X射线多晶衍射实验报告
X射线衍射实验报告
实验报告:X 射线衍射一、实验原理X 射线衍射分析技术是一种十分有效的材料分析方法,在众多领域的研究和生产中被广泛应用。
X 射线衍射分析法是研究物质的物相和晶体结构的主要方法。
当某物质(晶体或非晶体) 进行衍射分析时,该物质被X 射线照射产生不同程度的衍射现象,物质组成、晶型、分子内成键方式、分子的构型、构象等决定该物质产生特有的衍射图谱。
X 射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。
因此,X 射线衍射分析法作为材料结构和成分分析的一种现代科学方法,已逐步在各学科研究和生产中广泛应用。
X 射线与物质的相互作用X 射线与物质的相互作用分为两个方面,一是被原子吸收,产生光电效应;二是被电子散射。
X 射线衍射中利用的就是被电子散射的X 射线。
X 射线散射:当光子和原子上束缚较紧的电子相互作用时,光子的行进方向受到影响而发生改变,但它的能量并不损失,故散射线的波长和原来的一样,这种散射波之间可以相互干涉,引起衍射效应,这是相干散射,是取得衍射数据的基础。
X 射线的相干散射是XRD 技术应用的基础,接下来研究一下X 射线衍射的条件,找到其与物质本身结构之间的关系。
X 射线衍射一束平行的X 光照到两个散射中心O 、M 上,见下图O 与M 之间的距离远小于它们到观测点的距离,从而可以认为,观测到的是两束平行散射线的干涉。
下面考查散射角为2θ时散射线的干涉情况。
0ˆs 和ˆs分别表示入射线和散射线方向上的单位矢量。
两条散射线之间的光程差为mo on δ=+即00ˆˆˆˆ()sr s r s s r δ=-⋅+⋅=-⋅ 其中r 为两个散射中心之间的位置矢量,与δ相应的相位差φ应为 0ˆˆ22ss r πφδπλλ-=⋅=⋅散射线之间的相位差φ是决定散射线干涉结果的关键量。
因此有必要再进一步讨论。
定义 0ˆˆss s λ-= 为散射矢量如右图所示,散射矢量与散射角2θ的角平分线垂直,它的大小为 2sin s θλ= 由此可见,散射矢量的大小只与散射角和所用波长有关,而与入射线和散射线的绝对方向无关。
X射线衍射仪实验报告(范文模版)
X射线衍射仪实验报告(范文模版)第一篇:X射线衍射仪实验报告(范文模版)基本构造:(1)高稳定度X射线源提供测量所需的X射线, 改变X射线管阳极靶材质可改变X射线的波长, 调节阳极电压可控制X射线源的强度。
(2)样品及样品位置取向的调整机构系统样品须是单晶、粉末、多晶或微晶的固体块。
(3)射线检测器检测衍射强度或同时检测衍射方向, 通过仪器测量记录系统或计算机处理系统可以得到多晶衍射图谱数据。
(4)衍射图的处理分析系统现代X射线衍射仪都附带安装有专用衍射图处理分析软件的计算机系统, 它们的特点是自动化和智能化。
操作:第一步:检查真空灯是否正常,左“黄”右“绿”为正常状态,如果“绿”灯闪或者灭的状态表明真空不正常;第二步:冷却水系统箱,打开其开关(冷却水的温度低于26℃为正常)。
如果“延时关机”为开的状态要关闭。
“曲轴加热”一般在寒冬才用,打开预热10min 后即可继续以下操作。
(此外,测试实验完成后,打开“延时关机”按钮,而冷却水的“关闭”按钮不关,30min后冷却水会自动关闭)第三步:打开机器后面“右下角”的“测角仪”(上开下关),而“左下角”的开关一般为“开”的状态,除有允许不要动;第四步:电脑操作,桌面“右下角”有“蓝色标示”说明电脑和机器已经连接,否则“左击”该标示选择“初始化”即可;第五步:装样品,载物台一般用“多功能”的,粉体或者块体装上后,使其平面与载物台面相平。
如果是粉体还要在滑道上铺层纸,避免掉料污染滑道;第六步:在机器中放样品前,按“Door”按键,听到“嘀嘀”声时,方可打开机器门;第七步:点击“standard measurement”中的运行按钮即可运行机器进行测试中。
第八步:实验完成后,先降电流后降电压,20mA/5min至10mA,5kV/5min至20kV;关闭各个软件,关闭“测角仪”开关。
冷却水箱上的开关可以直接打开“延时关机”开关,而冷却水“关闭”按钮不关,30min后自动关闭冷却水。
x射线晶体衍射实验报告
x射线晶体衍射实验报告X射线晶体衍射实验报告引言:X射线晶体衍射实验是一种重要的实验方法,通过将X射线照射到晶体上,利用晶体的结构特性,可以观察到衍射图样,从而了解晶体的结构和性质。
本文将介绍X射线晶体衍射实验的原理、实验装置和实验结果,并分析实验中的一些问题和改进方法。
一、实验原理X射线晶体衍射是基于布拉格方程的原理。
当X射线照射到晶体上时,晶体中的原子会对X射线进行散射,形成衍射波。
根据布拉格方程,衍射波的相位差与入射波的入射角、晶格常数和衍射角有关。
通过测量衍射角和入射角的关系,可以计算出晶格常数和晶体结构的一些信息。
二、实验装置实验中使用的装置主要包括X射线发生器、单晶样品、衍射仪和探测器。
X射线发生器产生高能的X射线,单晶样品是实验中的研究对象,衍射仪用于收集和聚焦衍射波,探测器用于测量衍射波的强度。
三、实验步骤1. 准备工作:调整X射线发生器的参数,使其产生适合实验的X射线能量。
选择合适的单晶样品,并将其固定在衍射仪上。
2. 调整衍射仪:通过调整衍射仪的入射角和出射角,使得衍射波能够被探测器收集到。
3. 开始实验:打开X射线发生器,照射X射线到单晶样品上。
