北京理工大学珠海学院《高等数学B》课程教学大纲

合集下载

高等数学B1课程教学大纲

高等数学B1课程教学大纲

《高等数学B1》课程教学大纲课程名称:高等数学(B1)课程代码:,课程类型:公共基础课学分: 5学分总学时:80 理论学时:80 实验(上机)学时:0先修课程:无适用专业:统招理工专类一、课程性质、目的和任务《高等数学》课程是针对我校理工类各专业专科层次学生讲授微积分的基础知识及其应用的一门重要的公共基础课。

它内容丰富,既为理工类专业后继课程提供基本的数学工具,又为学生进一步学好其它相关数学课程奠定基础,同时还具有培养学生应用数学的逻辑思维方法,分析并解决专业课相关问题的能力的任务,因此可以说《高等数学》是基础中的基础。

根据南山学院培养应用型人才的宗旨及专业特点,为使学生所学知识具有一定的可持续发展性,教学中应贯彻“以应用为目的,以必需够用为度”的原则,教学重点放在“掌握概念,强化应用,培养能力,提高素质”上,通过教学实现传授知识和发展能力的教学目的,而且要将能力培养贯穿到教学全过程。

教学过程中还要注意不同层次学生的不同要求,积极为学生终身学习搭建平台、拓展空间。

因此高等数学课程不仅是重要的基础课和工具课,更是一门素质课。

教学中要结合教学内容及学生特点,选择适宜的教学方法与教学手段,突出重点、化解难点,有意识、有目的、有重点地营造有利于学生能力发展的氛围,启发学生思维的拓展,促进学生能力的提高。

二、教学基本要求1、知识、能力、素质的基本要求:本课程要使学生获得的知识包括:函数、极限、连续、一元函数微积分学及其应用、常微分方程、向量与空间解析几何、多元函数微积分学及其应用等方面的基本概念、基本理论和基本运算技能。

从严格意义上讲,通过本课程的学习,逐步培养学生以下几方面的能力:比较熟练的基本运算能力、综合运用所学知识分析和解决实际问题的能力、抽象概括问题的能力、自主学习的能力以及一定的逻辑推理能力。

使学生在掌握数学知识的同时,能够理解数学思想、明晰数学方法、建立数学思维。

对不同专业的学生应有不同的要求。

高等数学B1课程大纲

高等数学B1课程大纲

《高等数学B》课程教学大纲一、课程基本信息二、教学目的《高等数学B》是理工类对数学要求相对较低的专业(如土木、城规专业)学生的一门必修的基础理论课,是后继专业课程的基础,学习此课程也是培养学生各种能力的必要途径。

通过本课程的学习,使学生系统地获得微积分、空间解析几何以及常微分方程的基本知识、掌握常用的运算方法。

培养学生用极限的方法、分析的方法、矢量的方法解决问题的能力。

培养学生具有一定的抽象思维能力、逻辑推理能力、空间想象能力以及综合分析、解决问题的能力。

并打下较高的理论水平的基础,使学生具备再学习的能力。

三、教学内容(一)第一章数学函数、极限与连续1、教学内容:(1)集合、常量与变量,一元函数的概念,函数的属性(有界性、单调性、奇偶性、周期性),反函数,基本初等函数的概念、性质及其图形,复合函数,初等函数,数学建模;(2)数列极限;(3)函数极限;(4)无穷小与无穷大,无穷小与极限之间的关系,无穷小与无穷大之间的关系;(5)极限的运算法则;(6)极限存在准则,两个重要极限;(7)无穷小的比较;(8)函数的连续性,函数的间断点及其类型;(9)连续函数的运算定理,初等函数的连续性;(10)闭区间上连续函数的基本性质。

2、教学目的与要求:(1)理解函数的概念,理解初等函数的基本性质:单调性、有界性、周期性、奇偶性;(2)理解复合函数、分段函数的概念,了解反函数及隐函数的概念;(3)熟练掌握基本初等函数的图形及性质;(4)掌握数学建模的步骤及思想;(5)会建立基本的、简单的、生活中常见的数学模型;(6)理解极限的概念,了解极限的ε-δ,ε-N定义(对于给出的ε,求N或δ,不做过高要求)并逐步加深对极限过程的理解。

(7)理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系;(8)掌握极限的运算法则,了解极限存在的两个准则,会运用两个重要极限求函数的极限;(9)了解无穷小的概念,熟练掌握无穷小的比较;(10)理解函数的连续性的概念,会判别函数间断点的类型;(11)理解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)并会熟练应用这些性质。

