高三数学一轮复习教案:数列
2024届高考一轮复习数学教案(新人教B版):子数列问题
§6.7子数列问题子数列问题包括数列中的奇偶项、公共数列以及分段数列,是近几年高考的重点和热点,一般方法是构造新数列,利用新数列的特征(等差、等比或其他特征)求解原数列.题型一奇数项与偶数项例1(2023·南通模拟)在数列{a n}中,a n 2n-1,n为奇数,2n,n为偶数.(1)求a1,a2,a3;(2)求数列{a n}的前n项和S n.解(1)因为a n 2n-1,n为奇数,2n,n为偶数,所以a1=2×1-1=1,a2=22=4,a3=2×3-1=5.(2)因为a n 2n-1,n为奇数,2n,n为偶数,所以a1,a3,a5,…是以1为首项,4为公差的等差数列,a2,a4,a6,…是以4为首项,4为公比的等比数列.当n为奇数时,数列的前n项中有n+12个奇数项,有n-12个偶数项.所以S n=a1+a2+a3+…+a n=(a1+a3+…+a n-2+a n)+(a2+a4+…+a n-3+a n-1)=n+12×1+n+12n+12-12×4+1241414n-(-)-=n2+n2+2n+1-43;当n为偶数时,数列{a n}的前n项中有n2个奇数项,有n2个偶数项.所以S n=a1+a2+a3+…+a n=(a1+a3+…+a n-3+a n-1)+(a2+a4+…+a n-2+a n)=n2×1+n2n2-12×4+241414n(-)-=n2-n2+2n+2-43.所以数列{a n}的前n项和S n n2+n2+2n+1-43,n为奇数,n2-n2+2n+2-43,n为偶数.思维升华解答与奇偶项有关的求和问题的关键(1)弄清n 为奇数或偶数时数列的通项公式.(2)弄清n 为奇数时数列前n 项中奇数项与偶数项的个数.跟踪训练1(2021·新高考全国Ⅰ)已知数列{a n }满足a 1=1,a n +1n +1,n 为奇数,n +2,n 为偶数.(1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式;(2)求{a n }的前20项和.解(1)因为b n =a 2n ,且a 1=1,a n +1n +1,n 为奇数,n +2,n 为偶数,所以b 1=a 2=a 1+1=2,b 2=a 4=a 3+1=a 2+2+1=5.因为b n =a 2n ,所以b n +1=a 2n +2=a 2n +1+1=a 2n +1+1=a 2n +2+1=a 2n +3,所以b n +1-b n =a 2n +3-a 2n =3,所以数列{b n }是以2为首项,3为公差的等差数列,b n =2+3(n -1)=3n -1,n ∈N +.(2)因为a n +1n +1,n 为奇数,n +2,n 为偶数,所以当k ∈N +时,a 2k =a 2k -1+1=a 2k -1+1,即a 2k =a 2k -1+1,①a 2k +1=a 2k +2,②a 2k +2=a 2k +1+1=a 2k +1+1,即a 2k +2=a 2k +1+1,③所以①+②得a 2k +1=a 2k -1+3,即a 2k +1-a 2k -1=3,所以数列{a n }的奇数项是以1为首项,3为公差的等差数列;②+③得a 2k +2=a 2k +3,即a 2k +2-a 2k =3,又a 2=2,所以数列{a n }的偶数项是以2为首项,3为公差的等差数列.所以数列{a n }的前20项和S 20=(a 1+a 3+a 5+…+a 19)+(a 2+a 4+a 6+…+a 20)=10+10×92×3+20+10×92×3=300.题型二两数列的公共项例2数列{a n }与{b n }的通项公式分别为a n =4n -1,b n =3n +2,它们的公共项由小到大排列组成数列{c n },求数列{c n }的通项公式.解方法一设a k =b m =c p ,则4k -1=3m +2,所以k =3(m +1)4,因为3,4互质,所以m +1必为4的倍数,即m =4p -1,所以c p =b m =3(4p -1)+2=12p -1,即数列{c n }的通项公式为c n =12n -1.方法二由观察可知,两个数列的第一个公共项为11,所以c 1=11.设a k =b m =c p ,则4k -1=3m +2,所以a k +1=4(k +1)-1=4k +3=3m +6=2不是数列{b n }中的项,a k +2=4(k +2)-1=4k +7=3m +10=2不是数列{b n }中的项,a k +3=4(k +3)-1=4k +11=3m +14=3(m +4)+2是数列{b n }中的项.所以c p +1=a k +3,则c p +1-c p =a k +3-a k =3×4=12,所以数列{c n }是等差数列,其公差为12,首项为11,因此,数列{c n }的通项公式为c n =12n -1.思维升华解决两个等差数列的公共项问题时,有两种方法:(1)不定方程法:列出两个项相等的不定方程,利用数论中的整除知识,求出符合条件的项,并解出相应的通项公式;(2)周期法:即寻找下一项.通过观察找到首项后,从首项开始向后,逐项判断变化较大(如公差的绝对值大)的数列中的项是否为另一个数列中的项,并找到规律(周期),分析相邻两项之间的关系,从而得到通项公式.跟踪训练2(1)已知数列{a n },{b n }的通项公式分别为a n =4n -2(1≤n ≤100,n ∈N +),b n =6n -4(n ∈N +),由这两个数列的公共项按从小到大的顺序组成一个新的数列{c n },则数列{c n }的各项之和为()A .6788B .6800C .6812D .6824答案B解析由题意可得a 1=b 1=2,等差数列{a n }的公差为4,且a 100=398,等差数列{b n }的公差为6,且b 100=596,易知数列{c n }为等差数列,且公差为数列{a n }和{b n }公差的最小公倍数,由于4和6的最小公倍数为12,所以等差数列{c n }的公差为12,则c n =2+12(n -1)=12n -10,n ≤a 100,n ≤b 100,∈N +,n -10≤398,n -10≤596,∈N +,解得n ≤34,n ∈N +,所以等差数列{c n }共有34项,则该数列各项之和为34×2+34×332×12=6800.(2)我国古代数学名著《孙子算经》载有一道数学问题:“今有物不知其数,三三数之剩二,五五数之剩二,七七数之剩二,问物几何?”根据这一数学问题,所有被3除余2的自然数从小到大排列组成数列{a n },所有被5除余2的自然数从小到大排列组成数列{b n },把{a n }和{b n }的公共项从小到大排列得到数列{c n },则()A .a 3+b 5=c 3B .b 28=c 10C .a 5b 2>c 8D .c 9-b 9=a 26答案B解析根据题意,数列{a n }是首项为2,公差为3的等差数列,a n =2+3(n -1)=3n -1,数列{b n }是首项为2,公差为5的等差数列,b n =2+5(n -1)=5n -3,数列{a n }与{b n }的公共项从小到大排列得到数列{c n },故数列{c n }是首项为2,公差为15的等差数列,c n =2+15(n -1)=15n -13.a 3+b 5=(3×3-1)+(5×5-3)=30,c 3=15×3-13=32,a 3+b 5≠c 3,A 错误;b 28=5×28-3=137,c 10=15×10-13=137,b 28=c 10,B 正确;a 5=3×5-1=14,b 2=5×2-3=7,c 8=15×8-13=107,a 5b 2=14×7=98<107=c 8,C 错误;c 9=15×9-13=122,b 9=5×9-3=42,a 26=3×26-1=77,c 9-b 9=122-42=80≠77=a 26,D 错误.题型三分段数列例3(1)记S n 为数列{a n }的前n 项和,S n =2+n1+n,则a n =________.答案n =1,-1n (n +1),n ≥2解析S n =2+n 1+n,当n =1时,a 1=S 1=32,当n ≥2时,a n =S n -S n -1=2+n 1+n-1+n n =-1n (n +1),显然对于n =1不成立,则a n n =1,-1n (n +1),n ≥2.(2)已知数列{a n }是公差不为0的等差数列,a 1=32,数列{b n }是等比数列,且b 1=a 1,b 2=-a 3,b 3=a 4,数列{b n }的前n 项和为S n .①求数列{b n }的通项公式;②设c nn ,n ≤5,a n ,n ≥6,求{c n }的前n 项和T n .解①设数列{a n }的公差为d ,d ≠0,因为数列{b n }是等比数列,所以b 22=b 1b 3,所以a 23=a 1a 4,所以(a 1+2d )2=a 1(a 1+3d ),所以a 1d +4d 2=0,因为d ≠0,所以a 1+4d =0,又a 1=32,所以d =-38,所以b 1=a 1=32,数列{b n }的公比q =b 2b 1=-a 3a 1=-(a 1+2d )a 1=-1-2=-12,所以b n =b 1qn -1=32×-1.②由①知b n =32×-1,a n =a 1+(n -1)d =32-38(n -1)=-38n +158,所以c n-1,n ≤5,3n +15,n ≥6,当1≤n ≤5时,T n =3211=1,当n≥6时,T n =1+(n -5)(-3+15-3n )2=-32n 2+272n -92732,所以T n,1≤n ≤5,-32n 2+272n -92732,n ≥6.思维升华(1)利用等差数列的通项公式与等比中项性质列式可解得等差数列的公差和等比数列的公比,进而可得所求通项公式.(2)对n 分类讨论,结合等差数列与等比数列的求和公式可得所求和.跟踪训练3(1)已知数列{a n }满足an n =1),+2·(-1)λ]a n -1+2(n ≥2),若数列{a n }的前n 项和为S n ,则当λ=1时,S 11等于()A.312B.221C.223D.212答案D解析当λ=1,n ≥2时,a n =-a n -1+2,即a n +a n -1=2,则S 11=(a 11+a 10)+(a 9+a 8)+(a 7+a 6)+(a 5+a 4)+(a 3+a 2)+a 1=2×5+12=212.(2)已知数列:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,即此数列第一项是20,接下来两项是20,21,再接下来三项是20,21,22,依此类推,设S n 是此数列的前n 项和,则S 2024等于()A .264+190B .263+190C .264+62D .263+62答案A解析将数列分组:第一组有一项,和为20;第二组有两项,和为20+21;…;第n 组有n 项,和为20+21+…+2n -1=1-2n 1-2=2n -1,则前63组共有63×642=2016(项),所以S 2024=20+(20+21)+…+(20+21+…+262)+20+21+22+23+24+25+26+27=(21-1)+(22-1)+…+(263-1)+(28-1)=(2+22+…+263)-63+255=2(1-263)1-2+192=264+190.课时精练1.(2023·南京模拟)已知等差数列{a n }的前n 项和为S n (n ∈N +),数列{b n }是等比数列,a 1=3,b 1=1,b 2+S 2=10,a 5-2b 2=a 3.(1)求数列{a n }和{b n }的通项公式;(2)若c n n 为奇数,n 为偶数,设数列{c n }的前n 项和为T n ,求T 2n .解(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q (q ≠0),∵a 1=3,b 1=1,b 2+S 2=10,a 5-2b 2=a 3,+3+3+d =10,+4d -2q =3+2d ,=2,=2,∴a n =2n +1,b n =2n -1.(2)由(1)知,S n =n (3+2n +1)2=n (n +2),∴c n =1n -1n +2,n 为奇数,∴T 2n -13+13-15+…+12n -1-(21+23+25+…+22n -1)=1-12n +1+2(1-4n )1-4=1+22n +13-12n +1.2.(2023·潍坊模拟)已知等比数列{a n }的前n 项和为S n ,公比q >1,满足S 3=13,a 24=3a 6.(1)求{a n }的通项公式;(2)设b n n ,n 为奇数,n -1+n ,n 为偶数,求数列{b n }的前2n 项和T 2n .解(1)方法一因为{a n }是公比q >1的等比数列,3=13,24=3a 6,1+a 2+a 3=13,a 1q 3)2=3a 1q 5,1(1+q +q 2)=13,1q =3,两式相除得1+q +q 2q =133,整理得3q 2-10q +3=0,即(3q -1)(q -3)=0,解得q =3或q =13,又q >1,所以q =3,故a 1=3q =1,所以a n =a 1q n -1=3n -1.方法二因为{a n }是公比q >1的等比数列,3=13,24=3a 6,1+a 2+a 3=13,2a 6=3a 6,1+a 2+a 3=13,2=3,1+a 3=10,22=9,1+a 3=10,1a 3=9,1=1,3=91=9,3=1(舍去),故q 2=a3a 1=9,则q =3,所以a n =a 1q n -1=3n -1.(2)当n 为奇数时,b n =a n =3n -1,当n 为偶数时,b n =b n -1+n =3n -2+n ,所以T 2n =b 1+b 2+b 3+b 4+…+b 2n -1+b 2n =(b 1+b 3+…+b 2n -1)+(b 2+b 4+…+b 2n )=(30+32+…+32n -2)+(30+2+32+4+…+32n -2+2n )=2×(30+32+…+32n -2)+(2+4+…+2n )=2×1-32n -2·321-32+n (2n +2)2=9n -14+n (n +1).3.已知数列{a n }和{b n }的通项公式分别为a n =3n +6,b n =2n +7.将集合{x |x =a n ,n ∈N +}∪{x |x =b n ,n ∈N +}中的元素从小到大依次排列,构成数列c 1,c 2,c 3,…,c n ,….(1)求三个最小的数,使它们既是数列{a n }中的项,又是数列{b n }中的项;(2)数列c 1,c 2,c 3,…,c 40中有多少个不是数列{b n }中的项;(3)求数列{c n }的前4n 项和S 4n .解将数列{a n }和{b n }的公共项从小到大排列组成数列{d n }.设a k =b m ,则3k +6=2m +7,即m =3k -12,所以k 为奇数,设k =2n -1,则m =3n -2,d n =a k =3(2n -1)+6=6n +3.(1)三个最小的数依次为9,15,21.(2)由数列c 1,c 2,c 3,…,c n ,…的构成可知,d m =6m +3与d m +1=6m +9均为数列{c n }中的项,在d m 和d m +1中还有以下项:6m +5,6m +6,6m +7,又c 1=d 1=9,因此数列{c n }中的项从第1项起,连续的4项中只有第3项是数列{a n }中的偶数项,不是数列{b n }中的项,所以数列c 1,c 2,c 3,…,c 40中有10个不是数列{b n }中的项.(3)由(2)可知,数列{c n }的前4n 项中,由数列{b n }中的前3n 项和数列{a n }中的前n 项偶数项构成,因此S 4n =3n (9+6n +7)2+n (12+6n +6)2=12n 2+33n .4.韩信采用下述点兵方法:先令士兵从1~3报数,结果最后一个士兵报2;再令士兵从1~5报数,结果最后一个士兵报3;又令士兵从1~7报数,结果最后一个士兵报4;这样,韩信很快就算出了自己部队士兵的总人数.已知士兵人数不超过500人,那么部队最多有多少士兵?解根据士兵报数结果可得,士兵的总数是三个等差数列{3n +2},{5n +3},{7n +4}的公共项所组成的数列中的项.记a n =3n +2,b n =5n +3,c n =7n +4,新数列记为{d n }.从小到大列举数列{c n }中的项,并判断是否为数列{a n }与{b n }中的项,可得数列{d n }的首项为d 1=53,设a k =b m =c p =d n ,则3k +2=5m +3=7p +4,所以c p +1=7(p +1)+4=7p +4+7=3不是数列{b n }中的项;c p +2=7(p +2)+4=7p +4+14=3不是数列{b n }中的项;c p +3=7(p +3)+4=7p +4+21=3不是数列{b n }中的项;c p +4=7(p +4)+4=7p +4+28=3不是数列{b n }中的项;c p +5=7(p +5)+4=7p +4+35=5(m +7)+3=2不是数列{a n }中的项;c p +6=7(p +6)+4=7p +4+42=3不是数列{b n }中的项;…;c p +15=7(p +15)+4=7p +4+105=5(m +21)+3=3(k +35)+2是数列{a n }和{b n }中的项.所以d n +1=c p +15,则d n +1-d n =105,所以数列{d n }的通项公式为d n =105n -52.当n =5时,d n =473<500,当n =6时,d n =578>500,所以最多有473个士兵.5.已知数列{a n }的前n 项和为S n ,且a 1=a (a ∈R ),a n +1n -3,a n >3,a n ,a n ≤3,n ∈N +.(1)若0<a n ≤6,求证:0<a n +1≤6;(2)若a =5,求S 2024;(3)若a =32m -1(m ∈N +),求S 4m +2的值.(1)证明当a n ∈(0,3]时,则a n +1=2a n ∈(0,6],当a n ∈(3,6]时,则a n +1=a n -3∈(0,3],故a n +1∈(0,6],所以当0<a n ≤6时,总有0<a n +1≤6.(2)解当a 1=a =5时,a 2=a 1-3=2,a 3=2a 2=4,a 4=a 3-3=1,a 5=2a 4=2,a 6=2a 5=4,a 7=a 6-3=1,所以数列{a n }为5,2,4,1,2,4,1,2,4,1,…,所以从第2项起,{a n }中的项以3为周期,其和为2+4+1=7,所以S 2024=5+7×674+2=4725.(3)解由m ∈N +,可得2m -1≥1,故a =32m -1≤3,当1<k ≤m ,k ∈N +时,2k -1a ≤3×2m -12m -1=3×2m -12m -1+2m -1-1<3×2m -12m -1=3.故a k =2k -1a 且a m +1=2m a .又a m +1=3×2m2m-1>3,所以a m +2=a m +1-3=2m a -3=2m ·32m -1-3=a .故S 4m +2=S 4(m +1)-a 4m +3-a 4m +4=4(a 1+a 2+…+a m +1)-(2m -1+2m )a=4(1+2+…+2m )a -3×2m -1a=4(2m +1-1)a -3×2m -1a=(2m +3-4-3×2m -1)a =39×2m -1-122m-1.6.(2022·天津模拟)已知在各项均不相等的等差数列{a n }中,a 1=1,且a 1,a 2,a 5成等比数列,数列{b n }中,b 1=log 2(a 2+1),b n +1=4b n +2n +1,n ∈N +.(1)求{a n }的通项公式及其前n 项和S n ;(2)求证:{b n +2n }是等比数列,并求{b n }的通项公式;(3)设c n,k ∈N +,n =2k -1,k ∈N +,求数列{c n }的前2n 项的和T 2n .解(1)设各项均不相等的等差数列{a n }的公差为d (d ≠0),∵a 1=1,且a 1,a 2,a 5成等比数列,∴a 22=a 1·a 5,即(1+d )2=1+4d ,解得d =2,∴a n =1+2(n -1)=2n -1.∴S n =n (1+2n -1)2=n 2.(2)在数列{b n }中,b 1=log 2(a 2+1)=log 24=2,∵b n +1=4b n +2n +1,n ∈N +.∴b n +1+2n +1=4(b n +2n ),b 1+2=4.∴数列{b n +2n }是等比数列,首项为4,公比为4,∴b n +2n =4n ,∴b n =4n -2n .(3)①当n =2k ,k ∈N +时,c n =c 2k =a k b k +2k =2k -14k,∴数列{c 2k }的前k 项的和A k =14+342+…+2k -14k ,∴14A k =142+343+…+2k -34k +2k -14k +1,∴34A k =14++143+…-2k -14k +1=14+2×161-14-2k -14k +1,化简为A k =59-6k +59×4k =59-3n +59×2n.②当n =2k -1,k ∈N +时,c n =c 2k -1=3×2k 4b k -2k +1+2=3×2k 4(4k -2k )-2k +1+2=3×2k (2k +1-1)(2k +1-2)=3×2k -1(2k +1-1)(2k -1)=∴数列{c 2k -1}的前k 项的和B k ==32321121n +⎛⎫ ⎪- ⎪-⎝⎭,∴数列{c n }的前2n 项的和T 2n =A k +B k =59-3n +59×2n +32321121n +⎛⎫ ⎪- ⎪-⎝⎭.。