同时,探测器开始测量衍射波的强度。
4. 数据处理:根据探测器测得的衍射波强度,计算出衍射角,并绘制衍射图样。
5. 结果分析:根据衍射图样,计算出晶格常数和晶体结构的一些信息,并与已知数据进行对比。
四、实验结果在实验中,我们选择了某晶体样品进行研究。
通过测量和计算,得到了该晶体的衍射图样和晶格常数。
通过与已知数据对比,我们确认了该晶体的结构和性质。
五、问题与改进在实验过程中,我们遇到了一些问题,并提出了一些改进方法。
首先,由于X射线的能量和强度有限,可能会导致衍射图样的强度较弱,影响数据的准确性。
为了解决这个问题,可以尝试增加X射线的能量和强度,或者使用更灵敏的探测器。
其次,实验中的样品制备和固定也需要一定的技巧和经验,可以通过改进样品制备方法和优化固定装置来提高实验效果。
多晶X射线衍射实验报告
多晶X射线衍射实验报告姓名:学号:院系:物理学系多晶X射线衍射实验报告姓名:学号:院系:物理学系一、实验目的1、了解衍射仪的正确使用方法。
2、掌握立方系晶体晶格常数的求法。
二、实验设备X射线衍射仪,它主要包括X射线发生器、测角台、探测记录系统三部分。
现代衍射仪还配有功能各异的计算机操作系统及数据处理系统。
三、实验原理(一)粉末衍射花样(线条)产生的原理粉末法是用单色X射线(特征辐射)照射多晶粉末试样以获得衍射线的衍射方法。
根据记录衍射线的方法的不同,粉末法又可分为粉末照相法(用照相底片记录)和粉末衍射仪法(用计数器记录)。
①用厄瓦尔德作图法解释粉末衍射花样的形成。
在多晶样品中的所有小晶体,它们的倒易点阵都是一样的,只是由于这些小晶体的取向是无规的,各个小晶体的倒易点阵的取向也是无规的。
我们取某一个倒易点hkl来考察,它的倒易矢量长度1hklhklgd。
由于取向的无规性,整个样品所有小晶体的这个倒易点是均匀分布在以晶体为中心,以hklg为半径的球面上;并且,由于样品中小晶体数目大,倒易点在球面上的密度是很高的。
其它指数的倒易点则处在其它半径的球面上,但所有球面都是同心的。
也就是说,无规取向多晶体中倒易点是分布在一系列同心球面上的,球的半径分别等于相应的倒易矢长度,这就是多晶体的倒易点阵模型。
通过倒易球心(即倒易点阵原点)画出以入射线波长倒数为半径,以入射线上一点为中心的反射球,这反射球将与倒易点球面相交,交线是一系列垂直于入射线的圆。
右图中的ABDE是其中的一个相交圆。
显然,在圆上的倒易点都是满足布拉格条件的,都会发生衍射。
一个倒易点就产生一支衍射线束,方向是从反射球心C 指向交线圆上的倒易点,因而这些衍射线束构成以入射线束为轴的圆锥面,锥的张角为224θθ⨯=(当45θ>时,圆锥的张角为24πθ-)。
这个倒易点球上不在交线圆上的倒易点都不发生衍射。
其它指数的倒易点构成其它半径的倒易点球,这些球与反射球相交成另一些圆,衍射线束构成另一些张角的圆锥面。
用X射线衍射仪进行多晶体物质的相分析
实验一 用X 射线衍射仪进行多晶体物质的相分析一 实验目的1 概括了解x 射线衍射仪的结构与使用。
2 练习用PDF(ICDD)卡片及索引对多晶物质进行相分析二 实验原理1 X 射线衍射原理1.1 衍射现象x 射线照射到晶体上产生的衍射现象实质上是x 射线与电子交互作用的结果。
由于晶体空间点阵结构的周期性,入射x 射线被晶体的各个原子中的电子散射,产生了与入射x 射线相同波长的相干散射波,这些相干散射波之间相互干涉叠加的结果即为所观察到的宏观衍射现像。
如图1-1,设有两个任意的阵点O 、A ,取O 为坐标原点,A 点的位置矢量r=ma+nb+pc ,即空间坐标为(m,n,p ),S0和S 分别为入射线和散射线的单位矢量,散射波之间的光程差为:)(00S S r S r S r MA ON -=⋅-⋅=-=δ其位相差为:图1-1任意两阵点的相干散射1.2布拉格定理布拉格方程2dsin θ=n λ)(S0-22pc nb ma k r k r S ++=⋅===Φλπδλπ图1-2 布拉格定理示意图式中:n为整数,称为反射级数;θ为入射线或反射线与反射面的夹角,称为掠射角,由于它等于入射线与衍射线夹角的一半,故又称为半衍射角,把2θ称为衍射角。
2 X射线衍射仪结构X射线衍射仪一般由下面几部分构成1 X射线发生器;2衍射测角仪;3辐射探测器;4测量电路;5控制操作和运行软件的电子计算机系统本实验所用的X射线衍射仪为X'Pert PRO X射线衍射仪。
图1-3 X'Pert PRO X射线衍射仪产品型号: X'Pert PRO生产厂家:荷兰帕纳科公司PANalytical B.V.(原飞利浦分析仪器)仪器介绍:X'Pert PRO X射线衍射仪采用陶瓷χ光管、DOPS直接光学定位传感器精确定位和最优化的控制台及新型窗口软件。
采用模块化设计,可针对不同的要求采用最优的光学系统,从而得到最佳的实验数据,达到最高的实验效率。
x射线晶体衍射实验报告
x射线晶体衍射实验报告
摘要:
本次实验旨在通过利用X射线晶体衍射实验的方法,研究晶格结构以及其对X射线的衍射现象。
通过实验结果的分析,确定晶体中的晶格常数以及晶体的空间群。
实验结果表明,晶体的晶格常数为XÅ,空间群为xxx。
实验部分:
a.实验原理
根据布拉格定律,晶体中的原子形成的晶格结构会对入射的X 射线发生衍射现象,从而形成一系列角度为θ的衍射峰。
其中,角度θ和晶格的晶格常数a以及入射X射线的波长λ有关系为:
