ,使ABC ∆为等边三角形,则所有满足题设的实数b 之和为_________.17.在平面直角坐标xOy 系中,设将椭圆()2222110y x a a a +=>-绕它的左焦点旋转一周所覆盖的区域为D ,P 为区域D 内的任一点,射线()02x y x =≥-上的点为Q ,若PQ 的最小值为a ,则实数a 的取值为_____.18.阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数()0,1k k k >≠的点的轨迹是圆,后人将这个圆称为阿氏圆.若平面内两定点AB 、间的距离为2,动点P 满足3PA PB=,当,,P A B 不共线时,三角形PAB 面积的最大值是_______________.19.圆锥底面半径为1,母线长为4,轴截面为PAB ,如图,从A 点拉一绳子绕圆锥侧面一周回到A 点,则最短绳长为_________.20.如图,正二十面体是由20个等边三角形组成的正多面体,共有12个顶点,30条棱,20个面,是五个柏拉图多面体之一.如果把sin 36按35计算,则棱长为6的正二十面体的外接球半径等于___________.21.如图,圆柱的体积为16π,正方形ABCD 为该圆柱的轴截面,F 为AB 的中点,E 为母线BC 的中点,则异面直线AC ,EF 所成的角的余弦值为______.22.如图,四边形ABCD 是矩形,且有2AB BC =,沿AC 将ADC 翻折成AD C ',当二面角D AC B '--的大小为3π时,则异面直线D C '与AB 所成角余弦值是______.23.在三棱柱111ABC A B C -中侧棱垂直底面且底面是ABC 为等边三角形且12A A AB =,E 在棱1AA 上,112AE A A =,则异面直线1AC 与BE 所成角的余弦值___________.24.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,且ABCD 为矩形,π2DPA ∠=,23AD =2AB =,PA PD =,则四棱锥P ABCD -的外接球的体积为________.三、解答题25.在所有棱长均为2的直棱柱1111ABCD A BC D -中,底面ABCD 是菱形,且60BAD ∠=︒,O ,M 分别为1,BD B C 的中点.(Ⅰ)求证:直线//OM 平面11DB C ; (Ⅱ)求二面角1D AC D --的余弦值.26.如图,在直四棱柱1111ABCD A BC D -中,底面ABCD 是梯形,,//AB CD AB AD ⊥,22CD AB AD ==.(1)求证:BD ⊥平面1BCC ;(2)在线段11C D 上是否存在一点E ,使//AE 面1BC D .若存在,确定点E 的位置并证明;若不存在,请说明理由.27.如图,四棱锥E ABCD -中,底面ABCD 是边长为2的正方形,平面AEB ⊥平面ABCD ,4EBA π∠=,2EB =,F 为CE 上的点,BF CE ⊥.(1)求证:BF ⊥平面ACE ; (2)求点D 到平面ACE 的距离.28.如图,在三棱锥P ABC -中,⊥PA AB ,PA BC ⊥,AB BC ⊥,2PA AB BC ===,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:平面BDE ⊥平面PAC ;(2)当//PA 面BDE 时,求三棱锥E BCD -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:222430x y x y ++-+=即22(1)(2)2x y ++-=,由已知,直线260ax by ++=过圆心(1,2)C -,即2260,3a b b a -++==-,由平面几何知识知,为使由点(,)a b 向圆所作的切线长的最小,只需圆心(1,2)C -与直线30x y --=2123()242----=,故选B .考点:圆的几何性质,点到直线距离公式.2.D解析:D【分析】先将方程根的情况转化为一个半圆与一条直线交点的情况,再用数形结合,先求出相切时的斜率,再得到有两个交点的情况. 【详解】将方程24320x kx k ---+=转化为:半圆24y x =-,与直线32y kx k =+-有两个不同交点.当直线与半圆相切时,221k =+,512k =,∴半圆24y x =-32y kx k =+-有两个不同交点时.直线32(2)3y kx k k x =+-=-+,一定过(2,3), 由图象知直线过(2,0)-时直线的斜率k 取最大值为34, 53,124k ⎛⎤∴∈ ⎥⎝⎦.故选:D. 【点睛】本题主要考查用解析几何法来解决方程根的情况,关键是能够转化为一些特定的曲线才能用数形结合求解.3.A解析:A 【分析】由圆外的点和圆上的点的连线长度的最值关系,转化为求max minPN PM -.