《高等数学》(B)教学大纲

《高等数学》(B)教学大纲

《高等数学》(B)教学大纲课程代码: 12203课程名称:《高等数学》(B)英文名称:Advanced Mathematics (B)课程总学时:80学时(其中理论课80 学时,实验0 学时)学分: 5课程类别:必修课课程性质:公共基础课先修课程:面向专业:经贸系、管理系各专业开课单位:基础学科部一、课程的性质、地位和任务1.课程性质:《微积分》课程是高等文科类本科各专业学生的一门必修的重要基础课。

是为培养合格的,符合社会主义市场经济要求的应用型人才所必须具备的数学素质教育的主干课程。

2.教学任务:通过本课程的学习,使学生系统地获得微积分及常微分方程等数学基础知识和常用的数学方法,并使学生能够比较熟练的应用所学知识对实际问题进行理论抽象、逻辑推理及数值模拟,从而使学生受到用数学方法分析和建立数学模型,解决实际问题能力的初步训练;通过本课程的学习可以培养学生的基本运算能力,增强学生用定性与定量相结合的方法处理解决经济管理等领域实际问题的能力,为培养学生良好的数学素质和为后继课程的学习奠定基础。

二、课程的教学目标(一)理论、知识方面理解下列基本概念以及它们之间的内在联系:函数、极限、连续、导数、微分、不定积分、微分方程、定积分、偏导数、全微分。

正确理解并牢固掌握下列基本定理和公式:拉格朗日中值定理、牛顿—莱布尼兹公式、基本初等函数的导数公式、基本积分公式。

熟练运用下列法则和方法:函数的和、差、积、商的求导法则、复合函数的求导法则、第一换元积分法、分部积分法、可分离变量的一阶微分方程的解法,一阶线性微分方程的解法。

会运用微积分和常微分方程的知识和方法,解决一些简单的实际问题和经济问题。

(二)能力、技能方面本课程是经济管理类学生必修的基础理论课。

通过学习,使学生获得一元函数微积分学的基本概念、基本理论、基本运算技能以及多元函数微分学的初步知识。

为学习后继课程奠定必要的数学基础,同时培养学生的自学能力,逐步学会用科学的方法解决问题。

《高等数学B1》课程教学大纲

《高等数学B1》课程教学大纲

《高等数学B1》课程教学大纲一、课程基本信息二、课程教学目标《高等数学B1》(微积分)国家教委在高校财经类专业中设置的核心课程之一。

通过本课程的学习,可使学生比较系统地获得函数、微积分等方面的概念、基本理论和基本运算技能,为学习后续课程奠定必要的数学基础;使学生获得从事经济管理技术教育或研究所必需的微积分知识;学会运用变量数学的方法分析研究经济现象中的数量关系;逐步培养学生抽象思维和逻辑推理的能力、空间想象能力和运算能力;树立辩证唯物主义观点和创新意识。

1.学好基础知识。

理解和掌握课程中的基本概念和基本理论,知道它的思想方法、意义和用途,以及它与其它概念、规律之间的联系。

2.掌握基本技能。

能够根据法则、公式正确地进行运算。

能够根据问题的情景,寻求和设计合理简捷的运算途径。

3.培养思维能力与想象能力。

能够对研究的对象进行观察、比较、抽象和概括。

能运用课程中的概念、定理及性质进行合乎逻辑的推理。

能对计算结果进行合乎实际的分析、归纳和类比。

4.提高解决实际问题的能力。

对于简单应用问题会列出定解问题求解,能够将本课程与相关课程有机地联系起来,提出并解决相关学科中与本课程有关的问题。

能够自觉地用所学知识去观察生活,建立简单的数学模型,提出和解决生活中有关的数学问题。

三、教学学时分配《高等数学B1》课程理论教学学时分配表*理论学时包括讨论、习题课等学时。

四、教学内容和教学要求第一章函数(8学时)(一)教学要求1.理解函数的概念,掌握函数的表示法。

了解函数的有界性、单调性、周期性和奇偶性。

会建立简单应用问题中的函数关系。

2.了解反函数及隐函数的概念,理解复合函数和分段函数的概念。

掌握基本初等函数的性质及其图形,了解初等函数的概念。

3.掌握常用的经济函数关系式。

(二)教学重点与难点教学重点:函数、复合函数和初等函数的概念教学难点:复合函数的概念(三)教学内容第一节函数概念1.常量与变量2.函数的概念3. 函数的表示方法第二节函数的简单性质1.单调性2.奇偶性3. 有界性4. 周期性第三节反函数1. 反函数的概念2. 反三角函数第四节初等函数1. 基本初等函数2. 复合函数3. 初等函数第五节经济学中常用的函数1. 需求函数与供给函数2. 成本函数、收益函数与利润函数本章习题要点:复合函数的分解与复合,经济函数第二章极限与连续(12学时)(一)教学要求1.了解数列极限和函数极限(包括左极限与右极限)的概念。

