形式语言与自动机 习题答案(部分)
形式语言与自动机理论-蒋宗礼-第四章参考答案
1.写出表示下列语言的正则表达式。
(吴贤珺02282047)⑴{0, 1}*。
解:所求正则表达式为:(0+1)*。
⑵{0, 1}+。
解:所求正则表达式为:(0+1)+。
⑶{ x│x∈{0,1}+ 且x中不含形如00的子串 }。
解:根据第三章构造的FA,可得所求正则表达式为:1*(01+)*(01+0+1)。
⑷{ x│x∈{0,1}*且x中不含形如00的子串 }。
解:根据上题的结果,可得所求正则表达式为:ε+1*(01+)*(01+0+1)。
⑸{ x│x∈{0,1}+ 且x中含形如10110的子串 }。
解:所求正则表达式为:(0+1)*10110(0+1)*。
⑹ { x│x∈{0,1}+ 且x中不含形如10110的子串 }。
解:根据第三章的习题,接受x的FA为:要求该FA对应的正则表达式,分别以q0、q1、q2、q3、q4为终结状态考虑:q为终态时的正则表达式:(0*(11*0(10)*(ε+111*11*0(10)*)0)*)*q为终态时的正则表达式:0*1(1*(0(10)*111*1)*(0(10)*00*1)*)*1q为终态时的正则表达式:0*11*0((10)*(111*11*0)*(00*11*0)*)*2q为终态时的正则表达式:0*11*0(10)*1(11*11*0((10)*(00*11*0)*)*1)*3q为终态时的正则表达式:0*11*0(10)*11(1*(11*0((00*11*0)*(10)*)*11)*)*4将以上5个正则表达式用“+”号相连,就得到所要求的正则表达式。
⑺ { x│x∈{0,1}+ 且当把x看成二进制数时,x模5与3同余和x为0时,│x│=1且x≠0时,x的首字符为1}。
解:先画出状态转移图,设置5个状态q0、q1、q2、q3、q4,分别表示除5的余数是0、1、2、3、4的情形。
另外,设置一个开始状态q.由于要求x模5和3同余,而3模5余3,故只有q3可以作为终态。
形式语言与自动机Chapter7练习参考解答
Chapter 7 练习参考解答Exercise 7.1.3 从以下文法出发:S → 0A0 | 1B1 | BBA → CB → S | AC → S | εa) 有没有无用符号?如果有的话去除它们。
b) 去除ε-产生式。
c) 去除单位产生式。
d) 把该文发转化为乔姆斯基范式。
参考解答:a)没有无用符.b) 所有符号S,A,B,C都是可致空的,消去ε-产生式后得到新的一组产生式:S → 0A0 | 1B1 | BB | B | 00 | 11A → CB → S | AC → Sc) 单元偶对包括:(A,A),(B,B),(C,C),(S,S),(A,C),(A,S),(A,B),(B,A),(B,C),(B,S),(C,A),(C,B),(C,S),(S,A),(S,B),(S,C),消去单元产生式后得到新的一组产生式S → 0A0 | 1B1 | BB | B | 00 | 11A → CB → S | AC → SS → 0A0 | 1B1 | BB | 00 | 11A → 0A0 | 1B1 | BB | 00 | 11B → 0A0 | 1B1 | BB | 00 | 11C → 0A0 | 1B1 | BB | 00 | 11d)先消去无用符号C,得到新的一组产生式:S → 0A0 | 1B1 | BB | 00 | 11A → 0A0 | 1B1 | BB | 00 | 11B → 0A0 | 1B1 | BB | 00 | 11引入非终结符C,D,增加产生式C → 0和D → 1,得到新的一组产生式:S → CAC | DBD | BB | CC | DDA → CAC | DBD | BB | CC | DDB → CAC | DBD | BB | CC | DDC → 0D → 1引入非终结符E,F,增加产生式E → CA和F → DB,得到满足Chomsky范式的一组产生式:S → EC | FD | BB | CC | DDA → EC | FD | BB | CC | DDB → EC | FD | BB | CC | DDE → CAF → DBC → 0D → 1Exercise 7.2.1(b)用CFL泵引理来证明下面的语言都不是上下文无关的:b) {a n b n c i | i ≤n}。
形式语言与自动机理论-蒋宗礼-第四章参考答案
1.写出表示下列语言的正则表达式。
(吴贤珺02282047)⑴{0, 1}*。
解:所求正则表达式为:(0+1)*。
⑵{0, 1}+。
解:所求正则表达式为:(0+1)+。
⑶{ x│x∈{0,1}+ 且x中不含形如00的子串 }。
解:根据第三章构造的FA,可得所求正则表达式为:1*(01+)*(01+0+1)。
⑷{ x│x∈{0,1}*且x中不含形如00的子串 }。
解:根据上题的结果,可得所求正则表达式为:ε+1*(01+)*(01+0+1)。
⑸{ x│x∈{0,1}+ 且x中含形如10110的子串 }。
解:所求正则表达式为:(0+1)*10110(0+1)*。
⑹ { x│x∈{0,1}+ 且x中不含形如10110的子串 }。