高三数学一轮复习学案:数列的基本概念
高三数学一轮复习学案:数列的基本概念一、考试要求:(1)掌握数列及通项公式的概念(2)理解数列的表示方法与函数表示方法之间的关系二、知识梳理①数列的定义②数列的通项公式③数列的分类④数列可以看作是一个定义域为 的函数当自变量从 到 依次取值时,对应的一列函数值,它的图象是一串 的点。
⑤递推公式的定义是三、基础检测:1.已知数列3,7,11,15,…,则53是数列的( )A .第18项B .第19项C .第17项D .第20项2.下列关于星星的图案构成一个数列,该数列的一个通项公式是( )A .a n =n 2-n +1B .a n =n (n -1)2C .a n =n (n +1)2D .a n =n (n +2)23.若数列{a n }满足a 1=1,a 2=2,a n =a n -1a n -2(n ≥3且n ∈N *),则a 17=( ) A .1 B .2 C.12 D .2-9874.已知数列{a n }的通项公式是a n =n 2+kn +2,若对所有的n ∈N *,都有a n +1>a n 成立,则实数k 的取值范围是( )A .k >0B .k >-1C .k >-2D .k >-35.已知数列{a n }的前n 项和S n =2a n -1,则满足a n n ≤2的正整数n 的集合为A .{1,2}B .{1,2,3,4}C .{1,2,3}D .{1,2,4} 6.数列{a n }满足a 1=1,且对任意的m ,n ∈N *都有a m +n =a m +a n +mn ,则1a 1+1a 2+1a 3+…+1a 2010=( ) A.40202011 B.40182010 C.20102011 D.200920107.已知数列{2n -1·a n }的前n 项和S n =9-6n ,则数列{ a n }的通项公式是________.8.已知数列{a n }中,S n 是其前n 项和,若a 1=1,a 2=2,a n a n +1a n +2=a n +a n +1+a n +2,且a n +1a n +2≠1,则a 1+a 2+a 3=________,S 2010=________.10.已知在正项数列{a n }中,S n 表示前n 项和且2S n =a n +1,求a n .11.已知数列{a n }中,a 1=1,a n +1=(1+1n )a n +n +12n ,若b n =a n n ,试求数列{b n }的通项公式.12.已知数列{a n }满足a 1=1,a 2=-13,a n +2-2a n +1+a n =2n -6.(1)设b n =a n +1-a n ,求数列{b n }的通项公式.(2)求n 为何值时a n 最小.。
2024届高考一轮复习数学教案(新人教B版):数列中的综合问题
§6.6数列中的综合问题考试要求数列的综合运算问题以及数列与函数、不等式等知识的交汇问题,是历年高考的热点内容.一般围绕等差数列、等比数列的知识命题,涉及数列的函数性质、通项公式、前n 项和公式等.题型一等差数列、等比数列的综合运算例1(2023·厦门模拟)已知数列{a n }的前n 项和为S n ,且S n =32n 2+12n ,递增的等比数列{b n }满足b 1+b 4=18,b 2·b 3=32.(1)求数列{a n },{b n }的通项公式;(2)若c n =a n ·b n ,n ∈N +,求数列{c n }的前n 项和T n .解(1)当n ≥2时,a n =S n -S n -1=32n 2+12n -32(n -1)2+12(n -1)=3n -1,又∵当n =1时,a 1=S 1=2符合上式,∴a n =3n -1.∵b 2b 3=b 1b 4,∴b 1,b 4是方程x 2-18x +32=0的两根,又∵b 4>b 1,∴解得b 1=2,b 4=16,∴q 3=b4b 1=8,∴q =2,∴b n =b 1·q n -1=2n .(2)∵a n =3n -1,b n =2n ,则c n =(3n -1)·2n ,∴T n =2·21+5·22+8·23+11·24+…+(3n -1)·2n ,2T n =2·22+5·23+8·24+11·25+…+(3n -1)·2n +1,将两式相减得-T n =2·21+3(22+23+24+…+2n )-(3n -1)·2n +1=4+322(1-2n -1)1-2-(3n -1)·2n +1=(4-3n )·2n +1-8,∴T n =(3n -4)·2n +1+8.思维升华数列的综合问题常将等差、等比数列结合,两者相互联系、相互转化,解答这类问题的方法:寻找通项公式,利用性质进行转化.跟踪训练1(2022·全国甲卷)记S n 为数列{a n }的前n 项和.已知2S nn+n =2a n +1.(1)证明:{a n }是等差数列;(2)若a 4,a 7,a 9成等比数列,求S n 的最小值.(1)证明由2S nn+n =2a n +1,得2S n +n 2=2a n n +n ,①所以2S n +1+(n +1)2=2a n +1(n +1)+(n +1),②②-①,得2a n +1+2n +1=2a n +1(n +1)-2a n n +1,化简得a n +1-a n =1,所以数列{a n }是公差为1的等差数列.(2)解由(1)知数列{a n }的公差为1.由a 4,a 7,a 9成等比数列,得a 27=a 4a 9,即(a 1+6)2=(a 1+3)(a 1+8),解得a 1=-12.所以S n =-12n +n (n -1)2=n 2-25n2-6258,所以当n =12或13时,S n 取得最小值,最小值为-78.题型二数列与其他知识的交汇问题命题点1数列与不等式的交汇例2(1)已知数列{a n }满足a 1+12a 2+13a 3+…+1na n =n 2+n (n ∈N +),设数列{b n }满足:b n =2n +1a n a n +1,数列{b n }的前n 项和为T n ,若T n <nn +1λ(n ∈N +)恒成立,则实数λ的取值范围为()A.14,+∞C.38,+∞答案D解析数列{a n }满足a 1+12a 2+13a 3+…+1na n =n 2+n ,①当n ≥2时,a 1+12a 2+13a 3+…+1n -1a n -1=(n -1)2+(n -1),②①-②得1na n =2n ,故a n =2n 2,当n =1时,a 1=2也满足上式.数列{b n }满足:b n =2n +1a n a n +1=2n +14n 2(n +1)2=141n 2-1(n +1)2,则T n =141+…+1n 2-1(n +1)2=141-1(n +1)2,由于T n <nn +1λ(n ∈N +)恒成立,故141-1(n +1)2<n n +1λ,整理得λ>n +24n +4,因为y =n +24n +4=n ∈N +上单调递减,故当n =1=38,所以λ>38.(2)已知数列{a n }满足a 1=37,3a n ,2a n +1,a n a n +1成等差数列.{a n }的通项公式;②记{a n }的前n 项和为S n ,求证:1271S n <7528.①解由已知得4a n +1=3a n +a n a n +1,因为a 1=37≠0,所以由递推关系可得a n ≠0恒成立,所以4a n =3a n +1+1,所以4a n -4=3a n +1-3,即1a n +1-1又因为1a 1-1=73-1=43,所以数列是首项为43,公比为43的等比数列,所以1a n-1,所以a n =11.②证明由①可得a n =111-1=37×-1,所以S n ≥37+37×+…+37×-1=1271n,a n =11<1,S 1=37<7528,当n ≥2时,S n <37++ (37)1-34=7528-3<7528.综上所述,1271n≤S n <7528成立.命题点2数列与函数的交汇例3(1)(2023·龙岩模拟)已知函数f (x )=13x 3+4x ,记等差数列{a n }的前n 项和为S n ,若f (a 1+2)=100,f (a 2022+2)=-100,则S 2022等于()A .-4044B .-2022C .2022D .4044答案A解析因为f (-x )=-13x 3-4x =-f (x ),所以f (x )是奇函数,因为f (a 1+2)=100,f (a 2022+2)=-100,所以f (a 1+2)=-f (a 2022+2),所以a 1+2+a 2022+2=0,所以a 1+a 2022=-4,所以S 2022=2022(a 1+a 2022)2=-4044.(2)数列{a n }是等差数列,a 1=1,公差d ∈[1,2],且a 4+λa 10+a 16=15,则实数λ的最大值为________.答案-12解析因为a 4+λa 10+a 16=15,所以a 1+3d +λ(a 1+9d )+a 1+15d =15,令λ=f (d )=151+9d -2,因为d ∈[1,2],所以令t =1+9d ,t ∈[10,19],因此λ=f (t )=15t -2,当t ∈[10,19]时,函数λ=f (t )是减函数,故当t =10时,实数λ有最大值,最大值为f (10)=-12.思维升华(1)数列与不等式的综合问题及求解策略①判断数列问题的一些不等关系,可以利用数列的单调性比较大小或借助数列对应的函数的单调性比较大小.②以数列为载体,考查不等式恒成立的问题,此类问题可转化为函数的最值.③考查与数列有关的不等式证明问题,此类问题一般采用放缩法进行证明,有时也可通过构造函数进行证明.(2)数列与函数交汇问题的主要类型及求解策略①已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题.②已知数列条件,解决函数问题,解决此类问题一般要利用数列的通项公式、前n 项和公式、求和方法等对式子化简变形.跟踪训练2(1)设{a n }是等比数列,函数y =x 2-x -2023的两个零点是a 2,a 3,则a 1a 4等于()A .2023B .1C .-1D .-2023答案D解析由题意a 2,a 3是x 2-x -2023=0的两根.由根与系数的关系得a 2a 3=-2023.又a 1a 4=a 2a 3,所以a 1a 4=-2023.(2)数列{a n }满足a 1=1,a n +1=2a n (n ∈N +),S n 为其前n 项和.数列{b n }为等差数列,且满足b 1=a 1,b 4=S 3.①求数列{a n },{b n }的通项公式;②设c n =1b n ·log 2a 2n +2,数列{c n }的前n 项和为T n ,证明:13≤T n <12.①解由题意知,{a n }是首项为1,公比为2的等比数列,所以a n =a 1·2n -1=2n -1.所以S n =2n-1.设等差数列{b n }的公差为d ,则b 1=a 1=1,b 4=1+3d =7,所以d =2,b n =1+(n -1)×2=2n -1.②证明因为log 2a 2n +2=log 222n +1=2n +1,所以c n =1b n ·log 2a 2n +2=1(2n -1)(2n +1)=所以T n -13+13-15+…+12n -1-因为n ∈N +,所以T n <12,=n 2n +1.当n ≥2时,T n -T n -1=n 2n +1-n -12n -1=1(2n +1)(2n -1)>0,所以数列{T n }是一个递增数列,所以T n ≥T 1=13.综上所述,13≤T n <12.课时精练1.(2022·汕头模拟)已知各项均为正数的等比数列{a n }的前4项和为15,4a 1,2a 3,a 5成等差数列,则a 1等于()A .52-5B .52+5C .52D .5答案A解析设各项均为正数的等比数列{a n }的公比为q ,q >0,由前4项和为15,4a 1,2a 3,a 5成等差数列,可得a 1+a 1q +a 1q 2+a 1q 3=15,4a 3=4a 1+a 5,即4a 1+a 1q 4=4a 1q 2,即q 2-2=0,解得q =2,a 1=52-5.2.(2023·焦作模拟)直播带货是一种直播和电商相结合的销售手段,目前受到了广大消费者的追捧,针对这种现状,某传媒公司决定逐年加大直播带货的资金投入,若该公司今年投入的资金为2000万元,并在此基础上,以后每年的资金投入均比上一年增长12%,则该公司需经过____年其投入资金开始超过7000万元()(参考数据:lg 1.12≈0.049,lg 2≈0.301,lg 7≈0.845)A .14B .13C .12D .11答案C解析设该公司经过n 年投入的资金为a n 万元,则a 1=2000×1.12,由题意可知,数列{a n }是以2000×1.12为首项,以1.12为公比的等比数列,所以a n =2000×1.12n ,由a n =2000×1.12n >7000可得n >log 1.1272=lg 7-lg 2lg 1.12≈11.1,因此,该公司需经过12年其投入资金开始超过7000万元.3.在正项等比数列{a n }中,3为a 6与a 14的等比中项,则a 3+3a 17的最小值为()A .23B .89C .6D .3答案C解析因为{a n }是正项等比数列,且3为a 6与a 14的等比中项,所以a 6a 14=3=a 3a 17,则a 3+3a 17=a 3+3·3a 3≥2a 3·3·3a 3=6,当且仅当a 3=3时,等号成立,所以a 3+3a 17的最小值为6.4.(2023·岳阳模拟)在等比数列{a n }中,a 2=-2a 5,1<a 3<2,则数列{a 3n }的前5项和S 5的取值范围是()-118,--338,-答案A解析设等比数列{a n }的公比为q ,则q 3=a 5a 2=-12,数列{a 3n }是首项为a 3,公比为q 3=-12的等比数列,则S 51+12=1116a 35.(多选)(2023·贵阳模拟)已知函数f (x )=lg x ,则下列四个命题中,是真命题的为()A .f (2),f (10),f (5)成等差数列B .f (2),f (4),f (8)成等差数列C .f (2),f (12),f (72)成等比数列D .f (2),f (4),f (16)成等比数列答案ABD解析对于A ,f (2)+f (5)=lg 2+lg 5=lg 10=1,2f (10)=2lg 10=1,故f (2),f (10),f (5)成等差数列,故是真命题;对于B ,f (2)+f (8)=lg 2+lg 8=lg 16,2f (4)=2lg 4=lg 16,故f (2),f (4),f (8)成等差数列,故是真命题;对于C ,f (2)·f (72)=lg 2×lg =lg 212=f 2(12),故f (2),f (12),f (72)不成等比数列,故是假命题;对于D ,f (2)f (16)=lg 2×lg 16=4lg 22=(2lg 2)2=lg 24=f 2(4),故f (2),f (4),f (16)成等比数列,故是真命题.6.数学家也有许多美丽的错误,如法国数学家费马于1640年提出了F n =22n+1(n =0,1,2,…)是质数的猜想,直到1732年才被善于计算的大数学家欧拉算出F 5=641×6700417,不是质数.现设a n =log 4(F n -1)(n =1,2,…),S n 表示数列{a n }的前n 项和.若32S n =63a n ,则n 等于()A .5B .6C .7D .8答案B解析因为F n =22n+1(n =0,1,2,…),所以a n =log 4(F n -1)=log 4(22n+1-1)=log 422n=2n -1,所以{a n }是等比数列,首项为1,公比为2,所以S n =1(1-2n )1-2=2n -1.所以32(2n -1)=63×2n -1,解得n =6.7.宋元时期我国数学家朱世杰在《四元玉鉴》中所记载的“垛积术”,其中“落—形”就是每层为“三角形数”的三角锥垛,三角锥垛从上到下最上面是1个球,第二层是3个球,第三层是6个球,第四层是10个球,…,则这个三角锥垛的第十五层球的个数为________.答案120解析∵“三角形数”可写为1,1+2,1+2+3,1+2+3+4,1+2+3+4+5,…,∴“三角形数”的通项公式为a n =1+2+3+…+n =n (n +1)2,∴这个三角锥垛的第十五层球的个数为a 15=15×162=120.8.已知数列{a n }的通项公式为a n =ln n ,若存在p ∈R ,使得a n ≤pn 对任意的n ∈N +都成立,则p 的取值范围为________.答案ln 33,+∞解析数列{a n }的通项公式为a n =ln n ,若存在p ∈R ,使得a n ≤pn 对任意的n ∈N +都成立,故p ,设f (x )=ln x x ,则f ′(x )=1x ·x -ln x x 2,令f ′(x )=1-ln x x 2=0,解得x =e ,故函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞),所以函数在x =e 处取最大值,由于n ∈N +,所以当n =3时函数最大值为ln 33.所以p 的取值范围是ln 33,+9.记关于x 的不等式x 2-4nx +3n 2≤0(n ∈N +)的整数解的个数为a n ,数列{b n }的前n 项和为T n ,满足4T n =3n +1-a n -2.(1)求数列{b n }的通项公式;(2)设c n =2b n -,若对任意n ∈N +,都有c n <c n +1成立,试求实数λ的取值范围.解(1)由不等式x 2-4nx +3n 2≤0可得,n ≤x ≤3n ,∴a n =2n +1,T n =14×3n +1-12n -34,当n =1时,b 1=T 1=1,当n ≥2时,b n =T n -T n -1=12×3n -12,∵b 1=1适合上式,∴b n =12×3n -12.