《 高等数学B 》课程教学大纲

《 高等数学B 》课程教学大纲

《高等数学B 》课程教学大纲Advanced Mathematics B课程简介(中文):高等数学是近代数学的基础,也是高等学校工科各专业学生的一门必修的基础理论课。

它在现代工程技术、经济管理和人文科学等各领域中具有广泛的应用。

本课程以微积分学为核心内容。

首先在极限的基础上建立了连续、导数、不定积分和定积分的概念和应用。

在此基础上结合空间解析几何建立了多元函数微积分学的基本概念和应用。

此外还介绍了微积分学的两个应用分支:微分方程和无穷级数。

课程简介(英文):Advanced Mathematics is the foundation of modern mathematics, and is a compulsory public basic theory course for all majors of science and engineering. It has a wide range of applications in modern engineering technology, economic management, humanities and other areas. This course takes calculus as its core content. First, on the basis of limit, the concepts and applications of continuity, derivatives, indefinite and definite integrals are established. Combined with the geometry of space, the basic concepts and applications of multivariate calculus are also established. Moreover, two branches of application are introduced: differential equations and infinite series.一、课程目的通过本课程的学习,使学生对极限的思想和方法有进一步的认识,对具体与抽象、特殊与一般、有限与无限等辩证关系有初步的了解,要使学生获得:1. 函数、极限、连续;2. 一元函数微积分学;3. 常微分方程;4. 向量代数和空间解析几何;5. 多元函数微积分学;等方面的基本概念、基本理论和基本运算技能,使学生了解整个微积分体系的构建和应用并为学习后继课程和进一步获得数学知识奠定必要的数学基础。

《高等数学B》课程教学大纲

《高等数学B》课程教学大纲

合重要作用,了解本学科中学教学领域的一些新研究成果和教学方法;掌握教育学、心理学和数学教育的基本理论,熟悉中小学教学技能以及教育法规;学习人类文明进步与文化发展的通识知识。

具有整合数学、教育技术、教育学、心理学及本学科的知识和教育技术并进行知识与技能重构的能力。

2、32.4教学能力具备良好的数学素养,深入理解高等数学并掌握的基本理论和方法,并能获得较强的逻辑推理能力和抽象思维能力。

初步掌握高等数学的基本思想方法,具有分析问题、解决实际问题等基本能力;具有较强的独立学习能力和创新思维方式,懂得教育教学基本规律,掌握现代教育教学、心理学的基本理论。

课程学习目标1、2、3三、课程各要素与课程学习目标的对应关系及达成度分析(一)课程教学内容、教学目标、学时分配与课程学习目标的对应关系第一章函数、极限与连续(可支撑课程学习目标1、2、3)1 . 教学目的和要求掌握集合及其运算、邻域、基本初等函数及初等函数的基本概念;数列、函数极限的基本概念、求极限的基本方法及极限的性质及其证明;两个重要极限的应用;无穷大与无穷小的基本概念及其关系、无穷小阶的比较;函数的连续性及其性质。

2 . 教学内容第1.1节:集合与函数第1.2节:数列极限的定义与计算第1.3节:函数极限的定义与计算第1.4节:极限性质第1.5节:两个重要极限第1.6节:无穷小与无穷大第1.7节:函数的连续性及其性质3 . 重点:数列极限的概念及性质,函数极限的概念与性质,函数极限与数列极限的关系,极限存在准则两个重要极限和闭区间上连续函数的性质4 . 难点:难点是数列极限与函数极限的概念。

