最新杆件的静力分析

合集下载

模块1 杆件的静力分析

模块1 杆件的静力分析
光滑接触面(平面或曲面)构成的约束。 2.光滑面约束:
§2-3约束、约束力、力系和受力图的应用
光滑面约束实例:
§2-3 约束、约束力、力系和受力图的应用
光滑面的约束力:通过接触点,沿接触面在该点的公法 线,并为压力(指向物体),又称法向反力(正压力)。 公法线
G
A
FN
20
公切线
FN
节圆
FN
模块1
杆件的静力分析
本章主要学习
力、力偶的概念与性质,力的投影和力矩 的计算,物体受力分析的方法。
§2-1 力的概念及其性质
一、力的概念
1.定义:力是物体间的相互机械作用,这种作用 可以改变物体的运动状态或使物体产生变形。 2.力的效应: ①运动效应(外效应); ②变形效 F2 应。 F
1
A1
3.力的三要素:大小,方向,作用点。
20
压力角
§2-3 约束、约束力、力系和受力图的应用
车轮与钢轨
凸轮与顶杆
两轮齿啮合
A
光滑点接触:
FNA FNA
A
O
G
B F NB
B
FNB
C FNC
滑道、导轨:约束力垂直于滑道、导轨。
A
O
B
FNB
3. 光滑铰链约束 (1) 光滑圆柱铰链 (中间铰链)约束 两个或两个以上物体上做出相同直径的孔并用一 个圆柱形销钉连接起来,即构成圆柱铰链(又称为中 间铰链)。
=
=
§2-2力矩、力偶与力的平移
(b)只要保持力偶矩的大小和转向不变,可以同时 改变力偶中力的大小和力偶臂的长短,而不改变 力偶对刚体的作用效果。
M
M
M
§2-2力矩、力偶与力的平移

机械基础 模块一杆件的静力分析

机械基础 模块一杆件的静力分析

活动二 力矩
例1-2 已知力F的作用点A的坐标为(x,y),如图所示,试 求力F对坐标原点O的力矩。
活动二 力矩
2.力偶和力偶矩 力学上把大小相等、方向相反、不共线的两个平行力称为力偶, 用符号(F,F′)表示。力偶中两力作用线间的垂直距离d称为 力偶臂。力偶中两个力所在的平面称为力偶作用面。 力偶只能使物体转动或改变物体转动的状态。当力偶中的力F越 大或力偶臂d越大时,力偶使物体转动的效应越强;反之,转动 越弱。
活动一 力
2.静力学的基本公理 公理4(作用力与反作用力公理)作用力与反作用力总 是同时存在,两力的大小相等且方向相反,沿着同一直 线分别作用在两个相互作用的物体上。
活动二 力矩
1.力矩的概念和合力矩定理 在力学上以乘积Fr作为度量力F使物体绕O点转动强弱的物理量, 称为力F对O点之矩,简称力矩,单位为牛·米(N·m)或千 牛·米( kN·m)。 由力矩的定义知:
同一平面内各力的作用线汇交于一点的力系称为平面 汇交力系;作用线相互平行的力系称为平面平行力系; 作用线任意分布(既不完全交于一点,又不互相平行) 的力系称为平面任意力系。
活动一 力
2.静力学的基本公理 公理1(二力平衡公理)作用于刚体上的两个力,使刚 体处于平衡状态的必要和充分条件是:两力大小相等, 方向相反且作用在同一直线上。 公理2(加减平衡力系原理)在作用着已知力系的刚体 上加上或减去任意平衡力系,并不改变原始力系对刚体 的作用效果。 推论(力的可传性原理)作用于刚体上的力,可沿其作 用线任意移动而不改变此力对刚体的作用效果。
(1)若将力F沿其作用线移动,则因为力的大小、方向和力臂都没有改变, 所以不会改变该力对某一矩心的力矩。 (2)力矩等于零的条件是:力等于零或力的作用线通过矩心(力臂等于零) 。