解:根据第三章的习题,接受x的FA为:要求该FA对应的正则表达式,分别以q0、q1、q2、q3、q4为终结状态考虑:q为终态时的正则表达式:(0*(11*0(10)*(ε+111*11*0(10)*)0)*)*q为终态时的正则表达式:0*1(1*(0(10)*111*1)*(0(10)*00*1)*)*1q为终态时的正则表达式:0*11*0((10)*(111*11*0)*(00*11*0)*)*2q为终态时的正则表达式:0*11*0(10)*1(11*11*0((10)*(00*11*0)*)*1)*3q为终态时的正则表达式:0*11*0(10)*11(1*(11*0((00*11*0)*(10)*)*11)*)*4将以上5个正则表达式用“+”号相连,就得到所要求的正则表达式。
⑺ { x│x∈{0,1}+ 且当把x看成二进制数时,x模5与3同余和x为0时,│x│=1且x≠0时,x的首字符为1}。
解:先画出状态转移图,设置5个状态q0、q1、q2、q3、q4,分别表示除5的余数是0、1、2、3、4的情形。
另外,设置一个开始状态q.由于要求x模5和3同余,而3模5余3,故只有q3可以作为终态。
形式语言与自动机Chapter5练习参考解答
Chapter 5 练习参考解答Exercise 5.1.2 (c) 下面的文法产生了正则表达式0*1(0+1)*的语言:εε|1|0|01B B B A A BA S →→→试给出下列串的最左推导和最右推导:c) 00011。
参考解答:一个最左推导:S ⇒lm A1B ⇒lm 0A1B ⇒lm 00A1B ⇒lm 000A1B ⇒lm 0001B ⇒lm 00011B ⇒lm 00011一个最右推导:S ⇒rm A1B ⇒rm A11B ⇒rm A11 ⇒rm 0A11⇒rm 00A11⇒rm 000A11 ⇒rm 00011! Exercise 5.1.3 证明任何正则语言都是上下文无关语言。
提示:通过对正则表达式中的运算符的数目进行归纳的方法来构造CFG 。
参考解答:对于任何正规表达式R ,归纳于R 中算符的数目n 构造如下产生式集合P(R),相应的开始符号为S(R):基础:n=0.(1)R 为ε,则任选非终结符A ,令P(R)只包含A →ε,以及S(R)为A ;(2)R 为φ,令P(R) 为空集;(3)R 为a ,则任选非终结符A ,令P(R)只包含A →a ,以及S(R)为A ; 基础:n>0.(1)R为R1+R2,则适修改非终结符的名字,使得P(R1)与P(R2)中的所有非终结符没有重名,任选不出现在P(R1)⋃P(R2)中的非终结符A,令P(R)= P(R1) ⋃P(R2)⋃{ A→ S(R1), A→ S(R2) },并且,令S(R)为A;(2)R为R1R2,则适修改非终结符的名字,使得P(R1)与P(R2)中的所有非终结符没有重名,任选不出现在P(R1)⋃P(R2)中的非终结符A,令P(R)= P(R1) ⋃P(R2)⋃{ A→ S(R1)S(R2) };并且,令S(R)为A;(3)R为R1*,任选不出现在P(R1) 中的非终结符A,令P(R)= P(R1) ⋃{ A→ AS(R1) , A→ε };并且,令S(R)为A.设L为正规语言,R为正规表达式,且有L=L(R). 令上下文无关文法G 的产生式集合为上述归纳过程所得到的P(R),以及G的开始符号为S(R). 可以归纳证明L(G)=L(R)=L.! Exercise 5.1.4 (选做)如果一个CFG的每个产生式的体都最多只有一个变元,并且该变元总在最右端,那么该CFG称做右线性的。
形式语言与自动机Chapter3练习参考解答
Chapter 3 练习参考解答Exercise 3.1.1 写出下列语言的正规表达式:c) The set of strings of 0' s and1' s with at most one pair of consecutive 1' s.c)最多包含两个相继的 1 的所有0, 1 字符串的集合.参考解答:该题的翻译有二义性(Sorry ).1)按原题意的解法对不包含相继的 1 的所有0, 1 字符串的集合,正规表达式可以为:1*(0+01)* 或(0+10 )*1*;包含最多一对相继的1,正规表达式可以为:(0+10)*11(0+01)*;所以,结果正规表达式可以为:1*(0+01)* + (0+10 )*11(0+01)2)若理解为11 可以出现多次的解法正规表达式可以为:1*(0+01+011 )* 或(0+10+110)*1*;等等Exercise 3.1.2 写出下列语言的正规表达式:b) 0 的个数能够被 5 整除的所有0, 1 字符串的集合. 参考解答:该题问题不多.正规表达式可以为:(1*01*01*01*01*01* )*Exercise 3.2.1(2)c)给出所有正规表达式R(i2j), 并尽可能简化之.d)给出该自动机的语言的一个正规表达式.参考解答:该题问题反映较多的是关于正规表达式的简化. 本科程较侧重原理,技术方面不够细致,因此对于“最简“的正规表达式没有作明确的规定,也没有类似于命题演算中有关”范式“的讨论.同学们在做题时除了应用有关定律外, 还可以自己总结出一些规律,比如一个表达式的语言 R 是另一个表达式S 所代 表语言的一个子集,则对于 R+S 就可以消去R ,例如 +1*可以简化为1*.再 如,在已做过的习题中出现的公式,例如Exercise3.4.1(g)我们可以验证(汁R)*= R*,因此 (+1)*可以简化为1*.