nλ=2a sinθ
因此,通过测量不同角度下的衍射峰位置,可以确定晶格常数以及晶体的空间群。
b.实验步骤
1.准备晶体样品,并制备样品片
2.设置X射线衍射仪的参数,包括X射线波长λ以及探测器的位置θ
3.扫描样品片,记录每个角度下的衍射峰位置
4.利用布拉格定律计算晶格常数以及晶体的空间群类型
实验结果与分析:
通过实验观测,记录了不同角度下的衍射图谱,其中最明显的衍射峰为X度。
通过代入布拉格定律公式中,可计算出晶格常数为XÅ。
并通过借助数据库,可以确定其属于xxx空间群类型。
结论:
本次实验成功地利用X射线晶体衍射方法确定了晶格常数以及
晶体的空间群类型。
同时,实验结果验证了布拉格定律的正确性,对于研究物质的晶体结构以及特性具有重要的意义。
X射线多晶衍射实验报告
X射线多晶衍射实验报告摘要:本实验主要利用X射线粉末干涉仪分别测定四种样品A、B、C、D的衍射图谱,对样品进行了物相分析。
通过X射线粉末衍射分析得到样品A BB的晶粒大小为:C1:1;样品D例为50:11.关键词:X射线粉末衍射;物相分析;衍射图谱引言:X射线是一种波长很短的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。
1912年德国物理学家劳厄提出一个重要的科学预见:晶体可以作为X射线的空间衍射光栅,即当一束X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。
分析在照相底片上得到的衍射花样,便可确定晶体结构。
获得多晶衍射图的方法有两种:德拜照相法和衍射仪法。
20世纪50年代初X射线粉末衍射仪开始代替德拜照相法记录粉末衍射数据,而德拜照相法逐渐被淘汰,因为x射线粉末衍射仪法在材料物相的定性、定量测量方面有明显的有优势。
本实验主要通过对X射线粉末衍射仪的了解与运用,从而进一步熟悉定性物相分析和PDF数据库的使用方法,了解定性物相分析、精确测定晶格常数以及晶粒大小测量等实验方法。
实验原理:1、X射线发生器X射线发生器主要是由X射线管、高压发生器、管压管流稳定电路和各种保护电路组成。
实验中的X射线管主要是利用真空管。
在高真空的玻璃管里,被加热的阴极所发射的热电子,经阴极和阳极间的高电压加速后,高速撞击到阳极上,阳极为产生X射线的靶源。
电子与靶物质发生碰撞而迅速减速,发生多次碰撞,逐次丧失能量,直至完全耗尽为止。
在碰撞过程中会产生具有确定最短波长的X射线连续谱,辐射出特定波长的光子,即标识X射线。
2、布拉格衍射方程晶体中原子的排列是有规律的、周期性的,原子间的距离在几埃左右,当波长跟此数量级相近的X 射线入射到晶体上,位于晶格点阵上的原子将对X 射线产生散射。
同一晶面族上入射相同的反射线在相互叠加时,如果它们的相位相同将产生干涉。
(,,)h k l d 为某一晶面族的间距,h ,k ,l 为晶面族的面指数,入射X 射线与该晶面成θ角。
晶体X射线衍射实验报告(参考格式)
二、实验原理
要求字数不少于1000字,不得抄袭;
讨论问题不拘一格,各尽发挥。
本次实验大家学习了粉末试样的制备要求,包括试样的粒度大小厚度如何进行研磨过
筛压片制作。
实验所采用的主要仪器为X射线衍射仪,重点学习了晶体X射线衍射的几何原理测定方法以及如何运用Jade软件进行物相鉴定和物相定量分析。
布拉格方程是X射线衍射仪最基本的理论基础,也是进行X射线检测最根本和重要的理论
依据之一。
当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X 射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。
这就是X射线衍射的基本原理。
衍射线空间方位与晶体结构的关系可用布拉格方程表示:2dsinθ=nλ式中:λ是X射线的波长;θ是衍射角;d是结晶面间隔;n是整数。
波长λ可用已知的X射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。
将求出的衍射X射线强度和面间隔与已知的表对照,即可确定试样结晶的物质结构,此即定性分析。
从衍射X射线强度的比较,可进行定量分析。
因为存在系统消光,并非所有满足布拉格方程的干涉面都有对应的衍射条纹。
X射线衍射晶体结构分析实验报告
X射线衍射晶体结构分析实验预习报告摘要:本实验通过采用与X射线波长数量级接近的物质即晶体那个天然的光栅来作狭缝,从而研究X射线衍射。
本实验将了解到X射线的产生、特点和应用;理解X射线管产生持续X射线谱和特征X射线谱的大体原理;用三种个方式研究X射线在NaCl单晶上的衍射,并通过测量X射线特征谱线的衍射角测定X射线的波长和晶体的晶格常数。
关键词:布拉格公式晶体结构波长衍射 X射线引言:1895年德国科学家伦琴()在用克鲁克斯管研究阴极射线时,发觉了一种人眼不能看到,但能够使铂氰化钡屏发出荧光的射线,称为X射线。
X射线是一种波长很短(约为20~埃)的电磁波,能穿透必然厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。
在用高能电子束轰击金属“靶”材产生X射线,它具有与靶中元素相对应的特定波长,称为特征(或标识)X射线。
如通常利用的靶材对应的X射线的波长大约为埃。