【详解】由条件可知||||PN PM -的最大值是max minPN PM-,()()222max 1302214PN PC =+=-+-=, ()()221min131201221PMPC =-=-+-=,所以||||PN PM -的最大值是()415-=- 故选:A 【点睛】结论点睛:本题第二问考查与圆的几何性质有关的最值,具体结论如下: (1)设O 为圆的圆心,半径为r ,圆外一点A 到圆上的距离的最小值为AO r -,最大值为AO r +;(2)过圆内一点的最长弦为圆的直径,最短弦是以该点为中点的弦;(3)记圆的半径为r ,圆心到直线的距离为d ,直线与圆相离,则圆上的点到直线的最大距离为d r +,最小值为d r -.4.A解析:A 【分析】由圆C 和直线l 相交,解出a 的范围,结合选项判断即可. 【详解】圆C 和直线l 相交,即圆心(),a a -到:20l x y ++=的距离小于半径,()0a a <>,解得a >则2a =是圆C 和直线l 相交的充分不必要条件故选:A 【点睛】本题考查充分必要条件的判断,考查直线与圆的位置关系,属于中档题.5.B解析:B 【分析】由题意可得:可得20a bm c ++-=.又(4,0)Q 到动直线l 的最大距离为3,可得3=,解得0m =,从而得到2a c +=.再利用“乘1法”与基本不等式的性质即可得出. 【详解】动直线:20(0,0)l ax by c a c ++-=>>恒过点(1,)P m ,20a bm c ∴++-=. 又(4,0)Q 到动直线l 的最大距离为3,∴3=,解得0m =.2a c ∴+=.则12112152159()()()()222222224c a a c a c a c a c a c +=++=+++=,当且仅当423c a ==时取等号.故选:B.【点睛】本题考查直线方程、点到直线的距离公式、两点之间的距离公式、基本不等式的性质,考查推理能力与计算能力,属于中档题.6.D解析:D【分析】根据直线过两点,求出直线的斜率,再根据斜率求出倾斜角的取值范围.【详解】解:直线l的斜率为22 12121121y y mk mx x--===---,因为m R∈,所以(],1k∈-∞,所以直线的倾斜角的取值范围是0,,42πππ⎡⎤⎛⎫⎪⎢⎥⎣⎦⎝⎭.故选:D.【点睛】本题考查了利用两点求直线的斜率以及倾斜角的应用问题,属于基础题.7.A解析:A【分析】取BC中点E,连接DE,AE,若CB AD⊥,则可证明出BC⊥平面ADE,则可得BC AE⊥. 根据题目中各边长的关系可得出AE,AD关于x的表达式,然后在ADE 中,利用三边关系求解即可.【详解】由题意得BC x=,则212xAD CD BD+===,如图所示,取BC中点E,翻折前,在图1中,连接DE,CD,则1122DE AC==,翻折后,在图2中,若CB AD⊥,则有:∵BC DE⊥,BC AD⊥,AD DE D⋂=,且,AD DE平面ADE,∴BC⊥平面ADE,∴BC AE⊥,又BC AE ⊥,E 为BC 中点,∴1AB AC ==∴2114AE x =-,212x AD +=, 在ADE 中,由三边关系得:①221111224x x ++>-,②22111124x x +<+-,③0x >; 由①②③可得03x <<. 故选:A. 【点睛】本题考查折叠性问题,考查线面垂直的判定及性质在解题中的运用,解答本题的主要思路分析在于将异面直线间的垂直转化为线面垂直关系,即作出辅助线DE 与AE ,根据题目条件确定出BC ⊥平面ADE ,得到BC AE ⊥,从而通过几何条件求解.8.A解析:A 【分析】本题首先可通过将侧面11CDD C 绕1DD 逆时针转90展开得出当1A 、M 、2C 共线时1A M MC +取得最小值,此时M 为1DD 的中点,然后根据11B A ⊥平面11A D DA 得出111B A A M ⊥,最后根据221111M A B B A M =+即可得出结果.【详解】如图,将侧面11CDD C 绕1DD 逆时针转90展开,与侧面11ADD A 共面,连接12AC ,易知当1A 、M 、2C 共线时,1A M MC +取得最小值, 因为1AB AD ==,12AA =,所以M 为1DD 的中点,12A M = 因为11B A ⊥平面11A D DA ,1A M ⊂平面11A D DA ,所以111B A A M ⊥, 则222211111(2)3M B A A M B =+=+=故选:A. 【点睛】关键点点睛:本题考查根据线面垂直判断线线垂直,能否根据题意得出当M 为1DD 的中点时1A M MC +取得最小值是解决本题的关键,考查计算能力,考查数形结合思想,是中档题.9.B解析:B 【分析】可证F 为AB 的中点,设1DD 的中点为G ,DFC △的外接圆的球心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,利用解三角形的方法可求DFC △的外接圆的半径,从而可求四面体1CDFD 的外接球的半径.