综合已阅过的作业,推荐以下结果:C) R (121)= 1*+1*0 ( +11*0)*11* = 1*+1*0(11*0)*11*R (1 2 = 1*0+1*0 ( ;+11*0)* ( ;+11*0) = 1*0(11*0)*R (123)= * +1*0 2+11*0)*0 = 1*0(11*0)*0R (221)= 11* + ( +11*0) ( +11*0)*11* = (11*0)*11* R (222)= +11*0 + ( +11*0) ( ;+11*0)* ( ;+11*0) = (11*0)*R (223)= 0 + ( +11*0) ( +11*0)*0 = (11*0)*0R (321) = * + 1 (<+11*0)*11* =1(11*0)*11*R (322)= 1 + 1 ( +11*0)* ( ;+11*0) =1(11*0)*R (323)= ; + 0 + 1 ( +11*0)* 0 = ; + 0 + 1(11*0)*0d)该自动机的语言的一个正规表达式为R (133) =1*0(11*0)*0 +1*0(11*0)*0 ( ; + 0 + 1(11*0)*0)* ( ; + 0 + 1(11*0)*0)=1*0(11*0)*0 (0 + 1(11*0)*0)*Exercise 3.2.3 使用状态消去技术,将如下 DFA 转化为一个正规表达式.参考解答:该题问题不多,状态消去的次序不同,结果形式上可能有所不同,但 相互之间是等价的.以下是一个解法:/1+0(01+10*11)*(00+10*10) Start 5结果正规表达式可以为:(1+0(01+10*11)*(00+10*10))* 原状态图:消去状态r :消去状态s :1Start 0Exercise 324 将下列正规表达式转化为带 &转移的NFA.b) (0+1)01 c) 00(0+1)*参考解答:若严格按照所介绍的算法构造,则结 果如下:b)Exercise 3.4.1验证下列包含正规表达式的等式 c) (RS) T = R (ST) .g)(+R)* = R* . 参考解答:c)将两个表达式具体化,将R 替换为a ,将S 替换为b.(RS)T 具体化为(ab)a ,R(ST)具体化为 a(ba),而 L((ab)a)=L(a(ba))={abc}, 所以原等式成立;g)将两个表达式具体化,将R 替换为a.(+R)* 具体化为(;+a)*,R*具体化为 a*,而 L(( +a)*)=L(a*)={ ,a ,aa,aaa,…, (注:严格证明L(( ;+a)*)=L(a*),可以在归纳证明:对任意k>=0,{;,a}k ={a}k 的基础上进行),所以原等式成立;Exercise 342证明或否证下列关于正规表达式的命题 b) (RS+R)*R = R (SR+R)*.d) (R+S)*S = (R*S)* .Start参考解答:b)将两个表达式具体化,将R替换为a,将S替换为b.(RS+R)*R 具体化为(ab+a)*a,R (SR+R)*具体化为a(ba+a)*,可以证明L((ab+a)*a)=L(a(ba+a)*) (注:同上,可以先归纳证明:对任意k>=0,{ab,a}k{a}={a}{ba ,a}k,而由连接运算对-运算的分配律,—k —k 可知L((ab+a)*a)= *0,1,2, -({ab,a} {a}), L(a(ba+a)*)= k=o,1,2, ・({a}{ba,a}),由此证得L((ab+a)*a)=L(a(ba+a)*)),所以原等式成立;g)将两个表达式具体化,将R替换为a,将S替换为b.(R+S)*S 具体化为(a+b)*b,(R*S)* 具体化为(a*b)*,由于〉L((a*b)*),而>■' L((a*b)*),所以原等式不成立。
形式语言与自动机Chapter6练习参考解答
Chapter 6 练习参考解答Exercise 6.2.1 设计PDA 使它接受下列语言,你可以使用以终结状态方式接受或者以空栈方式接受中方便的一个。
b) 所有由0,1 构成的,并且任何前缀中 1 的个数都不比0 的个数多的串的集合。
c) 所有0,1 个数相同的0,1 串的集合。
参考解答:b)构造以终态方式接受的PDA P = (Q,艺,r , S , q o, Z o, F),其中Q={q o};状态q o表示当前扫描过的输入串的任何前缀中1的个数不比0的个数多;工={0 , 1};r ={ Z o, X};下推栈中,X的个数表示当前扫描过的输入串中o的个数比1 的个数多多少;F={q o};S (q o,o, Z o)={( q o,X Z o)}, S (q o,o, X)={( q o,X X)}, S (q o,1, X)={( qo, )}.c)构造以空栈方式接受的PDA P = (Q, 2 , r , S , q o, Z o),其中Q={q o, q i };状态q o表示当前扫描过的输入串的任何前缀中o的个数不少于1 的个数,状态q1 表示当前扫描过的输入串的任何前缀中 1 的个数不少于o 的个数;2 ={o, 1};r ={ Z o, X };下推栈中,X的个数表示当前扫描过的输入串中o的个数比i 的个数或 1 的个数比o 的个数多多少;S(q o,o, Z o)={( q o,X Z o)}, S(q o,1, Z o)={( q1,X Z o)};S (q i,O, Z o)={( q o,X Z o)}, S (q i,1, Z o)={( q i,X Z o)};S (q o,O, X)={( q o,X X)}, S (q o,1, X)={( q o, )};S(q1,o, X)={( q 1, )},S(q1,1, X)={( q 1, X X)} ;S(q o, , Z o)={( q o, )},S(q1, , Z o)={( q1, )}.Exercise 6.3.2 把下面的文法S aAAA aS | bS | a转换成以空栈方式接受同样语言的PDA 。
