恒定电场和磁场

合集下载

电场和磁场的相互作用

电场和磁场的相互作用

电场和磁场的相互作用引言:电场和磁场是物理学中两个重要的概念,它们对于解释和理解各种自然现象和技术应用都具有重要意义。

然而,在一些特定条件下,电场和磁场之间还存在着相互作用的现象。

本文将探讨电场和磁场之间的相互作用机制以及相关应用。

一、静电场与恒定磁场的相互作用在恒定磁场中,电荷在磁场中受到磁力的作用。

当一个电荷在磁场中运动时,它将受到一个力的作用,这个力被称为洛伦兹力。

洛伦兹力的大小与电荷的量、电荷的速度以及磁场的强度和方向相关。

这种相互作用可以通过洛伦兹力的数学表达式来描述。

二、恒定电场与电流的相互作用对于恒定电场中的电流,它们将受到一个称为洛伦兹力的作用。

洛伦兹力的大小取决于电流的大小、电流的方向以及电场的强度和方向。

恒定电场对电流的作用与磁场对电荷的作用相类似。

洛伦兹力的方向垂直于电流方向和电场方向的平面。

三、电场与变化磁场的相互作用当磁场随时间发生变化时,会产生感应电场。

这个感应电场可以对其他电荷产生作用力。

根据法拉第电磁感应定律,当闭合电路中的磁通量发生变化时,将产生感应电动势,从而驱动电荷运动。

这种感应电场与变化磁场的相互作用被广泛应用于电动机、发电机等技术设备中。

四、磁场与变化电场的相互作用当电场随时间发生变化时,将产生感应磁场。

对于变化的电场,根据法拉第电磁感应定律,感应磁场的强度和方向与电场的变化率有关。

感应磁场的存在可以对其他电流产生作用力,这种相互作用被应用于变压器、电感器等电子设备中。

结论:电场和磁场之间的相互作用是基于洛伦兹力和法拉第电磁感应定律的。

它们在物理学和工程技术中具有广泛的应用,如电动机、发电机、变压器等等。

电场和磁场的相互作用改变了我们对于自然现象的理解,并促进了电气技术的发展。

注意:文章中出现的公式和符号请适当上标或下标来表示,以符合合适的格式要求。

2014年电磁场与电磁波复习资料 (1)

2014年电磁场与电磁波复习资料 (1)

一、名词解释1.通量、散度、高斯散度定理通量:矢量穿过曲面的矢量线总数。

(矢量线也叫通量线,穿出的为正,穿入的为负)散度:矢量场中任意一点处通量对体积的变化率。

高斯散度定理:任意矢量函数A的散度在场中任意一个体积内的体积分,等于该矢量函在限定该体积的闭合面的法线分量沿闭合面的面积分。

2.环量、旋度、斯托克斯定理环量:矢量A 沿空间有向闭合曲线C 的线积分称为矢量A沿闭合曲线l的环量。

其物理意义随A所代表的场而定,当A为电场强度时,其环量是围绕闭合路径的电动势;在重力场中,环量是重力所做的功。

旋度:面元与所指矢量场f之矢量积对一个闭合面S的积分除以该闭合面所包容的体积之商,当该体积所有尺寸趋于无穷小时极限的一个矢量。

斯托克斯定理:一个矢量函数的环量等于该矢量函数的旋度对该闭合曲线所包围的任意曲面的积分。

3.亥姆霍兹定理在有限区域V内的任一矢量场,由他的散度,旋度和边界条件(即限定区域V的闭合面S上矢量场的分布)唯一的确定。

说明的问题是要确定一个矢量或一个矢量描述的场,须同时确定其散度和旋度4.电场力、磁场力、洛仑兹力电场力:电场对电荷的作用称为电场力。

磁场力:运动的电荷,即电流之间的作用力,称为磁场力。

洛伦兹力:电场力与磁场力的合力称为洛伦兹力。

5.电偶极子、磁偶极子电偶极子:一对极性相反但非常靠近的等量电荷称为电偶极子。

磁偶极子:尺寸远远小于回路与场点之间距离的小电流回路(电流环)称为磁偶极子。

6.传导电流、位移电流传导电流:自由电荷在导电媒质中作有规则运动而形成的电流。

位移电流:电场的变化引起电介质内部的电量变化而产生的电流。

7.全电流定律、电流连续性方程全电流定律(电流连续性原理):任意一个闭合回线上的总磁压等于被这个闭合回线所包围的面内穿过的全部电流的代数和。

电流连续性方程:8.电介质的极化、极化矢量电介质的极化:把一块电介质放入电场中,它会受到电场的作用,其分子或原子内的正,负电荷将在电场力的作用下产生微小的弹性位移或偏转,形成一个个小电偶极子,这种现象称为电介质的极化。

工程电磁场原理(教师手册)

工程电磁场原理(教师手册)