(2)由(1)可得,c n =3n -1+(-1)n -1,∴c n +1=3n +1-1+(-1)n +1,∵c n <c n +1,∴c n +1-c n =2×3n +52(-1)n >0,∴(-1)n λ>-45×2n ,当n 为奇数时,λ<45×2n ,由于45×2n 随着n 的增大而增大,当n =1时,45×2n 的最小值为85,∴λ<85,当n 为偶数时,λ>-45×2n ,由于-45×2n 随着n 的增大而减小,当n =2时,-45×2n 的最大值为-165,∴λ>-165,综上可知,-165<λ<85.10.设n ∈N +,有三个条件:①a n 是2与S n 的等差中项;②a 1=2,S n +1=a 1(S n +1);③S n =2n +1-2.在这三个条件中任选一个,补充在下列问题的横线上,再作答.若数列{a n }的前n 项和为S n ,且________.(1)求数列{a n }的通项公式;(2)若{a n ·b n }是以2为首项,4为公差的等差数列,求数列{b n }的前n 项和T n .注:如果选择多个条件分别解答,那么按第一个解答计分.解(1)选择条件①:因为a n 是2与S n 的等差中项,所以2a n =2+S n ,所以当n ≥2时,2a n -1=2+S n -1,两式相减得,2a n -2a n -1=a n ,即a n =2a n -1(n ≥2),在2a n =2+S n 中,令n =1,可得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,故a n =2·2n -1=2n .选择条件②:由a 1=2,S n +1=a 1(S n +1),知S n +1=2(S n +1),当n =1时,可求得a 2=4,所以当n ≥2时,S n =2(S n -1+1),两式相减得,a n +1=2a n (n ≥2),又a 1=2,a 2=4也满足上式,所以数列{a n }是首项为2,公比为2的等比数列,故a n =2·2n -1=2n .选择条件③:在S n =2n +1-2中,令n =1,则a 1=21+1-2=2,当n ≥2时,有S n -1=2n -2,两式相减得,a n =2n (n ≥2),当n =1时,a 1=2满足上式,所以a n =2n .(2)因为{a n ·b n }是以2为首项,4为公差的等差数列,所以a n ·b n =2+(n -1)·4=4n -2,由(1)知,a n =2n ,所以b n =2n -12n -1,所以T n =1+3+5+…+2n -12n -1,12T n =1+3+…+2n -32n -1+2n -12n ,两式相减得,12T n =1+2+2+…+2-1-2n -12n =1+2×21-12-2n -12n =3-2n +32n,所以T n =6-2n +32n -1.11.(2022·北京)设{a n }是公差不为0的无穷等差数列,则“{a n }为递增数列”是“存在正整数N 0,当n >N 0时,a n >0”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案C 解析设无穷等差数列{a n }的公差为d (d ≠0),则a n =a 1+(n -1)d =dn +a 1-d .若{a n }为递增数列,则d >0,则存在正整数N 0,使得当n >N 0时,a n =dn +a 1-d >0,所以充分性成立;若存在正整数N 0,使得当n >N 0时,a n =dn +a 1-d >0,即d >d -a 1n对任意的n >N 0,n ∈N +均成立,由于n →+∞时,d -a 1n→0,且d ≠0,所以d >0,{a n }为递增数列,必要性成立.故选C.12.已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3).若a 1>1,则()A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4答案B 解析因为ln x ≤x -1(x >0),所以a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3)≤a 1+a 2+a 3-1,所以a 4=a 1·q 3≤-1.由a 1>1,得q <0.若q ≤-1,则ln(a 1+a 2+a 3)=a 1+a 2+a 3+a 4=a 1(1+q )·(1+q 2)≤0.又a 1+a 2+a 3=a 1(1+q +q 2)≥a 1>1,所以ln(a 1+a 2+a 3)>0,矛盾.因此-1<q <0.所以a 1-a 3=a 1(1-q 2)>0,a 2-a 4=a 1q (1-q 2)<0,所以a 1>a 3,a 2<a 4.13.函数y =f (x ),x ∈[1,+∞),数列{a n }满足a n =f (n ),n ∈N +,①函数f (x )是增函数;②数列{a n }是递增数列.写出一个满足①的函数f (x )的解析式________.写出一个满足②但不满足①的函数f (x )的解析式________.答案f (x )=x 2f (x )(答案不唯一)解析由题意,可知在x ∈[1,+∞)这个区间上是增函数的函数有许多,可写为f (x )=x 2.第二个填空是找一个数列是递增数列,而对应的函数不是增函数,可写为f (x ).则这个函数在1,43上单调递减,在43,+∴f (x )在[1,+∞)上不是增函数,不满足①.而对应的数列为a n 在n ∈N +上越来越大,属于递增数列.14.设函数f (x )-4,x ≤-3,x 2+2,x >-3,数列{a n }满足a n +1=f (a n )(n ∈N +),若{a n }是等差数列.则a 1的取值范围是__________.答案(-∞,-3]∪{-2,1}解析画出函数f (x )的图象如图所示,当a 1≤-3时,a 2=f (a 1)=a 1-4≤-7,a 3=f (a 2)=a 2-4≤-11,…,数列{a n }是首项为a 1,公差为-4的等差数列,符合题意,当a 1>-3时,因为{a n }是等差数列,①若其公差d >0,则∃k 0∈N +,使得0k a >2,这与a n +1=f (a n )=2-a 2n ≤2矛盾,②若其公差d =0,则a 2=-a 21+2=a 1,即a 21+a 1-2=0,解得a 1=-2或a 1=1,则当a 1=-2时,a n =-2为常数列,当a 1=1时,a n =1为常数列,此时{a n }为等差数列,符合题意,③若其公差d <0,则∃k 0∈N +,使得0k a >-3且01k a +≤-3,则等差数列的公差必为-4,因此001k k a a +-=-4,所以2-002k k a a -=-4,解得0k a =-3(舍去)或0k a =2.又当0k a =2时,000123k k k a a a +++===…=-2,这与公差为-4矛盾.综上所述,a 1的取值范围是(-∞,-3]∪{-2,1}.15.若数列{a n }对于任意的正整数n 满足:a n >0且a n a n +1=n +1,则称数列{a n }为“积增数列”.已知“积增数列”{a n }中,a 1=1,数列{a 2n +a 2n +1}的前n 项和为S n ,则对于任意的正整数n ,有()A .S n ≤2n 2+3B .S n ≥n 2+4nC .S n ≤n 2+4nD .S n ≥n 2+3n 答案D 解析∵a n >0,∴a 2n +a 2n +1≥2a n a n +1,∵a n a n +1=n +1,∴{a n a n +1}的前n 项和为2+3+4+…+n +1=n (2+n +1)2=n (n +3)2,∴数列{a 2n +a 2n +1}的前n 项和为S n ≥2×n (n +3)2=n 2+3n .16.设{a n }是正数组成的数列,其前n 项和为S n ,并且对于所有的正整数n ,a n 与2的等差中项等于S n 与2的等比中项.(1)求数列{a n }的通项公式;(2)令b nn ∈N +),求证:b 1+b 2+b 3+…+b n <1+n .(1)解由已知a n +22=2S n (n ∈N +),整理得S n =18(a n +2)2,所以S n +1=18(a n +1+2)2.所以a n +1=S n +1-S n =18[(a n +1+2)2-(a n +2)2]=18(a 2n +1+4a n +1-a 2n -4a n ),整理得(a n +1+a n )(a n +1-a n -4)=0,由题意知a n +1+a n ≠0,所以a n +1-a n =4,而a 1=2,即数列{a n }是a 1=2,d =4的等差数列,所以a n =a 1+(n -1)d =4n -2.(2)证明令c n =b n -1,则c n +a n a n +1-=12n -1-12n +1.故b 1+b 2+…+b n -n =c 1+c 2+…+cn…1-12n +1<1.故b 1+b 2+…+b n <1+n .。
高三数学第一轮复习 —数列求和教案
城东蜊市阳光实验学校一.课题:数列求和二.教学目的:1.纯熟掌握等差数列与等比数列的求和公式;2.能运用倒序相加、错位相减、拆项相消等重要的数学方法进展求和运算;3.熟记一些常用的数列的和的公式.三.教学重点:特殊数列求和的方法.四.教学过程:〔一〕主要知识:1.等差数列与等比数列的求和公式的应用;2.倒序相加、错位相减,分组求和、拆项求和等求和方法;〔二〕主要方法:1.求数列的和注意方法的选取:关键是看数列的通项公式;2.求和过程中注意分类讨论思想的运用;3.转化思想的运用;〔三〕例题分析:例1.求以下数列的前n项和n S:〔1〕5,55,555,5555,…,5(101)9n-,…;〔2〕1111,,,,,132435(2)n n⨯⨯⨯+;〔3〕na =;〔4〕23,2,3,,,na a a na;〔5〕13,24,35,,(2),n n⨯⨯⨯+;〔6〕2222sin1sin2sin3sin89++++.解:〔1〕555555555nnS=++++个5(999999999)9n=++++个235505[10101010](101)9819n n n n =++++-=--. 〔2〕∵1111()(2)22n n n n =-++,∴11111111[(1)()()()]2324352nS n n =-+-+-++-+1111(1)2212n n =+--++. 〔3〕∵na===∴11nS n =++++1)(1n =-++++1=-. 〔4〕2323n n S a a a na =++++,当1a =时,123n S =+++ (1)2n n n ++=, 当1a≠时,2323n S a a a =+++…n na +,23423n aS a a a =+++…1n na ++,两式相减得23(1)na S a a a -=+++ (1)1(1)1n n n n a a a nana a++-+-=--,∴212(1)(1)n n n na n a a S a ++-++=-.〔5〕∵2(2)2n n n n +=+,∴原式222(123=+++…2)2(123n ++⨯+++…)n +(1)(27)6n n n ++=.〔6〕设2222sin 1sin 2sin 3sin 89S =++++, 又∵2222sin 89sin 88sin 87sin 1S =++++,∴289S=,892S =. 例2.数列{}n a 的通项65()2()n n n n a n -⎧=⎨⎩为奇数为偶数,求其前n 项和n S .解:奇数项组成以11a =为首项,公差为12的等差数列,偶数项组成以24a =为首项,公比为4的等比数列;当n 为奇数时,奇数项有12n +项,偶数项有12n -项, ∴1121(165)4(14)(1)(32)4(21)221423n n n n n n n S --++--+--=+=+-, 当n 为偶数时,奇数项和偶数项分别有2n项,∴2(165)4(14)(32)4(21)221423n n n n n n n S +----=+=+-, 所以,1(1)(32)4(21)()23(32)4(21)()23n n nn n n S n n n -⎧+--+⎪⎪=⎨--⎪+⎪⎩为奇数为偶数.例3.〔高考A 方案智能训练14题〕数列{}n a 的前n 项和2()n nS p p R =+∈,数列{}n b 满足2log n n b a =,假设{}n a 是等比数列,〔1〕求p 的值及通项n a ;〔2〕求和222123()()()n T b b b =-+…12*(1)()()n n b n N -+-∈.〔解答见教师用书127页〕 〔四〕稳固练习:设数列11,(12),,(122),n -++++的前n 项和为n S ,那么n S 等于〔〕五.课后作业:高考A 方案考点22,智能训练2,4,5,12,15,16.。
高三数学一轮复习教案
高三数学一轮复习教案高三数学一轮复习教案一、教学目标:1.熟练掌握高三数学的重点知识点和难点;2.提高学生数学解题的能力和应试技巧;3.巩固和加深学生对数学知识的理解和运用。
二、教学内容:1.数列与数列极限;2.函数分析与函数的极限;3.导数与导数的应用;4.不等式与方程;5.平面解析几何。
三、教学方法:1.讲授法:通过讲解掌握知识点和解题技巧;2.练习法:通过大量的练习巩固知识点和训练解题能力;3.课堂讨论:引导学生进行课堂讨论,培养学生的思辨能力和解决问题的能力。
四、教学过程:第一课时:数列与数列极限1.复习:回顾数列的概念、性质和分类;回顾数列极限的定义和判定方法。
2.讲解:介绍数列的极限存在性和唯一性;介绍数列极限的计算方法和性质;讲解数列极限的应用。
第二课时:函数分析与函数的极限1.复习:回顾函数的定义和性质;回顾函数的奇偶性和周期性。
2.讲解:介绍函数的极限定义和计算方法;讲解函数极限的性质和应用;解析函数的单调性和零点问题。
第三课时:导数与导数的应用1.复习:回顾导数的定义和性质;回顾导数的四则运算和复合函数求导法则。
2.讲解:介绍导数的应用:切线与曲线的位置关系、极值与最值问题;讲解导数的几何意义和物理应用。
第四课时:不等式与方程1.复习:回顾不等式的性质和解法;回顾方程的性质和解法。
2.讲解:介绍一元一次不等式和方程的解法;讲解一元二次不等式和方程的解法;介绍含有绝对值的不等式和方程的解法。
第五课时:平面解析几何1.复习:回顾平面解析几何的基本概念和性质;回顾直线和曲线的方程和性质。
2.讲解:讲解直线与圆的位置关系和相交特点;讲解直线与抛物线的位置关系和相交特点;介绍直线与椭圆、双曲线的位置关系和相交特点。
五、教学反思:通过一轮复习教案的设计和讲授,学生能够系统地复习高三数学的重点知识点和难点,提高了数学解题的能力和应试技巧。
同时,注重课堂讨论和问题引导,培养了学生的思辨能力和解决问题的能力。
2025届高考数学一轮复习教案:数列-数列求和
第五节数列求和课程标准1.熟练掌握等差、等比数列的前n项和公式.2.掌握非等差数列、非等比数列求和的几种常见方法.考情分析考点考法:高考命题常以等差、等比数列为载体,考查裂项相消、错位相减求和等数列求和方法,涉及奇偶项的求和问题是高考的热点,常以解答题的形式出现.核心素养:数学建模、数学运算、逻辑推理.【核心考点·分类突破】考点一分组、并项、倒序相加求和[例1](1)数列112,214,318,…的前n项和为S n=()A.2-1B.(r1)2+2nC.(r1)2-12+1D.2-1【解析】选C.数列112,214,318,...的前n项和为S n=(1+2+3+...+n)+(12+14+18+ (12)=(r1)2+12(1-12)1-12=(r1)2-12+1.(2)设f(x)=21+2,则f(12024)+f(12023)+…+f(1)+f(2)+…+f(2024)=________.【解析】因为f(x)=21+2,所以f(x)+f(1)=1.令S=f(12024)+f(12023)+…+f(1)+f(2)+…+f(2024),①则S=f(2024)+f(2023)+…+f(1)+f(12)+…+f(12024),②所以2S=4047,所以S=40472.答案:40472(3)(2023·深圳模拟)已知公差为2的等差数列的前n项和为S n,且满足S2=a3.①若a1,a3,a m成等比数列,求m的值;②设b n=a n-2,求数列的前n项和T n.【解析】①由题意知数列是公差为2的等差数列,设公差为d,则d=2,又因为S2=a3,所以a1+a2=a3,即2a1+d=a1+2d,得a1=d=2,所以a n=a1+(n-1)d=2n(n∈N*).又因为a1,a3,a m成等比数列,即32=a1a m,所以36=2×2m,得m=9.②因为b n=a n-2=2n-4n,所以T n=(2×1-41)+(2×2-42)+…+(2×n-4n)=2×(1+2+…+n)-(41+42+…+4n)=2×(r1)2-4×(1-4)1-4=n(n+1)-43×(4n-1)=n2+n+43-4r13.【解题技法】分组转化与并项求和法(1)数列的项可以拆分成两类特殊数列,分别对这两类数列求和,再合并后即为原来的数列的前n项和;(2)数列的项具有一定的周期性,相邻两项或多项的和是一个有规律的常数,可以将数列分成若干组求和.【对点训练】1.已知数列的通项公式为a n=n cos(n-1)π,S n为数列的前n项和,则S2023=()A.1009B.1010C.1011D.1012【解题提示】将a n=n cos(n-1)π化为a n=n×-1-1,利用并项法求和.【解析】选D.因为当n为奇数时cos(n-1)π=1,当n为偶数时cos(n-1)π=-1,所以cos(n-1)π=-1-1,所以a n=n cos(n-1)π=n×-1-1.S2023=(1-2)+(3-4)+…+(2021-2022)+2023=-1011+2023=1012.2.设f(x)=44+2,若S=f(12024)+f(22024)+…+f(20232024),则S=________.【解析】因为f(x)=44+2,所以f(1-x)=41-41-+2=22+4,所以f(x)+f(1-x)=44+2+22+4=1.S=f(12024)+f(22024)+…+f(20232024),①S=f(20232024)+f(20222024)+…+f(12024),②①+②,得2S=[f(12024)+f(20232024)]+[f(22024)+f(20222024)]+…+[f(20232024)+f(12024)]=2023,所以S=20232.答案:202323.已知是公差d≠0的等差数列,其中a2,a6,a22成等比数列,13是a4和a6的等差中项;数列是公比q为正数的等比数列,且b3=a2,b5=a6.(1)求数列和的通项公式;(2)令c n=a n+b n,求数列的前n项和T n.【解析】(1)因为a2,a6,a22成等比数列,所以62=a2a22,即(1+5)2=(a1+d)(a1+21d)①.因为13是a4和a6的等差中项,所以a4+a6=26,即(a1+3d)+(a1+5d)=26②,由①②可得:a1=1,d=3,所以a n=1+(n-1)×3=3n-2,从而b3=a2=4,b5=a6=16.因为数列是公比q为正数的等比数列,所以b5=b3q2,即16=4q2,所以q=2,从而b n=b3q n-3=2n-1.(2)由于b n=2n-1,所以b1=1.因为c n=a n+b n,所以T n=c1+c2+…+c n=(a1+b1)+(a2+b2)+…+(a n+b n)=(a1+a2+…+a n)+(b1+b2+…+b n)=+(-1)2×3+1-21-2=2n+32n2-12n-1.考点二裂项相消法求和[例2](1)已知函数f(x)=x a的图象过点(4,2),令a n=1(r1)+(),n∈N*.记数列{a n}的前n项和为S n,则S2025=________.