考虑到X的波长和晶体内部原子面间的距离相近,1912年物理学家 Laue)提出一个重要的科学预见:晶体能够作为X射线的空间衍射光栅,即当一束 X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上增强,在其他方向上减弱。
分析在照相底片上取得的衍射花腔,即可肯定晶体结构。
这一预见随即为实验所验证。
X射线衍射在金属学中的应用X射线衍射现象发觉后,专门快被用于研究金属和合金的晶体结构,出现了许多具有重大意义的结果。
如韦斯特()(1922年)证明α、β和δ铁都是立方结构,β-Fe并非是一种新相;而铁中的α─→γ转变实质上是由体心立方晶体转变成,从而最终否定了β-Fe硬化理论。
随后,在用X射线测定众多金属和合金的晶体结构的同时,在相图测定和在固态相变和范性形变研究等领域中均取得了丰硕的功效。
如对超点阵结构的发觉,推动了对合金中有序无序转变的研究,对马氏体相变的测定,肯定了马氏体和奥氏体的取向关系;对铝铜合金脱溶的研究等等。
目前 X射线衍射(包括散射)已经成为研究晶体物质和某些物质微观结构的有效方式。
X射线多晶衍射实验报告
实验一X射线多晶衍射一、实验目的1、了解X射线衍射仪的构造与操作原理2、了解X射线衍射仪分析的过程与步骤3、掌握使用X射线衍射仪进行物相分析的基本原理和实验方法4、掌握使用X射线衍射仪进行物相分析的衍射数据的处理方法二、实验原理1、传统的衍射仪由X射线发生器、测角仪、记录仪等几部分组成。
图1-1是目前常用的热电子密封式X射线管的示意图。
阴极由钨丝绕成螺线形,工作时通电至白热状态。
由于阴阳极间有几十千伏的电压,故热电子以高速撞击阳极靶面。
为防止灯丝氧化并保证电子流稳定,管内抽成1.33x10-9~1.33x10-11的高真空。
为使电子束集中,在灯丝外设有聚焦罩。
阳极靶由熔点高、导热性好的铜制成,靶面上被一层纯金属。
常用的金属材料有Cr,Fe, Co, Ni, Cu, M O, W等。
当高速电子撞击阳极靶面时,便有部分动能转化为X 射线,但其中约有99%将转变为热。
为了保护阳极靶面,管子工作时需强制冷却。
为了使用流水冷却.也为了操作者的安全,应使X射线管的阳极接地,而阴极则由高压电缆加上负高压。
x射线管有相当厚的金属管套,使X射线只能从窗口射出。
窗口由吸收系数较低的Be片制成。
结构分析用X射线管通常有四个对称的窗口,靶面上被电子袭击的范围称为焦点,它是发射X射线的源泉。
用螺线形灯丝时,焦点的形状为长方形(面积常为1m m×10mm),此称为实际焦点。
窗口位置的设计,使得射出的X射线与靶面成60角(图1-2),从长方形的短边上的窗口所看到的焦点为1mm2正方形,称点焦点,在长边方向看则得到线焦点。
一般的照相多采用点焦点,而线焦点则多用在衍射仪上。
图1-2 在与靶面成60角的方向上接收X射线束的示意图自动化衍射仪是近年才面世的新产品,它采用微计算机进行程序的自动控制。
图2-1为日本理光光学电机公司生产的D/max-B型自动化衍射仪工作原理方框图。
入射X射线经狭缝照射到多晶试样上,衍射线的单色化可借助于滤波片或单色器。
X射线衍射晶体结构分析 实验报告
X射线衍射晶体结构分析实验报告X射线衍射晶体结构分析【摘要】本次实验主要通过采用与X射线波长数量级接近的物质即晶体这个天然的光栅来作狭缝来研究X射线衍射,布拉格公式以及实验中采用的NaCl晶体的结构特点即可在知道晶格常数条件下测量计算出X射线的波长,反过来也可用它来测定各种晶体的晶格结构。
通过本次实验我们将更进一步地了解X射线的产生、特点和应用。
【关键词】X射线;晶体结构;布拉格公式;1 引言X射线是波长介于紫外线和γ射线间的电磁辐射。
德国物理学家伦琴于1895年发现,故又称伦琴射线。
波长小于埃的称超硬X射线,在~1埃范围内的称硬X射线,1~10埃范围内的称软X射线。
伦琴射线具有很高的穿透本领,能透过许多对可见光不透明的物质,如墨纸、木料等。
这种肉眼看不见的射线可以使很多固体材料发生可见的荧光,使照相底片感光以及空气电离等效应,波长越短的X射线能量越大,叫做硬X射线,波长长的X射线能量较低,称为软X射线。
实验室中X射线X射线管产生,X射线管是具有阴极和阳极的真空管,阴极用钨丝制成,通电后可发射热电子,阳极用高熔点金属制成。
用几万伏至几十万伏的高压加速电子,电子束轰击靶极,X射线从靶极发出。
电子轰击靶极时会产生高温,故靶极必须用水冷却,有时还将靶极设计成转动式的。
目前,X射线学已渗透到物理学、化学、地学、生物学、天文学、材料科学以及工程科学等许多学科中,并得到了广泛的应用。
本实验通过对X射线衍射实验的研究来进一步认识其性质。
强度 2 实验原理X射线的产生和X射线的光谱实验中通常使用X光管来产生X射线。
在抽成真空的X 光管内,当热阴极发出的电子经高压电场加速后,高速运动的电子轰击金属做成的阳极靶时,靶就发射X射线。
发射出的X射线分为两类:如果被靶阻挡的电子的能量不越过一定限度时,发射的是连续光谱的辐射。
这种辐射叫做轫致辐射;当电子的能量超过一定的限时,10 8 6 4 2 特征光谱 W Mo Cr 连续光谱βα波长图4—1 X射线管产生的X射线的波长谱WK K态(K电子去除)高速电子K 激发 Kα2 Kα Kβ辐射 M壳层 L壳层 Lα1 Kβ原子能量L Kα1 K壳层原子核WL I II III Kα1L态(L电子去除) L 激发 Lα Kα2 K壳层电子WM M态(M电子去除) L壳层电子 M Mα N (a) (b) WN N态(N电子去除) 价电子去除中性原子 0 图4—2 元素特征X射线的激发机理可以发射一种不连续的、只有几条特殊的谱线组成的线状光谱,这种发射线状光谱的辐射叫做特征辐射。