四、本课程学时分配建议
本课程参考学时:60学时。 以电气工程类专业为例,学时分配比例建议如下:
1. 2. 3. 4. 5. 6. 7. 绪论(含可视化教材的演示) 电磁场的数学物理基础 静态电磁场I: 静电场 静态电磁场II: 恒定电流的电场和磁场 准静态电磁场 动态电磁场与电磁波 实验 2学时 6学时 16学时 14学时 6学时 12学时 4学时
“电磁场”课程的地位与作用:
● “电磁场”课程内容是电气信息类专业本科生所应具备知识结构的必 要组成部分——电气信息类各专业主要课程的核心内容都是电磁现象在特 定范围、条件下的体现,因此,分析电磁现象的定性过程和定量方法是电 气信息类各专业学生掌握专业知识和技能的基础; ● 近代科学技术发展进程表明,电磁场理论是众多交叉学科的生长点 和新兴边缘学科发展的基础; ● 教学实践证明,本课程不仅将为电气信息类学生专业课的学习提供 必须的知识基础,而且将增强学生面向工程实际的适应能力和创造能力, 关系到学生基本素质培养的终极目标。
2. 本课程的理论体系——宏观电磁理论
1865年英国物理学家麦克斯韦(J.C.Maxwell)建立的著名的麦克斯韦 电磁场方程组是宏观电磁理论体系的基础。 宏观电磁理论所涉及的电磁现象和过程的基本特征是: ● 场域(即场空间)中媒质是静止的,或其运动速度远小于光速; ● 场域作为点集,点的尺寸远大于原子间的距离。 本课程所讨论的任一场点,即意味着大量分子的集合 场域中的媒 质被看作为“连续媒质” 该场点处的电磁性能归结为对应的宏观统计平 均效应的表征,即通过宏观等效的物性连续参数(如电导率γ、磁导率μ和介 电常数ε)予以描述。 因而,宏观电磁理论也被称为“连续媒质电动力学”,但决不等同于“量 子电动力学”或“相对论电动力学”,后者已分别延拓到微观粒子或高速运动 体系中电磁现象和过程的研究领域。

电场和磁场的相互耦合和共存

电场和磁场的相互耦合和共存

电场和磁场的相互耦合和共存电场和磁场是自然界中两种基本的场,它们在许多领域中都有着广泛的应用。

电场是由电荷产生的,其基本性质是对放入其中的电荷有力的作用。

磁场是由电流或磁荷产生的,其基本性质是对放入其中的磁荷有力的作用。

电场和磁场之间存在着密切的联系和相互作用,这种相互作用表现为电场和磁场的相互耦合和共存。

1. 电场和磁场的相互耦合电场和磁场的相互耦合主要表现在电磁感应现象和磁场对电荷的作用两个方面。

1.1 电磁感应现象电磁感应现象是电场和磁场相互耦合的最典型的例子之一。

根据法拉第电磁感应定律,当闭合回路中的磁通量发生变化时,回路中就会产生电动势,从而产生电流。

这个现象表明,磁场可以产生电场,电场也可以产生磁场,电场和磁场之间存在着相互转换的关系。

1.2 磁场对电荷的作用磁场对电荷的作用表现为洛伦兹力的作用。

当电荷在磁场中运动时,会受到磁场的作用力,这个力称为洛伦兹力。

洛伦兹力的方向垂直于电荷的运动方向和磁场方向,其大小与电荷的大小、电荷的运动速度和磁场的大小有关。

这个现象表明,磁场可以对电荷产生力的作用,电场也可以对磁荷产生力的作用,电场和磁场之间存在着相互作用的關係。

2. 电场和磁场的共存电场和磁场在许多实际应用中都存在着共存的情况,例如在电磁波的传播、电磁场的测量和电磁兼容性等方面。

2.1 电磁波的传播电磁波是由电场和磁场相互作用产生的,它们在空间中以波动的形式传播。

电磁波的传播过程中,电场和磁场是相互垂直的,且它们的传播速度在真空中相等,都等于光速。

电磁波的传播现象表明,电场和磁场可以在空间中以波动的形式共存。

2.2 电磁场的测量在电磁场的测量中,通常需要同时考虑电场和磁场的影响。

例如,在电磁兼容性测试中,需要测量设备产生的电场和磁场对其他设备的影响。

在这种情况下,电场和磁场是共存于同一测试环境中的。

2.3 电磁兼容性电磁兼容性是指在同一电磁环境中,不同电气设备之间不产生干扰,能够正常工作的能力。

第5章 恒定电流的电场和磁场

第5章 恒定电流的电场和磁场

dl '×R ∫C ' R 3 ⋅ dl −R ∫C ' R 3 ⋅ (−dl × dl ' )
假设回路C′对P点的立体角为 ,同时P点位移dl引起的立体角增量 为d ,那么P点固定而回路C′位移dl所引起的立体角增量也为d ′。 -dl×dl′是dl′位移-dl所形成的有向面积。注意到R=r-r′,这个立体 角为
z ' = z − r tan α , dz ' = r sec 2 α dl ' = ez dz ' = −ez r sec 2 α R = r sec α
dl '×R = ez dz '×[rer + ( z − z ' )ez ]
所以
= −eφ rdz ' = −eφ r 2 sec 2 α
∆P = ∆U∆I = E∆l∆I = EJ∆l∆S = EJ∆V
当∆V→0,取∆P/∆V的极限,就得出导体内任一点的热功 热功 率密度,表示为 率密度
∆P p = lim = EJ = σE 2 ∆V →0 ∆V

p = J ⋅E
此式就是焦耳定律 焦耳定律的微分形式。 焦耳定律 应该指出,焦耳定律不适应于运流电流 不 运流电流。因为对于运流电 运流电流 流而言,电场力对电荷所作的功转变为电荷的动能,而不 是转变为电荷 晶格碰撞 电荷与晶格碰撞 电荷 晶格碰撞的热能。
对于无限长直导线(l→∞),α1=π/2, α2=-π/2,其产生的磁场为
µ0 I B = eφ 2πr
5.3 恒定磁场的基本方程
5.3.1 磁通连续性原理 磁感应强度在有向曲面上的通量简称为磁通量 磁通量(或磁通),单 磁感应强度 磁通量 位是Wb(韦伯),用Φ表示:

恒定电场的边界条件

恒定电场的边界条件

当恒定电流通过电导率不同的两导电媒质时,其电流密 度和电场强度要发生突变。故分界面上必有电荷分布。
如两种金属媒质(通常认为金属的介电常数为ε0)的分 界面上, 根据D1n-D2n=ρs, 则得
E1n

E2n

s 0
1E1n 2E2n
ρs是分界面上自由电荷面密度
s

01

1 2
电磁场与电磁波
第四章 恒定电流的电场和磁场
第四章 恒定电流的电场和磁场
§4.1 恒定电流的电场 §4.2 恒定电场与静电场的比拟 §4.3 恒定磁场的基本方程 §4.4 恒定磁场的矢量磁位 §4.5 介质中的磁场 §4.6 恒定磁场的边界条件 §4.7 电感的计算 §4.8 恒定磁场的能量和力
电磁场与电磁波
第四章 恒定电流的电场和磁场
§4.1 恒定电流的电场
恒定电场是电荷量保持恒定的定向运动电荷产生的场。
电磁场与电磁波
第四章 恒定电流的电场和磁场
§4.1 恒定电流的电场
恒定电场是电荷量保持恒定的定向运动电荷产生的场。
恒定电流的电流强度定义
I Q t
电磁场与电磁波
第四章 恒定电流的电场和磁场
一、微分形式的欧姆定律和焦耳定律
化,故dQ/dt=0


sJ ds 0 J 0

S E ds 0
恒定电流连续性方程的微分形式

S E ds 0
如果导体的导电性能均匀, σ是常数
说明:导体内部任一闭合面S内包含的净电荷Q=0。 所
以在均匀导体内部虽然有恒定电流, 但没有电荷, 恒
定电荷只能分布在导体的表面上。导体内部的恒定电

第二章静电场恒定电场和恒定磁场

第二章静电场恒定电场和恒定磁场
图2.1电介质的极化
介质中的高斯定理表示为 式中电位移矢量为
在线性的各向同性的电介质中
例2.1在空气中放入一个带电量为Q、半径为a的球体,该球体的 相对介电常数为εr。求该球体内、外任意一点的电场强度。
解(1) 球内任意一点,设到球心距离为r,做高斯面为以r为半径的球面, 如图2.2所示。
由电场的对称性可知,E和D的方向为er,所以
大小、它们之间的距离和周围的电介质,即可以不用电容器。
例2.10同心金属球与球壳系统如图2.12所示,内导体球半径为a,外导体 球壳的内外半径分别为b和c,导体球与导体球壳带有等量异号电荷,它
们之间充满相对介电常数为 r 的电介质,球外为空气。求该导体系统
的电容。
解:根据高斯定理不难求出空间各点的电场强度,设导体球和导体球壳的 带电量分别是q和-q,则导体和导体球壳之间的电场强度的大小为
电场能为
WeΒιβλιοθήκη 1 2dVv
(2) 对于多导体系统
We

1 2
dV
v
例2.12半径分别为a和b的同轴线,外加电压为U,内圆柱体电荷量为正,外圆柱 面单位长度上的电荷量与内圆柱体等值异号。如图2.16(a)所示,两电极间在θ1的 角度内填充介电常数为ε的电介质,其余部分为空气,求同轴线单位长度上储存 的电场能量。
示,求在l长度上的外电感。
图2.25例2.20用图
例2.21一个半径为a的无限长直导线,在导线均匀流过的电流为I,求这个导线
在单位长度上的内电感,如图2.26所示(设导体内部的磁导率近似为μ0)。 解:截面上的磁通并没有与全部电流I交链,而只是与一部分电流交链,交链的总 磁链为
图2.26
2. 互 有两感个回路l1和l2,如图2.27所示。

电磁场与电磁波(王家礼 西电第三版)第三章 恒定电流的电场和磁场

电磁场与电磁波(王家礼 西电第三版)第三章  恒定电流的电场和磁场

3-7 所示)。设土壤的电导率为σ;接地半球的电导率为无穷大。
第三章 恒定电流的电场和磁场
图 3-7 半球形接地器
第三章 恒定电流的电场和磁场
解:导体球的电导率一般总是远大于土壤的电导率,可 将导体球看作等位体。在土壤内,半径r等于常数的半球面是 等位面。假设从接地线流入大地的总电流为I,可以容易地求 出,在土壤内任意点处的电流密度,等于电流I均匀分布在半 个球面上。即:
图 3-5 同轴线横截面
第三章 恒定电流的电场和磁场
两导体间的电位差为
b
U Edr
I
lnb
a
2π a
这样,可求出单位长度的漏电导为
G0
I U

ln b
a
例 3-2 一个同心球电容器的内、外半径为a、b,其间媒质
的电导率为σ,求该电容器的漏电导。
解:媒质内的漏电电流沿径向从内导体流向外导体,设流
过半径为r的任一同心球面的漏电电流为I,则媒质内任一点的
RIP2 4π1(a11b)
第三章 恒定电流的电场和磁场
3.1.7 恒定电流场与静电场的比拟 如果我们把导电媒质中电源外部的恒定电场与不存在体电荷
区域的静电场加以比较,则会发现两者有许多相似之处,如表 3-2 。 可见,恒定电场中的E、j、J、I和σ分别与静电场中的E、 j 、
D、q和ε相互对应,它们在方程和边界中处于相同的地位,因而 它们是对偶量。由于二者的电位都满足拉普拉斯方程,只要两种 情况下的边界条件相同,二者的电位必定是相同的。因此,当某 一特定的静电问题的解已知时,与其相应的恒定电场的解可以通 过对偶量的代换(将静电场中的D、q和ε换为J、I和σ)直接得出。 这种方法称为静电比拟法。例如,将金属导体 1、2 作为正、负极 板置于无限大电介质或无限大导电媒质中,如图 3-6 所示,可以 用静电比拟法从电容计算极板间的电导。因为电容为