形式语言与自动机理论_哈尔滨工业大学中国大学mooc课后章节答案期末考试题库2023年
形式语言与自动机理论_哈尔滨工业大学中国大学mooc课后章节答案期末考试题库2023年1.令字母表【图片】, 则克林闭包【图片】中元素的长度为?参考答案:只能是有限的2.由字符0和1构成且含有奇数个1的DFA,至少需要几个状态?参考答案:23.双栈PDA可以接受任意图灵机接受的语言。
参考答案:正确4.由某字母表【图片】中的字符构成的全部正则表达式的集合,也可以看做是一个语言,则该语言为:参考答案:上下文无关语言5.由字符0和1构成且含有奇数个1和偶数个0的DFA,至少需要几个状态?参考答案:46.字符串的长度可以是任意的,那么也可以是无穷长的。
参考答案:错误7.设【图片】和【图片】是字母表【图片】上的任意语言且【图片】是无穷的,则两个语言的连接【图片】一定是无穷的。
参考答案:错误8.每一个有穷的语言都是正则语言。
参考答案:正确9.任何正则语言都是上下文无关语言。
参考答案:正确10.任意有穷集合的克林闭包一定是无穷集合。
参考答案:错误11.递归可枚举语言是可判定的语言。
参考答案:错误12.任何有限的语言都是上下文无关语言。
参考答案:正确13.NFA处于某个状态q且输入某字符a时,如果状态转移函数未定义,则NFA会:参考答案:停止自动机的运行,并拒绝该串。
14.有穷自动机有了空转移(不消耗输入串的状态跳转), 改变了它识别语言的能力。
参考答案:错误15.对同一个语言,可能存在两个不同的有穷自动机识别。
参考答案:正确16.带有空转移的非确定有穷自动机中,对于某一个状态,是否可以同时存在“对某字符a的非确定性”和“空转移”?参考答案:可以。
17.图灵机是算法的好模型。
参考答案:错误18.确定的图灵机与非确定的图灵机等价。
参考答案:正确19.由字符0和1构成且含有偶数个1的DFA,至少需要几个状态?参考答案:220.如果一个语言是不可判定的,那么它的补也一定是不可判定的参考答案:错误21.确定的有穷自动机中,“确定的”含义是:参考答案:状态转移是确定的22.由字符0和1构成且长度为偶数的全部字符串的DFA,至少需要几个状态?参考答案:223.集合的克林闭包与正比包一定不相等参考答案:错误24.设【图片】是字母表【图片】上的任意语言,则语言【图片】的闭包【图片】一定是无穷的。
形式语言与自动机答案蒋宗礼
形式语言与自动机答案蒋宗礼【篇一:形式语言第四章参考答案(蒋宗礼)】p> 解:所求正则表达式为:(0+1)*。
+⑵ {0, 1}。
解:所求正则表达式为:(0+1)+。
⑶ { x│x∈{0,1}且x中不含形如00的子串 }。
解:根据第三章构造的fa,可得所求正则表达式为:1*(01+)*(01+0+1)。
⑷ { x│x∈{0,1}*且x中不含形如00的子串 }。
++ +q1为终态时的正则表达式:0*1(1*(0(10)*111*1)*(0(10)*00*1)*)* q2为终态时的正则表达式:0*11*0((10)*(111*11*0)*(00*11*0)*)*q3为终态时的正则表达式:0*11*0(10)*1(11*11*0((10)*(00*11*0)*)*1)* q4为终态时的正则表达式:0*11*0(10)*11(1*(11*0((00*11*0)*(10)*)*11)*)*将以上5个正则表达式用“+”号相连,就得到所要求的正则表达式。
⑺ { x│x∈{0,1}且当把x看成二进制数时,x模5与3同余和x为0时,│x│=1且x≠0时,x的首字符为1}。
解:先画出状态转移图,设置5个状态q0、q1、q2、q3、q4,分别表示除5的余数是0、1、2、3、4的情形。
另外,设置一个开始状态q.由于要求x模5和3同余,而3模5余3,故只有q3可以作为终态。
由题设,x=0时,│x│=1,模5是1,不符合条件,所以不必增加关于它的状态。
下面对每一个状态考虑输入0和1时的状态转移。
q: 输入1,模5是1,进入q1。
+q0: 设x=5n。
输入0,x=5n*2=10n,模5是0,故进入q0输入1,x=5n*2+1=10n+1,模5是1,故进入q1q1:设x=5n+1。
输入0,x=(5n+1)*2=10n+2,模5是2,故进入q2输入1,x=(5n+1)*2+1=10n+3,模5是3,故进入q3 q2:设x=5n+2。
《形式语言与自动机》(王柏、杨娟编著)北邮出版社-课后习题答案
北京邮电大学——形式语言与自动机课后作业答案第二章4.找出右线性文法,能构成长度为1至5个字符且以字母为首的字符串。
答:G={N,T,P,S}其中N={S,A,B,C,D} T={x,y} 其中x∈{所有字母} y∈{所有的字符} P如下: S→x S→xA A→y A→yBB→y B→yC C→y C→yD D→y6.构造上下文无关文法能够产生L={ω/ω∈{a,b}*且ω中a的个数是b的两倍}答:G={N,T,P,S}其中N={S} T={a,b} P如下:S→aab S→aba S→baaS→aabS S→aaSb S→aSab S→SaabS→abaS S→abSa S→aSba S→SabaS→baaS S→baSa S→bSaa S→Sbaa7.找出由下列各组生成式产生的语言(起始符为S)(1)S→SaS S→b(2)S→aSb S→c(3)S→a S→aE E→aS答:(1)b(ab)n /n≥0}或者L={(ba)n b/n≥0}(2) L={a n cb n /n≥0}(3)L={a2n+1 /n≥0}第三章1.下列集合是否为正则集,若是正则集写出其正则式。