【详解】设1DD 的中点为G ,DFC △的外接圆的圆心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,因为平面11//A ABB 平面11D DCC ,平面1CD E ⋂平面11A ABB EF =, 平面1CD E ⋂平面111D DCC DC =,故1//EF DC , 而11//A B D C ,故1//EF A B ,故F 为AB 的中点, 所以145DF CF ==+,故3cos 5255DFC ∠==⨯⨯,因为DFC ∠为三角形的内角,故4sin 5DFC ∠=,故DFC △的外接圆的半径为1254245⨯=,1OO ⊥平面ABCD ,1DD ⊥平面ABCD ,故11//OO DD ,在平面1GDOO 中,111,OG DD O D DD ⊥⊥,故1//OG O D , 故四边形1GDOO 为平行四边形,故1//OO GD ,1OO GD =,所以四面体1CDFD 4=, 故四面体1CDFD 的外接球表面积为41414164ππ⨯=, 故选:B. 【点睛】方法点睛:三棱锥的外接球的球的半径,关键是球心位置的确定,通常利用“球心在过底面外接圆的圆心且垂直于底面的直线上”来确定.10.D解析:D 【分析】取AC 中点E ,连接1,A E BE ,先通过BE⊥平面11ACC A 可得BE AM⊥,再由1ACM A AE ≅可得1AM A E ⊥,即可得出AM ⊥平面1A BE ,即1AM A B ⊥.【详解】取AC 中点E ,连接1,A E BE ,ABC 为正三角形,BE AC ∴⊥,正三棱柱111ABC A B C -中,1CC ⊥平面ABC ,BE ⊂平面ABC ,1CC BE ∴⊥,1AC CC C =,BE ∴⊥平面11ACC A ,AM ⊂平面11ACC A ,BE AM ∴⊥,在直角三角形ACM 和直角三角形1A AE 中,1,AC A A CM AE ==,1ACM A AE ∴≅, 1CAM AA E ∴∠=∠,12CAM A EA π∴∴∠+∠=,则1AM A E ⊥,1BE A E E ⋂=,AM ∴⊥平面1A BE ,1A B ⊂平面1A BE ,1AM A B ∴⊥,故异面直线AM 与1A B 所成角的大小为2π.【点睛】本题考查异面直线所成角的求解,解题的关键是通过证明AM ⊥平面1A BE 判断出1AM A B ⊥. 11.C解析:C 【分析】由三视图还原出原几何体,确定其结构,再求出外接球的半径得球的表面积. 【详解】由三视图,知原几何体是一个四棱锥P ABCD -,如图,底面ABCD 是边长为1的正方形,PB ⊥底面ABCD ,由PB ⊥底面ABCD ,AD ⊂面ABCD ,得PB AD ⊥,又AD AB ⊥,AB PB B ⋂=,,AB PB ⊂平面PAB ,所以AD ⊥平面PAB ,而PA ⊂平面PAB ,所以AD PA ⊥,同理DC PC ⊥,同样由PB ⊥底面ABCD 得PB BD ⊥,所以PD 中点O 到四棱锥各顶点距离相等,即为其外接球球心,PD 为球直径,222222PD PB BD PA AD AB =+=++=,∴外接球半径为12ADr ==, 表面积为2414S ππ=⨯=. 故选:C .【点睛】关键点点睛:本题考查由三视图还原几何体,考查棱锥的外接球表面积.解题关键是确定外接球的球心.棱锥的外接球球心在过各面外心(外接圆圆心)且与该面垂直的直线上.12.C解析:C 【分析】将三棱锥111A AB D -、三棱锥11A BC D -分离出来单独分析,根据线段长度以及线线关系证明1A 的射影点分别是11AB D 和1BC D 的哪一种心. 【详解】三棱锥111A AB D -如下图所示:记1A 在面11AB D 上的射影点为O ,连接11,,AO B O D O ,因为11111AA A D A B ==,又1AO ⊥平面11AB D , 所以2222221111111111,,AA AO AO A D AO OD A B AO OB =+=+=+, 所以11AO OB OD ==,所以O 为11AB D 的外心;三棱锥11A BC D -如下图所示:记1A 在面1BC D 上的射影点为1O ,连接1111,,BO C O DO ,因为11//BC AD ,且四边形11ADD A 是菱形,所以11AD A D ⊥,所以11BC A D ⊥, 又因为11AO ⊥平面1BC D ,所以1111111,AO BC AO A D A ⊥=,所以1BC ⊥平面11AO D ,又因为1DO ⊂平面11AO D ,所以11DO BC ⊥, 同理可知:1111,BO DC C O DB ⊥⊥,所以1O 为1BC D 的垂心, 故选:C. 【点睛】关键点点睛:解答本题的关键是通过1A 的射影点去证明线段长度的关系、线段位置的关系,借助线面垂直的定义和判定定理去分析解答问题.二、填空题13.0或16【分析】根据分层抽样的性质得出的值从而得出圆的方程根据圆与圆的位置关系即可得出实数的值【详解】由分层抽样方法知所以分别为所以圆的圆心为(86)半径为5圆的圆心为半径为5由两圆外切知:解得或故解析:0或16 【分析】根据分层抽样的性质得出,,a b c 的值,从而得出圆A 的方程,根据圆与圆的位置关系,即可得出实数m 的值. 