电磁场复习提纲(大连海事大学)

电磁场复习提纲(大连海事大学)
③r1>r2,反射系数Γ> 0,透射系数1 < T < 2。分界面反射波与入射波的电场同相,透射波电场振幅大于入射波电场振幅。
五.均匀平面波对导体平面的垂直入射
①入、反射波都是行波,合成波为纯驻波,振幅与位置有关。
②z=0和z为0.5 整数倍处是合成波电场波节、磁场波腹;z为0.25 奇数倍处是合成波电场波腹、磁场波节。合成波磁场与电场存在90°相差。
2.远区场
远区电场与磁场相位相同、相互垂直,复数波印亭矢量无虚部;
平均波印亭矢量不为零,电流元能量转换成电磁波向四周扩散。
瞬时玻印亭矢量的值始终不小于零,说明电磁能量一直向外辐射,因此远区场又称为辐射场。
电基本振子远区场的电气特性:
非均匀球面波横电磁波
E面:电场矢量所在的平面。
H面:磁场矢量所在的平面。
电场强度矢量指向电位Ф减小的方向,即由正电荷指向负电荷的方向,而电位梯度方向是电位Ф增大的方向。
电场能量密度
静电位能
镜像电荷:两个导板夹角为180°/n (n必须为整数)条件下镜像电荷数为2n−1。
电流元的镜像:电流元视为等量异号电荷构成的电偶极子。电流元电流正方向由负电荷指向正电荷。
两个带等量异号电荷导体的电容:
第4章恒定电场与恒定磁场
一.恒定电场【有源场,无旋场】
恒定电场基本方程
恒定电场边界条件
电流密度法向分量在边界上连续
恒定电场切向分量在边界上连续
电流线与 很大的媒质表面垂直。
电导率均匀,体电荷密度为0。换言之,各向同性线性均匀媒质不存在体电荷(媒质内没有净余电荷)。
通常导电媒质分界面上存在面电荷。除非 。
(2)导电媒质均匀平面波是TEM波, 仍成立。

电磁场与电磁波复习题(含答案)

电磁场与电磁波复习题(含答案)

电磁场与电磁波复习题(含答案)电磁场与电磁波复习题⼀、填空题1、⽮量的通量物理含义是⽮量穿过曲⾯的⽮量线总数,散度的物理意义⽮量场中任意⼀点处通量对体积的变化率。

散度与通量的关系是⽮量场中任意⼀点处通量对体积的变化率。

2、散度在直⾓坐标系的表达式 z A y A x A z yxA A ??++=??=ρρdiv ;散度在圆柱坐标系下的表达;3、⽮量函数的环量定义⽮量A 沿空间有向闭合曲线C 的线积分,旋度的定义过点P 作⼀微⼩曲⾯S,它的边界曲线记为L,⾯的法线⽅与曲线绕向成右⼿螺旋法则。

当S 点P 时,存在极限环量密度。

⼆者的关系 ndS dC e A ρρ?=rot ;旋度的物理意义点P 的旋度的⼤⼩是该点环量密度的最⼤值;点P 的旋度的⽅向是该点最⼤环量密度的⽅向。

4.⽮量的旋度在直⾓坐标系下的表达式。

5、梯度的物理意义标量场的梯度是⼀个⽮量,是空间坐标点的函数。

梯度的⼤⼩为该点标量函数?的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向等值⾯、⽅向导数与梯度的关系是梯度的⼤⼩为该点标量函数的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向.; 6、⽤⽅向余弦cos ,cos ,cos αβγ写出直⾓坐标系中单位⽮量l e r 的表达式;7、直⾓坐标系下⽅向导数u的数学表达式是,梯度的表达式8、亥姆霍兹定理的表述在有限区域内,⽮量场由它的散度、旋度及边界条件唯⼀地确定,说明的问题是⽮量场的散度应满⾜的关系及旋度应满⾜的关系决定了⽮量场的基本性质。

9、麦克斯韦⽅程组的积分形式分别为 0()s l s s l sD dS Q BE dl dS t B dS D H dl J dS t ?=??=-??=?=+r r r r r r r r g r r r r r g ????其物理描述分别为10、麦克斯韦⽅程组的微分形式分别为 020E /E /t B 0B //t B c J E ρεε??=??=-=??=+??r r r r r r r其物理意义分别为11、时谐场是激励源按照单⼀频率随时间作正弦变化时所激发的也随时间按照正弦变化的场,⼀般采⽤时谐场来分析时变电磁场的⼀般规律,是因为任何时变周期函数都可以⽤正弦函数表⽰的傅⾥叶级数来表⽰;在线性条件下,可以使⽤叠加原理。