5 . 参考习题:习题1-1:第1(4)、2、3、4题(3、5、6)、6(2、5-8)、9-11、14-15题习题1-2:第2(2-10)、3题习题1-3:第1(3、5、6、8-14)、2-4题习题1-5:第1-3(1)题习题1-6:第2-4题习题1-7:第1-12题6 . 学时:20学时第二章一元函数微分学及其应用(可支撑课程学习目标1、2、3)1 . 教学目的和要求掌握导数的基本概念及基本求导公式;求导数、高阶导数的方法与技巧;掌握微分的基本概念及微分的求法;掌握微分中值定理的内容、证明方法及其应用;熟练掌握函数单调性的判别方法、求函数的单调区间与极值、凹凸区间与拐点,求函数的最值、曲率,并可以解决一些简单的实际问题2 . 教学内容第2.1节:导数的概念及基本求导公式第2.2节:导数的计算法则第2.3节:微分的概念应用第2.4节:微分中值定理及其应用第2.6节:函数的性态与图形第2.7节:微分学的实际应用3.重点:导数的定义,函数的求导法则及函数的微分, 微分中值定理,洛必达法则,函数的单调性与凹凸性,函数的极值与最值;4.难点:复合函数的求导法则,反函数及参数方程求高阶导数,微分中值定理及其应用,函数图形的描绘。

《高等数学B》教学大纲【模板】

《高等数学B》教学大纲【模板】

《高等数学B》教学大纲课程名称:高等数学B(Advanced Mathematics B)课程编码:******学分:8总学时:128学时适用专业:地化、计科、生工、应心、食安等先修课程:中学数学执笔人:XXX审订人:XXX一、课程的性质、目的与任务“高等数学”是理工科本科学生的一门必修的重要基础理论课。

通过本课程的学习,要使学生获得:1、函数与极限;2、一元函数微积分学;3、微分方程;4、向量代数与空间解析几何;5、多元函数微积分学;6、无穷级数(包括傅立叶级数)等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获取数学知识奠定必要的数学基础。

在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力和自学能力,还要特别注意培养学生综合运用所学知识分析问题和解决问题的能力。

二、教学基本要求教学要求中,教学要求较高的内容用“理解”、“掌握”、“熟悉”等词表述,要求较低的内容用“了解”、“会”、“知道”等词表述。

未给出学时分配的章节是书中带﹡号的内容。

三、教学内容与学时分配第一章函数、极限与连续 16学时§1.1 函数 2学时§1.2 数列的极限 2学时§1.3 函数的极限 2学时§1.4 极限的运算法则 2学时§1.5 极限存在准则与重要极限 3学时§1.6 无穷小的比较 1学时§1.7 函数的连续性 2学时§1.8 闭区间上连续函数的性质 2学时本章要求:1. 理解函数的概念及函数的几种特性。

2. 理解复合函数和反函数的概念。

3. 熟悉基本初等函数的性质及其图形。

4. 会建立实际问题中变量之间的函数关系。

5. 了解极限的概念,掌握极限运算法则。

6. 理解极限存在的夹逼准则、单调有界准则,掌握两个重要极限及其应用。

7. 理解无穷小、无穷大的概念,掌握利用等价无穷小求极限的方法。

《高等数学B2》课程教学大纲与要求【模板】

《高等数学B2》课程教学大纲与要求【模板】

《高等数学B2》课程教学大纲与要求二、课程简介《高等数学》是经济类和管理类专业学生的一门必修的重要公共基础课,它是为提升相关专业学生的计算能力和理性思考能力服务的,它是达到应用型人才培养目标必不可少的。

通过本课程的学习,使学生获得基本概念、基本理论和基本运算技能,为学习后继课程及进一步获取数学知识奠定必要的数学基础,于是数学教育在培养高素质经济和管理人才中越来越显示出其独特的、不可替代的重要作用。

三、课程目标1、知识与技能目标:通过本课程的学习,使学生具有一定的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,了解函数、极限、连续、一元函数的导数(微分)、积分等基本概念以及相关的性质,掌握一元函数极限计算、导数的计算及应用、定积分的基本计算。

2、过程与方法目标:在学生学习本课程的过程中,要通过各个教学环节逐步培养学生的基本运算能力,增强学生用定性与定量相结合的方法处理经济问题的初步能力,培养和提高学生的逻辑思维能力,空间想象能力及综合运用所学知识分析和解决实际问题的能力。

3、情感、态度与价值观发展目标:通过本课程的学习,培养学生的数学素养和人文素养。

通过数学的严格规范训练,培养学生的严谨科学态度,养成严谨求实的学风、善于质疑和独立思考的习惯。

培养学生坚持不懈的学习精神,严谨治学的科学态度和积极向上的价值观,为未来的学习、工作和生活奠定良好的基础。

四、与前后课程的联系该课程的前提数学基础为高中的初等数学,后续课程为《线性代数》、《概率论与数理统计》等,为学生后续学习相关学科打基础,也将会成为经济类专业学生进行经济分析的有用的工具。