(1)含有偶数个a和奇数个b的{a,b}*上的字符串集合(2)含有相同个数a和b的字符串集合(3)不含子串aba的{a,b}*上的字符串集合答:(1)是正则集,自动机如下(2) 不是正则集,用泵浦引理可以证明,具体见17题(2)。
(3) 是正则集先看L’为包含子串aba的{a,b}*上的字符串集合显然这是正则集,可以写出表达式和画出自动机。
(略)则不包含子串aba的{a,b}*上的字符串集合L是L’的非。
根据正则集的性质,L也是正则集。
4.对下列文法的生成式,找出其正则式(1)G=({S,A,B,C,D},{a,b,c,d},P,S),生成式P如下:S→aA S→BA→abS A→bBB→b B→cCC→D D→bBD→d(2)G=({S,A,B,C,D},{a,b,c,d},P,S),生成式P如下:S→aA S→BA→cC A→bBB→bB B→aC→D C→abBD→d答:(1) 由生成式得:S=aA+B ①A=abS+bB ②B=b+cC ③C=D ④D=d+bB ⑤③④⑤式化简消去CD,得到B=b+c(d+bB)即B=cbB+cd+b =>B=(cb)*(cd+b) ⑥将②⑥代入①S=aabS+ab(cb)*(cd+b)+(cb)*(cd+b) =>S=(aab)*(ab+ε)(cb)*(cd+b) (2) 由生成式得:S=aA+B ①A=bB+cC ②B=a+bB ③C=D+abB ④D=dB ⑤由③得 B=b*a ⑥将⑤⑥代入④ C=d+abb*a=d+ab+a ⑦将⑥⑦代入② A=b+a+c(d+b+a) ⑧将⑥⑧代入① S=a(b+a+c(d+ab+a))+b*a=ab+a+acd+acab+a+b*a5.为下列正则集,构造右线性文法:(1){a,b}*(2)以abb结尾的由a和b组成的所有字符串的集合(3)以b为首后跟若干个a的字符串的集合(4)含有两个相继a和两个相继b的由a和b组成的所有字符串集合答:(1)右线性文法G=({S},{a,b},P,S)P: S→aS S→bS S→ε(2) 右线性文法G=({S},{a,b},P,S)P: S→aS S→bS S→abb(3) 此正则集为{ba*}右线性文法G=({S,A},{a,b},P,S)P: S→bA A→aA A→ε(4) 此正则集为{{a,b}*aa{a,b}*bb{a,b}*, {a,b}*bb{a,b}*aa{a,b}*}右线性文法G=({S,A,B,C},{a,b},P,S)P: S→aS/bS/aaA/bbBA→aA/bA/bbCB→aB/bB/aaCC→aC/bC/ε7.设正则集为a(ba)*(1)构造右线性文法(2)找出(1)中文法的有限自 b动机答:(1)右线性文法G=({S,A},{a,b},P,S)P: S→aA A→bS A→ε(2)自动机如下:(p2是终结状态)9.对应图(a)(b)的状态转换图写出正则式。
形式语言与自动机 习题答案(部分)
a)语言{ww:w∈{a,b}*}的文法G=(V,∑,R,S)如下: V={S,a,b,A,B,C,Ta,Tb,Tc} ∑={a,b} R={ S -> CC, C -> AC | BC | Tc BTc -> Tcb ATc -> Tca Tc -> e } 或 文法G[S]: S→CD Ab→bA C→aCA Ba→aB C→bCB Bb→bB AD→aD C→ε BD→bD D→ε Aa→bD 或 S→aAS|bBS|aAE|bBE Aa→aA Ab→bA Ba→aB AE→Ea|a BE→Eb|b L(G)={ww|w∈{a,b}*}
4331把两个带头分别移动第一个带头向左移动到带头第二个带头向右移动直到发现空格为2向右移动第一个带头记录下字符的值
2.2.3
2.2.9
2.3.4
3.5.14
• (a):是上下文相关的,因为m,n,p之间必存在二者 相等的情况,如果a的个数确定了,则b或者c的个 数也是确定的。 • (b):是上下文相关的,因为当a的个数确定时,b和 c的个数是不能和a相同的,即n和p的取值有了限 制。 • (c):是上下文相关的,a的个数限定了b和c的个数。 • (d):是上下文相关的,当a和b的个数相等的情况下, 则限定了c的个数不能和a,b相同。 • (e):是上下文相关的,若要满足 |w1|=|w2|…..=|wn|>=2,则|w|的值限定了必须是可 被整除的数(素数)。
4.1.10
• 功能是: • 首先找到第二个和第三个字符,要求不能 是空格,然后记录下,再分别填入之后的 第一个空格和第二个空格所位置。
4.3.3
• (1)把两个带头分别移动,第一个带头向左移动 到带头,第二个带头向右移动,直到发现空格为 止。 • (2)向右移动第一个带头,记录下字符的值。判 断有没有遇到空格,若遇到空格,则跳至(), 否则,跳至(3)。 • (3)向右移动第二个带头,并复制下已记录的字 符,再跳至(2)。 • (4)第一个带头遇到空格,说明w已经复制完, 故停机。
《形式语言与自动机》期末复习题及答案(一)
形式语言与自动机期末复习题及答案(一)1.有图灵机 M=(Q, ∑, Γ, δ,q 0 , B , F) 接受语言{w t w│w ∈{a, b}*},按照下图说明其接受过程。