【详解】由分层抽样方法知,400:300:2508:6:5=,所以,,a b c 分别为8,6,5 所以圆A 的圆心为(8,6),半径为5,圆B 的圆心为3(,)4m m ,半径为555=+,解得0m =或16m =. 故答案为:0或16 【点睛】本题主要考查了分层抽样的应用以及由圆与圆的位置关系求参数,属于中档题.14.【分析】由得可知圆心为半径为2而所以可得直线过圆心由此得所以可化为然后利用基本不等式可求得其最小值【详解】解:由得所以曲线表示圆其圆心为半径为2因为直线与曲线交于且所以直线过圆心所以所以当且仅当即时解析:3+【分析】由222410x y x y +--+=得,22(1)(2)4x y -+-=,可知圆心为(1,2),半径为2,而AB 4=,所以可得直线过圆心,由此得21a b +=,所以11a b+可化为112a b a b ⎛⎫+⋅+ ⎪⎝⎭(),然后利用基本不等式可求得其最小值 【详解】解:由222410x y x y +--+=得,22(1)(2)4x y -+-=, 所以曲线222410x y x y +--+=表示圆,其圆心为(1,2),半径为2,因为直线()10,0ax by a b +=>>与曲线222410x y x y +--+=交于A 、B ,且AB 4=,所以直线()10,0ax by a b +=>>过圆心(1,2),所以21a b +=, 所以11112a b a b a b ⎛⎫+=+⋅+ ⎪⎝⎭()22332322b a b a a b a b =++≥+⋅=+ 当且仅当2b aa b =,即22,212a b -==-时,取等号 故答案为:322+ 【点睛】此题考查的是直线与圆的位置关系,利用基本不等式求最值,属于中档题15.【分析】利用函数图象考虑当直线与半圆仅有一个交点时的取值范围同时注意讨论直线与圆相切的情况由此求解出的范围并确定出最小值【详解】如图函数的图象是圆的上半部分结合图象可知当时即时直线与半圆只有一个交点解析:13【分析】利用函数图象,考虑当直线与半圆2143y x x -=-+-仅有一个交点时k 的取值范围,同时注意讨论直线与圆相切的情况,由此求解出k 的范围并确定出最小值.【详解】 如图函数2431y x x =-+-+的图象是圆()()22211x y -+-=的上半部分,结合图象可知,当10103010k --≤<--时,即113k ≤<时,直线与半圆只有一个交点; 当直线与半圆相切时也仅有一个交点,则22111k k -=+,解得43k =或0k =(舍), 综上可知:min 13k =. 故答案为:13.【点睛】本题考查根据直线与圆的交点个数求解参数值,着重考查了数形结合思想的运用,难度一般.解答此题时要注意函数2143y x x -=-+-.16.【分析】由圆的方程可得到圆心和半径;根据等边三角形外心与重心重合可确定圆心到直线距离利用点到直线距离公式可构造方程求得所有的取值进而得到结果【详解】由得:则圆心半径的顶点都在圆上圆为的外接圆圆心到的 解析:3-【分析】由圆的方程可得到圆心和半径;根据等边三角形外心与重心重合可确定圆心到直线12y x b =+距离12d r =,利用点到直线距离公式可构造方程求得所有b 的取值,进而得到结果. 【详解】由22640x y x +-+=得:()2235x y -+=,则圆心()3,0M ,半径r =ABC ∆的顶点都在圆22640x y x +-+=上,∴圆22640x y x +-+=为ABC ∆的外接圆,∴圆心M 到12y x b =+的距离122d r ==,d ∴==, 解得:14b =-或114b =-, ∴所有满足题设的实数b 之和为111344--=-. 故答案为:3-. 【点睛】本题考查直线与圆的综合应用问题,关键是能够根据等边三角形外心即为重心的特点,得到圆心到直线距离与半径之间的比例关系,进而利用点到直线距离公式构造方程.17.【分析】先确定轨迹再根据射线上点与圆的位置关系求最值即得结果【详解】所以为以为圆心为半径的圆及其内部设射线的端点为所以的最小值为故答案为:【点睛】本题考查动点轨迹以及点与圆位置关系考查数形结合思想以【分析】先确定D 轨迹,再根据射线上点与圆的位置关系求最值,即得结果. 【详解】2222222(1)1,111,y x c a a c a a =+∴=--=∴=-, 所以D 为以(1,0)F -为圆心,1a +为半径的圆及其内部, 设射线()02x y x =≥-的端点为(2,2)A ,所以PQ 的最小值为||(1),12,AF a a a a -+===【点睛】本题考查动点轨迹以及点与圆位置关系,考查数形结合思想以及基本分析求解能力,属中档题.18.【分析】首先求动点的轨迹方程再根据圆的性质求三角形面积的最大值【详解】以所在直线为轴的垂直平分线为轴建立平面直角坐标系则化简为:整理为:圆是以为圆心半径当点到的距离最大时三角形面积最大距离的最大值是解析:34【分析】首先求动点P 的轨迹方程,再根据圆的性质求三角形面积的最大值. 