南方电网专业课考点总结 电磁场 第三章1

南方电网专业课考点总结 电磁场 第三章1
① 磁力线是一些有方向的曲线,曲线上任一点的切线方向 与该点磁感应强度 B 的方向。 ② 磁力线的疏密程度与磁感应强度的大小成正比。
磁力线的性质:
B线是闭合曲线; B线与电流方向成右螺旋关系; B线不能相交 磁场强处,磁力线密集,否则稀疏。
上 页 下 页
第 二 章
恒定电场
B 线方程
B // dl → B = kdl or B × dl = 0
S
Jm = ∇ × M
可以证明面磁化电流 注意
体磁化电流
Km = M × en
磁化电流是一种等效电流,是大量分子电流磁效应的表示。 有磁介质存在时,场中的 B 是传导电流和磁化电流共同 作用在真空中产生的磁场。
上 页
下 页
第 二 章
恒定电场
T(Wb/m2) 1T=104(GS)
或磁通密度 F B Idl α
上 页 下 页
定义
第 二 章
恒定电场
洛仑兹力 电流是电荷以某一速度运动形成的,所以磁场对
电流的作用可以看作是对运动电荷的作用。
dq dF = Idl × B = (vdt ) × B dt
洛仑兹力
dF B v α
F = qv × B
∫ B ⋅ dl = μ I
l 0
交链多个电流
0
∫ B ⋅ dl = μ ∑ I
l
真空中的安 培环路定律
表明在真空的磁场中,沿任意回路磁感应强度B的线积 分等于真空磁导率乘以穿过回路限定面积上电流的代数和。
注意
① 定律中电流I 的正负取决于电流的方向与积分回路的绕 行方向是否符合右螺旋关系,符合时为正,否则为负。 ② 定律中的B是整个场域中所有电流的贡献。
体电流

恒定磁场分析

恒定磁场分析
真空中本构关系
7
求证:
证 明:

ur r B ds = 0
Q
ur µ B= 0 4π

r ur Id l × R R3
r r u r r µ0 Idl × eR r ∴ ∫ B ds = ∫ ∫ c R2 d s s 4π
又Q
uv ur uv uv ur uv A× B C = A B×C
23
2、磁偶极子的标量位(解释P116) 磁偶极子的标量位(解释 ) 在无源区域( 在无源区域(只有无源 ∇ × H = J=0 uu r 区域才定义标量位): 区域才定义标量位): ∇×H =0 uu r H = −∇ ϕ m 由下面式子
P ( r ,θ , 0 )
µ0 µ0 1 A = p m × e r = − p m × ∇ 2 4πr 4π r B、幂级数近似) 与求电偶极子类似的方法(余弦定理、幂级数近似)可以得到 磁偶极子的矢量位和标量位: 磁偶极子的矢量位和标量位:
µ0 µ0 1 A= p m × er = − p m × ∇ 2 4πr 4π r
的距离,是标量。 其中 r 为场点 P 到磁偶极子中心 O 的距离,是标量。
这表明恒定磁场是无散有旋场, 这表明恒定磁场是无散有旋场, 无散有旋场 传导电流是其旋涡源。 传导电流是其旋涡源。
13
5-2、内、外半径分别为 a、b 的无限长空心圆柱中,均匀 - 、 、 的无限长空心圆柱中, 分布着轴向电流 求柱内、外的磁场强度。 I ,求柱内、外的磁场强度。
解:使用圆柱坐标系。电流密度沿轴线方向为 使用圆柱坐标系。
12
3、真空(介质)中磁场的基本方程: 真空(介质)中磁场的基本方程:
∫sB • d s = 0 , ∇•B =0 , ∇×H = J ∫c H • d l = I B = µ0H B = µH

工程电磁场-第二章恒定电场

工程电磁场-第二章恒定电场

ax
0, 0, U sin x , 0 x0
a 0 yb
y0 0 xa
yb
0
0 xa
xa 0 yb
2023/10/15
32/54
例3 试用边值问题求解电弧片中电位、电场及面电荷的分布?
解:选用圆柱坐标,边值问题为: 0
0
21
1
(
1 )
1
2
21 2
21
z 2
0
( 1区域)
2 2
欧姆定律 导体内流过的电流与导体两端的电压成正比。
U RI I GU
设小块导体,在线性情况下
R 1 dl U E dl
ds I J dS
J 与 E 之关系
J E
Ohm’s Law 微分形式
说明 ① J 与 E 成正比,且方向一致。
① 上式也适用于非线性情况。
2023/10/15
11/54
tan 1 1 tan 2 2
γ1
γ2
J2
α2 α1
除α1=90°外,无论α1为多大,
J1
α2都很小。
结论:电流由良导体进入不良导体时,电流密度线 与良导体表面近似垂直,可将分界面视为等位面。
2023/10/15
25/54
b.良导体和理想介质分界面衔接条件 理想介质 γ2 =0,J2=0
导体侧, J1n =J2n=0, E1n =0
三种电流: 传导电流——电荷在导电媒质中的定向运动。 运流电流——带电粒子在真空中的定向运动。 位移电流——随时间变化的电场产生的假想电流。
定义 单位时间内通过某一横截面的电量。
I dq A dt
2023/10/15
6/54