本科:晶体X射线衍射实验报告(参考格式)
中南大学X射线衍射实验报告材料科学与工程学院材料科学与工程专业1304 班级姓名王浩吉学号0603130404 同组者郭金洋黄继武实验日期2015 年12 月 5 日指导教师评分分评阅人评阅日期一、实验目的1)掌握X射线衍射仪的工作原理、操作方法;2)掌握X射线衍射实验的样品制备方法;3)学会X射线衍射实验方法、实验参数设置,独立完成一个衍射实验测试;4)学会MDI Jade 6的基本操作方法;5)学会物相定性分析的原理和利用Jade进行物相鉴定的方法;6)学会物相定量分析的原理和利用Jade进行物相定量的方法。
本实验由衍射仪操作、物相定性分析、物相定量分析三个独立的实验组成,实验报告包含以上三个实验内容。
二、实验原理1、X射线衍射仪(1)X射线管 X射线管工作时阴极接负高压,阳极接地。
灯丝附近装有控制栅,使灯丝发出的热电子在电场的作用下聚焦轰击到靶面上。
阳极靶面上受电子束轰击的焦点便成为X射线源,向四周发射X射线。
在阳极一端的金属管壁上一般开有四个射线出射窗口。
转靶X射线管采用机械泵+分子泵二级真空泵系统保持管内真空度,阳极以极快的速度转动,使电子轰击面不断改变,即不断改变发热点,从而达到提高功率的目的。
(2)测角仪系统测角仪圆中心是样品台,样品台可以绕中心轴转动,平板状粉末多晶样品安放在样品台上,样品台可围绕垂直于图面的中心轴旋转;测角仪圆周上安装有X射线辐射探测器,探测器亦可以绕中心轴线转动;工作时,一般情况下试样台与探测器保持固定的转动关系(即θ-2θ连动),在特殊情况下也可分别转动;有的仪器中样品台不动,而X射线发生器与探测器连动。
(3)衍射光路2、物相定性分析1)每一物相具有其特有的特征衍射谱,没有任何两种物相的衍射谱是完全相同的。
2) 记录已知物相的衍射谱,并保存为PDF文件。
3) 从PDF文件中检索出与样品衍射谱完全相同的物相。
4) 多相样品的衍射谱是其中各相的衍射谱的简单叠加,互不干扰,检索程序能从PDF文件中检索出全部物相。
张利宏_X射线多晶衍射实验报告
晶体中的布拉格衍射实验报告摘要:1895年德国科学家研究阴极射线管时,发现了X光,是人类揭开研究微观世界序幕的“三大发现”之一。
X射线是一种波长很短的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。
1912年德国物理学家劳厄提出一个重要的科学预见:晶体可以作为X射线的空间衍射光栅,即当一束 X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。
分析在照相底片上得到的衍射花样,便可确定晶体结构。
获得多晶衍射图的方法有两种:德拜照相法和衍射仪法。
20世纪50年代初X射线粉末衍射仪开始代替德拜照相法记录粉末衍射数据,而德拜照相法逐渐被淘汰,因为x射线粉末衍射仪法在材料物相的定性、定量测量方面有明显的有优势。
布拉格关系是晶体学中最基本的定律,广泛应用于各种光谱仪、衍射仪中。
X射线入射晶体,散射波的叠加产生衍射现象,布拉格关系可使这一复杂的衍射问题简化为直观的布拉格反射。
关键词:X射线粉末衍射;物相分析;衍射图谱实验目的:1.了解X射线的产生及有关晶体的基本知识。
2.掌握晶体中X射线衍射理论。
3.测量单晶NaCl、LiF的晶面距及晶格常数。
实验原理:1、X射线发生器X射线发生器主要是由X射线管、高压发生器、管压管流稳定电路和各种保护电路组成。
实验中的X射线管主要是利用真空管。
在高真空的玻璃管里,被加热的阴极所发射的热电子,经阴极和阳极间的高电压加速后,高速撞击到阳极上,阳极为产生X射线的靶源。
电子与靶物质发生碰撞而迅速减速,发生多次碰撞,逐次丧失能量,直至完全耗尽为止。
在碰撞过程中会产生具有确定最短波长的X射线连续谱,辐射出特定波长的光子,即标识X射线。
2、布拉格衍射方程 晶体中原子的排列是有规律的、周期性的,原子间的距离在几埃左右,当波长跟此数量级相近的X 射线入射到晶体上,位于晶格点阵上的原子将对X 射线产生散射。
同一晶面族上入射相同的反射线在相互叠加时,如果它们的相位相同将产生干涉。
X射线晶体衍射实验报告
浙江师范大学实验报告X射线衍射晶体结构分析摘要:本实验中学生将了解到X射线的产生、特点及其应用,该实验着重应用于探究晶体结构,分析X射线在NaCl晶体或BaF晶体的衍射,并通过分析X射线特征谱线的衍射角、利用X射线波长以及晶体的晶格常数确定密勒指数。
关键词:布拉格公式晶体结构X射线波长引言:1895年,德国物理学家伦琴发现X射线,从此揭开了物理学的新篇章。
X射线是一种波长很短的电磁辐射,其波长约为(20~0.06)×10-8厘米之间,具有很高的穿透本领,能透过许多对可见光不透明的物质。
X射线在电场磁场中不偏转,这说明X射线是不带电的粒子流,因此能产生干涉、衍射现象。
X射线可激发荧光、使气体电离、使感光乳胶感光,故X射线可用电离计、闪烁计数器和感光乳胶片等检测。
晶体的点阵结构对X射线可产生显著的衍射作用,因此X射线衍射法已成为研究晶体结构、形貌和各种缺陷的重要手段。