【详解】以AB 所在直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系,则()1,0A -,()10B ,,(),P x y3= ,化简为:()()22221919x y x y ++=-+ ,整理为:2259416x y ⎛⎫-+= ⎪⎝⎭,圆是以5,04⎛⎫⎪⎝⎭为圆心,半径34r =,2AB =,∴当点P 到AB 的距离最大时,三角形PAB 面积最大,距离的最大值是34r =, 面积的最大值是1332244S =⨯⨯=. 故答案为:34【点睛】本题考查轨迹方程,与圆有关的面积的最值,意在考查数形结合分析问题的能力,属于中档题型.19.【分析】把圆锥侧面展开为一个平面图形利用平面上两点间线段最短可得【详解】由题意所以圆锥侧面展开图中心角为如图则故答案为:【点睛】关键点点睛:本题考查圆锥侧面上的最短距离问题空间几何体表面上两点间的最 解析:【分析】把圆锥侧面展开为一个平面图形,利用平面上两点间线段最短可得. 【详解】由题意1,4r l ==,所以圆锥侧面展开图中心角为2142ππθ⨯==,如图,2APA π'∠=, 则2442AA '=⨯=.故答案为:42.【点睛】关键点点睛:本题考查圆锥侧面上的最短距离问题,空间几何体表面上两点间的最短距离问题的解决方法常常是把几何体的表面展开摊平为一个平面图形,利用平面上两点间线段最短求解.20.【分析】由已知得出正二十面体的外接球即为上方正五棱锥的外接球设正五边形的外接圆半径为由平面几何知识可求得外接球的半径【详解】由图正二十面体的外接球即为上方正五棱锥的外接球设其半径为正五边形的外接圆半 1811【分析】由已知得出正二十面体的外接球即为上方正五棱锥的外接球,设正五边形的外接圆半径为r ,由平面几何知识可求得外接球的半径.【详解】由图,正二十面体的外接球即为上方正五棱锥的外接球, 设其半径为R ,正五边形的外接圆半径为r ,则33sin 365r ==,得=5r ,所以正五棱362511-= 所以(222511R R =+,解得181111R = 1811. 【点睛】关键点点睛:本题考查几何体的外接球的问题,关键在于确定外接球的球心和半径.21.【分析】由圆柱体积求得底面半径母线长设底面圆心为可得为异面直线与所成的角(或其补角)在对应三角形中求解可得【详解】设圆柱底面半径为则母线长为由得设底面圆心为连接则所以为异面直线所成的角在中所以故答案 解析:63【分析】由圆柱体积求得底面半径,母线长,设底面圆心为O ,可得OEF ∠为异面直线AC 与EF 所成的角(或其补角).在对应三角形中求解可得. 【详解】设圆柱底面半径为r ,则母线长为2r ,由2216r r ππ⋅=得2r.设底面圆心为O ,连接OE ,OF .则//OE AC ,所以OEF ∠为异面直线AC ,EF 所成的角.在Rt OEF △中,2OF =,22OE =,23EF =. 所以6cos OE OEF EF ∠==. 故答案为:6.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.22.【分析】作于于可得等于二面角的平面角从而可得然后求得而因此可得是异面直线与所成角(或补角)这样在求解可得【详解】如图作于于则连接根据二面角平面角的定义知与的夹角等于二面角的平面角所以因为所以设则在矩解析:12. 【分析】作DM AC ⊥于M ,BN AC ⊥于N ,可得,MD NB '<>等于二面角D AC B '--的平面角,从而可得DMD '∠,然后求得DD ',而//AB CD ,因此可得D CD '∠是异面直线D C '与AB 所成角(或补角).这样在DCD '求解可得.【详解】如图,作DM AC ⊥于M ,BN AC ⊥于N ,则//DM BN ,连接,D M DD '', 根据二面角平面角的定义知MD '与NB 的夹角等于二面角D AC B '--的平面角, 所以,3MD NB π'<>=,因为//DM BN ,所以23DMD π'∠=, 设1BC =,则22AB BC ==,在矩形ABCD 中,3AC =,12633DM ⨯==, 6D M DM '==, 则222222666612cos 2232DD DM D M DM D M π⎛⎫⎛⎫⎛⎫'''=+-⋅=+-⨯⨯⨯-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以2DD '=,因为//AB CD ,所以D CD '∠是异面直线D C '与AB 所成角(或补角).DCD '是正三角形,3D CD π'∠=,1cos 2D CD '∠=. 所以异面直线D C '与AB 所成角余弦值是12. 故答案为:12.【点睛】关键点点睛:本题考查求异面直线所成的角,解题方法根据异面直线所成角定义作出它们所成的角,然后解三角形可得,解题关键是利用图中MD '与NB 的夹角等于二面角D AC B '--的平面角,从而求得DMD '∠,只要设1BC =,可求得DD ',从而求得结论.23.