第四章作业解答

第四章作业解答

ρS
J1n = J 2 n
σ 1 E1n = σ 2 E2 n
ε1 ε 2 ε1 ε2 ρ S = D1n − D2 n = ε 1 E1n − ε 2 E2 n = J1n − J 2 n = − J n σ σ σ1 σ2 2 1
特殊情况
ε1 ε 2 − =0 σ1 σ 2
v ∇× E = 0 v ∇⋅D = 0 v v D = εE
v ∇× E = 0 r ∇• J = 0 r r J = σE
E1t = E2t
D1n = D2 n
E1t = E2t
J1n = J 2 n
ε ⇔σ
of Information
r r E⇔E
r r D⇔J
Nanjing University
推广
r r J = σE
Nanjing
University
of
Information
Science
&
Technology
第四章 恒定电场与恒定磁场 电导率为无限大的导体称为理想导电体。由上式可见, 电导率为无限大的导体称为理想导电体。由上式可见,在理想 理想导电体 导电体中是不可能存在恒定电场的,否则,将会产生无限大的电流, 导电体中是不可能存在恒定电场的,否则,将会产生无限大的电流, 从而产生无限大的能量。但是,任何能量总是有限的。 从而产生无限大的能量。但是,任何能量总是有限的。 电导率为零的媒质,不具有导电能力,这种媒质称为理想介质。 电导率为零的媒质,不具有导电能力,这种媒质称为理想介质。 理想介质 媒 质 电导率(S/m) 电导率 媒 质 电导率(S/m) 电导率 4
第四章 恒定电场与恒定磁场
第四章 恒定电场与恒定磁场

大学物理电磁学 第11章 恒定磁场

大学物理电磁学 第11章 恒定磁场

四、毕-萨定律的应用
dB
0 4
Idl r r2
方法:
(1)将电流分解为无数个电流元
(2)由电流元求dB (据毕—萨定律)
(3)对dB积分求B = dB 矢量积分须化作分量积分去做
Bx dBx , By dBy , Bz dBz
例题1 直线电流在P点的磁场
2
解:
任取电流元 I dl
所有磁现象可归纳为:
运动电荷
运动电荷
载流导体
磁场
载流导体
磁体
磁体
磁场的宏观性质:对运动电荷(或电流)有力的 作用,磁场有能量
二、磁感应强度
B 1、磁场的描述:磁感应强度
方向: 磁针静止时,N极指向即B的正方向
S
N
2、B的大小:
以磁场对载流导线的作用为例
电流元所受到的磁场力
dF Idl sin
l
r
B
3)说明磁场为非保守场称为涡旋场
静电场是保守场、无旋场
二、简证(用特例说明安培环路定理的正确性)
(1)闭合路径L环绕电流
L在垂直于导线的平面内
B 0I 2 r
L
I d
o
B
r
dl
磁感线
(2)闭合路径L不包围电流
B dl1 dl2 L
P
·
I
d
o
dl2
dl1
L2
L1
磁感线
·
Q
三、运用安培环路定理求磁场 安培环路定理适用于任何形状恒定电流的载流体

Idl r
B
dB
0 4
Idl r r2
B
dB
0 4
Idl r r2

电磁场的基本理论

电磁场的基本理论

d
ez
b a
2
0 4 0
z z2
r 2
3/ 2
S rdrd
ez
S z 4 0
b a
2
z2
0
r 2
3/ 2 rdr
ez
S z 4 0
b a
z2
2
r2
3/ 2 rdr
ez
2 S z 4 0
b a
rdr
z2 r2
3/2
ez
S z 2 0
z2
1 a2
解解::(分1)析选电坐场标的系分:布圆,柱可坐知标线系电p荷(r产,生.z)
(的2)选电电场荷具源有轴对(0称,0,性Z'。) z轴d与q线电 l荷dz重'
(合3)确,定采d用E圆的柱方坐向标,轴线外任一点的电
(将场半4)确d强平E定度 面投d与为影E计角的到算度大坐区坐小标域标轴,上d线无,E 电关只4荷,考1中可虑0 点过大Rl为dz2小轴l 坐,取标
27
2、磁场的基本量--磁感应强度
理论上可以认为是电流元 Idl1 对电流元 Idl2 的安培作用力
F12 C 2 C 1 dF12 c2 I2dl 2B1
B为回路C1中的电流在 Idl2 所在点产生的磁场,称为磁感应
强度或磁通密度
B
dB
0
I dl
S
4 C R2
eR
dF12 I2dl 2dB1
1/ 2
1
z2
b2
1/ 2
25
四、安培力定律——磁感应强度
1、安培力定理
dl1
dl2 R
C2
实验结果表明,在真空中两个
C1

《电磁场理论》练习题与参考答案(最新版)

《电磁场理论》练习题与参考答案(最新版)

第1~2章 矢量分析 宏观电磁现象的基本规律1. 设:直角坐标系中,标量场zx yz xy u ++=的梯度为A,则M (1,1,1)处A= ,=⨯∇A 0 。

2. 已知矢量场xz e xy e z y e A z y x ˆ4ˆ)(ˆ2+++= ,则在M (1,1,1)处=⋅∇A 9 。

3. 亥姆霍兹定理指出,若唯一地确定一个矢量场(场量为A),则必须同时给定该场矢量的 旋度 及 散度 。

4. 任一矢量场在无限大空间不可能既是 无源场 又是 无旋场 ,但在局部空间 可以有 以及 。

5. 写出线性和各项同性介质中场量D 、E 、B 、H、J 所满足的方程(结构方程): 。

6. 电流连续性方程的微分和积分形式分别为 和 。

7. 设理想导体的表面A 的电场强度为E 、磁场强度为B,则(a )E 、B皆与A 垂直。

(b )E 与A 垂直,B与A 平行。

(c )E 与A 平行,B与A 垂直。

(d )E 、B 皆与A 平行。

答案:B8. 两种不同的理想介质的交界面上,(A )1212 , E E H H ==(B )1212 , n n n n E E H H == (C) 1212 , t t t t E E H H == (D) 1212 , t t n n E E H H ==答案:C9. 设自由真空区域电场强度(V/m) )sin(ˆ0βz ωt E eE y -=,其中0E 、ω、β为常数。