正文:一、实验原理1、Bragg公式光波经过狭缝会产生衍射现象,此时,狭缝的大小必须与光波的波长同数量)级或更小,当入射X射线与晶体相交θ 角度时,图(a(a) (b)图中两条射线1与2的程差是,即2dsin θ。
当它为波长的整数倍时(假定入射光为单射光,只有一种波长),2dsin θ=n λ,n=1,2,…. (Bragg 方程)在θ方向射出的X 射线得到衍射加强。
根据Bragg 公式,利用已知的晶体(d 已知)通过测θ角度来研究未知X 射线的波长:也可以利用X 射线(λ已知)来测量未知晶体的晶面间距。
图(a)表示的是一组晶面,但事实上,晶格中的原子可以构成很多组方向不同的平行面来说,d 是不相同的,而且从图(b)中可以清楚的看出,在不同的平行面上,原子数的密度也不一样,故测得的反射线的强度就有差异。
2、 晶体几何学基础晶体是有原子周期排列构成的,它可以看作是由一系列相同的点在空间有规则地作周期性的无限分布,这些点子的整体构成了空间点阵。
多晶X射线衍射分析
多晶X射线衍射分析
多晶X射线衍射分析的原理基于布拉格定律,即当X射线入射在晶体上时,由于衍射现象,会形成一系列衍射峰。
这些衍射峰可以通过布拉格方程来计算,即2dsinθ=nλ,其中d为晶胞间距,θ为入射角,n为衍射级数,λ为X射线波长。
通过测量衍射角θ和计算相应的2θ值,可以反推出晶胞间距和晶胞参数。
多晶X射线衍射实验通常使用X射线衍射仪进行。
X射线衍射仪主要由两部分组成:X射线源和X射线检测器。
X射线源通常使用钨或铜靶产生X射线,X射线检测器则用于记录X射线衍射图样。
常见的X射线检测器有电子学多道计数器和像素探测器。
X射线衍射图样可以通过旋转样品和探测器的方式进行实验测量。
多晶X射线衍射分析具有广泛的应用。
首先,它可以用于材料的相同定性分析。
不同的晶体结构会产生不同的X射线衍射图样,通过比对实验测得的衍射图样和数据库中的标准图样,可以鉴定材料的相同。
其次,多晶X射线衍射分析可以用于测量材料的晶胞参数和结晶度。
通过测量衍射图样的峰位置和强度,可以计算出晶胞参数和晶粒尺寸。
此外,多晶X射线衍射分析还可以用于材料的质量控制和表征。
例如,可以通过衍射峰的宽度和峰强度来评估材料的结晶度和晶粒尺寸分布。
综上所述,多晶X射线衍射分析是一种非常重要和常用的材料表征和结构分析方法。
它通过测量材料的X射线衍射图样,获得材料的晶体学信息,可以用于相同的鉴定、晶胞参数和结晶度的测量,以及质量控制和表征。
多晶X射线衍射分析在材料科学、地质学、化学、物理学等领域都有广泛的应用。
x射线衍射实验报告
x射线衍射实验报告X射线衍射实验报告引言:X射线衍射是一种重要的实验技术,通过该技术可以研究晶体结构、表征材料性质等。
本实验旨在通过X射线衍射实验,探究晶体的结构和晶格参数。
实验仪器与方法:实验中使用的仪器是X射线衍射仪,样品为单晶硅片。
实验过程中,首先将样品固定在X射线衍射仪的样品台上,然后调整X射线衍射仪的角度,使得射线照射到样品上并形成衍射图样。
最后,通过测量衍射图样的角度和强度,进一步分析晶体结构和晶格参数。
实验结果与讨论:经过实验测量和数据处理,得到了衍射图样和相应的衍射角度。
通过对衍射图样的观察和分析,可以看出在不同的衍射角度处出现了明显的衍射峰。
这些衍射峰的位置和强度与晶体的结构和晶格参数密切相关。
根据布拉格方程,可以计算出晶体的晶格常数。
通过对衍射峰的位置和角度的测量,结合布拉格方程,可以反推出晶体的晶格常数。
这一步骤是实验中最重要的一步,也是确定晶体结构的关键。
在实验中,我们发现了一些衍射峰的位置和强度与已知的晶体结构相符合,这进一步验证了实验结果的正确性。
同时,我们还发现了一些异常的衍射峰,这可能是由于晶体的缺陷或者杂质引起的。
这些异常的衍射峰也提供了对晶体结构和性质的重要线索。
实验的局限性与改进:在实验中,由于实验条件的限制,我们只能测量到一部分衍射峰,因此无法对整个晶体的结构进行完整的分析。
此外,由于样品的制备和实验操作的不确定性,实验结果可能存在一定的误差。
为了进一步提高实验结果的准确性和可靠性,可以采取以下改进措施。
首先,对样品的制备过程进行优化,确保样品的纯度和完整性。
其次,提高实验仪器的性能,提高测量的精度和灵敏度。
最后,增加实验的重复次数,以减小实验误差的影响。
结论:通过X射线衍射实验,我们成功地研究了晶体的结构和晶格参数。
实验结果表明,X射线衍射是一种有效的手段,可以用于研究晶体的结构和性质。
通过进一步的改进和优化,X射线衍射技术有望在材料科学和凝聚态物理领域发挥更大的作用。
本科:晶体X射线衍射实验报告(参考格式)
中南大学X射线衍射实验报告学院材料院专业材料班级1302 姓名胡平学号0603130219 同组者本班同学实验日期2015 年12 月 5 日指导教师黄继武评分分评阅人评阅日期一、实验目的1)掌握X射线衍射仪的工作原理、操作方法;2)掌握X射线衍射实验的样品制备方法;3)学会X射线衍射实验方法、实验参数设置,独立完成一个衍射实验测试;4)学会MDI Jade 6的基本操作方法;5)学会物相定性分析的原理和利用Jade进行物相鉴定的方法;6)学会物相定量分析的原理和利用Jade进行物相定量的方法。
二、实验原理1、X射线衍射仪工作原理1)、测角仪测角仪在工作时,X射线从射线管发出,经一系列狭缝后,照射在样品上产生衍射。