机械基础第二章杠杆的静力分析

机械基础第二章杠杆的静力分析

=
=
★力矩与力偶矩的区别:
共同点:
1.都使物体产生转动的效应; 2.两者量纲相同[力的单位]×[长度的单位]
不同点:
1.力矩与力的位置有关,力的位置不同,臂不同,力矩值 也不同。 2.力偶矩与矩心的位置无关,力偶在其作用平面内可任 移动或转动,而不改变该力偶对物体的转动效应。
2.3
约束力、约束反力、力系和受力图应用
G
F N
• 分析图中的约束和约束反力?
• 气球受到人的约束
• 人对气球有一个向下的约束反力
气球
约束反力 人
被约束体
约束
2. 常见的约束类型
1. 柔性约束 2. 光滑面约束 3. 铰链约束 4. 固定端约束
1.柔性约束
定义:
忽略摩擦,把实际中的绳索、链条、胶带等看成十分柔软 又不可伸长的柔索,它限制了被约束体沿索向向外的运动。 用符号“FT”表示。
F
N G
• 静止放在桌面上的书
G
• 静止的电灯
• ★二力平衡与作用力和反作用力的区别: • 力的平衡是作用在同一物体上的两个力; • 作用力和反作用力是作用在不同物体上的。
二力平衡
作用力和反作用力
相互作用力和平衡力的区别与联系
对象 比较 相同点 大小相等、方向相反、作用在同一直线上 一对相互作用力 一对平衡力
• F=-F′
F’
F
• 讨论: 关于作用力和反作用力,下面说法中正确的是: (C ) A、一个作用力和它的反作用力的合力等于零. B、作用力和反作用力可以是不同性质的力. C、作用力和反作用力同时产生,同时消失. D、只有两个物体处于相对静止时,它们之间的 作用力和反作用力的大小才相等.
• 性质二(二力平衡公理): 1. 定义:一个物体受到两个力的作用,保持静止状态或匀速 直线运动状态,这两个力是一对平衡力,叫二力平衡。 2. 条件:这两个力大小相等、方向相反,且作用在同一直线 上,且作用在同一物体上的两个力物体上。 3.特点:彼此平衡的两个力的合力一定为零。

机械基础杆件的静力分析

机械基础杆件的静力分析

机械基础杆件的静力分析1. 引言在机械领域中,杆件是一种常见的结构元素,用于构建各种机械装置。

静力分析是对杆件在静力作用下的力学性能进行分析和计算的过程。

本文将介绍机械基础杆件的静力分析方法,包括受力分析、应力分析和变形分析。

2. 受力分析在进行静力分析之前,首先需要进行受力分析,确定杆件上受到的外力和内力。

外力可以是来自其他结构物的载荷,也可以是外部施加的力或力矩。

内力则是由于外力作用而在杆件内部产生的应力引起的。

通过受力分析,可以获得各个杆件的受力情况,为后续的应力分析和变形分析提供依据。

3. 应力分析应力分析是静力分析中的重要环节。

通过对杆件内部的应力进行分析,可以确定杆件是否能够承受外力载荷,以及破坏的可能性。

应力分析包括两个方面:正应力和剪应力的计算。

正应力是指沿着杆件截面法线方向的应力,而剪应力则是沿着截面平面方向的应力。

常用的应力计算方法包括静力学平衡条件和材料力学方程。

3.1 正应力的计算正应力的计算通常采用静力学平衡条件。

根据平衡条件,杆件上各点的合力和合力矩为零。

通过求解这些方程,可以得到各点处的正应力分布。

此外,还需要考虑杆件的几何形状,以及材料的弹性模量和截面面积等参数。

正应力的计算公式如下:σ = F / A其中,σ是正应力,F是受力,A是截面面积。

3.2 剪应力的计算剪应力的计算也采用静力学平衡条件。

剪应力可以通过应力矢量的分解得到。

假设剪应力的作用平面为x-y平面,剪应力的计算公式如下:τ = F / A其中,τ是剪应力,F是受力,A是截面面积。

4. 变形分析变形分析是对杆件在受力作用下产生的变形进行分析和计算的过程。

变形分析的目的是确定杆件的位移和变形程度,评估其结构稳定性。

常用的变形计算方法包括位移方法和位移曲线法。

4.1 位移方法位移方法是根据杆件的几何形状和受力情况,通过求解位移方程来计算杆件的位移量。

位移方程的求解需要考虑杆件的几何形状、材料的弹性模量和截面惯性矩等参数。

杆系结构的静力学分析

杆系结构的静力学分析

平面桁架的静力学分析摘要:本文利用有限元分析软件ANSYS12.0,对杆系结构——平面桁架进行静力学分析,通过将分析完成后得到的列表数据与解析解相比较确定ANSYS 分析软件的可靠性。