则空间位移电流密度d J(A/m 2)为:ˆˆˆ222x y z e e e ++A⋅∇A ⨯∇E J H B E Dσ=μ=ε= , ,t q S d J S ∂∂-=⋅⎰ t J ∂ρ∂-=⋅∇ 0A ∇⋅=0A ∇⨯=(a ) )cos(ˆ0βz ωt E ey - (b ) )cos(ˆ0βz ωt ωE e y -(c ) )cos(ˆ00βz ωt E ωey -ε (d ) )cos(ˆ0βz ωt βE e y -- 答案:C 10. 已知无限大空间的相对介电常数为4=εr ,电场强度(V/m) 2cos ˆ0dxeE x πρ= ,其中0ρ、d 为常数。

工程电磁场 倪光正第3章静态电磁场Ⅱ:恒定电流的电场和磁场

工程电磁场 倪光正第3章静态电磁场Ⅱ:恒定电流的电场和磁场

例 3.1 一接地系统
i
2
土壤 J线
1 a
接地体
等位面
[解] 15106 S/m钢
2102 S/m土 壤
1 895950
2 8 0
3.良导体与理想介质 ( 2 0 ) 分界面上的边界条件
1
+
+
+
+
J c1
+
+ E2t + 2 +
2 0 J1n J2n 0
U
E2n E2
E线
E2t
J c1n 0 J c2n 0
2I
R半球
接地器
I
1
a
屏蔽室接地电阻(深度 20 m) 返回 下页
高压大厅网状接地电阻(深度1米)
返回 上页
3.2.3 跨步电压
I
o
a 土壤
~r
E dl
AB
r
r
I
o
a 土壤
~r E dl
r
I dr
rb r 2
I
r
1 b
1 r
r b
bI r2
U 0 (安全电压)
AB r
r
bI
(3) 推广到其他学科,即可籍以用电测法求得非电 量的相似解答。
3.2.2 接地电阻
1.基本概念
接地——将电气设备的某一部分与大地在电气上相联结。 接地器——埋于地中的导体系统 ( 球、棒、网及其组合 ) 。 接地的工程意义:
• 保护性接地 • 工作接地
ⅰ 电子电路中 ⅱ 电力工程中
A
o
B
短路点
第3章 静态电磁场Ⅱ: 恒定电流的电场和磁场
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dW dP dUdI ( E dl )( J dS ) EJdV dt
p
dP EJ E 2 dV
焦尔定律的微分形式 (Differential Form of Joule’s Law) 导体有电流时,必伴随功率损耗(loss),其功率 体密度为
p J E
W/m3
E dS S E dS
S
G 即 C 多导体电极系统的部分电导可与静电系统的部
分电容比拟。
返 回 上 页 下 页
例3-3 求图示同轴电缆的绝缘电阻。 解 设 I
I J 2 πl
2
1
I E 2 πl
U l E dl
同轴电缆横截面
恒定磁场的基本方程表示为
B dS 0 (磁通连续原理)
S
l
B 0
(安培环路定律) H J c H d l I
构成方程
B H
恒定磁场的性质是有旋无源,电流是激发磁场的涡 旋源(eddy source)。 返 回 上 页 下 页
例如,钢的电导率 1 = 5106
S/m,周围土壤电导率2 = 10-2
S/m,1 = 89,可知,2 8。 良导体表面可近似看作为等位面 在工程应用场合中,常会遇到电流从金属体流向周围不 良导电媒质的情况,如各类电气设备的接地系统;同轴电 缆(coaxial cable)中因绝缘层不完善引发的泄漏电
2 1 1 2 J 2n 1 2
只有当该两种媒质参数满足 1122 条件时 ,0; 否 则分界面上必存在的面分布形态的自由电荷(charge).
在高压大容量的电气设备中 , 由于绝缘介质的不完 善性(imperfection),往往在不同介质的分界面处积累有 上述的自由电荷面密度分布.
D

0
U
J

0
静电场
恒定电场
返 回
上 页
下 页
比拟方法的应用(Contrast Method Application)
当满足比拟条件时,用比拟法由电容计算电导。
C Q U G I U
D dS E d l J dS E d l
S l S l
—焦耳定律微分形式
P J c EdV (J c dS )( Edl ) UI I R W
2 V
—焦耳定律积分形式
返 回 上 页 下 页
3.1.3
分界面的衔接条件(Boundary Conditions)
(1) 两种不同导电媒质分界面上的边界条件 由 得 E E
E dl 0
I h b 电导 G ln U0 a (S m)
返 回 上 页
d
下 页
3.1.2
1 电源
(Source)
电源电动势与局外场强
Source EMF and 0ther Field Intensity 提供非静电力将其它形式的 能转为电能的装臵称为电源。 2 电源电动势 (Source EMF)
I 2 I ln d 2π l 1 2π l
用静电比拟法求解 由静电场 C
I 2 πl 电导 G 2 U ln
电导
I 2 π l G U ln 2
2 ln 1