【解析】由f(4)=2可得4a=2,解得a=12,则f(x)=12,所以a n=1(r1)+()==+1-,S2025=a1+a2+a3+…+a2025=(2-1)+(3-2)+(4-3)+…+(2025-2024)+(2026-2025)=2026-1.答案:2026-1(2)已知数列的各项均为正数,S n是其前n项的和.若S n>1,且6S n=2+3a n+ 2(n∈N*).①求数列的通项公式;②设b n=1r1,求数列的前n项和T n.【解析】①因为6S n=2+3a n+2,(i)n=1时,6S1=6a1=12+3a1+2,即12-3a1+2=0,解得a1=2或a1=1,因为S n>1,所以a1=2;(ii)n≥2时,由6S n=2+3a n+2,有6S n-1=-12+3a n-1+2,两式相减得6(S n-S n-1)=2--12+3a n-3a n-1,所以6a n=2--12+3a n-3a n-1,所以2--12-3a n-3a n-1=0,所以(a n+a n-1)(a n-a n-1)-3(a n+a n-1)=0,所以(a n+a n-1)(a n-a n-1-3)=0.因为数列的各项均为正数,所以a n+a n-1≠0,所以a n-a n-1-3=0,即a n-a n-1=3,综上所述,是首项a1=2,公差d=3的等差数列,所以a n=a1+(n-1)d=2+(n-1)×3=3n-1,所以数列的通项公式为a n=3n-1.②由①知a n=3n-1,所以a n+1=3(n+1)-1=3n+2,所以b n=1r1=1(3-1)(3r2)=13×(3r2)-(3-1)(3-1)(3r2)=13×(13-1-13r2),所以T n=13×(12-15)+13×(15-18)+13×(18-111)+…+13×(13-1-13r2)=13×(12-15+15-18+18-111+…+13-1-13r2)=13×(12-13r2)=13×3r2-22(3r2)=6r4,所以数列的前n项和T n=6r4.【解题技法】破解裂项相消求和的关键点(1)定通项:根据已知条件求出数列的通项公式.(2)巧裂项:根据通项公式的特征进行准确裂项,把数列的每一项,表示为两项之差的形式.(3)消项求和:通过累加抵消掉中间的项,达到消项的目的,准确求和.(4)常见的裂项结论:①设等差数列的各项不为零,公差为d(d≠0),则1r1=1(1-1r1);②142-1=12(12-1-12r1);③1(r1)(r2)=12(r1)(1-1r2)=12[1(r1)-1(r1)(r2)];④242-1=14(42-1)+1442-1=14+18(12-1-12r1);⑤a n=2(2+)(2r1+)=12+-12r1+;⑥a n=r12(r2)2=14[12-1(r2)2].提醒:要注意正负相消时,可以通过写出前几项观察消去规律的方法,确定消去了哪些项,保留了哪些项,不可漏写未被消去的项.【对点训练】1.{a n }是等比数列,a 2=12,a 5=116,b n =r1(+1)(r1+1),则数列{b n }的前n 项和为()A .2-12(2+1)B .2-12+1C .12+1D .2-12+2【解析】选A .a 5=a 2·q 3,所以q 3=18,所以q =12,a 1=1,所以a n =(12)n -1.b n =(12)[(12)-1+1][(12)+1]=1(12)+1-1(12)-1+1,所以b 1+b 2+b 3+…+b n =[1(12)1+1-1(12)0+1]+[1(12)2+1-1(12)1+1]+[1(12)3+1-1(12)2+1]+…+[1(12)+1-1(12)-1+1]=1(12)+1-12=2-12(2+1).2.已知数列{a n }的前n 项和为S n ,且a 2=8,S n =r12-n -1.(1)求数列{a n }的通项公式;(2)n 项和T n .【解析】(1)因为a 2=8,S n =r12-n -1,所以a 1=S 1=22-2=2.当n ≥2时,a n =S n -S n -1=r12-n -1-(2-n ),即a n +1=3a n +2.又a 2=8=3a 1+2,所以a n +1=3a n +2,n ∈N *,所以a n +1+1=3(a n +1),所以数列{a n +1}是等比数列,且首项为a 1+1=3,公比为3,所以a n +1=3×3n -1=3n ,所以a n =3n -1.(2)因为2×3=2×3(3-1)(3r1-1)=13-1-13r1-1,r1n 项和T n =(13-1-132-1)+(132-1-133-1)+…+(13-1-13r1-1)=12-13r1-1.考点三错位相减法求和[例3]已知数列中,a 1=8,且满足a n +1=5a n -2·3n .(1)证明:数列-3为等比数列,并求数列的通项公式;(2)若b n =n (a n -3n ),求数列的前n 项和S n .【解析】(1)因为a n +1=5a n -2·3n ,所以a n +1-3n +1=5a n -5·3n =5(a n -3n ),所以数列-3是以a 1-31=5为首项,以5为公比的等比数列,所以a n -3n =5×5n -1=5n ,所以a n =3n +5n .(2)因为a n =3n +5n ,所以b n =n (a n -3n )=n ×5n ,所以S n =b 1+b 2+b 3+…+b n ,即S n =1×51+2×52+3×53+…+n ×5n ①,所以5S n =1×52+2×53+3×54+…+n ×5n +1②,由①-②得:-4S n =1×51+1×52+1×53+…+1×5n -n ×5n +1,-4S n =5(1-5)1-5-n ×5n +1,化简得:S n =5+(4-1)×5r116.【解题技法】错位相减法求和的解题策略(1)巧分拆,即将数列的通项公式分拆为等差数列与等比数列积的形式,并求出公差和公比.(2)构差式,即写出S n的表达式,再乘公比或除以公比,然后将两式相减.(3)后求和,根据差式的特征准确进行求和.提醒:错位相减法求和的注意点①在写出“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n-qS n”的表达式.②应用等比数列求和公式必须注意公比q是否等于1,如果q=1,应用公式S n=na1.【对点训练】已知数列的前n项和为S n=3n2+8n-6,是等差数列,且a n=b n+b n+1(n≥2).(1)求数列和的通项公式;(2)令c n=b n·2n+2n+1,求数列的前n项和T n.【解析】(1)S n=3n2+8n-6,所以n≥2时,S n-1=3(n-1)2+8(n-1)-6,所以a n=S n-S n-1=6n+5.n=1时,a1=S1=5,不满足a n=6n+5,所以a n=5(=1)6+5(≥2);设的公差为d,a n=b n+b n+1(n≥2),所以a n-1=b n-1+b n(n≥3),所以a n-a n-1=b n+1-b n-1,所以2d=6,所以d=3.因为a2=b2+b3,所以17=2b2+3,所以b2=7⇒b1=4,所以b n=3n+1;(2)c n=3(n+1)2n,所以T n=3×2+3×22+…+(+1)2①,所以2T n=32×22+3×23+…+(+1)2r1②,①-②得,-T n=3[2×2+22+23+…+2n-(n+1)2n+1]+1)2r1=-3n·2n+1,所以T n=3n·2n+1,所以数列的前n项和T n=3n·2n+1.。
高三数学一轮复习精品教案――数列
城东蜊市阳光实验学校2021届高三数学一轮复习精品教案――数列〔附高考预测〕一、本章知识构造: 二、重点知识回忆 1.数列的概念及表示方法〔1〕定义:按照一定顺序排列着的一列数.〔2〕表示方法:列表法、解析法〔通项公式法和递推公式法〕、图象法.〔3〕分类:按项数有限还是无限分为有穷数列和无穷数列;按项与项之间的大小关系可分为单调数列、摆动数列和常数列.〔4〕n a 与n S 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-⎩≥.2.等差数列和等比数列的比较〔1〕定义:从第2项起每一项与它前一项的差等于同一常数的数列叫等差数列;从第2项起每一项与它前一项的比等于同一常数〔不为0〕的数列叫做等比数列. 〔2〕递推公式:110n n n n a a d a a q q n *++-==≠∈N ,·,,.〔3〕通项公式:111(1)n n n a a n d a a q n -*=+-=∈N ,,.〔4〕性质等差数列的主要性质:①单调性:0d ≥时为递增数列,0d ≤时为递减数列,0d =时为常数列.②假设m n p q +=+,那么()m n p q a a a a m n p q *+=+∈N ,,,.特别地,当2m n p +=时,有2m n p a a a +=.③()()nm a a n m d m n *-=-∈N ,.④232k k k k k S S S S S --,,,…成等差数列.等比数列的主要性质:①单调性:当1001a q <⎧⎨<<⎩,或者者101a q >⎧⎨>⎩时,为递增数列;当101a q <⎧⎨>⎩,,,或者者1001a q >⎧⎨<<⎩时,为递减数列;当0q <时,为摆动数列;当1q =时,为常数列.②假设m n p q +=+,那么()m n p q a a a a m n p q *=∈N ··,,,.特别地,假设2m n p +=,那么2m n p a a a =·.③(0)n m nma q m n q a -*=∈≠N ,,. ④232k kk k k S S S S S --,,,…,当1q ≠-时为等比数列;当1q =-时,假设k 为偶数,不是等比数列.假设k 为奇数,是公比为1-的等比数列.三、考点剖析考点一:等差、等比数列的概念与性质 例1.〔2021模拟〕数列.12}{2n n S n a nn -=项和的前〔1〕求数列}{n a 的通项公式;〔2〕求数列.|}{|n n T n a 项和的前解:〔1〕当111112,1211=-⨯===S a n时;、当.213])1()1(12[)12(,2221n n n n n S S a n n n n -=-----=-=≥-时,.213111的形式也符合n a -=.213}{,n a a n n -=的通项公式为数列所以、〔2〕令.6,,0213*≤∈≥-=n n n a n 解得又N当2212112||||||,6n n S a a a a a a T n n n n n -==+++=+++=≤ 时;当||||||||||,67621n n a a a a a T n++++++=> 时综上,⎪⎩⎪⎨⎧>+-≤-=.6,7212,6,1222n n n n n n T n点评:此题考察了数列的前n 项与数列的通项公式之间的关系,特别要注意n =1时情况,在解题时经常会忘记。
高三一轮复习-等差数列教案
《等差数列》一、考纲要求1.了解等差数列与一次函数的关系;等差数列前n项和公式与二次函数间的关系.2.理解等差数列的概念.n项和公式;能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题.二、教学策略分析本节课采用了讲练结合的教学策略:教师讲解例题→学生反应练习→点评→学生稳固提高→点评→学生归纳总结→学生完成课后作业,以学生为本,关注学生的开展.在学生解题的过程中引导他们对等差数列的知识进行整理和深入思考、提高运用知识的能力.设计能够激发学生发散思维的练习题,使学生在掌握方程的根本方法的同时,能够结合等差数列的性质提高解题效率,力求使各层次的学生都有所提高. 三、教学过程(一)展示近四年全国卷对数列的考察(二)知识点梳理等差数列的定义及相关性质(三)例题讲解、变式练习例1等差数列{a n}的前n项和记为S n.已知a10=30,a20=50.①求通项a n;②若S n=242,求n.变式1〔1〕20xx全国卷一理数(2)20xx全国卷一理数例2已知数列{a n}的各项均为正数,前n项和为S n,且满足2S n=a2n+n-4.(1)求证:{a n}为等差数列;(2)求{a n}的通项公式。
变式2〔20xx全国卷二理数〕(四)课堂小结1、本节内容在高考中主要考查等差数列的定义、通项公式、前n项和公式、等差中项、等差数列的性质.高考中各种题型都有,一般选择题、填空题主要考查等差数列的定义、通项公式、性质及前n项和公式,难度不大,解答题则综合考查等差数列的相关知识,有时会与其他知识综合命题,难度中等。
从能力考查来看,主要考查学生的运算能力、数据处理能力及转化与化归的思想意识。
2.准确理解概念,掌握等差数列的有关公式和性质;注意不同性质的适用条件和考前须知。
(五)课后作业完成一轮活页等差数列及其性质。
高考数学一轮复习 第六章 数列 第3讲 等比数列及其前n项和教学案 理
第3讲 等比数列及其前n 项和一、知识梳理1.等比数列的有关概念 (1)定义如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫作等比数列.这个常数叫作等比数列的公比,通常用字母q 表示.(2)等比中项如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔G 2=ab .“a ,G ,b 成等比数列”是“G 是a 与b 的等比中项”的充分不必要条件.2.等比数列的有关公式 (1)通项公式:a n =a 1qn -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1.3.等比数列的性质已知数列{a n }是等比数列,S n 是其前n 项和(m ,n ,p ,q ,r ,k ∈N +(1)若m +n =p +q =2r ,则a m ·a n =a p ·a q =a 2r . (2)数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列.(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…仍是等比数列(此时{a n }的公比q ≠-1).常用结论1.正确理解等比数列的单调性当q >1,a 1>0或0<q <1,a 1<0时 ,{a n }是递增数列; 当q >1,a 1<0或0<q <1,a 1>0时 ,{a n }是递减数列; 当q =1时,{a n }是常数列; 当q =-1时,{a n }是摆动数列. 2.记住等比数列的几个常用结论(1)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍是等比数列. (2)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k.(3)一个等比数列各项的k 次幂,仍组成一个等比数列,新公比是原公比的k 次幂.(4){a n }为等比数列,若a 1·a 2·…·a n =T n ,则T n ,T 2n T n ,T 3nT 2n,…成等比数列.(5)当q ≠0,q ≠1时,S n =k -k ·q n(k ≠0)是{a n }成等比数列的充要条件,此时k =a 11-q.(6)有穷等比数列中,与首末两项等距离的两项的积相等.特别地,若项数为奇数时,还等于中间项的平方.二、教材衍化1.在3与192中间插入两个数,使它们同这两个数成等比数列,则这两个数为________.解析:设该数列的公比为q ,由题意知, 192=3×q 3,q 3=64,所以q =4.所以插入的两个数分别为3×4=12,12×4=48. 答案:12,482.已知{a n }是等比数列,a 2=2,a 5=14,则公比q =________.解析:由题意知q 3=a 5a 2=18,所以q =12.答案:123.等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则{a n }的通项公式a n =________.解析:因为S 10S 5=3132,所以S 10-S 5S 5=-132,因为S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,所以q 5=-132,q =-12,则a n =-1×⎝ ⎛⎭⎪⎫-12n -1=-⎝ ⎛⎭⎪⎫-12n -1.答案:-⎝ ⎛⎭⎪⎫-12n -1一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)与等差数列类似,等比数列的各项可以是任意一个实数.( )(2)公比q 是任意一个常数,它可以是任意实数.( ) (3)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( ) 答案:(1)× (2)× (3)× 二、易错纠偏常见误区|K(1)忽视项的符号判断; (2)忽视公比q =1的特殊情况; (3)忽视等比数列的项不为0.1.在等比数列{a n }中,a 3=4,a 7=16,则a 3与a 7的等比中项为________.解析:设a 3与a 7的等比中项为G ,因为a 3=4,a 7=16,所以G 2=4×16=64,所以G =±8.答案:±82.数列{a n }的通项公式是a n =a n(a ≠0),则其前n 项和S n =________.解析:因为a ≠0,a n =a n,所以{a n }是以a 为首项,a 为公比的等比数列.当a =1时,S n =n ;当a ≠1时S n =a (1-a n )1-a.答案:⎩⎪⎨⎪⎧n ,a =1,a (1-a n )1-a,a ≠0,a ≠13.已知x,2x+2,3x+3是一个等比数列的前三项,则x的值为________.解析:因为x,2x+2,3x+3是一个等比数列的前三项,所以(2x+2)2=x(3x+3),即x2+5x+4=0,解得x=-1或x=-4.当x=-1时,数列的前三项为-1,0,0,不是等比数列,舍去.答案:-4等比数列基本量的运算(师生共研)(1)(2019·高考全国卷Ⅲ)已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=( ) A.16 B.8C.4 D.2(2)等比数列{a n}中,a1=1,a5=4a3.①求{a n}的通项公式;②记S n为{a n}的前n项和.若S m=63,求m.【解】(1)选C.设等比数列{a n}的公比为q,由a5=3a3+4a1得q4=3q2+4,得q2=4,因为数列{a n}的各项均为正数,所以q=2,又a1+a2+a3+a4=a1(1+q+q2+q3)=a1(1+2+4+8)=15,所以a1=1,所以a3=a1q2=4.(2)①设{a n}的公比为q,由题设得a n=q n-1.由已知得q 4=4q 2,解得q =0(舍去)或q =-2或q =2. 故a n =(-2)n -1或a n =2n -1.②若a n =(-2)n -1,则S n=1-(-2)n3.由S m =63得(-2)m=-188,此方程没有正整数解.若a n =2n -1,则S n =2n-1.由S m =63得2m=64,解得m =6.综上,m =6.解决等比数列有关问题的2种常用思想方程的思想等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解 分类讨论的思想等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n=a 1(1-q n )1-q =a 1-a n q 1-qn n 前n 项和,若a 1=13,a 24=a 6,则S 5=________.解析:通解:设等比数列{a n }的公比为q ,因为a 24=a 6,所以(a 1q 3)2=a 1q 5,所以a 1q =1,又a 1=13,所以q =3,所以S 5=a 1(1-q 5)1-q =13×(1-35)1-3=1213.