关键词:平面桁架,有限元,ANSYS1 前言实际结构都是空间结构,所承受的载荷也是空间的。

但是如果结构具有某种特殊形状,所承受的载荷具有某种特殊的性质,就可以将空间问题转化为杆系结构问题、平面问题等。

这样处理后,计算工作量大大减少,而所得到的结果仍可满足精度要求。

所谓杆系结构指的是有长度远远大于其他方向尺寸(10:1)的构件组成的结构,如连续梁、桁架、刚架等。

当结构承受不随时间变化的载荷作用时,需要进行静力学分析,分析其位移、应变、应力等。

2 问题描述及解析解图1为一平面桁架,长度L=0.1m ,各杆横截面面积均为24101m A -⨯=,力N P 2000=,计算各杆的轴向力a F 、轴向应力a σ。

图1 平面桁架根据静力平衡条件,很容易计算出轴向力a F 、轴向应力a σ,如表1所示。

3 有限元分析3.1建模与加载(1)创建单元类型GUI:PreProcessor Menu > Element Type > Add/Edit/Delete > Beam > 2D elastic 3单击“OK”按钮。

(2)定义单元实常数GUI:PreProcessor Menu > Element Type > Add/Edit/Delete > Add> OK在“AREA”文本框中输入1E-4,单击OK。

(3)定义材料属性GUI:PreProcessor > Material Props > Material models > Structural > Linear > Elastic >Isotropic在弹出对话框中键入EX=2e11(单位Mpa),PRXY=0.3。

机械基础2第二章 杆件的静力分析

机械基础2第二章  杆件的静力分析
图2-2 二力平衡公理
第一节 受力图
对于变形体而言,二力平衡公理只是必要条件,但不是充分条件。 如在绳索两端施加一对等值、反向、共线的拉力时可以平衡,但受到 一对等值、反向、共线的压力时就不能平衡了(图2-3)。 只在两力作用下平衡的刚体称为二力体或二力构件。当构件为直 杆时称为二力杆,如图2-4所示。
相关链接
研究物体受力情况时,必须分清哪个是受力物体,哪个是施力物
体。
第一节 受力图
2.力的三要素及表示方法 在工程实践中,物体间机械作用的形式是多种多样的,如重力、 压力、摩擦力等。力对物体的效应取决于力的三要素。 (1)力的大小[单位为牛顿,简称为牛(N),工程上常用千牛 (kN)作为力的单位]; (2)力的方向; (3)力的作用点。 力是一个既有大小又有方向的物理量,称为力矢量。力的图示法 (图2-1):用一条有向线段表示,线段的长度(按一定比例尺)表示 力的大小,线段的方位和箭头表示力的方向,线段的起始点(或终点) 表示力的作用点。
3.力系的概念 (1)力系:同时作用于一物体上的一群力。 (2)平衡力系:如果某一力系作用到一原来平衡的物体上,而物 体仍然保持平衡,则此力系为平衡力系。 (3)等效力系:对物体的作用效果相同的两个力系。等效力系可 相互替代。 (4)合力与分力:如果一个力和一个力系等效,那么这个力就称 为这个力系的合力,反之,力系中的各个力称为这个力的分力。 由已知力系求合力的过程称为力的合成,反之为力的分解。
图2-8 三力平衡汇交
第一节 受力图
4.公理4 作用与反作用公理 两物体间的作用力与反作用力总是同时存在,且大小相等、方向 相反、沿同一条直线,分别作用在这两个物体上。
想一想
作用力与反作用力公理中所讲的两个力与二力平衡公理中的两个