计数器围绕测角仪的轴在测角仪圆上运动,记录衍射线,其旋转的角度即2θ,可以从刻度盘上读出。
为了能增大衍射强度,衍射仪法中采用的是平板式样品,以便使试样被X射线照射的面积较大。
在理想的在理想情况下,X射线源、计数器和试样在一个聚焦圆上。
且试样是弯曲的,曲率与聚焦圆相同。
对于粉末多晶体试样,在任何方位上总会有一些(hkl)晶面满足布拉格方程产生反7) 按相同的实验条件测量其它样品的衍射数据。
2 物相鉴定1) 打开Jade ,读入衍射数据文件;2) 鼠标右键点击S/M 工具按钮,进入“Search/Match ”对话界面; 3) 选择“Chemistry filter ”,进入元素限定对话框,选中样品中的元素名称,然后点击OK 返回对话框,再点击OK ;4) 从物相匹配表中选中样品中存在的物相。
在所选定的物相名称上双击鼠标,显示PDF 卡片,按下Save 按钮,保存PDF 卡片数据;5) 在主要相鉴定完成后,对剩余未鉴定的衍射峰涂峰,做“Search/Match ”,直至全部物相鉴定出来。
6) 鼠标右键点击“打印机”图标,显示打印结果,按下“Save ”按钮,输出物相鉴定结果。
7) 以同样的方法标定其它样品的物相,物相鉴定实验完成。
多晶X射线衍射分析
可以证明,在衍射hkl中,通过晶胞原点的衍 射波与通过第j个原子(坐标为xj,yj,zj)的衍射 波的周相差α为αj = 2π(hxj +kyj +lzj)。 若晶胞中有n个原子,每个原子散射波的振幅 n (即原子散射因子)分别为f1,f2,…fj…fn,各原 子的散射波与入射波的位相差分别为α1,α2, …αj,…αn。
体心点阵
每个晶胞有2个同类原子,其坐标为000 和½ ½ ½ , 原子散射因数为f,其结构因数为:
F = f exp[i2π (h × 0 + k × 0 + l × 0)] + f exp[i2π (h × 1 + k × 1 + l × 1 )] 2 2 2 = f { + exp[iπ (h + k + l)]} 1
可以证明在衍射hkl中通过晶胞原点的衍射波与通过第j个原子坐标为x的衍射波的周相差为若晶胞中有n个原子每个原子散射波的振幅即原子散射因子分别为f这n个原子的散射波相互叠加而形成的复合波若用指数形式表示可得
多晶X射线衍射分析 多晶 射线衍射分析
1 X射线在晶体中的衍射 射线在晶体中的衍射
-- 晶体的 射线衍射和布拉格定律 晶体的X射线衍射和布拉格定律 -- 衍射线的强度 -- 倒易点阵
X射线在晶体中的衍射,实质上是晶体中各原子相干 散射波之间相互干涉的结果。但因衍射线的方向恰好 相当于原子面对入射线的反射,故可用布拉格定律代 表反射规律来描述衍射线束的方向。 在许多有关X射线衍射的讨论中,常用“反射”这个术 语描述衍射问题,或者将“反射”和“衍射”作为同义词 混合使用。 X射线从原子面的反射和可见光的镜面反射不同,前者 是选择地反射,其选择条件为布拉格定律;而一束可见 光以任意角度投射到镜面上时都可以产生反射,即反射 不受条件限制。因此,将X射线的晶面反射称为选择反 射,反射之所以有选择性,是晶体内若干原子面反射线 干涉的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X 射线多晶衍射实验报告
摘要:
本实验主要利用X 射线粉末干涉仪分别测定四种样品A 、B 、C 、D 的衍射图谱,对样品进行了物相分析。
通过X 射线粉末衍射分析得到样品A 为的组分为2TiO 晶体;样品B 为ZnO 晶体,且样品B 的晶粒大小为:244.680
A ±0.33600
A ;样品C 为2TiO 和ZnO 的混合物,且2TiO 与ZnO 的质量比例为1:1;样品D 同样是2TiO 和ZnO 的混合物,质量比例为50:11. 关键词:
X 射线粉末衍射;物相分析;衍射图谱 引言:
X 射线是一种波长很短的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。
1912年德国物理学家劳厄提出一个重要的科学预见:晶体可以作为X 射线的空间衍射光栅,即当一束 X 射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。
分析在照相底片上得到的衍射花样,便可确定晶体结构。
获得多晶衍射图的方法有两种:德拜照相法和衍射仪法。
20世纪50年代初X 射线粉末衍射仪开始代替德拜照相法记录粉末衍射数据,而德拜照相法逐渐被淘汰,因为x 射线粉末衍射仪法在材料物相的定性、定量测量方面有明显的有优势。
本实验主要通过对X 射线粉末衍射仪的了解与运用,从而进一步熟悉定性物相分析和PDF 数据库的使用方法,了解定性物相分析、精确测定晶格常数以及晶粒大小测量等实验方法。
实验原理: 1、X 射线发生器
X 射线发生器主要是由X 射线管、高压发生器、管压管流稳定电路和各种保护电路组成。
实验中的X 射线管主要是利用真空管。
在高真空的玻璃管里,被加热的阴极所发射的热电子,经阴极和阳极间的高电压加速后,高速撞击到阳极上,阳极为产生X 射线的靶源。
电子与靶物质发生碰撞而迅速减速,发生多次碰撞,逐次丧失能量,直至完全耗尽为止。
在碰撞过程中会产生具有确定最短波长的X 射线连续谱,辐射出特定波长的光子,即标识X 射线。
2、布拉格衍射方程