优解:设等比数列{a n }的公比为q ,因为a 24=a 6,所以a 2a 6=a 6,所以a 2=1,又a 1=13,所以q =3,所以S 5=a 1(1-q 5)1-q=13×(1-35)1-3=1213.答案:12132.已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式; (2)若T 3=21,求S 3.解:设{a n }的公差为d ,{b n }的公比为q ,则a n =-1+(n -1)d ,b n =q n -1.由a 2+b 2=2得d +q =3.① (1)由a 3+b 3=5得2d +q 2=6.②联立①和②解得⎩⎪⎨⎪⎧d =3,q =0(舍去),⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.(2)由b 1=1,T 3=21得q 2+q -20=0, 解得q =-5或q =4.当q =-5时,由①得d =8,则S 3=21. 当q =4时,由①得d =-1,则S 3=-6.等比数列的判定与证明(师生共研)(2018·高考全国卷Ⅰ)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a nn.(1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.【解】 (1)由条件可得a n +1=2(n+1)na n .将n =1代入得,a 2=4a 1, 而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2, 所以,a 3=12.从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列.由条件可得a n +1n +1=2a n n,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列.(3)由(2)可得a n n=2n -1,所以a n =n ·2n -1.等比数列的4种常用判定方法定义法若a n +1a n =q (q 为非零常数,n ∈N +)或a na n -1=q (q 为非零常数且n ≥2,n ∈N +),则{a n }是等比数列中项 公式法 若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N +),则数列{a n }是等比数列通项若数列通项公式可写成a n =c ·qn -1(c ,q 均是不为0的常数,证明;后两种方法常用于选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.1.已知数列{a n}的前n项和为S n,a1=1,S n+1=4a n+2(n∈N*),若b n=a n+1-2a n,求证:{b n}是等比数列.证明:因为a n+2=S n+2-S n+1=4a n+1+2-4a n-2=4a n+1-4a n,所以b n+1b n=a n+2-2a n+1a n+1-2a n=4a n+1-4a n-2a n+1a n+1-2a n=2a n+1-4a na n+1-2a n=2.因为S2=a1+a2=4a1+2,所以a2=5.所以b1=a2-2a1=3.所以数列{b n}是首项为3,公比为2的等比数列.2.已知数列{a n}的前n项和为S n,且S n=2a n-3n(n∈N+).(1)求a1,a2,a3的值;(2)是否存在常数λ,使得{a n+λ}为等比数列?若存在,求出λ的值和通项公式a n,若不存在,请说明理由.解:(1)当n=1时,S1=a1=2a1-3,解得a1=3,当n=2时,S2=a1+a2=2a2-6,解得a2=9,当n=3时,S3=a1+a2+a3=2a3-9,解得a3=21.(2)假设{a n+λ}是等比数列,则(a2+λ)2=(a1+λ)(a3+λ),即(9+λ)2=(3+λ)(21+λ),解得λ=3.下面证明{a n +3}为等比数列:因为S n =2a n -3n ,所以S n +1=2a n +1-3n -3,所以a n +1=S n +1-S n =2a n +1-2a n -3,即2a n +3=a n +1,所以2(a n +3)=a n +1+3,所以a n +1+3a n +3=2,所以存在λ=3,使得数列{a n +3}是首项为a 1+3=6,公比为2的等比数列.所以a n +3=6×2n -1,即a n =3(2n-1)(n ∈N +).等比数列的性质(多维探究) 角度一 等比数列项的性质(1)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.(2)等比数列{a n }的前n 项和为S n ,若a n >0,q >1,a 3+a 5=20,a 2a 6=64,则S 5=________.【解析】 (1)因为a 10a 11+a 9a 12=2a 10a 11=2e 5, 所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20 =ln(a 1a 2…a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)] =ln(a 10a 11)10=10ln(a 10a 11) =10ln e 5=50ln e =50.(2)由等比数列的性质,得a 3a 5=a 2a 6=64,于是由⎩⎪⎨⎪⎧a 3+a 5=20,a 3a 5=64,且a n >0,q >1,得a 3=4,a 5=16,所以⎩⎪⎨⎪⎧a 1q 2=4,a 1q 4=16,解得⎩⎪⎨⎪⎧a 1=1,q =2.所以S 5=1×(1-25)1-2=31.【答案】 (1)50 (2)31角度二 等比数列前n 项和的性质(1)(一题多解)等比数列{a n }中,前n 项和为48,前2n项和为60,则其前3n 项和为________.(2)数列{a n }是一个项数为偶数的等比数列,所有项之和是偶数项之和的4倍,前三项之积为64,则此数列的通项公式为a n =________.【解析】 (1)法一:设数列{a n }的前n 项和为S n . 因为S 2n ≠2S n ,所以q ≠1,由前n 项和公式得⎩⎪⎨⎪⎧a 1(1-q n )1-q =48,①a 1(1-q 2n)1-q=60,②②÷①,得1+q n=54,所以q n=14.③将③将入①,得a 11-q=64. 所以S 3n =a 1(1-q 3n )1-q =64×⎝⎛⎭⎪⎫1-143=63.法二:设数列{a n }的前n 项和为S n , 因为{a n }为等比数列,所以S n ,S 2n -S n ,S 3n -S 2n 也成等比数列, 所以(S 2n -S n )2=S n (S 3n -S 2n ),即S 3n =(S 2n -S n )2S n +S 2n =(60-48)248+60=63.法三:设数列{a n }的前n 项和为S n , 因为S 2n =S n +q nS n ,所以q n=S 2n -S n S n =14,所以S 3n =S 2n +q2nS n =60+⎝ ⎛⎭⎪⎫142×48=63.(2)设此数列{a n }的公比为q , 由题意,知S 奇+S 偶=4S 偶, 所以S 奇=3S 偶,所以q =S 偶S 奇=13.又a 1a 2a 3=64,即a 1(a 1q )(a 1q 2)=a 31q 3=64, 所以a 1q =4.又q =13,所以a 1=12,所以a n =a 1qn -1=12×⎝ ⎛⎭⎪⎫13n -1.【答案】 (1)63(2)12×⎝ ⎛⎭⎪⎫13n -1等比数列常见性质的应用等比数列性质的应用可以分为三类 (1)通项公式的变形. (2)等比中项的变形. (3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.[提醒] 在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.(一题多解)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1 C.12D .18解析:选C.法一:因为a 3a 5=a 24,a 3a 5=4(a 4-1), 所以a 24=4(a 4-1), 所以a 24-4a 4+4=0,所以a 4=2.又因为q 3=a 4a 1=214=8,所以q =2,所以a 2=a 1q =14×2=12,故选C.法二:因为a 3a 5=4(a 4-1), 所以a 1q 2·a 1q 4=4(a 1q 3-1),将a 1=14代入上式并整理,得q 6-16q 3+64=0,解得q =2,所以a 2=a 1q =12,故选C.数列与数学文化及实际应用1.等差数列与数学文化(2020·陕西汉中二模)我国古代名著《九章算术》中有这样一段话:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.”意思是:现有一根金箠,长5尺,头部1尺,重4斤,尾部1尺,重2斤.若该金箠从头到尾,每一尺的质量构成等差数列,则该金箠共重( )A .6斤B .7斤C .9斤D .15斤【解析】 设从头到尾每一尺的质量构成等差数列{a n },则有a 1=4,a 5=2,所以a 1+a 5=6,数列{a n }的前5项和为S 5=5×a 1+a 52=5×3=15,即该金箠共重15斤.故选D.【答案】 D以数学文化为背景的等差数列模型题的求解关键:一是会脱去数学文化的背景,读懂题意;二是构建模型,即由题意构建等差数列的模型;三是解模,即把文字语言转化为求等差数列的相关问题,如求指定项、公差或项数、通项公式或前n 项和等.2.等比数列与数学文化(2020·湖南衡阳三模)中国古代数学名著《九章算术》中有如下问题.今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文如下:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?该问题中,1斗为10升,则马主人应偿还的粟(单位:升)为( )A.253 B .503C.507D .1007【解析】 5斗=50升.设羊、马、牛的主人应偿还粟的量分别为a 1,a 2,a 3,由题意可知a 1,a 2,a 3构成公比为2的等比数列,且S 3=50,则a 1(1-23)1-2=50,解得a 1=507,所以马主人应偿还粟的量为a 2=2a 1=1007,故选D.【答案】 D以数学文化为背景的等比数列模型题的求解关键:一是会透过数学文化的“表象”看“本质”;二是构建模型,即盯准题眼,构建等比数列的模型;三是解模,即把文字语言转化为求等比数列的相关问题,如求指定项、公比或项数、通项公式或前n 项和等.3.递推数列与数学文化(2020·北京市石景山区3月模拟)九连环是我国从古至今广为流传的一种益智游戏,它用九个圆环相连成串,以解开为胜.据明代杨慎《丹铅总录》记载:“两环互相贯为一,得其关捩,解之为二,又合而为一.”在某种玩法中,用a n 表示解下n (n ≤9,n ∈N +)个圆环所需的最少移动次数,数列{a n }满足a 1=1,且a n =⎩⎪⎨⎪⎧2a n -1-1,n 为偶数,2a n -1+2,n 为奇数,则解下4个环所需的最少移动次数a 4为( )A .7B .10C .12D .22【解析】 因为数列{a n }满足a 1=1,且a n =⎩⎪⎨⎪⎧2a n -1-1,n 为偶数,2a n -1+2,n 为奇数,所以a 2=2a 1-1=2-1=1,所以a 3=2a 2+2=2×1+2=4,所以a 4=2a 3-1=2×4-1=7.故选A.以数学文化为背景的已知递推公式的数列模型的求解关键是耐心读题、仔细理解题,只有弄清题意,才能将实际问题转化为数学模型进行解答,“盯紧”题目条件中的递推公式,利用此递推公式往要求的量转化,如本题,剥去数学文化背景,实质就是已知a 1=1,且a n =⎩⎪⎨⎪⎧2a n -1-1,n 为偶数,2a n -1+2,n 为奇数,求a 4的问题.4.周期数列与数学文化(2020·山东临沂三模)意大利数学家斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2)(n ≥3,n ∈N +).此数列在现代物理、化学等方面都有着广泛的应用.若此数列被2除后的余数构成一个新数列{a n },则数列{a n }的前2 019项的和为( )A .672B .673C .1 346D .2 019【解析】 由于{a n }是数列1,1,2,3,5,8,13,21,34,55,…各项除以2的余数,故{a n }为1,1,0,1,1,0,1,1,0,1,…,所以{a n }是周期为3的周期数列,且一个周期中的三项之和为1+1+0=2. 因为2 019=673×3,所以数列{a n }的前2 019项的和为673×2=1 346.故选C.以数学文化为背景的周期数列模型题的求解关键是细审题,建立数学模型,并会适时脱去背景,如本题,脱去背景,实质是利用斐波那契数列的各项除以2的余数的特征,得出新数列的周期性,进而求出结果.5.数列在实际问题中的应用私家车具有申请报废制度.一车主购买车辆时花费15万,每年的保险费、路桥费、汽油费等约1.5万元,每年的维修费是一个公差为3 000元的等差数列,第一年维修费为3 000元,则该车主申请车辆报废的最佳年限(使用多少年的年平均费用最少)是________年.【解析】 设这辆汽车报废的最佳年限为n 年,第n 年的费用为a n ,则a n =1.5+0.3n .前n 年的总费用为S n =15+1.5n +n2(0.3+0.3n )=0.15n 2+1.65n +15,年平均费用:S n n =0.15n +15n+1.65≥20.15n ×15n +1.65=4.65,当且仅当0.15n =15n,即n=10时,年平均费用S nn取得最小值.所以这辆汽车报废的最佳年限是10年.【答案】 10数学建模是指对现实问题进行抽象,用数学语言表达和解决实际问题的过程.有关数列的应用问题,是让学生能够在实际情境中,用数学的思想分析数列问题,用数学的语言表达数列问题,用数学的知识得到数列模型,用数列的方法得到结论,验证数学结论与实际问题的相符程度,最终得到符合实际规律的结果.[基础题组练]1.(2020·江西宜春一模)在等比数列{a n }中,a 1a 3=a 4=4,则a 6的所有可能值构成的集合是( )A .{6}B .{-8,8}C .{-8}D .{8}解析:选D.因为a 1a 3=a 22=4,a 4=4,所以a 2=2,所以q 2=a 4a 2=2,所以a 6=a 2q 4=2×4=8,故a 6的所有可能值构成的集合是{8},故选D.2.在等比数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( )A .135B .100C .95D .80解析:选A.由等比数列前n 项和的性质知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8成等比数列,其首项为40,公比为6040=32,所以a 7+a 8=40×⎝ ⎛⎭⎪⎫323=135.3.(2020·山西3月高考考前适应性测试)正项等比数列{a n }中,a 1a 5+2a 3a 7+a 5a 9=16,且a 5与a 9的等差中项为4,则{a n }的公比是( )A .1B .2 C.22D .2解析:选D.设公比为q ,由正项等比数列{a n }中,a 1a 5+2a 3a 7+a 5a 9=16,可得a 23+2a 3a 7+a 27=(a 3+a 7)2=16,即a 3+a 7=4,由a 5与a 9的等差中项为4,得a 5+a 9=8,则q 2(a 3+a 7)=4q 2=8,则q=2(舍负),故选D.4.(2020·湘赣十四校第二次联考)中国古代著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问最后一天走了( )A .6里B .12里C .24里D .96里解析:选A.由题意可得,每天行走的路程构成等比数列,记作数列{a n },设等比数列{a n }的首项为a 1,公比为q ,则q =12,依题意有a 1(1-q 6)1-q =378,解得a 1=192,则a 6=192×(12)5=6,最后一天走了6里,故选A.5.一个等比数列的前三项的积为3,最后三项的积为9,且所有项的积为729,则该数列的项数是( )A .13B .12C .11D .10解析:选B.设该等比数列为{a n },其前n 项积为T n ,则由已知得a 1·a 2·a 3=3,a n -2·a n -1·a n =9,(a 1·a n )3=3×9=33,所以a 1·a n =3,又T n =a 1·a 2·…·a n -1·a n =a n ·a n -1·…·a 2·a 1,所以T 2n =(a 1·a n )n,即7292=3n,所以n =12.6.(2020·黄冈模拟)已知正项等比数列{a n }的前n 项和为S n ,且a 1a 6=2a 3,a 4与2a 6的等差中项为32,则S 5=________.解析:设{a n }的公比为q (q >0),因为a 1a 6=2a 3,而a 1a 6=a 3a 4,所以a 3a 4=2a 3,所以a 4=2.又a 4+2a 6=3,所以a 6=12,所以q =12,a 1=16,所以S 5=16[1-(12)5]1-12=31.答案:317.(一题多解)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=________.解析:法一:设数列{a n }的公比为q ,则由题意得⎩⎪⎨⎪⎧a 4+a 7=a 1q 3+a 1q 6=2,a 5a 6=a 1q 4×a 1q 5=a 21q 9=-8,所以⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,所以a 1+a 10=a 1(1+q 9)=-7.法二:由⎩⎪⎨⎪⎧a 4+a 7=2,a 5a 6=a 4a 7=-8,解得⎩⎪⎨⎪⎧a 4=-2,a 7=4或⎩⎪⎨⎪⎧a 4=4,a 7=-2.所以⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,所以a 1+a 10=a 1(1+q 9)=-7.答案:-78.(2020·安徽安庆模拟)数列{a n }满足:a n +1=λa n -1(n ∈N +,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值为________.解析:由a n +1=λa n -1,得a n +1-1=λa n -2=λ⎝⎛⎭⎪⎫a n -2λ.由于数列{a n -1}是等比数列,所以2λ=1,得λ=2.答案:29.已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解:(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,故a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎪⎫λλ-1n.由S 5=3132得1-⎝ ⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132.解得λ=-1.10.(2019·高考全国卷Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.