(本题15分 )[q 1[q 6,B]答:abtab 的分析过程:[q 1,B]abtab├a [q 2,a]btab├ab [q 2,a]tab├abt [q 3,a]ab├ ab [q 4,B]tab├a [q 5,B]btab├[q 6,B]abtab├a [q 1,B]btab ├ab [q 2,b]tab├abt [q 3,b]ab ├abta [q 3,b]b ├abt [q 4,B]ab├a [q 5,B]btab ├ab [q 7,B]tab ├abt [q 8,B]ab├abta [q 8,B]b ├abtab [q 8,B]B├abta [q 9,B]b 接受abtab√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√2.简述《形式语言与自动机》课程的主要内容。
(本题10分)答:语言的文法描述;RL (RG 、FA 、RE 、RL 的性质 );CFL (CFG(CNF 、GNF)、PDA 、CFL 的性质);TM (基本TM 、构造技术、TM 的修改);CSL (CSG 、LBA )。
3.简述《形式语言与自动机》课程的学习目的和基本要求。
(本题10分) 答:本专业人员4种基本的专业能力:计算思维能力、算法的设计与分析能力、程序设计和实现能力、计算机软硬件系统的认知、分析、设计与应用能力。
其中计算思维能力包括:逻辑思维能力和抽象思维能力、构造模型对问题进行形式化描述、理解和处理形式模型。
本课程应使学生掌握如下知识:正则语言、下文无关语言的文法、识别模型及其基本性质、图灵机的基本知识。
锻炼培养如下能力:形式化描述和抽象思维能力、了解和初步掌握“问题、形式化描述、自动化(计算机化)”这一最典型的计算机问题求解思路。
形式语言与自动机课后习题答案部分PPT69页
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
拉
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
《形式语言与自动机》(王柏、杨娟编著)课后习题答案
形式语言与自动机课后习题答案第二章4.找出右线性文法,能构成长度为1至5个字符且以字母为首得字符串。
答:G={N,T,P,S}其中N={S,A,B,C,D} T={x,y} 其中x∈{所有字母} y∈{所有得字符} P如下: S→x S→xA A→y A→yBB→y B→yC C→y C→yD D→y6.构造上下文无关文法能够产生L={ω/ω∈{a,b}*且ω中a得个数就是b得两倍}答:G={N,T,P,S}其中N={S} T={a,b} P如下:S→aab S→aba S→baaS→aabS S→aaSb S→aSab S→SaabS→abaS S→abSa S→aSba S→SabaS→baaS S→baSa S→bSaa S→Sbaa7.找出由下列各组生成式产生得语言(起始符为S)(1)S→SaS S→b(2)S→aSb S→c(3)S→a S→aE E→aS答:(1)b(ab)n /n≥0}或者L={(ba)n b/n≥0}(2) L={a n cb n /n≥0}(3)L={a2n+1 /n≥0}第三章1.下列集合就是否为正则集,若就是正则集写出其正则式。
(1)含有偶数个a与奇数个b得{a,b}*上得字符串集合(2)含有相同个数a与b得字符串集合(3)不含子串aba得{a,b}*上得字符串集合答:(1)就是正则集,自动机如下题(2)。
(3) 就是正则集先瞧L’为包含子串aba得{a,b}*上得字符串集合显然这就是正则集,可以写出表达式与画出自动机。
(略)则不包含子串aba得{a,b}*上得字符串集合L就是L’得非。
根据正则集得性质,L也就是正则集。
4.对下列文法得生成式,找出其正则式(1)G=({S,A,B,C,D},{a,b,c,d},P,S),生成式P如下:S→aA S→BA→abS A→bBB→b B→cCC→D D→bBD→d(2)G=({S,A,B,C,D},{a,b,c,d},P,S),生成式P如下:S→aA S→BA→cC A→bBB→bB B→aC→D C→abBD→d答:(1) 由生成式得:S=aA+B ①A=abS+bB ②B=b+cC ③C=D ④D=d+bB ⑤③④⑤式化简消去CD,得到B=b+c(d+bB)即B=cbB+cd+b =>B=(cb)*(cd+b) ⑥将②⑥代入①S=aabS+ab(cb)*(cd+b)+(cb)*(cd+b) =>S=(aab)*(ab+ε)(cb)*(cd+b) (2) 由生成式得:S=aA+B ①A=bB+cC ②B=a+bB ③C=D+abB ④D=dB ⑤由③得 B=b*a ⑥将⑤⑥代入④ C=d+abb*a=d+ab+a ⑦将⑥⑦代入② A=b+a+c(d+b+a) ⑧将⑥⑧代入① S=a(b+a+c(d+ab+a))+b*a=ab+a+acd+acab+a+b*a5、为下列正则集,构造右线性文法:(1){a,b}*(2)以abb结尾得由a与b组成得所有字符串得集合(3)以b为首后跟若干个a得字符串得集合(4)含有两个相继a与两个相继b得由a与b组成得所有字符串集合答:(1)右线性文法G=({S},{a,b},P,S)P: S→aS S→bS S→ε(2) 右线性文法G=({S},{a,b},P,S)P: S→aS S→bS S→abb(3) 此正则集为{ba*}右线性文法G=({S,A},{a,b},P,S)P: S→bA A→aA A→ε(4) 此正则集为{{a,b}*aa{a,b}*bb{a,b}*, {a,b}*bb{a,b}*aa{a,b}*}右线性文法G=({S,A,B,C},{a,b},P,S)P: S→aS/bS/aaA/bbBA→aA/bA/bbCB→aB/bB/aaCC→aC/bC/ε7、设正则集为a(b a)*(1)构造右线性文法(2)找出(1)中文法得有限自b动机答:(1)右线性文法G=({S,A},{a,b},P,S)P: S→aA A→bS A→ε(2)自动机如下:)9、对应图(a)(b)得状态转换图写出正则式。