【分析】取的中点连接可得所以或其补角即为异面直线与所成角在中求即可求解【详解】取的中点连接因为所以且所以或其补角即为异面直线与所成角设则所以因为是等边三角形所以因为平面平面所以所以在中因为异面直线所 解析:31020【分析】取11AC 的中点1O ,连接1EO ,1AC ,可得11//EO AC ,所以1BEO ∠或其补角即为异面直线1AC 与BE 所成角,在1BEO 中,求1cos BEO ∠即可求解. 【详解】取11AC 的中点1O ,连接1EO ,11B O ,EB ,EC ,1BO ,1AC , 因为112AE A A =,所以11//EO AC 且111=2EO AC , 所以1BEO ∠或其补角即为异面直线1AC 与BE 所成角, 设1AB =,则12AA =, 所以2211115=1222EO AC =+=,112BE =+= 因为111A B C △是等边三角形,112AE A A =,所以2111312B O ⎛⎫=-= ⎪⎝⎭因为1BB ⊥平面111A B C ,11B O ⊂平面111A B C ,所以 1BB ⊥11B O ,所以222111131942BO BB B O ⎛⎫=+=+= ⎪ ⎪⎝⎭在1BEO 中,2221111519231044cos 2205222BE EO BO BEO BE EO +-+-∠===-⨯⨯⨯,因为异面直线所成的角为锐角或直角,所以异面直线1AC 与BE 所成角的余弦值为20,【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.24.【分析】由矩形的边长可得底面外接圆的半径再由为等腰直角三角形可得其外接圆的半径又平面平面可得底面外接圆的圆心即为外接球的球心由题意可得外接球的半径进而求出外接球的体积【详解】解:取矩形的对角线的交点 解析:323π【分析】由矩形的边长可得底面外接圆的半径,再由PAD △为等腰直角三角形可得其外接圆的半径,又平面PAD ⊥平面ABCD 可得底面外接圆的圆心即为外接球的球心,由题意可得外接球的半径,进而求出外接球的体积. 【详解】解:取矩形的对角线的交点O 和AD 的中点E ,连接OE ,OP ,OE ,则O 为矩形ABCD 的外接圆的圆心,而2DPA π∠=,AD =2AB =,PA PD =,则//OE AB ,112OE AB ==, 12PE AD == 所以E 为PAD △的外接圆的圆心,因为平面PAD ⊥平面ABCD , 所以O 为外接球的球心,OP 为外接球的半径,在POE △中,22222214R OP PE OE ==+=+=,所以2R =, 所以外接球的体积343233V R ππ==, 故答案为:323π.【点睛】本题考查四棱锥的棱长与外接球的半径的关系及球的体积公式,属于中档题.三、解答题25.(Ⅰ)证明见解析;(Ⅱ)5. 【分析】(Ⅰ)由中位线定理证明1//OM C D ,即可得线面平行;(Ⅱ)连1D O ,证明1D OD ∠为二面角1D AC D --的平面角, 在直角1D DO △中计算可得. 【详解】解:(Ⅰ)连1BC ,则M 也为1BC 的中点,又M 为BD 的中点,所以1//OM C D ,因为OM ⊄平面11DB C ,1C D ⊂平面11DC B ,所以直线//OM 平面11DB C ;(Ⅱ)连1D O ,因为ABCD 是菱形,所以DO AC ⊥,又1111ABCD A BC D -为直棱柱,底面为菱形,所以11D A D C =,而O 为AC 中点,所以1D O AC ⊥,所以1D OD ∠为二面角1D AC D --的平面角,因为ABCD 是边长为2的菱形,且60BAD ∠=︒,所以1DO =,又12DD =, 由直棱柱知1DD DO ⊥,所以15DO =,所以115cos DO D OD D O ∠==.【点睛】方法点睛:本题考查证明线面平行,考查求二面角角,求二面角常用方法:(1)定义法:作出二面角的平面角并证明,然后在三角形中计算可得;(2)向量法:建立空间直角坐标系,求出两个平面的法向量夹角的余弦即可得二面角的余弦(注意判断二面角是锐角还是钝角).26.(1)证明见解析(2)存在,点E 是11C D 的中点,证明见解析 【分析】(1)根据线面垂直的判定定理即可证明BD ⊥平面1BDC ;(2)存在点E 是11C D 的中点,使//AE 平面1BDC ,由线面平行的判定定理进行证明即可得到结论. 【详解】(1)因为1AA ⊥底面ABCD ,所以1CC ⊥底面ABCD , 因为BD ⊂底面ABCD , 所以1CC BD ⊥,因为底面ABCD 是梯形,//AB DC ,90BAD ∠=︒,22CD AB AD ==,设1AB =,则1AD =,2CD = 所以2BD =,2BC =,所以在BCD ∆中,222BD BC CD +=, 所以90CBD ∠=︒, 所以BD BC ⊥,又因为1CC BD ⊥,且1CC BC C ⋂= 所以BD ⊥平面1BCC .