解:(1)证明:由题设得4(a n +1+b n +1)=2(a n +b n ),即a n +1+b n+1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8,即a n +1-b n +1=a n -b n+2.又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列.(2)由(1)知,a n +b n =12n -1,a n -b n =2n -1.所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12,b n =12[(a n +b n )-(a n -b n )]=12n -n +12.[综合题组练]1.已知等比数列{a n }中a 2=1,则其前3项的和S 3的取值范围是( )A .(-∞,-1]B .(-∞,0)∪[1,+∞)C .[3,+∞)D .(-∞,-1]∪[3,+∞)解析:选D.设等比数列{a n }的公比为q , 则S 3=a 1+a 2+a 3=a 2(1q +1+q )=1+q +1q.当公比q >0时,S 3=1+q +1q≥1+2q ·1q=3,当且仅当q =1时,等号成立;当公比q <0时,S 3=1-(-q -1q)≤1-2(-q )·(-1q)=-1,当且仅当q =-1时,等号成立.所以S 3∈(-∞,-1]∪[3,+∞).2.设{a n }是公比为q 的等比数列,|q |>1,令b n =a n +1(n =1,2,…),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则q 等于( )A .-12B .12C .-32D .32解析:选C.{b n }有连续四项在{-53,-23,19,37,82}中且b n =a n +1.a n =b n -1,则{a n }有连续四项在{-54,-24,18,36,81}中.因为{a n }是等比数列,等比数列中有负数项,则q <0,且负数项为相隔两项,所以等比数列各项的绝对值递增或递减.按绝对值的顺序排列上述数值18,-24,36,-54,81, 相邻两项相除-2418=-43,36-24=-32,-5436=-32,81-54=-32,则可得-24,36,-54,81是{a n }中连续的四项.q =-32或q =-23(因为|q |>1,所以此种情况应舍),所以q =-32.故选C.3.在递增的等比数列{a n }中,已知a 1+a n =34,a 3·a n -2=64,且前n 项和S n =42,则n =________.解析:因为{a n }为等比数列, 所以a 3·a n -2=a 1·a n =64. 又a 1+a n =34,所以a 1,a n 是方程x 2-34x +64=0的两根,解得⎩⎪⎨⎪⎧a 1=2,a n =32或⎩⎪⎨⎪⎧a 1=32,a n =2.又因为{a n }是递增数列,所以⎩⎪⎨⎪⎧a 1=2,a n =32.由S n =a 1-a n q 1-q =2-32q 1-q=42,解得q =4.由a n =a 1qn -1=2×4n -1=32,解得n =3. 答案:34.已知数列{a n }满足a 1=2且对任意的m ,n ∈N +,都有a m +na m=a n ,则数列{a n }的前n 项和S n =________.解析:因为a n +ma m=a n ,令m =1,则a n +1a 1=a n ,即a n +1a n=a 1=2,所以{a n }是首项a 1=2,公比q =2的等比数列,S n =2(1-2n)1-2=2n +1-2.答案:2n +1-25.(2020·湖北武汉4月毕业班调研)已知正项等比数列{a n }的前n 项和S n 满足S 2+4S 4=S 6,a 1=1.(1)求数列{a n }的公比q ;(2)令b n =a n -15,求T =|b 1|+|b 2|+…+|b 10|的值. 解:(1)由题意可得q ≠1, 由S 2+4S 4=S 6,可知a 1(1-q 2)1-q +4·a 1(1-q 4)1-q =a 1(1-q 6)1-q,所以(1-q 2)+4(1-q 4)=1-q 6,而q ≠1,q >0, 所以1+4(1+q 2)=1+q 2+q 4,即q 4-3q 2-4=0, 所以(q 2-4)(q 2+1)=0,所以q =2.(2)由(1)知a n =2n -1,则{a n }的前n 项和S n =1-2n1-2=2n-1,当n ≥5时,b n =2n -1-15>0,n ≤4时,b n =2n -1-15<0,所以T =-(b 1+b 2+b 3+b 4)+(b 5+b 6+…+b 10)=-(a 1+a 2+a 3+a 4-15×4)+(a 5+a 6+…+a 10-15×6) =-S 4+S 10-S 4+60-90=S 10-2S 4-30=(210-1)-2(24-1)-30 =210-25-29=1 024-32-29=963.6.已知数列{a n }中,a 1=1,a n ·a n +1=⎝ ⎛⎭⎪⎫12n,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N +.(1)判断数列{b n }是否为等比数列,并求出b n ; (2)求T 2n .解:(1)因为a n ·a n +1=⎝ ⎛⎭⎪⎫12n,所以a n +1·a n +2=⎝ ⎛⎭⎪⎫12n +1,所以a n +2a n =12,即a n +2=12a n .因为b n =a 2n +a 2n -1,所以b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12,因为a 1=1,a 1·a 2=12,所以a 2=12,所以b 1=a 1+a 2=32.所以{b n }是首项为32,公比为12的等比数列.所以b n =32×⎝ ⎛⎭⎪⎫12n -1=32n .(2)由(1)可知,a n +2=12a n ,所以a 1,a 3,a 5,…是以a 1=1为首项,以12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,以12为公比的等比数列,所以T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=1-⎝ ⎛⎭⎪⎫12n 1-12+12⎣⎢⎢⎡⎦⎥⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=3-32n .。
高考数学一轮复习 3.2 等差数列教案
3.2 等差数列●知识梳理1.等差数列的概念若数列{a n }从第二项起,每一项与它的前一项的差等于同一个常数,则数列{a n }叫等差数列.2.通项公式:a n =a 1+(n -1)d ,推广:a n =a m +(n -m )d . 变式:a 1=a n -(n -1)d ,d =11--n a a n ,d =mn a a m n --,由此联想点列(n ,a n )所在直线的斜率.3.等差中项:若a 、b 、c 成等差数列,则b 称a 与c 的等差中项,且b =2c a +;a 、b 、c 成等差数列是2b =a +c 的充要条件.4.前n 项和:S n =2)(1n a a n +=na 1+2)1(-n n d =n ·a n -21(n -1)nd . 变式:21n a a +=n S n =n a a a n+⋅⋅⋅++21=a 1+(n -1)·2d =a n +(n -1)·(-2d ).●点击双基1.(2003年全国,文5)等差数列{a n }中,已知a 1=31,a 2+a 5=4,a n =33,则n 是A.48B.49C.50D.51解析:由已知解出公差d =32,再由通项公式得31+(n -1)32=33,解得n =50.答案:C2.(2003年全国,8)已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为41的等差数列,则|m -n |等于A.1B.43 C.21D.83解析:设4个根分别为x 1、x 2、x 3、x 4,则x 1+x 2=2,x 3+x 4=2,由等差数列的性质,当m +n =p +q 时,a m +a n =a p +a q .设x 1为第一项,x 2必为第4项,可得数列为41,43,45,47,∴m =167,n =1615.∴|m -n |=21.答案:C3.(2004年春季上海,7)在数列{a n }中,a 1=3,且对任意大于1的正整数n ,点(na ,1-n a )在直线x -y -3=0上,则a n =___________________.解析:将点代入直线方程得na -1-n a =3,由定义知{na }是以3为首项,以3为公差的等差数列,故na =3n ,即a n =3n 2.答案:3n 24.(2003年春季上海,12)设f (x )=221+x,利用课本中推导等差数列前n 项和的公式的方法,可求得f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为___________________.解析:倒序相加法,观察函数解析式的特点,得到f (x )+f (1-x )=22,即f (-5)+ f (6)=22,f (-4)+f (5)=22,f (-3)+f (4)=22,f (-2)+f (3)=22,f (-1)+ f (2)=22,f(0)+f (1)=22,故所求的值为32.答案:32●典例剖析【例1】 数列{a n }的前n 项和为S n =npa n (n ∈N *)且a 1≠a 2, (1)求常数p 的值;(2)证明:数列{a n }是等差数列. 剖析:(1)注意讨论p 的所有可能值. (2)运用公式a n =⎩⎨⎧--11n nS S S .2,1≥=n n 求a n .解:(1)当n =1时,a 1=pa 1,若p =1时,a 1+a 2=2pa 2=2a 2, ∴a 1=a 2,与已知矛盾,故p ≠1.则a 1=0. 当n =2时,a 1+a 2=2pa 2,∴(2p -1)a 2=0. ∵a 1≠a 2,故p =21. (2)由已知S n =21na n ,a 1=0.n ≥2时,a n =S n -S n -1=21na n -21(n-1)a n -1.∴1-n na a =21--n n .则21--n n a a =32--n n ,…,23a a =12.∴2a a n =n -1.∴a n =(n -1)a 2,a n -a n -1=a 2.故{a n }是以a 2为公差,以a 1为首项的等差数列.评述:本题为“S n ⇒a n ”的问题,体现了运动变化的思想. 【例2】 已知{a n }为等差数列,前10项的和S 10=100,前100项的和S 100=10,求前110项的和S 110.剖析:方程的思想,将题目条件运用前n 项和公式,表示成关于首项a 1和公差d 的两个方程.解:设{a n }的首项为a 1,公差为d ,则⎪⎪⎩⎪⎪⎨⎧=⨯⨯+=⨯⨯+,109910021100,100910211011d a d a 解得⎪⎪⎩⎪⎪⎨⎧=-=.1001099,50111d a ∴S 110=110a 1+21×110×109d =-110.评述:解决等差(比)数列的问题时,通常考虑两类方法:①基本量法,即运用条件转化成关于a 1和d (q )的方程;②巧妙运用等差(比)数列的性质(如下标和的性质、子数列的性质、和的性质).一般地,运用数列的性质,可化繁为简.思考讨论此题能按等差数列的关于和的性质来求吗?【例3】 已知数列{a n }的前n 项和S n =12n -n 2,求数列{|a n |}的前n 项和T n .剖析:由S n =12n -n 2知S n 是关于n 的无常数项的二次函数(n ∈N *),可知{a n }为等差数列,求出a n ,然后再判断哪些项为正,哪些项为负,最后求出T n .解:当n =1时,a 1=S 1=12-12=11;当n ≥2时,a n =S n -S n -1=12n -n 2-[12(n -1)-(n -1)2]=13-2n .∵n =1时适合上式,∴{a n }的通项公式为a n =13-2n .由a n =13-2n ≥0,得n ≤213,即当 1≤n ≤6(n ∈N *)时,a n>0;当n ≥7时,a n <0.(1)当 1≤n ≤6(n ∈N *)时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =12n -n 2.(2)当n ≥7(n ∈N *)时,T n =|a 1|+|a 2|+…+|a n |=(a 1+a 2+…+a 6)-(a 7+a 8+…+a n )=-(a 1+a 2+…+a n )+2(a 1+…+a 6)=-S n +2S 6=n 2-12n +72.∴T n =⎪⎩⎪⎨⎧+--72121222n n nn ).,7(),,61(**N N ∈≥∈≤≤n n n n评述:此类求和问题先由a n 的正负去掉绝对值符号,然后分类讨论转化成{a n }的求和问题.深化拓展若此题的S n =n 2-12n ,那又该怎么求T n 呢?答案:T n =⎩⎨⎧≥-≤-.72,66n S S n S nn●闯关训练 夯实基础1.等差数列{a n }中,a 10<0,a 11>0且a 11>|a 10|,S n 为其前n 项和,则A.S 1,S 2,…,S 10都小于0,S 11,S 12,…都大于0B.S 1,S 2,…,S 19都小于0,S 20,S 21,…都大于0C.S 1,S 2,…,S 5都小于0,S 6,S 7,…都大于0D.S 1,S 2,…,S 20都小于0,S 21,S 22,…都大于0 解析:由题意知⎩⎨⎧>+<+,010,0911d a d a 可得d >0,a 1<0.又a 11>|a 10|=-a 10,∴a 10+a 11>0.由等差数列的性质知a 1+a 20=a 10+a 11>0,∴S 20=10(a 1+a 20)>0. 答案:B2.等差数列{a n }的前n 项和记为S n ,若a 2+a 4+a 15的值是一个确定的常数,则数列{S n }中也为常数的项是A.S 7B.S 8C.S 13D.S 15解析:设a 2+a 4+a 15=p (常数),∴3a 1+18d =p ,即a 7=31p . ∴S 13=2)(13131a a +⨯=13a 7=313p .答案:C3.在等差数列{a n }中,公差为21,且a 1+a 3+a 5+…+a 99=60,则a 2+a 4+a 6+…+a 100=_________.解析:由等差数列的定义知a 2+a 4+a 6+…+a 100=a 1+a 3+a 5+…+a 99+50d =60+25=85.答案:854.将正偶数按下表排成5列:那么2004应该在第______________行第______________列.解法一:由2004是正偶数列中第1002项,每一行四项,故在第251行中的第二个数.又第251行是从左向右排且从第二行开始排,故2004为第251行第3列.解法二:观察第三列中的各数,可发现从上依次组成一个首项为4,公差为8的等差数列,可算得2004为此数列的第251项.答案:251 35.(2004年全国,文17)等差数列{a n}的前n项和为S n,已知a10=30,a20=50.(1)求通项{a n};(2)若S n=242,求n.解:(1)由a n=a1+(n-1)d,a10=30,a20=50,得方程组a1+9d=30,①a1+19d=50. ②由①②解得a1=12,d=2,故a n=2n+10.(2)由S n=na1+2)1(-nn d及Sn =242,得方程12n+2)1(-nn×2=242,解得n=11或n=-22(舍).6.设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0.(1)求公差d 的取值范围;(2)指出S 1,S 2,S 3,…,S 12中哪一个最大,并说明理由. 解:(1)a 3=12,∴a 1=12-2d ,解得a 12=12+9d ,a 13=12+10d .由S 12>0,S 13<0,即2)(12121a a +>0,且2)(13131a a +<0,解之得-724<d<-3.(2)由a n =12+(n -3)d >0,由-724<d <-3,易知a 7<0,a 6>0,故S 6最大.培养能力7.已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2),a 1=21.(1)求证:{nS 1}是等差数列;(2)求a n 的表达式.(1)证明:∵-a n =2S n S n -1,∴-S n +S n -1=2S n S n -1(n ≥2),S n≠0(n =1,2,3…).∴nS 1-11-n S =2.又11S =11a =2,∴{nS 1}是以2为首项,2为公差的等差数列.(2)解:由(1),nS 1=2+(n -1)·2=2n ,∴S n =n21.当n ≥2时,a n =S n -S n -1=n21-)1(21-n =-)1(21-n n 〔或n ≥2时,a n =-2S n S n -1=-)1(21-n n 〕;当n =1时,S 1=a 1=21.∴a n =⎪⎪⎩⎪⎪⎨⎧--)1(2121n n ).2(),1(≥=n n8.有点难度哟!(理)设实数a ≠0,函数f (x )=a (x 2+1)-(2x +a1)有最小值-1.(1)求a 的值;(2)设数列{a n }的前n 项和S n =f (n ),令b n =na a a n242+⋅⋅⋅++,证明:数列{b n }是等差数列.(1)解:∵f (x )=a (x -a 1)2+a -a 2,由已知知f (a1)=a-a2=-1,且a >0,解得a =1,a =-2(舍去).(2)证明:由(1)得f (x )=x 2-2x , ∴S n =n 2-2n ,a 1=S 1=-1.当n ≥2时,a n =S n -S n -1=n 2-2n -(n -1)2+2(n -1)=2n -3,a 1满足上式即a n =2n -3.∵a n +1-a n =2(n +1)-3-2n +3=2,∴数列{a n }是首项为-1,公差为2的等差数列.∴a 2+a 4+…+a 2n =2)(22n a a n +=2)341(-+n n =n (2n -1),即b n =nn n )12(-=2n -1.∴b n +1-b n =2(n +1)-1-2n +1=2.又b 2=12a =1,∴{b n }是以1为首项,2为公差的等差数列.(文)有一批影碟机(VCD)原销售价为每台800元,在甲、乙两家电商场均有销售,甲商场用如下的方法促销:买一台单价为780元,买两台单价都为760元,依次类推,每多买一台则所买各台单价均再减少20元,但每台最低价不能低于440元;乙商场一律都按原价的75%销售,某单位需购买一批此类影碟机,问去哪家商场购买花费较少?解:设单位需购买影碟机n台,在甲商场购买每台售价不低于440元时售价依台数n成等差数列,设该数列为{a n},则a n=780+(n-1)×(-20)=800-20n.由a n≥440解不等式800-2n≥440,得n≤18.当购买台数小于18时,每台售价为800-20n元,在台数大于等于18台时每台售价为440元.到乙商场购买每台约售价为800×75%=600元.价差(800-20n)n-600n=20n(10-n).当n<10时,600n<(800-20n)·n;当n=10时,600n=(800-20n)·n;当10<n≤18时,(800-20n)<600n;当n>18时,440n<600n.答:当购买少于10台时到乙商场花费较少;当购买10台时到两商场购买花费相同;当购买多于10台时到甲商场购买花费较少.探究创新9.有点难度哟!