理论力学中的杆件的静力学分析

理论力学中的杆件的静力学分析

理论力学中的杆件的静力学分析杆件是理论力学中经常遇到的物体,它是由长而薄的细杆组成。

在静力学分析中,对杆件进行力学分析可以帮助我们理解杆件的力学特性和行为。

本文将详细介绍理论力学中杆件的静力学分析方法和相关知识。

一、杆件的定义在理论力学中,杆件是指一个独立且稳定的物体,可以看作无质量且长度可忽略不计的直线。

杆件可以承受外力,并通过节点连接其他杆件或物体。

二、杆件受力分析杆件在受力过程中常常会出现拉力和压力。

拉力是指杆件上的内力沿杆件轴线的作用,具有拉伸效应;压力是指杆件上的内力沿杆件轴线的反作用,具有压缩效应。

在静力学分析中,我们通常关注杆件受力的平衡状态。

杆件的平衡条件可以通过以下两个方程表达:∑Fx = 0∑Fy = 0其中,∑Fx表示杆件上受力在横向(x)方向的合力,∑Fy表示杆件上受力在纵向(y)方向的合力。

三、杆件的应力分析在静力学分析中,我们还需要了解杆件的应力分析。

应力是指单位面积上的力,通常用σ表示,是一个标量。

杆件在受力时会发生应力分布,最大应力一般出现在杆件的截面上。

常见的杆件应力计算公式如下:σ = F/A其中,σ表示应力,F表示受力,A表示杆件横截面积。

四、常见杆件的静力学分析方法在理论力学中,常见的杆件包括悬臂杆、简支杆和梁杆。

下面将分别介绍这几种杆件的静力学分析方法。

1. 悬臂杆:悬臂杆是指在一个端点支撑并且在另一端自由悬挂的杆件。

对于悬臂杆的静力学分析,我们可以使用力矩平衡方程进行计算。

2. 简支杆:简支杆是指在两个端点都支撑的杆件。

对于简支杆的静力学分析,我们可以使用节点力平衡方程进行计算。

3. 梁杆:梁杆是指在两个端点都支撑且在中间有一定长度的杆件。

对于梁杆的静力学分析,我们可以使用杆件的弯曲方程进行计算。

五、杆件的应用领域理论力学中的杆件静力学分析在工程领域具有广泛的应用。

杆件的力学特性分析可以帮助工程师设计和优化各种结构,如桥梁、建筑物、机械装置等。

通过合理的静力学分析,可以确保杆件在受力过程中表现出良好的性能和安全性。

第二章 杆件的静力分析

第二章 杆件的静力分析

第二章杆件的静力分析
一.单项选择题
1.【 A 】使物体的运动状态发生变化或使物体产生变形的物体之间的相互机械作用。

P34
A.力
B.运动
C.加工
D.大小
2.【 B 】P13
A.互换
B.完全互换
C.有限互换
D.控制互换
3.【 D 】P14
A.公称尺寸
B.加工尺寸
C.估算尺寸
D.实际尺寸
4.【 A 】P16
A.IT10
B.IT9
C.IT8
D.IT7`
5.【 B 】P23
A.间隙配合
B.过盈配合
C.过渡配合
D.加工配合
6.【 C 】P24
A.间隙配合
B.过盈配合
C.过渡配合
D.加工配合
二.判断题
1.【√】力是一个既有大小又有方向的矢量。