五、教材选用与参考书1、选用教材:(1)、《高等数学(经管类)》,曾金平、张忠志主编,湖北科学出版社,2014,第一版。

(2)、《高等数学学习指导》,曾金平、张忠志主编,湖北科学出版社,2014,第一版。

2、推荐参考书:(1)、《高等数学》(上、下册),**大学应用数学系编,高等教育出版社,2002,第五版。

高等数学B1---教学大纲

高等数学B1---教学大纲

《高等数学B1》课程教学大纲课程代码:090011041课程英文名称:Advanced Mathematics B1课程总学时:64 讲课:64 实验:0 上机:0适用专业:全校各适用专业大纲编写(修订)时间:2017.11一、大纲使用说明(一)课程的地位及教学目标本课程是一门重要公共基础课,通过本课程的学习,可以使学生获得本课程的基本内容和基本的数学思想方法,培养学生的抽象思维能力、分析问题和解决问题的能力,是进一步学好其它理工学科课程的重要基础。

本课程的研究对象是函数(变化过程中量的依赖关系)。

内容包括函数、极限、连续,一元函数微积分学。

(二)知识、能力及技能方面的基本要求通过本课程的学习,要使学生掌握微积分学的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。

要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。

(三)实施说明1.本大纲适用于学习公共基础课《高等数学》科目的全校各适用专业的本科生。

2.因教学学时所限,课堂教学要做到突出重点,精讲难点,有针对性地解决理论与实际应用中可能遇到的基本数学问题。

教师在授课中可酌情安排各部分的学时,课时分配表仅供参考。

3.注意知识的内在联系与融合贯通,注意采用课堂讲授、讨论、多媒体教学相结合的教学方式,启发学生自学并不断积累学科前沿最新知识,学会独立思考,独立提出问题与独立解决问题的能力。

4.对于与其它课程交叉部分的内容,要分工明确,突出本课程在课程设置中的地位、作用与特色。

(四)对先修课的要求本课程对先修课没有要求,学生只需具备初等数学知识。

(五)对习题课、实践环节的要求习题的选取应体现本课程的基本概念、基本原理,并应结合实际的应用,使学生理解和消化所学的知识,考察并提高掌握知识的质量与解决问题的能力。

(六)课程考核方式1.考核方式:考试2.考核目标:在考核学生基本知识、基本原理和方法的基础上,重点考核学生用高等数学的解题思想去解决数学中的其它问题以及其它实际问题的能力。

高等数学B课程教学大纲-高等数学

高等数学B课程教学大纲-高等数学

《高等数学B》课程教学大纲(180学时,10学分)一、课程的性质、目的和任务高等数学B是工科本科各专业学生的一门必修的重要基础理论课,它是为培养我国社会主义现代化建设所需要的高质量专门人才服务的。

通过本课程的学习,要使学生获得:1.函数与极限;2.一元函数微积分学;3.向量代数和空间解析几何;4.多元函数微积分学;5.无穷级数(包括傅立叶级数);6.常微分方程等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获取数学知识奠定必要的数学基础。

在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力和自学能力,还要特别注意培养学生具有综合运用所学知识去分析问题和解决问题的能力。

二、总学时与学分本课程安排分为高等数学B(一)、B(二)两学期授课,总学时为90+90,学分为5+5。

三、课程教学的基本要求及基本内容说明:教学要求较高的内容用“理解”、“掌握”、“熟悉”等词表述,要求较低的内容用“了解”、“会”等词表述。

高等数学B(一)一、函数、极限、连续1. 理解函数的概念及函数的奇偶性、单调性、周期性和有界性。

2. 理解复合函数和反函数的概念。

3. 熟悉基本初等函数的性质及其图形。

4. 会建立简单实际问题中的函数关系式。

5. 理解极限的概念(对极限的ε-N、ε-δ定义可在学习过程中逐步加深理解,对于给出ε求N或δ不作过高的要求。

),掌握极限四则运算法则及换元法则。

6. 理解极限存在的夹逼准则,了解单调有界准则,会用两个重要极限求极限。

7. 了解无穷小、无穷大以及无穷小的阶的概念。

会用等价无穷小求极限。

8. 理解函数在一点连续和在一个区间上连续的概念,了解间断点的概念,并会判别间断点的类型。

9. 了解初等函数的连续性和闭区间上连续函数的性质(介值定理和最大、最小值定理)。

二、一元函数微分学1. 理解导数和微分的概念,理解导数的几何意义及函数的可导性与连续性之间的关系。

高等数学B2教学大纲

高等数学B2教学大纲

《高等数学B》课程教学大纲(英文名称Advanced Mathematics)一、课程说明课程编码:0249052,课程总学时(理论总学时/实践总学时)64/0+68/0(64/0+68/0)、周学时(理论学时/实践学时)(4/0+4/0)、学分4+4 、开课学期1、2学期。