已知f (x )=a 1x +a 2x 2+a 3x 3+…+a n x n,n 为正偶数,且a 1,a 2,a 3,…,a n 组成等差数列,又f (1)=n 2,f (-1)=n .试比较f (21)与3的大小.解:∵f (1)=a 1+a 2+…+a n =n 2. 依题设,有2)(1n a a n =n 2,故a 1+a n =2n ,即2a 1+(n -1)d =2n .又f (-1)=-a 1+a 2-a 3+a 4-a 5+…-a n -1+a n =n ,∴2n ·d =n ,有d =2.进而有2a 1+(n -1)2=2n ,解出a 1=1.于是f (1)=1+3+5+7+…+(2n -1).f (x )=x +3x 2+5x 3+7x 4+…+(2n -1)x n .∴f (21)=21+3(21)2+5(21)3+7(21)4+…+(2n -1)(21)n. ①①两边同乘以21,得21f (21)=(21)2+3(21)3+5(21)4+…+(2n -3)(21)n +(2n -1)(21)n +1. ②①-②,得21f (21)=21+2(21)2+2(21)3+…+2(21)n-(2n-1)(21)n +1,即21f (21)=21+21+(21)2+…+(21)n -1-(2n -1)(21)n +1.∴f (21)=1+1+21+221+…+221-n -(2n -1)n 21=1+2112111---n -(2n -1)n21=1+2-221-n -(2n -1)n21<3.∴f (21)<3. ●思悟小结1.深刻理解等差数列的定义,紧扣从“第二项起”和“差是同一常数”这两点.2.等差数列中,已知五个元素a 1,a n ,n ,d ,S n 中的任意三个,便可求出其余两个.3.证明数列{a n }是等差数列的两种基本方法是: (1)利用定义,证明a n -a n -1(n ≥2)为常数; (2)利用等差中项,即证明2a n =a n -1+a n +1(n ≥2).4.等差数列{a n }中,当a 1<0,d >0时,数列{a n }为递增数列,S n 有最小值;当a 1>0,d <0时,数列{a n }为递减数列,S n 有最大值;当d =0时,{a n }为常数列.5.复习时,要注意以下几点:(1)深刻理解等差数列的定义及等价形式,灵活运用等差数列的性质.(2)注意方程思想、整体思想、分类讨论思想、数形结合思想的运用.●教师下载中心教学点睛本节教学时应注意以下几个问题:1.在熟练应用基本公式的同时,还要会用变通的公式,如在等差数列中,a m=a n+(m-n)d.2.由五个量a1,d,n,a n,S n中的三个量可求出其余两个量,要求选用公式要恰当,即善于减少运算量,达到快速、准确的目的.3.已知三个或四个数成等差数列这类问题,要善于设元,目的仍在于减少运算量,如三个数成等差数列时,除了设a,a+d,a+2d 外,还可设a-d,a,a+d;四个数成等差数列时,可设为a-3d,a-d,a+d,a+3d.4.等差数列的性质在求解中有着十分重要的作用,应熟练掌握、灵活运用.5.在求解数列问题时,要注意函数思想、方程思想、消元及整体消元的方法的应用.拓展题例【例1】已知两个等差数列5,8,11,…和3,7,11,…都有100项,问它们有多少相同的项?并求所有相同项的和.分析一:两个等差数列的相同的项按原来的先后次序组成一个等差数列,且公差为原来两个公差的最小公倍数.解法一:设两个数列相同的项按原来的前后次序组成的新数列为{a n},则a1=11.∵数列5,8,11,…与3,7,11,…公差分别为3与4, ∴{a n }的公差d =3×4=12,∴a n =12n -1.又∵5,8,11,…与3,7,11,…的第100项分别是302与399,∴a n =12n -1≤302,即n ≤25.5.又n ∈N *,∴两个数列有25个相同的项. 其和S 25=11×25+22425⨯×12=3875.分析二:由条件可知两个等差数列的通项公式,可用不定方程的求解方法来求解.解法二:设5,8,11,…与3,7,11,…分别为{a n }与{b n },则a n =3n +2,b n =4n -1.设{a n }中的第n 项与{b n }中的第m 项相同,即3n +2=4m -1,∴n =34m -1.又m 、n ∈N *,∴设m =3r (r ∈N *),得n =4r -1. 根据题意得⎩⎨⎧≤-≤≤≤,100141,10031r r 解得1≤r ≤25(r ∈N *).从而有25个相同的项,且公差为12, 其和S 25=11×25+22425⨯×12=3875.【例2】 设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列{nS n }的前n 项和,求T n .解:设等差数列{a n }的公差为d ,则S n =na 1+21n (n -1)d .∵S 7=7,S 15=75,∴⎩⎨⎧=+=+,7510515,721711d a d a 即⎩⎨⎧=+=+.57,1311d a d a解得a 1=-2,d =1.∴nS n=a 1+21(n -1)d =-2+21(n -1)=25-n .∴11++n S n -nSn=21.∴数列{nS n}是等差数列,其首项为-2,公差为21.∴T n =41n 2-49n .。
名师手拉手高三一轮复习---数列的极限讲义
高三第一轮复习数学---数列的极限一、教学目标:理解数列极限的概念,会判断一些简单数列的极限,掌握极限的四则运算法则,会求某些数列的极限。
二、教学重点:1、按定义直观地感受一个数列是否有极限以及极限常数是什么,这是本节重点之一。
2、掌握三个常用极限是本节重点之二。
3、利用定义证明一个数列的极限,需要写成ε—N 语言的形式,这是本节难点。
三、教学过程:(一)主要知识: 1、 数列极限定义(1)定义:设{a n }是一个无穷数列,a 是一个常数,如果对于预先给定的任意小的正数ε,总存在正整数N ,使得只要正整数n>N ,就有|a n -a|<ε,那么就称数列{a n }以a 为极限,记作lim∞→n a n =a 。
对前任何有限项情况无关。
*(2)几何解释:设ε>0,我们把区间(a-ε,a+ε)叫做数轴上点a 的ε邻域;极限定义中的不等式|a n -a|<ε也可以写成a-ε<a n <a+ε,即a n ∈(a-ε,a+ε);因此,借助数轴可以直观地理解数列极限定义:不论a 点的ε邻域怎么小,数列{a n }从某一项以后的所有项都要进入这个邻域中,也可以说点a 的任意小的ε邻域(a-ε,a+ε)中含有无穷数列{a n }的几乎所有的项,而在这个邻域之外至多存在有限个项,由此可以想像无穷数列{a n }的项是多么稠密地分布在点a 的附近。
2、应该牢固掌握的常用极限①lim ∞→n C=C (常数列的极限就是这个常数) ②设a>0,则特别地 01lim=∞→nn ③设q ∈(-1,1),则lim∞→n q n =0;;1lim ,1==∞→nn q q ,1-=q 或nn q q ∞→>lim ,1不存在。
若无穷等比数列1,,,,11<-q aq aq a n 叫无穷递缩等比数列,其所有项的和(各项的和)为:qa s s n n -==∞→1lim 13、数列极限的运算法则 如果lim ∞→n a n =A ,lim ∞→n b n =B ,那么(1)lim ∞→n (a n ±b n )=A ±B (2)lim ∞→n (a n ·b n )=A ·B(3)lim∞→n n n b a =BA(B ≠0) 极限不存在的情况是1、±∞=∞→n n a lim ;2、极限值不唯一,跳跃,如1,-1,1,-1….4、一个重要的极限:ennn=⎪⎭⎫⎝⎛++∞→11lim思维方法:直接从常用的重要极限出发,运用数列极限的运算法则解题。
数列教案优秀5篇
数列教案优秀5篇高三数学数列教案篇一数列§3.1.1数列、数列的通项公式目的:要求学生理解数列的概念及其几何表示,理解什么叫数列的通项公式,给出一些数列能够写出其通项公式,已知通项公式能够求数列的项。
重点:1数列的概念。
按一定次序排列的一列数叫做数列。
数列中的每一个数叫做数列的项,数列的第n项an叫做数列的通项(或一般项)。
由数列定义知:数列中的数是有序的,数列中的数可以重复出现,这与数集中的数的无序性、互异性是不同的。
2、数列的通项公式,如果数列{an}的通项an可以用一个关于n的公式来表示,这个公式就叫做数列的通项公式。
从映射、函数的观点看,数列可以看成是定义域为正整数集N-(或宽的有限子集)的函数。
当自变量顺次从小到大依次取值时对自学成才的一列函数值,而数列的通项公式则是相应的解析式。
由于数列的项是函数值,序号是自变量,所以以序号为横坐标,相应的项为纵坐标画出的图像是一些孤立的点。
难点:根据数列前几项的特点,以现规律后写出数列的通项公式。
给出数列的前若干项求数列的通项公式,一般比较困难,且有的数列不一定有通项公式,如果有通项公式也不一定唯一。
给出数列的前若干项要确定其一个通项公式,解决这个问题的关键是找出已知的每一项与其序号之间的对应关系,然后抽象成一般形式。
过程:一、从实例引入(P110)1. 堆放的钢管4,5,6,7,8,9,102. 正整数的倒数3、4. -1的正整数次幂:-1,1,-1,1,…5、无穷多个数排成一列数:1,1,1,1,…二、提出课题:数列1、数列的定义:按一定次序排列的一列数(数列的有序性)2、名称:项,序号,一般公式,表示法3、通项公式:与之间的函数关系式如数列1:数列2:数列4:4、分类:递增数列、递减数列;常数列;摆动数列;有穷数列、无穷数列。
5、实质:从映射、函数的观点看,数列可以看作是一个定义域为正整数集N-(或它的有限子集{1,2,…,n})的函数,当自变量从小到大依次取值时对应的一列函数值,通项公式即相应的函数解析式。
2025届高考数学一轮复习教案:数列-数列的概念
第七章数列第一节数列的概念【课程标准】1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数.3.能够利用a n与S n的关系求数列的通项公式.4.能根据数列递推关系求数列的项或通项公式.【考情分析】考点考法:高考题常以数列的概念为载体,考查数列项、前n项和及其与通项公式的关系.S n和a n的关系是高考热点,在各种题型中都会有所体现.核心素养:数学抽象、数学运算、逻辑推理.【必备知识·逐点夯实】【知识梳理·归纳】1.数列的有关概念概念含义数列按照确定的顺序排列的一列数数列的项数列中的每一个数数列的通项数列{a n}的第n项a n通项公式数列{a n}的第n项与序号n之间的关系式前n项和数列{a n}中,S n=a1+a2+…+a n2.数列的表示法列表法列表格表示n与a n的对应关系图象法把点(n,a n)画在平面直角坐标系中公式法通项公式把数列的通项使用公式表示的方法递推公式使用初始值a1和a n与a n+1的关系式或a1,a2和a n-1,a n,a n+1的关系式等表示数列的方法函数法a n=f(n),n∈N*【微点拨】(1)并不是所有的数列都有通项公式;(2)数列的通项公式不唯一;(3)归纳与猜想是研究数列的重要方法.3.数列的分类单调性递增数列∀n∈N*,a n+1>a n递减数列∀n∈N*,a n+1<a n常数列∀n∈N*,a n+1=a n摆动数列从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列周期性∀n∈N*,存在正整数k,a n+k=a n【微点拨】(1)数列的单调性可以类比数列的通项公式对应的函数解析式在区间(0,+∞)上的单调性;(2)可以把数列函数化,利用函数方法研究数列的单调性.4.数列的前n项和数列{a n}的前n项和S n=a1+a2+a3+…+-1+a n,则a n=1,=1,--1,≥2.【基础小题·自测】类型辨析改编题号12,3,4 1.(多维辨析)(多选题)下列结论不正确的是()A.数列5,2,0与2,0,5是同一个数列B.根据数列的前几项归纳出数列的通项公式可能不止一个C.任何一个数列不是递增数列,就是递减数列D.如果数列{a n}的前n项和为S n,则对∀n∈N*,都有a n=S n-S n-1【解析】选ACD.A中两个数列项的顺序不同,不是同一个数列;B正确;C中数列可能是常数数列或摆动数列;D中当n=1时,a1=S1-S0无意义.2.(选择性必修第二册P5例2·变形式)数列0,23,45,67,…的一个通项公式为()A.a n=-1r1B.a n=-12r1C.a n=2(-1)2-1D.a n=22r1【解析】选C.将0写成01,观察数列中每一项的分子、分母可知,分子为偶数列,可表示为2(n-1),n∈N*;分母为奇数列,可表示为2n-1,n∈N*.3.(选择性必修第二册P6例5·变形式)数列1,3,6,10,15,…的递推公式可以是()A.a n+1=a n+n,n∈N*B.a n=a n-1+n,n≥2,n∈N*C.a n+1=a n+(n+1),n≥2,n∈N*D.a n=a n-1+(n-1),n∈N*,n≥2【解析】选B.设数列1,3,6,10,15,…为,则a2-a1=2,a3-a2=3,a4-a3=4,a5-a4=5,…,n=2时,A,D不合题意;而C中不包含a2-a1=2,由此可得数列满足a n-a n-1=n,n≥2,n∈N*.4.(选择性必修第二册P4例1·变形式)已知数列{a n}满足a n=(r1)2,则S3=________.【解析】数列{a n}满足a n=(r1)2,可得a1=1,a2=3,a3=6,所以S3=1+3+6=10.答案:10【巧记结论·速算】在数列{a n}中,若a n最大,则≥-1,≥r1(n≥2).若a n最小,则≤-1,≤r1(n≥2).【即时练】已知数列中,a n=n2-5n+4,则数列的最小项是()A.第1项B.第3项、第4项C.第4项D.第2项、第3项【解析】选D.根据题意,数列中,a n=n2-5n+4,则a n+1-a n=(n+1)2-5(n+1)+4-n2+5n-4=2n-4,当n<2时,有a n+1-a n<0,则有a1>a2,当n=2时,有a n+1-a n=0,则有a2=a3,当n>2时,有a n+1-a n>0,则有a3<a4<……故数列的最小项是第2项、第3项.【核心考点·分类突破】考点一通项公式的探索及应用[例1](1)(多选题)已知数列{a n}的通项公式为a n=9+12n,则在下列各数中,是{a n}的项的是()A.21B.33C.152D.153【解析】选ABD.由数列的通项公式得,a1=21,a2=33,a12=153.(2)写出数列的一个通项公式,使它的前4项分别是下列各数.①23,45,87,169;②-12,23,-34,45;③3,4,3,4;④6,66,666,6666.【解析】①4个项都是分数,它们的分子依次为2,22,23,24,分母是正奇数,依次为2×1+1,2×2+1,2×3+1,2×4+1,所以给定4项都满足的一个通项公式为a n=22r1.②4个项按先负数,后正数,正负相间排列,其绝对值的分子依次为1,2,3,4,分母比对应分子多1,所以给定4项都满足的一个通项公式为a n=(-1)nr1.③4个项是第1,3项均为3,第2,4项均为4,所以给定4项都满足的一个通项公式为a n=3,=2-14,=2(k∈N*).④4个项,所有项都是由数字6组成的正整数,其中6的个数与对应项数一致,依次可写为6=23(10-1),66=23(102-1),666=23(103-1),6666=234-1),所以给定4项都满足的一个通项公式为a n=23(10n-1).【解题技法】由数列的前几项求通项公式的方法(1)根据所给数列的前几项求其通项公式时,需仔细观察分析,抓住其几方面的特征:分式中分子、分母的各自特征;相邻项的联系特征;拆项后的各部分特征;符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想.(2)对于正负符号变化,可用(-1)n或(-1)n+1来调整.【对点训练】1.若一数列为1,37,314,321,…,则398是这个数列的()A.不在此数列中B.第13项C.第14项D.第15项【解析】选D.因为1=37×0,37=37×1,314=37×2,321=37×3,因此符合题意的一个通项公式为a n=37(n-1),由37(n-1)=398解得n=15,所以398是这个数列的第15项.2.根据下面各数列前几项的值,写出数列的一个通项公式:(1)-1,7,-13,19,…;(2)-11×2,12×3,-13×4,14×5,…;(3)23,415,635,863,1099,…;(4)9,99,999,9999,….【解析】(1)偶数项为正,奇数项为负,故通项公式必含有因式(-1)n;观察各项的绝对值,后一项的绝对值总比它前一项的绝对值大6,故数列的一个通项公式为a n=(-1)n(6n-5).(2)这个数列的前4项的绝对值都等于序号与序号加1的乘积的倒数,且奇数项为负,偶数项为正,故它的一个通项公式为a n=(-1)n·1(r1).(3)这是一个分数数列,其分子构成偶数数列,而分母可分解为1×3,3×5,5×7,7×9,9×11,…,即分母的每一项都是两个相邻奇数的乘积,故所求数列的一个通项公式为a n=2.(2-1)(2r1)(4)这个数列的前4项可以写成10-1,100-1,1000-1,10000-1,故所求数列的一个通项公式为a n=10n-1.考点二已知S n或S n与a n的关系求a n[例2]金榜原创·易错对对碰①若数列{a n}的前n项和S n=2n+1,则数列的通项公式为a n=________.②若数列{a n}的前n项和S n=2n-1,则数列的通项公式为a n=________.【解析】①当n=1时,a1=S1=21+1=3;当n≥2时,a n=S n-S n-1=(2n+1)-(2n-1+1)=2n-2n-1=2n-1.综上有a n=3,=1,2-1,≥2.答案:3,=1,2-1,≥2.②当n=1时,a1=S1=21-1=1;当n≥2时,a n=S n-S n-1=(2n-1)-(2n-1-1)=2n-2n-1=2n-1.综上有a n=2n-1.答案:2n-1【解题技法】1.已知S n求a n的三个步骤(1)利用a1=S1求出a1.(2)用n-1替换S n中的n得到一个新的关系式,利用a n=S n-S n-1(n≥2)便可求出当n≥2时a n的解析式.(3)对n=1时的结果进行检验,看是否符合n≥2时a n的解析式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n=1与n≥2两段来写.2.已知S n与a n的关系求a n的两个方法(1)利用S n-S n-1=a n(n≥2)消去S n,转化为a n与a n-1的关系求a n;(2)利用a n=S n-S n-1(n≥2)消去a n,转化为S n与S n-1的关系,求出S n后再求a n.提醒:当n≥2时推出的关系不包含n=1的情况,因此需要验证n=1时是否成立,如果成立,则合并表示,如果不成立,则分段表示.【对点训练】1.已知正项数列{a n}中,1+2+…+=(r1)2,则数列{a n}的通项公式为()A.a n=nB.a n=n2C.a n=2D.a n=2 2【解析】选B.因为1+2+…+=(r1)2,所以1+2+…+-1=(-1)2(n≥2),两式相减得=(r1)2-(-1)2=n(n≥2),所以a n=n2(n≥2),①又当n=1时,1=1×22=1,a1=1,适合①式,所以a n=n2,n∈N*.2.记S n为数列{a n}的前n项和,若S n=2a n+1,则S n=________.【解析】因为S n=2a n+1,所以S n+1=2a n+1+1,所以a n+1=2a n+1-2a n,所以a n+1=2a n,当n=1时,S1=a1=2a1+1,所以a1=-1,所以数列{a n}是以-1为首项,2为公比的等比数列,所以S n=-(1-2)1-2=1-2n.