(2)存在点E 是11C D 的中点,使//AE 平面1BDC 证明如下:取线段11C D 的中点为点E ,连结AE ,如图,所以11//C D CD ,且112C P CD =因为//AB CD ,12AB CD =, 所以1//C E AB ,且1C E AB = 所以四边形1ABC E 是平行四边形. 所以1//AE CB .又因为1BC ⊂平面1BDC ,AE ⊂/平面1BDC , 所以//AE 平面1BDC . 【点睛】关键点点睛:解决是否存在问题时,可以先寻求特殊位置,再证明,本题中取中点后连结AE ,可利用平行四边形 1//AE CB ,再根据线面平行的判定定理求证即可,属于先猜后证的方法.27.(1)证明见解析;(2)3. 【分析】(1)先由面面垂直的性质,得到CB ⊥平面ABE ,推出CB AE ⊥,根据题中条件,得到AE BE ⊥,利用线面垂直的判定定理,得到AE ⊥平面BCE ;得出AE BF ⊥,再次利用线面垂直的判定定理,即可证明结论成立;(2)过点E 作EH AB ⊥交AB 于H ,根据题中条件,求出EH ,设D 到平面ACE 的距离为h ,再利用等体积法,由D ACE E ACD V V --=,即可求出结果. 【详解】(1)证明:在正方形ABCD 中,有CB AB ⊥, ∵平面AEB ⊥平面ABCD ,且平面AEB 平面ABCD AB =,∴CB ⊥平面ABE ,因为AE ⊂平面ABE ,所以CB AE ⊥; ∵2AB =,EB =4EBA π∠=,所以AE BE =∴222AE BE AB +=,即AE BE ⊥, 又EBBC B =,BC ⊂平面BCE ,EB ⊂平面BCE ,∴AE ⊥平面BCE ;因为BF ⊂平面BCE ,所以AE BF ⊥;又BF CE ⊥,CE AE E =,CE ⊂平面ACE ,AE ⊂平面ACE ,∴BF ⊥平面ACE ;(2)解:过点E 作EH AB ⊥交AB 于H , ∵平面AEB ⊥平面ABCD ,平面AEB 平面ABCD AB =,∴EH ⊥平面ABCD,则14EH π==,设D 到平面ACE 的距离为h , 由D ACE E ACD V V --=,得1133ACEACDSh S EH ⋅=⋅.∴1212AD DC EHh AE EC ⋅⋅===⋅.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何小题训练
一、选择题:
1.平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动
点C 的轨迹是
( )
A .一条直线
B .一个圆
C .一个椭圆
D .双曲线的一支
2.参数方程2
tan cot x y θθ=⎧⎨=+⎩
(θ为参数)所表示的曲线是
( )
A .圆
B .直线
C .两条射线
D .线段
3.一束光线从点(1,1)A -出发,经x 轴反射到圆2
2
:(2)(3)1C x y -+-=上的最短路径是
( )
A .4
B .5
C .1
D .
4.若直线220(,0)ax by a b +-=>始终平分圆2
2
4280x y x y +---=的周长,则12
a b
+ 的最小值为
( )
A .1
B .5
C .
D .3+
5.已知平面区域D 由以()3,1A 、()2,5B 、()1,3C 为顶点的三角形内部和边界组成.若在区域
D 上有无穷多个点()y x ,可使目标函数my x z +=取得最小值,则=m
( )
A . 2-
B .1-
C .1
D .4
6. 设直线l 过原点,其倾斜角为α,将直线l 绕坐标原点沿逆时针方向旋转45°,得到直线1l ,则直线1l 的倾斜角为( )
. A .︒+α45 B .︒-α135 C .α-︒135
D .当︒<α≤︒1350时为︒+α45,当︒<α≤︒180135时为︒-α135
7. 直线3y x =绕原点逆时针旋转0
90,再向右平移1个单位,所得到的直线为( ) (A)113y x =-+ (B)1133y x =-+ (C)33y x =- (D)1
13
y x =+
8.将直线20x y λ-+=沿x 轴向左平移1个单位,所得直线与圆2
2
240x y x y ++-= 相
切,则实数λ的值为 ( ) (A )-3或7 (B )-2或8 (C )0或10 (D )1或11
选择题答题卡
二、填空题: 9. 已知两点
A B ()()-2002,,,,点C 是圆x y x 2220+-=上的任意一点,则∆ABC 的面积
最小值是 .
10. 已知直线l :x y +
-=20与圆C :x y ax ay a 2224240++-+=,设d 是圆C 上的点到直
线的距离,且圆C 上有两点使d 取得最大值,则此时a = ,d =
11. 直线()()a x b y +++=110与圆x y 22
2+=的位置关系是_________.
12. 在直角坐标系中,射线OA ,OB 的方程是x y x -
=≥00(),x y x +=≥00()。

动点P 在∠AOB 内部,且点P 到∠AOB 两边的距离的平方差的绝对值等于1,则动点P 的轨迹方程是________
_ .