形式语言与自动机理论-蒋宗礼-第四章参考答案
1.写出表示下列语言的正则表达式。
(吴贤珺02282047)⑴{0, 1}*。
解:所求正则表达式为:(0+1)*。
⑵{0, 1}+。
解:所求正则表达式为:(0+1)+。
⑶{ x│x∈{0,1}+ 且x中不含形如00的子串 }。
解:根据第三章构造的FA,可得所求正则表达式为:1*(01+)*(01+0+1)。
⑷{ x│x∈{0,1}*且x中不含形如00的子串 }。
解:根据上题的结果,可得所求正则表达式为:ε+1*(01+)*(01+0+1)。
⑸{ x│x∈{0,1}+ 且x中含形如10110的子串 }。
解:所求正则表达式为:(0+1)*10110(0+1)*。
⑹ { x│x∈{0,1}+ 且x中不含形如10110的子串 }。
解:根据第三章的习题,接受x的FA为:要求该FA对应的正则表达式,分别以q0、q1、q2、q3、q4为终结状态考虑:q为终态时的正则表达式:(0*(11*0(10)*(ε+111*11*0(10)*)0)*)*q为终态时的正则表达式:0*1(1*(0(10)*111*1)*(0(10)*00*1)*)*1q为终态时的正则表达式:0*11*0((10)*(111*11*0)*(00*11*0)*)*2q为终态时的正则表达式:0*11*0(10)*1(11*11*0((10)*(00*11*0)*)*1)*3q为终态时的正则表达式:0*11*0(10)*11(1*(11*0((00*11*0)*(10)*)*11)*)*4将以上5个正则表达式用“+”号相连,就得到所要求的正则表达式。
⑺ { x│x∈{0,1}+ 且当把x看成二进制数时,x模5与3同余和x为0时,│x│=1且x≠0时,x的首字符为1}。
解:先画出状态转移图,设置5个状态q0、q1、q2、q3、q4,分别表示除5的余数是0、1、2、3、4的情形。
另外,设置一个开始状态q.由于要求x模5和3同余,而3模5余3,故只有q3可以作为终态。
形式语言与自动机理论-蒋宗礼-第四章参考答案
1.写出表示下列语言的正则表达式。
(吴贤珺02282047)⑴{0, 1}*。
解:所求正则表达式为:(0+1)*。
⑵{0, 1}+。
解:所求正则表达式为:(0+1)+。
⑶{ x│x∈{0,1}+ 且x中不含形如00的子串 }。
解:根据第三章构造的FA,可得所求正则表达式为:1*(01+)*(01+0+1)。
⑷{ x│x∈{0,1}*且x中不含形如00的子串 }。
解:根据上题的结果,可得所求正则表达式为:ε+1*(01+)*(01+0+1)。
⑸{ x│x∈{0,1}+ 且x中含形如10110的子串 }。
解:所求正则表达式为:(0+1)*10110(0+1)*。
⑹ { x│x∈{0,1}+ 且x中不含形如10110的子串 }。
解:根据第三章的习题,接受x的FA为:要求该FA对应的正则表达式,分别以q0、q1、q2、q3、q4为终结状态考虑:q为终态时的正则表达式:(0*(11*0(10)*(ε+111*11*0(10)*)0)*)*q为终态时的正则表达式:0*1(1*(0(10)*111*1)*(0(10)*00*1)*)*1q为终态时的正则表达式:0*11*0((10)*(111*11*0)*(00*11*0)*)*2q为终态时的正则表达式:0*11*0(10)*1(11*11*0((10)*(00*11*0)*)*1)*3q为终态时的正则表达式:0*11*0(10)*11(1*(11*0((00*11*0)*(10)*)*11)*)*4将以上5个正则表达式用“+”号相连,就得到所要求的正则表达式。
⑺ { x│x∈{0,1}+ 且当把x看成二进制数时,x模5与3同余和x为0时,│x│=1且x≠0时,x的首字符为1}。
解:先画出状态转移图,设置5个状态q0、q1、q2、q3、q4,分别表示除5的余数是0、1、2、3、4的情形。
另外,设置一个开始状态q.由于要求x模5和3同余,而3模5余3,故只有q3可以作为终态。
形式语言与自动机理论--第三章参考答案
第三章作业答案1.已知DFA M1与M2如图3-18所示。
(xxxx 02282068) (1) 请分别给出它们在处理字符串1011001的过程中经过的状态序列。
(2) 请给出它们的形式描述。
Sq q1q q图3-18 两个不同的DFA解答:(1)M1在处理1011001的过程中经过的状态序列为q0q3q1q3q2q3q1q3;M2在处理1011001的过程中经过的状态序列为q0q2q3q1q3q2q3q1;(2)考虑到用形式语言表示,用自然语言似乎不是那么容易,所以用图上作业法把它们用正则表达式来描述:M1: [01+(00+1)(11+0)][11+(10+0)(11+0)]* M2: (01+1+000){(01)*+[(001+11)(01+1+000)]*} *******************************************************************************2.