答案:1-2n【加练备选】1.已知数列{a n}满足a1+2a2+3a3+…+na n=2n,则a n=________.【解析】当n=1时,a1=21=2,因为a1+2a2+3a3+…+na n=2n,①故a1+2a2+3a3+…+(n-1)a n-1=2n-1(n≥2),②由①-②得na n=2n-2n-1=2n-1,所以a n=2-1.显然当n=1时不满足上式,所以a n=1,,≥2.答案=1,≥22.已知数列的前n项和S n=3n+b,求的通项公式.【解析】当n=1时,a1=S1=3+b.当n≥2时,a n=S n-S n-1=2·3n-1,因此,当b=-1时,a1=2适合a n=2·3n-1,所以a n=2·3n-1.当b≠-1时,a1=3+b不适合a n=2·3n-1,所以a n=3+,=1,2·3-1,≥2.综上可知,当b=-1时,a n=2·3n-1;当b≠-1时,a n=3+,=1,2·3-1,≥2.考点三数列的性质及其应用【考情提示】数列作为一种特殊的函数,除考查求通项公式、求和等之外,还考查数列的单调性,项的最值,周期性等,解题时要类比函数的研究方法,结合数列的特性.角度1数列的单调性及项的最值[例3]已知数列{a n}的通项公式为a n=3-23r1(n∈N*).则下列说法正确的是()A.这个数列的第10项为2731B.98101是该数列中的项C.数列中的各项都在区间[14,1)内D.数列{a n}是单调递减数列【解析】选C.令n=10,得a10=2831.故选项A不正确,令3-23r1=98101,得9n=300,此方程无正整数解,故98101不是该数列中的项.因为a n=3-23r1=3r1-33r1=1-33r1,又n∈N*,所以数列{a n}是单调递增数列,所以14≤a n<1,所以数列中的各项都在区间[14,1)内,故选项C正确,选项D不正确.【解题技法】关于数列的单调性及项的最值(1)求数列项的最值需要先研究数列的单调性,一是通过列举项找规律;二是利用数列递增(减)的等价条件,求出递增、递减项的分界点处的n值.(2)利用函数方法,令n∈(0,+∞),研究对应函数的单调性、图象确定最值,再回归到数列问题.【对点训练】已知数列{a n}的通项公式为a n=3r2,若数列{a n}为递减数列,则实数k的取值范围为()A.(3,+∞)B.(2,+∞)C.(1,+∞)D.(0,+∞)【解析】选D.因为a n+1-a n=3r3+2r1-3r2=3-3-2r1,由数列{a n}为递减数列知,对任意n ∈N*,a n+1-a n=3-3-2r1<0,所以k>3-3n对任意n∈N*恒成立,所以k∈(0,+∞).角度2数列的周期性[例4]已知数列{a n}满足a n+1=a n-a n-1(n≥2),a1=m,a2=n,S n为数列{a n}的前n项和,则S2029的值为()A.2029n-mB.n-2029mC.mD.n【解析】选C.根据题意计算可得a3=n-m,a4=-m,a5=-n,a6=m-n,a7=m,a8=n,…,因此数列{a n}是以6为周期的周期数列,且a1+a2+…+a6=0,所以S2029=S338×6+1=a1=m.【解题技法】关于数列的周期性在求数列的某一项的值,且该项的序号较大时,应该考虑该数列是否具有周期性,一般地,求出数列的前几项,确定周期,然后利用数列的周期性即可求出所求项.【对点训练】已知数列{a n}中,a1=12,a n+1=1+1-,则a2025=()A.-2B.12C.-13D.3【解析】选B.因为a1=12,所以a2=1+11-1=3,a3=1+21-2=-2,a4=1+31-3=-13,a5=1+41-4=12,…,所以数列{a n}是周期数列且周期T=4,所以a2025=a1=12.。
高三 一轮复习 2数列的概念及简单的表示法 教案
数列的概念与简单表示法1.数列的定义、分类与通项公式 (1)数列的定义:①数列:按照一定顺序排列的一列数. ②数列的项:数列中的每一个数. (2)数列的分类:分类标准 类型 满足条件 项数有穷数列 项数有限 无穷数列 项数无限项与项间的大小关系递增数列a n +1>a n 其中n ∈N *递减数列 a n +1<a n 常数列a n +1=a n(3)数列的通项公式:如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.2.数列的递推公式如果已知数列{a n }的首项(或前几项),且任一项a n 与它的前一项a n -1(n ≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.1.数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.2.易混项与项数两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号. [试一试]1.已知数列{a n }的前4项为1,3,7,15,写出数列{a n }的一个通项公式为________.2.已知数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧2·3n -1(n 为偶数),2n -5(n 为奇数),则a 4·a 3=________.1.辨明数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列. 2.明确a n 与S n 的关系a n =⎩⎪⎨⎪⎧S 1 (n =1),S n -S n -1(n ≥2).[练一练]1.(2013·南京、淮安二模)已知数列{a n }的通项为a n =7n +2,数列{b n }的通项为b n =n 2.若将数列{a n },{b n }中相同的项按从小到大的顺序排列后记作数列{c n },则c 9的值是________.2.(2014·苏锡常镇调研)设u (n )表示正整数n 的个位数,a n =u (n 2)-u (n ),则数列{a n }的前2 014项和等于________.考点一由数列的前几项求数列的通项公式1.(2014·南通二模)将正偶数按如下所示的规律排列:2 4 6 8 10 12 14 16 18 20 …则第n (n ≥4)行从左向右的第4个数为________.2.根据数列的前几项,写出各数列的一个通项公式:(1)4,6,8,10,…;(2)-11×2,12×3,-13×4,14×5,…;(3)a,b,a,b,a,b,…(其中a,b为实数);(4)9,99,999,9 999,….[类题通法]用观察法求数列的通项公式的技巧(1)根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.对于正负符号变化,可用(-1)n或(-1)n+1来调整.(2)根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想.考点二由an与S n的关系求通项a n[典例]已知下面数列{a n}的前n项和S n,求{a n}的通项公式:(1)S n=2n2-3n;(2)S n=3n+b.[类题通法]已知数列{a n }的前n 项和S n ,求数列的通项公式,其求解过程分为三步: (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式; (3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写. [针对训练]已知各项均为正数的数列{a n }的前n 项和满足S n >1,且6S n =(a n +1)(a n +2),n ∈N *,求{a n }的通项公式.考点三由递推关系式求数列的通项公式递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接,归纳起来常见的命题角度有: (1)形如a n +1=a n f (n ),求a n ; (2)形如a n +1=a n +f (n ),求a n ;(3)形如a n +1=Aa n +B (A ≠0且A ≠1),求a n . 角度一 形如a n +1=a n f (n ),求a n1.已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3; (2)求{a n }的通项公式.[课堂练通考点]1.(2014·苏北四市质检)在数列{a n }中,已知a 1=2,a 2=3,当n ≥2时,a n +1是a n ·a n -1的个位数,则a 2014=________.2.(2013·盐城三调)已知函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6, x >7,数列{a n }满足a n =f (n ),n ∈N *,且数列{a n }是递增数列,则实数a 的取值范围是________.3.已知数列{a n }满足a st =a s a t (s ,t ∈N *),且a 2=2,则a 8=________.4.已知数列{a n }中,a 1=1,a n +1=(-1)n (a n +1),记S n 为{a n }前n 项的和,则S 2 013=____________.5.已知数列{a n }的前n 项和S n =2n 2+2n ,数列{b n }的前n 项和T n =2-b n .求数列{a n }与{b n }的通项公式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列1、理解数列的概念,了解数列通项公式的意义.了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.2、理解等差数列的概念,掌握等差数列的通项公式与前n 项和的公式,并能解决简单的实际问题.3、理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能解决简单的实际问题.纵观近几年高考试题,对数列的考查已从最低谷走出,估计以后几年对数列的考查的比重仍不会减小,等差、等比数列的概念、性质、通项公式、前n 项和公式的应用是必考内容,数列与函数、三角、解析几何、组合数的综合应用问题是命题热点.从解题思想方法的规律着眼,主要有:① 方程思想的应用,利用公式列方程(组),例如等差、等比数列中的“知三求二”问题;② 函数思想方法的应用、图像、单调性、最值等问题;③ 待定系数法、分类讨论等方法的应用. 第1课时 数列的概念1.数列的概念:数列是按一定的顺序排列的一列数,在函数意义下,数列是定义域为正整数N*或其子集{1,2,3,……n}的函数f(n).数列的一般形式为a1,a2,…,an…,简记为{an},其中an 是数列{an}的第 项. 2.数列的通项公式一个数列{an}的 与 之间的函数关系,如果可用一个公式an =f(n)来表示,我们就把这个公式叫做这个数列的通项公式.3.在数列{an}中,前n 项和Sn 与通项an 的关系为:数列基础知识定义项,通项数列表示法数列分类等差数列等比数列定义通项公式前n 项和公式性质特殊数列其他特殊数列求和数列4.求数列的通项公式的其它方法⑴ 公式法:等差数列与等比数列采用首项与公差(公比)确定的方法. ⑵ 观察归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变;初步归纳出公式,再取n 的特珠值进行检验,最后用数学归纳法对归纳出的结果加以证明.⑶ 递推关系法:先观察数列相邻项间的递推关系,将它们一般化,得到的数列普遍的递推关系,再通过代数方法由递推关系求出通项公式.例1. 根据下面各数列的前n 项的值,写出数列的一个通项公式.⑴ -,,-,…;⑵ 1,2,6,13,23,36,…; ⑶ 1,1,2,2,3,3,解: ⑴ an =(-1)n ⑵ an =(提示:a2-a1=1,a3-a2=4,a4-a3=7,a5-a4=10,…,an -an -1=1+3(n -2)=3n -5.各式相加得⑶ 将1,1,2,2,3,3,…变形为∴变式训练1.某数列{an}的前四项为0,,0,,则以下各式:① an =[1+(-1)n] ② an =③ an =其中可作为{an}的通项公式的是 ( )A .①B .①②C .②③D .①②③=n a ⎪⎩⎪⎨⎧≥==21n n a n 312⨯534⨯758⨯9716⨯)12)(12(12+--n n n )673(212+-n n )673(21)43)(1(211)]53(10741[12+-=--+=-++++++=n n n n n a n Λ,213,202,211+++,,206,215,204Λ+++4)1(1222)1(111++-++=-++=n n n n n a 2222n )(11-+⎩⎨⎧)(0)(2为奇数为偶数n n解:D例2. 已知数列{an}的前n 项和Sn ,求通项. ⑴ Sn =3n -2⑵ Sn =n2+3n +1解 ⑴ an =Sn -Sn -1 (n≥2) a1=S1解得:an =⑵ an =变式训练2:已知数列{an}的前n 项的和Sn 满足关系式lg(Sn -1)=n ,(n ∈N*),则数列{an}的通项公式为 . 解:当n =1时,a1=S1=11;当n≥2时,an =Sn -Sn -1=10n -10n -1=9·10 n -1.故an =例3. 根据下面数列{an}的首项和递推关系,探求其通项公式. ⑴ a1=1,an =2an -1+1 (n≥2) ⑵ a1=1,an =(n≥2)⑶ a1=1,an = (n≥2)解:⑴ an =2an -1+1(an +1)=2(an -1+1)(n≥2),a1+1=2.故:a1+1=2n ,∴an =2n-1.⑵an =(an -an -1)+(an -1-an -2)+…+(a3-a2)+(a2-a1)+a1=3n -1+3n-2+…+33+3+1=.(3)∵∴an =变式训练3.已知数列{an}中,a1=1,an +1=(n ∈N*),求该数列的通项公式.解:方法一:由an +1=得,∴{}是以为首项,为公差的等差数列.∴=1+(n -1)·,即an =⎩⎨⎧=≥⋅-)1(1)2(321n n n ⎩⎨⎧≥+=)2(22)1(5n n n ,110101)1lg(+=⇒=-⇒=-n n n n n S S n S ⎪⎩⎪⎨⎧≥⋅=-)2(109)1(111n n n 113--+n n a 11--n a n n ⇒)13(21-nnn a a n n 11-=-⋅--⋅-=⋅⋅⋅⋅⋅-----12111232211n n n n a a a a a a a a a n n n n n n Λn n n 112123=⋅⋅⋅--Λ22+n n a a 22+n n a a 21111=-+n n a a na 1111=a 21na 12112+n方法二:求出前5项,归纳猜想出an =,然后用数学归纳证明.例4. 已知函数=2x -2-x ,数列{an}满足=-2n ,求数列{an}通项公式.解:得变式训练4.知数列{an}的首项a1=5.前n 项和为Sn 且Sn +1=2Sn +n +5(n ∈N*). (1) 证明数列{an +1}是等比数列;(2) 令f (x)=a1x +a2x2+…+anxn ,求函数f (x)在点x =1处导数f 1 (1).解:(1) 由已知Sn +1=2Sn +n +5,∴ n≥2时,Sn =2Sn -1+n +4,两式相减,得: Sn +1-Sn =2(Sn -Sn -1)+1,即an +1=2an +1 从而an +1+1=2(an +1)当n =1时,S2=2S1+1+5,∴ a1+a2=2a1+6, 又a1=5,∴ a2=11∴ =2,即{an +1}是以a1+1=6为首项,2为公比的等比数列. (2) 由(1)知an =3×2n -1 ∵ =a1x +a2x2+…+anxn ∴ =a1+2a2x +…+nanxn -1 从而=a1+2a2+…+nan=(3×2-1)+2(3×22-1)+…+n(3×2n -1) =3(2+2×22+…+n×2n)-(1+2+…+n)=3[n×2n +1-(2+…+2n)]- =3(n -1)·2n +1-+61.根据数列的前几项,写出它的一个通项公式,关键在于找出这些项与项数之间的关系,常用的方法有观察法、通项法,转化为特殊数列法等.2.由Sn 求an 时,用公式an =Sn -Sn -1要注意n≥2这个条件,a1应由a1=S1来确定,最后看二者能否统一.3.由递推公式求通项公式的常见形式有:an +1-an =f(n),=f(n),an +1=pan +q ,分别用累加法、累乘法、迭代法(或换元法). 第2课时 等差数列1.等差数列的定义: - =d (d 为常数).12+n )(x f )(log 2n a f na f n a na n 222)(log 2log 2log 2-=-=-n a a nn 21-=-n n a n -+=12111+++n n a a )(x f )('x f )1('f 2)1(+n n 2)1(+n n nn a a 1+2.等差数列的通项公式: ⑴ an =a1+ ×d ⑵ an =am + ×d3.等差数列的前n 项和公式: Sn = = .4.等差中项:如果a 、b 、c 成等差数列,则b 叫做a 与c 的等差中项,即b = . 5.数列{an}是等差数列的两个充要条件是:⑴ 数列{an}的通项公式可写成an =pn +q(p, q ∈R) ⑵ 数列{an}的前n 项和公式可写成Sn =an2+bn (a, b ∈R)6.等差数列{an}的两个重要性质:⑴ m, n, p, q ∈N*,若m +n =p +q ,则 .⑵ 数列{an}的前n 项和为Sn ,S2n -Sn ,S3n -S2n 成 数列.例1. 在等差数列{an}中,(1)已知a15=10,a45=90,求a60; (2)已知S12=84,S20=460,求S28; (3)已知a6=10,S5=5,求a8和S8.解:(1)方法一:∴a60=a1+59d =130. 方法二:,由an =am +(n -m)d a60=a45+(60-45)d =90+15×=130.(2)不妨设Sn =An2+Bn ,∴∴Sn =2n2-17n∴S28=2×282-17×28=1092 (3)∵S6=S5+a6=5+10=15,又S6= ∴15=即a1=-5 而d =∴a8=a6+2 d =16S8=变式训练1.在等差数列{an}中,a5=3,a6=-2,则a4+a5+…+a10= .⎪⎪⎩⎪⎪⎨⎧=-=⇒⎩⎨⎧=+==+=38382904410141145115d a d a a d a a 3815451545=--=--=a a m n a a d m n ⇒38⎩⎨⎧-==⇒⎪⎩⎪⎨⎧=+=+172460202084121222B A B A B A 2)10(62)(6161+=+a a a 2)10(61+a 31616=--a a 442)(881=+a a解:∵d =a6-a5=-5,∴a4+a5+…+a10=例2. 已知数列{an}满足a1=2a ,an =2a -(n≥2).其中a 是不为0的常数,令bn =.⑴ 求证:数列{bn}是等差数列.⑵ 求数列{an}的通项公式.解:∵ ⑴ an =2a -(n≥2)∴ bn = (n≥2)∴ bn -bn -1=(n≥2)∴ 数列{bn}是公差为的等差数列.⑵ ∵ b1==故由⑴得:bn =+(n -1)×=即:= 得:an =a(1+)变式训练2.已知公比为3的等比数列与数列满足,且,(1)判断是何种数列,并给出证明;(2)若,求数列的前n 项和解:1),即为等差数列。
(2)。
例3. 已知{an}为等差数列,Sn 为数列{an}的前n 项和,已知S7=7,S15=75,Tn 为数列{}前n 项和。