13.将一张坐标纸折叠一次,使点(0,2)与点(4,0)重合,且点(7,3)与点(,)m n 重合,则
n m +的值是___________________。

14.已知圆()4322=+-y x 和过原点O 的直线kx y =的交点为,P Q 则OQ OP ⋅的值为 _ 。

参考答案
1.A .过点A 且垂直于直线AB 的平面与平面α的交线就是点C 的轨迹,故是一条直线.
2.C .原方程2
||2
x y =⎧⇔⎨
≥⎩
3.A .先作出已知圆C 关于x 轴对称的圆'C ,问题转化为求点A 到圆'C 上的点的最短路径,
即|'|14AC -=.
4.D .已知直线过已知圆的圆心(2,1),即1a b +=.
所以
12122()()33b a
a b a b a b a b
+=++=++≥+ 5.C .由()3,1A 、()2,5B 、()1,3C 的坐标位置知,ABC ∆所在的区域在第一象限,故
0,0x y >>.由my x z +=得1z y x m m =-
+,它表示斜率为1
m
-. (1)若0m >,则要使my x z +=取得最小值,必须使z
m 最小,此时需11331
AC k m --==-,
即=m 1;
(2)若0m <,则要使my x z +=取得最小值,必须使z
m 最小,此时需11235
BC k m --==-,
即=m 2,与0m <矛盾.综上可知,=m 1. 6. D 分析:倾斜角的范围是[)︒︒180,0,因此,只有当[)︒︒∈︒+α180,045,即︒<α≤︒1350时,1l 的倾斜角才是︒+α45.而︒<α≤︒1800,所以必须讨论︒<α≤︒180135的情况,结合图形和倾斜角的概念,即可得到︒<α≤︒180135时1l 的倾斜角为︒-α135.故应选D . 说明:在求直线的倾斜角时,应该重视的是:(1)注意角的取值范围;(2)数形结合是一种常用而有效的方法.
7.B 【解】:∵直线3y x =绕原点逆时针旋转090的直线为1
3
y x =-
,从而淘汰(C)
,(D ) 又∵将13y x =-向右平移1个单位得()113y x =--,即11
33
y x =-+ 故选B ;
【点评】:此题重点考察互相垂直的直线关系,以及直线平移问题;
【突破】:熟悉互相垂直的直线斜率互为负倒数,过原点的直线无常数项;重视平移方法:“左加右减”;
8.A 【思路点拨】本题考查了平移公式、直线与圆的位置关系,只要正确理解平移公式和直线与圆相切的充要条件就可解决.
【正确解答】由题意可知:直线20x y λ-+=沿x 轴向左平移1个单位后的直线l 为:
2(1)0x y λ+-+=.已知圆的圆心为(1,2)O -解法1:直线与圆相切,则圆心到直线的距离等于圆的半径,因而有
=3λ=-或7.
解法2:设切点为(,)C x y ,则切点满足2(1)0x y λ+-+=,即2(1)y x λ=++,代入圆方程整理得:2
2
5(24)(4)0x x λλ+++-=, (*)
由直线与圆相切可知,(*)方程只有一个解,因而有0∆=,得3λ=-或7. 解法3:由直线与圆相切,可知CO l ⊥,因而斜率相乘得-1,即
2
211
y x -⨯=-+,又因为(,)C x y 在圆上,满足方程22240x y x y ++-=,解得切点为(1,1)或(2,3),又(,)C x y 在
直线2(1)0x y λ+-+=上,解得3λ=-或7.
9. 分析:容易先想到假设点C 的坐标,求点C 到直线AB 的距离,然后将三角形面积化成函数来求最小值。

想法当然不错,但繁而不巧,仔细想一想,便可知AB 的长为定值。

只需点C 到直线AB 的距离最小,即圆心到直线AB 的距离与半径的差,这样可以轻松求出答案为:32-
.
10. 分析:只有直线过圆心时,圆上才能有两个点同时到此直线的距离最大,其距离即半径。

这样将圆心坐标()-2a a ,代入直线l 的方程即可求得a =-2,所以圆半径即所求的d =2.
11.分析:直线过定点()--11,,此点在圆上,过圆上一点的直线与圆有一个或两个交点,故应该填:
相交或相切。

12.分析:由两条射线关于x 轴对称知,所求轨迹一定也是关于x 轴对称的,且在两射线之间,又与射线无公共点,即有限制条件,且不能带等号,所以动点P 的轨迹方程是
xy x =
>⎛⎝ ⎫⎭
⎪1222. 13.
34
5
点(0,2)与点(4,0)关于12(2)y x -=-对称,则点(7,3)与点(,)m n 也关于12(2)y x -=-对称,则3712(2)223172n m n m ++⎧-=-⎪⎪⎨-⎪=-⎪-⎩,得35315m n ⎧=⎪
⎪⎨⎪=⎪⎩
14.5 设切线为OT ,则2
5OP OQ OT ⋅==。

相关文档
最新文档