2 πl
1
,
根据
C 关系式,得 G
返 回
上 页
下 页
3.2.2
1 电导 (Conductance)
电源电动势与局外场强
因此,对包含电源闭合环路 积分
l E dl

l( Ec Ee ) dl l Ec dl l Ee dl
0e e
返 回 上 页 下 页
局外场 Ee 是非保守场。
3.电功率
dt时间内有dq电荷自元电
流管的左端面移至右端面,
则电场力作功为dW = dUdq
返 回 上 页
恒定电场知识结构 基本物理量 J、 E 欧姆定律 J 的散度 基本方程 E 的旋度 电 位
边界条件
边值问题
一般解法
电导与接地电阻
特殊解(静电比拟)
返 回 上 页 下 页
同轴电缆
返 回
屏蔽室接地电阻(深度 20 m)
返 回 下 页
3.3 恒定磁场基本方程、分界面衔接条件
Basic Equations and Boundary Condition 3.3.1 基本方程 (Basic Equations)
人体的安全电压U0≤40V
r0
Ib 2 πU 0
为危险区半径(radius) 接地器接地电阻
r0 abIR U0
1 R 2πa
半球形接地器的危 险区
表明:工程上为减小危险区半径,应通过改变接地器 结构,修正电位的变化率,即减小接地器的接地电阻 值,或减小短路电流等方面,采取相应的工程对策。
欧姆定律 微分形式。
下 页
设J 与 E 共存,且方向一致
J c E
J 与 E 之关系 同×Δ S
J c S E S
左边 右边 所以
J c S I U S U U E S = l l R S U RI
对整个导体有 U RI (欧姆定理)
流(leakage current)等.
0 (3) 导体与理想介质 2 分界面上的衔接条件。
在理想介质中
2 0, J 2 0 故 J 2n J1n 0
表明 1 分界面导体侧的电流一定与导体表面平行。
空气中
E2n
0 = 0 2 0
J 2n
导体中 E1n 0
导体与理想介质分界面
I I IJ E 2 2 4πr 4πr
图3-9 深埋球形接地器
U

a
I I dr 2 4πr 4πa
U 1 R I 4πa
解法二 比拟法 1 C R C 4πa, G 4πa , 4πa G 思考 接地电阻越大越好吗?如何改变R?
V c

Jc 0
返 回 上 页 下 页
恒定电场是一个无源场,电流线是连续的。
2.
E的旋度(rotation)
所取积分路径不经过电源,则
E dl 0
l
斯托克斯定理
( E ) dS 0
S
得 E 0 恒定电场是无旋场。 3. 导电媒质的本构关系
J E
l
1t
2t

S
J c dS 0
J1n J 2n
说明 分界面上 E 切向分量连 续,J 的法向分量连续。 折射定律
tan 1 1 tan 2 2
电流线的折射
返 回 上 页 下 页
(2) 良导体与不良导体分界面上的边界条件
1 2 1 90o
2 0o
第3章
恒定电场和磁场
通有直流电流的导电媒质中同时存在着电流场和 恒定电场。恒定电场是动态平衡下的电荷产生的,它 与静电场有相似之处。 导体中通有直流电流时,在导体内部和它周 围的媒质中,不仅有电场还有不随时间变化的磁场, 称为恒定磁场。 恒定磁场和静电场是性质完全不同的两种场, 但在分析方法上却有许多共同之处。学习本章时, 注意类比法的应用。
返 回 上 页 下 页
3.1
3.1.1
恒定电场的基本方程与场的特性
恒定电场的基本方程 (Basic Equations)
1. JJ c dS t
q 0 在恒定电场中 t
J
S
c
dS 0
散度定理
J dV 0
返 回 上 页 下 页
J E 欧姆定律 微分形式。
在线性媒质中
U RI 欧姆定律 积分形式。
4. 恒定电场(电源外)的基本方程
积分形式
微分形式 构成方程
J dS 0
S c
E dl 0
l
Jc 0
E 0
J E
结论: 恒定电场是无源无旋场。
E 0
E D
E
D E
2 0
q D dS
S
J 0 J E
2 0
ε


J

I
上 页 下 页
I J dS
S
q
返 回
两种场可以比拟的条件 微分方程相同;
1 1 媒质分界面满足 2 2
U
场域几何形状及边界条件相同;
D2n D1n 2 E 2n
表明 2 导体与理想介质分界面上必有面电荷。
返 回 上 页 下 页
E1t E2t J1t / 1 0 表明 3 电场切向分量不为零,导体非等位体,导体 表面非等位面。 若 1 (理想导体),导体内部电场为零,电 流分布在导体表面,导体不损耗能量(energy)。
两种场各物理量满足相同的定解问题,则解也相 3.2 恒定电场与静电场的比拟.接地系统
同。那么,通过对一个场的求解或实验研究,利用对 3.2.1 比拟方法 (Contrast Method) 应量关系便可得到另一个场的解。
静电场 ( 0 ) 恒定电场(电源外)静电场 恒定电场
E 0 D 0
0 时, 0;
时 , U 0 试求电导片的电导。
( ) 解 取圆柱坐标系 ,边值问题
1 2 2 0
2 2
x
0 0 , U 0
通解 C1 ,代入边界条件,得 C2 U0 ( ) 电位函数
图3-1 弧形导电片
相关文档
最新文档