1.课程性质:专业必修课2.适用专业与学时分配:适用于化学、应用化学、环境科学等专业。

教学内容与时间安排表(第二学期)3.课程教学目的与要求:开设本课程的目的是使学生系统地获得微积分、空间解析几何以及常微分方程的基本知识、掌握常用的运算方法。

培养学生用极限的方法、分析的方法、矢量的方法解决问题的能力。

培养学生具有一定的抽象思维能力、逻辑推理能力、空间想象能力以及综合分析、解决问题的数学思维能力;为后续课程的学习打下较高的理论基础,使学生具备再学习的能力。

4.本门课程与其它课程关系:高等数学课程是高等学校非数学专业学生的一门必修的重要基础理论课,为学生学习后继课程和进一步获得数学知识奠定必要的数学基础,它是为培养现代社会所需要的高质量专门人才服务的。

5.推荐教材及参考书:教材:《高等数学》(本科少学时类型)(第三版)上册、下册,同济大学应用数学系编,高等教育出版社,2006年7月。

参考书:《高等数学》(第六版)上册、下册,同济大学应用数学系编,高等教育出版社,2007年4月。

6.课程教学方法与手段:课程以教师课堂讲授为主,但教学方式可根据教学内容较灵活变化。

在每章结束后通过单元测试、习题讲授、问题讨论和作业练习等形式巩固和扩展所学知识。

7.课程考试方法与要求:本课程考核方法为平时加期末考试,其中期末考试为闭卷笔试,占总成绩60%~70%左右,期末试卷一律实行A、B卷(含标准答案、评分标准)。

凡平行班试卷须统一。

平时占总成绩的30%~40%左右,平时成绩由各上课老师根据教学实施过程学生的学习情况给分。

二、教学内容纲要第二学期第六章微分方程(10学时)1.主要内容:第一节微分方程的基本概念第二节可分离变量的微分方程第三节一阶线性微分方程第四节可降阶的高阶微分方程第五节二阶常系数齐次线性微分方程第五节二阶常系数非齐次线性微分方程2.基本要求:(1)了解微分方程、解、通解、初始条件和特解等概念。

高等数学B课程教学大纲

高等数学B课程教学大纲

《高等数学B》课程教学大纲Advanced Mathematics B课程代码:03100B01,03100B02 课程性质:公共基础理论课(必修)适用专业:工商、会计等经管类各专业开课学期:1、2总学时数:128 总学分数:8修订年月:2016年1月执笔:宋常修李锋课程简介(中文):高等数学是近代数学的基础,也是高等学校工科各专业学生的一门必修的基础理论课。

它在现代工程技术、经济管理和人文科学等各领域中具有广泛的应用。

本课程以微积分学为核心内容。

首先在极限的基础上建立了连续、导数、不定积分和定积分的概念和应用。

在此基础上结合空间解析几何建立了多元函数微积分学的基本概念和应用。

此外还介绍了微积分学的两个应用分支:微分方程和无穷级数。

课程简介(英文):Advanced Mathematics is the foundation of modern mathematics, and is a compulsory public basic theory course for all majors of science and engineering. It has a wide range of applications in modern engineering technology, economic management, humanities and other areas. This course takes calculus as its core content. First, on the basis of limit, the concepts and applications of continuity, derivatives, indefinite and definite integrals are established. Combined with the geometry of space, the basic concepts and applications of multivariate calculus are also established. Moreover, two branches of application are introduced: differential equations and infinite series.一、课程目的通过本课程的学习,使学生对极限的思想和方法有进一步的认识,培养学生用数学的方法去解决实际问题的意识、兴趣,用定性与定量相结合的方法处理经济问题的能力,为学生今后在其各个专业方向的深入发展打下牢固的数学基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必须有所知,否则不如死。

——罗曼·罗兰
北京理工大学珠海学院
《高等数学B》课程教学大纲
课程编号:
课程名称:高等数学B Advanced Mathematics(B)
学分:8 学时:128
一、目的与任务
1.课程性质:必修课
2.课程类别:公共基础课
3.目的与任务:
《高等数学B》本课程是高等学校经济类与管理类专业的一门必修的重要基础理论课。