构造下列语言的DFA( xx02282085 ) (1){0,1}*,1(2){0,1}+,1(3){x|x{0,1}+且x 中不含00的串}(设置一个陷阱状态,一旦发现有00的子串,就进入陷阱状态)(4){ x|x{0,1}*且x中不含00的串}(可接受空字符串,所以初始状态也是接受状态)(5){x|x{0,1}+且x中含形如10110的子串}(6){x|x{0,1}+且x中不含形如10110的子串}(设置一个陷阱状态,一旦发现有00的子串,就进入陷阱状态)(7){x|x{0,1}+且当把x看成二进制时,x模5和3同余,要求当x为0时,|x|=1,且x0时,x的首字符为1 }1.以0开头的串不被接受,故设置陷阱状态,当DFA在启动状态读入的符号为0,则进入陷阱状态2.设置7个状态:开始状态qs,q0:除以5余0的等价类,q1:除以5余1的等价类,q2:除以5余2的等价类,q3:除以5余3的等价类,q4:除以5余4的等价类,接受状态qt3.状态转移表为(8){x|x{0,1}+且x的第十个字符为1}(设置一个陷阱状态,一旦发现x的第十个字符为0,进入陷阱状态)(9){x|x{0,1}+且x以0开头以1结尾}(设置陷阱状态,当第一个字符为1时,进入陷阱状态)(10){x|x{0,1}+且xxx至少含有两个1}(11){x|x{0,1}+且如果x以1结尾,则它的xx为偶数;如果x以0结尾,则它的xx为奇数}可将{0,1}+的字符串分为4个等价类。
形式语言与自动机理论-蒋宗礼-第四章参考答案
1.写出表示下列语言的正则表达式。
(吴贤珺02282047)⑴{0, 1}*。
解:所求正则表达式为:(0+1)*。
⑵{0, 1}+。
解:所求正则表达式为:(0+1)+。
⑶{ x│x∈{0,1}+ 且x中不含形如00的子串 }。
解:根据第三章构造的FA,可得所求正则表达式为:1*(01+)*(01+0+1)。
⑷{ x│x∈{0,1}*且x中不含形如00的子串 }。
解:根据上题的结果,可得所求正则表达式为:ε+1*(01+)*(01+0+1)。
⑸{ x│x∈{0,1}+ 且x中含形如10110的子串 }。
解:所求正则表达式为:(0+1)*10110(0+1)*。
⑹ { x│x∈{0,1}+ 且x中不含形如10110的子串 }。
解:根据第三章的习题,接受x的FA为:要求该FA对应的正则表达式,分别以q0、q1、q2、q3、q4为终结状态考虑:q为终态时的正则表达式:(0*(11*0(10)*(ε+111*11*0(10)*)0)*)*q为终态时的正则表达式:0*1(1*(0(10)*111*1)*(0(10)*00*1)*)*1q为终态时的正则表达式:0*11*0((10)*(111*11*0)*(00*11*0)*)*2q为终态时的正则表达式:0*11*0(10)*1(11*11*0((10)*(00*11*0)*)*1)*3q为终态时的正则表达式:0*11*0(10)*11(1*(11*0((00*11*0)*(10)*)*11)*)*4将以上5个正则表达式用“+”号相连,就得到所要求的正则表达式。
⑺ { x│x∈{0,1}+ 且当把x看成二进制数时,x模5与3同余和x为0时,│x│=1且x≠0时,x的首字符为1}。
解:先画出状态转移图,设置5个状态q0、q1、q2、q3、q4,分别表示除5的余数是0、1、2、3、4的情形。
另外,设置一个开始状态q.由于要求x模5和3同余,而3模5余3,故只有q3可以作为终态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.9
2.3.4
3.5.14
• (a):是上下文相关的,因为m,n,p之间必存在二者 相等的情况,如果a的个数确定了,则b或者c的个 数也是确定的。 • (b):是上下文相关的,因为当a的个数确定时,b和 c的个数是不能和a相同的,即n和p的取值有了限 制。 • (c):是上下文相关的,a的个数限定了b和c的个数。 • (d):是上下文相关的,当a和b的个数相等的情况下, 则限定了c的个数不能和a,b相同。 • (e):是上下文相关的,若要满足 |w1|=|w2|…..=|wn|>=2,则|w|的值限定了必须是可 被整除的数(素数)。Leabharlann 4.6.26.2.3
• 这五座城市A,B,C,D,E之间的最短 距离的路径为:ACBED,其中最短距离为 18.
a)语言{ww:w∈{a,b}*}的文法G=(V,∑,R,S)如下: V={S,a,b,A,B,C,Ta,Tb,Tc} ∑={a,b} R={ S -> CC, C -> AC | BC | Tc BTc -> Tcb ATc -> Tca Tc -> e } 或 文法G[S]: S→CD Ab→bA C→aCA Ba→aB C→bCB Bb→bB AD→aD C→ε BD→bD D→ε Aa→bD 或 S→aAS|bBS|aAE|bBE Aa→aA Ab→bA Ba→aB AE→Ea|a BE→Eb|b L(G)={ww|w∈{a,b}*}
4.1.10
• 功能是: • 首先找到第二个和第三个字符,要求不能 是空格,然后记录下,再分别填入之后的 第一个空格和第二个空格所位置。
4.3.3
• (1)把两个带头分别移动,第一个带头向左移动 到带头,第二个带头向右移动,直到发现空格为 止。 • (2)向右移动第一个带头,记录下字符的值。判 断有没有遇到空格,若遇到空格,则跳至(), 否则,跳至(3)。 • (3)向右移动第二个带头,并复制下已记录的字 符,再跳至(2)。 • (4)第一个带头遇到空格,说明w已经复制完, 故停机。