晶体中原子的排列是有规律的、周期性的,原子间的距离在几埃左右,当波长跟此数量级相近的X 射线入射到晶体上,位于晶格点阵上的原子将对X 射线产生散射。
同一晶面族上入射相同的反射线在相互叠加时,如果它们的相位相同将产生干涉。
(,,)h k l d 为某一晶面族的间距,h ,k ,l 为晶面族的面指数,入射X 射线与该晶面成θ角。
相邻两平面反射的两条X 射线的光程差为(,,)2sin h k l d δθ=。
当光程差δ为入射X 射线波长的整数倍n 时,
(,,)2sin h k l d n θλ= (1)
即产生第n 级干涉最大值。
此式称为布拉格方程。
3、X 射线粉末衍射
在晶体粉末X 射线衍射图谱中,通常衍射峰对应的衍射角取决于晶体的大小和形状,以此对样品进行定性物相分析;而衍射峰的强度取决于晶胞内原子的类型和分布,以此对样品进行定量物相分析。
(一)定性物相分析
定性物相分析的关键就是将获得的未知样品的衍射图谱与已经化合物的衍射图谱进行一一对比,当未知材料的衍射数据满足以下条件时,便可以确定样品的组成成分。
(1)样品衍射图谱中能找到某组分物相应该出现的各衍射峰,且其实验的 值与相应的已知的 值在实验误差范围内误差是一致的。
(2)所有衍射峰的相对强度顺序与已知组分物相的强度顺序原则上保持一致,但当晶体晶粒具有择优取向时,衍射峰的相对强度顺序会发生变化。
实验中采用粉末卡片衍射集(PDF )对比已知衍射图谱。
(二)定量物相分析
目前最常用的定量物相分析法有内标法、参考强度比法、吸收衍射法等。
这些方法都需要利用制定好的各种标准及多次重复安放样品,对仪器进行反复、仔细的校准。
图 1 X 射线管示意图
1—灯丝 2—真空 3—阳极 4—窗口 5—管壳 6—管座
实验中使用的是内标法。
为避免繁复的强度因子计算,可在试样内均匀混入一定量的标准物,再根据标准物和被测相的衍射线强度来求测物相的定量组成,这种方法就是内标法。
内标物应有稳定的化学性质,它不应与试样起作用,内标物的较强的衍射峰应靠近被测相所选定测量的衍射峰,但不相互重叠,通常选立方晶体较好,因其对称性高,衍射线条少;
当然内标法只能用于粉末试样,内标物应与被测试样充分混合研窟.所以内标物的衍射线强度不应明显受研磨的影响。
实验装置:
本实验采用的是XRD-6000型X射线粉末衍射仪。
该衍射仪主要由X射线发生器、衍射测角仪、衍射数据采集及数据处理系统等部分组成,如图2所示。
1、X射线发生器
X射线发生器一般是由X射线管、高压发生器、管压管流稳定电路和各种保护电路等部分组成。
2、测角仪
测角仪是衍射仪中最精密的机械部分,用来准确测量衍射角,是衍射仪的核心部分。
3、探测仪与数据采集
XRD-6000型X射线粉末衍射仪的探测器采用NaI(TI)闪烁计数器,其基本结构由闪烁晶体、光电倍增管和前置放大器三部分组成。
4、操作与数据处理系统
本实验中衍射仪的运行控制、数据采集与分析都是通过一个计算机X射线分析实时操作系统完成的。
图2 X射线衍射仪结构示意图
实验结果极其分析:
1、样品A
采集数据,启动PDF数据库软件,测定样品A的衍射图谱,如图3所示,然后利用操作
TiO晶体,图3上标出了发生衍射的晶面族的晶面常数,与数据处理系统分析出样品A为
2
对应的PDF卡片为21-1272。
图3 样品A衍射图谱
表1 样品A衍射角与强度关系表
2、样品B
图4 样品B 衍射图谱
表2 样品B 衍射角与强度关系表
3、样品C
采集数据,启动PDF 数据库软件,确定所测样品的组成成分,并根据比照出对应的面指数,得到如图5所示:由定向物相分析法可知,样品C 为2TiO 和ZnO 的混合物,A 物质为
2TiO ,B 物质为ZnO ,且两者的质量比为1:1。
图5 样品C 衍射图谱
4、样品D 中A 与B 的质量分数
采集数据,启动PDF 数据库软件,确定所测样品的组成成分,得到如图6所示,已知样品D 的组分与样品C 相同,但是质量比不同。
图5为样品C 的衍射图谱。
利用操作与数据处理系统进行判断,可以分析出各衍射峰曲线来自于哪种晶体的衍射。
找出其中几个峰,其中一半是A (2TiO )晶体衍射的,余下是B (ZnO )晶体衍射的,读取它们的(
)A
C B
I I 。
图6为样品D 的衍射图谱,同样找到上步中的那几条衍射峰,读取(
)A D B I I 。
便可根据前面叙述的方法计算()A D B
X
X 。
根据测得样品C 和样品D 衍射图谱时的数据便可以计算D 样品中的(
)A
D B
X X 。
图6 样品D 衍射图谱
表3 计算D 样品中的(
)A
D B
X X
平均一下三组数据,最后得到在D 样品中,()A
D B
X X =50:11 。
由于实验中的过程误差,所以该值存在一定误差。
5、薄膜
图7 样品B薄膜衍射图谱
测得的B薄膜晶粒大小244.680
A±0.3360
A
将样品A,样品C和B薄膜的衍射图谱画入同一图中,如图8所示:
图8 样品A,C与薄膜的衍射图谱
实验结论:
本实验利用X射线粉末干涉仪法测定了一些样品的衍射图谱,并对其进行了物相分析。
试验中测得样品A为
2
TiO晶体;样品B为ZnO晶体,且样品B的晶粒大小为:244.680A±
0.33600
A;样品C为
2
TiO和ZnO的混合物,且
2
TiO与ZnO的质量比例为1:1;样品D
同样是
2
TiO和ZnO的混合物,质量比例为50:11。
参考文献:
【1】熊俊. 近代物理实验. 北京师范大学出版社2007。