通过本课程的学习,应使学生获得一元函数微积分及其应用、多元函数微积分及其应用、无穷级数、常微分方程与差分方程、向量代数与空间解析几何等方面的基本概念、基本理论、基本方法和运算技能,为今后学习各类后继课程和进一步扩大数学知识面奠定必要的数学基础。

教学过程中,要将数学知识与其经济应用有机结合。

在传授知识的同时,要注意培养学生进行抽象思维和逻辑推理的理性思维能力,综合运用所学的知识分析问题和解决问题的能力以及较强的自主学习能力,逐步培养学生的探索精神和创新能力。

通过本课程的学习,不仅使学生获得一种工具,一种知识,一种科学,更使学生获得一种思维模式,一种素养,一种文化。

形成良好的数学素养,为今后学习、工作奠定必要的数学基础。

二、教学内容、要求及学时分配
根据教育部最新制定的经济管理类本科数学基础课程教学基本要求,结合北京理工大学珠海学院的实际,确定本课程的教学大纲。

课程的内容按教学要求的不同,分为两个层次:
(1)应使学生深入领会和掌握,并能熟练运用--其中,概念、理论用"理解"一词表述,方法、运算用"掌握"一词表述;
(2)在教学要求上低于前者--其中,概念、理论用"了解"一词表述,方法、运算用"会" 一词表述。

本课程教学内容分七个部分,各部分教学基本内容及其基本要求如下:
1. 函数、极限、连续(14学时)
(1) 在中学已有函数知识的基础上,加深对函数概念的理解和对函数基本性态(奇偶性、周期性、单调性和有界性)的了解。

(2) 会建立简单的经济问题的函数关系式;了解经济学中常用的一些函数。

(3) 理解复合函数的概念;了解反函数的概念,理解初等函数的概念。

(4) 掌握基本初等函数的性质及其图形。

(5) 理解数列极限和函数极限的概念,了解极限的定义(不要求学生做给出求或的习题)。

(6) 掌握极限的四则运算法则,会用变量代换求某些简单复合函数的极限。

(7) 了解极限存在的两个准则(夹逼准则和单调有界准则);了解两个重要极限与 ,并会用它们求一些相关的极限。

(8) 了解无穷大、无穷小、高阶无穷小和等价无穷小的概
念;会用等价无穷小求极限。

(9) 理解函数连续的概念;了解函数间断点的概念, 会判断间断点的类型。

(10) 了解初等函数的连续性和闭区间上连续函数的性质(最大值、最小值定理和有界性定理、零点定理和介值定理)。

2. 一元函数微分学(26学时)
(1) 理解导数的概念及其几何意义和经济意义(含边际与弹性的概念),了解函数的可导性与连续性之间的关系,会应用导数求解简单的经济管理中的问题。

(2) 掌握基本初等函数的求导公式;掌握导数的四则运算法则和复合函数求导法则;了解反函数的求导法则;掌握隐函数的求导方法。

(3) 了解高阶导数的概念,掌握初等函数的一阶、二阶导数的求法。

了解几个常见的函数的n阶导数的一般表达式。

(4) 理解微分的概念,了解微分概念中包含的局部线性化思想,了解微分的四则运算法则和一阶微分的形式不变性。

(5) 理解罗尔(Rolle)定理、拉格朗日(Lagrange)定理,了解柯西(Cauchy)中值定理。

(6) 会用洛必达(L'Hospital)法则求不定式的极限。

(7) 了解泰勒(Taylor)定理及用多项式逼近函数的思想(对定理的证明及利用泰勒定理证明相关问题不作要求)。

(8) 理解函数的极值概念,掌握利用导数判断函数的单调性和求极值的方法。

会求解经济管理问题中的最大值与最小值的应用问题。

(9) 会用导数判断函数图形的凹凸性,会求拐点,会描绘一些简单函数的图形(包括水平和铅直渐近线)。

3. 一元函数积分学(24学时)
(1) 理解原函数与不定积分的概念;掌握不定积分的性质;了解原函数存在定理。

(2) 掌握不定积分的基本公式。

(3) 掌握不定积分的换元积分法和分部积分法(淡化特殊积分技巧的训练,对于求有理函数积分的一般方法不作要求,对于一些简单有理函数的积分可作为两类积分法的例题作适当训练)。

(4) 理解定积分的概念及几何意义(对于利用定积分定义求定积分与求极限不作要求);了解定积分的基本性质和积分中值定理。

(5) 理解变上限积分函数及其求导定理,掌握牛顿-莱布尼茨(Newton-Leibniz)公式。

(6) 掌握定积分的换元积分法与分部积分法。

(7) 掌握实际问题中建立定积分表达式的元素法(微元法),会建立某些简单的几何问题及经济问题的定积分表达式。

(8) 了解两类反常积分及其收敛性的概念;了解函数的概念,掌握计算反常积分的方法。

4. 无穷级数(14学时)
(1) 理解无穷级数收敛、发散以及收敛级数和的概念;了解无穷级数的基本性质及收敛的必要条件。

(2) 掌握几何级数与 p-级数的敛散性,会正项级数的比较审敛法,掌握正项级数的比值审敛法。

(3) 会使用交错级数的莱
布尼茨定理;了解绝对收敛与条件收敛的概念及二者的关系。

(4) 掌握简单幂级数收敛区间的求法(区间端点的收敛性不作要求);了解幂级数在其收敛区间内的一些基本性质,会求一些简单的幂级数的和函数。

(5) 会用的麦克劳林(Maclaurin)展开式将一些简单的函数展开成幂级数。

(6) 了解一些无穷级数在经济中的应用。

5.向量代数与空间解析几何(12学时)
(1) 理解空间直角坐标系的有关概念,会求空间两点间的距离;理解向量的概念及其表示。

(2) 掌握向量的运算(线性运算、数量积、向量积),了解两个向量垂直、平行的条件。

(3)掌握单位向量、方向余弦及向量的坐标表达式,掌握用坐标表达式进行向量运算的方法。

(4) 掌握平面的方程和直线的方程及其求法。

(5) 了解曲面方程及空间曲线方程的概念;了解常用二次曲面的方程及其图形;了解空间曲线的参数方程和一般方程;了解空间曲线在坐标面上的投影。

6. 多元函数微积分学(24学时)
(1) 理解二元函数的概念及几何意义;了解多元函数的概念。

(2) 了解二元函数的极限与连续的概念;了解有界闭区域上二元连续函数的性质。

(3) 理解二元函数偏导数与全微分的概念;了解全微分存在的必要条件与充分条件。

掌握求偏导数和全微分的方法。

(4) 掌握复合函数一阶偏导数的求法,会求复合函数的二阶偏导(对抽象复合函数的二阶偏导数,只作简单训练)。

(5) 会求由一个方程确定的隐函数的一阶偏导数。

(6) 理解二元函数极值与条件极值概念;会求二元函数的极值;会用拉格朗日乘数法求实际问题的条件极值;会求解比较简单的最大值和最小值问题。

(7) 理解二重积分的概念及几何意义;了解二重积分性质。

(8) 掌握二重积分的计算方法(直角坐标,极坐标);会计算无界域上的较简单的反常二重积分。

(9) 了解三重积分的概念及计算。

(10)会用多元函数的微积分知识解决一些简单的经济问题。

7. 微分方程和差分方程(14学时)
(1) 了解微分方程与差分方程的一些基本概念。

(2) 掌握可分离变量微分方程及一阶线性微分方程的求解方法。

(3) 掌握齐次方程的求解方法,并从中领会用变量代换求解微分方程的思想。

(4) 掌握一阶常系数齐次线性差分方程的求解方法;掌握简单的一阶常系数非齐次线性差分方程的求解方法。

(5) 会用降阶法求三种类型的高阶方程
(6) 了解二阶线性微分方程和差分方程解的结构;会求解二阶常系数的齐次线性微分方程和差分方程;会求解一些简单的二阶常系数的非齐次线性微分方程和差分方程。

(7) 会通过建立微分方程和差分方程模型,解
决一些简单的经济问题。

三.考核与成绩评定
考核方式:考试课、闭卷考试
成绩评定:
无期中考试:总成绩=平时成绩20%+期末成绩80%
有期中考试:总成绩=平时成绩20%+期中成绩10%+期末成绩70%四、大纲说明
先修课程:无
适用专业:经济管理类各专业
适用对象:大学一年级学生
五、教科书参考书
《高等数学》(经济管理类)孙洪波等中国铁道出版社
基础部数学教研室
2008-6-10
必须有所知,否则不如死。

——罗曼·罗兰
1
必须有所知,否则不如死。

——罗曼·罗兰。

相关文档
最新文档