P34
2.【×】。

P14
3.【√】。

P14
4.【√】。

P15
5.【√】。

P15
6.【×】。

P23
7.【√】。

P27
三.填空题
1.当构件受到外力作用时可能会出现三种情况,即:保持平衡、改变运动状态和产生变形或破坏。

P33
2.力的单位用N(牛)或KN(千牛)表示。

P34
3.。

P14
4.。

P14
5.。

P16
6.。

P22
7.。

P26
四.写出形位公差项目符号P29。

杆件的静力分析剖析

杆件的静力分析剖析

(a) 图1-13公理二的应用
(b)
第2章 杆件的静力分析
公理一与公理二的区别 : 公理一描述的是两物体间的相互作用关系; 公理二描述作用在同一物体上两力的平衡条件。
重力G和桌 面施加的 作用力F是 二力是平 衡力。
FN与F’N分别 作用于桌面和 球上,二力为 作用力与反作 用力 。
图1-14公理一与公理二的区别
第2章 杆件的静力分析
1.1.2 力的基本性质 1.刚体的概念 刚体是在力作用下形状和大小都保持不变的物体。简单的说, 刚体就是在讨论问题时可以忽略由于受力而引起的形状和大小改变 的理想模型。
工程力学中,受力不发生变形的物体,我们称之为刚体。
第2章 杆件的静力分析
2.静力学公理 (1)作用和反作用定律(公理一) 两个物体间的作用力与反作用力总是同时存在、同时消失,且大 小相等,方向相反,其作用线沿同一直线,分别作用在这两个物体上。 这个公理表明,力总是成对出现的,只要有作用力就必有反作用 力,而且同时存在,又同时消失。
图1-28 书本的受力
第2章 杆件的静力分析
§1.3 约束、约束力、力系和受力图
1.3.1 约束与约束力 1.自由体和非自由体 在工程实际中,有些物体可以在空间自由运动,获得 任何方向的位移,这些物体称为自由体。例如,在空间航 行的飞机、飞行的炮弹等。 另一些物体在空间的运动受到其他物体的限制,使其 在某些方向不能发生位移,这些物体称为非自由体。例如, 用绳索悬挂的重物、在轨道上行驶的机车。
矢量式FR= F1+ F2与代数式FR =F1+F2 :完全不同,不能混淆。 只有当二力共线时,其合力才等于二力的代数和。 力的合成与分解,如图1-18所示。
F1
F12 FR F2 F3

机械基础通用类 模块一 杆件的静力分析

机械基础通用类 模块一  杆件的静力分析
M 0 ( F1 ) M 0 ( F2 ) M 0 ( Fn ) M 0 ( Fi ) 0
i 1
1.1 力与力偶
力矩 四、力偶与力偶矩 1、力 偶 : 作用在同一物体上的两个大小相等,方 向相反,不共线的平行力叫力偶。
1.1 力与力偶
力矩
F1
力偶作用面 : 二力所在平面。

F2
力 偶 臂: 二力作用线之间的
垂直距离。
力偶不能引起物体的移动,只能引起物体的
转动,为了度量力偶对物体的转动效应,我们用 F与d的乘积即力偶矩来度量。
1.1 力与力偶
力矩 2、力偶矩 力偶矩:力偶对物
体转动效应的度量。
M Fd
F1 F2
号:定义逆时针转动为正。
M M
力偶的图例
注意:力矩的符号是 M ( F ) O
1.1 力与力偶
力矩
1.1 力与力偶
力矩 1、力对点之矩 (1)定义:力使物体绕某点转动效应的度量(简称 力矩)。 (2) 力矩的大小
M 0 ( F ) Fd
d:力臂,指O点到力F作用线的 (垂直)距离。
O点称为力矩中心,简称矩心。
1.1 力与力偶
力矩 1、力对点之矩
M 0 ( F ) Fd

二个力合力的大小范围: F -F ≤F ≤F +F 1 2 合 1 2
F1

F
F2
合力大小为
F
F F 2F 1F 2 cos
2 1 2 2
讨论:两个分力大小不变,但夹角不同时的合力
F
F F1 F 2
F1 F 2
F
= 0°
180
.

脚手架设计中的静力与动力分析

脚手架设计中的静力与动力分析

脚手架设计中的静力与动力分析脚手架,作为建筑施工中常用的辅助设备,承载着施工人员和材料的重量,因此其设计与安全性至关重要。

脚手架的设计要考虑到静力学和动力学原理,以确保其在使用过程中的稳定性和可靠性。

本文将对脚手架设计中的静力和动力分析进行探讨。

一、静力分析静力学是研究物体在平衡状态下的力学原理。

在脚手架的设计中,静力学分析是非常关键的一步。

主要包括以下几个方面:1. 承载力计算:首先需要确定脚手架所承受的最大荷载。

这包括施工人员、建筑材料以及其他设备的重量。

根据施工需要和安全要求,合理确定脚手架的承载能力。

2. 结构稳定性:脚手架的稳定性与其结构设计有密切关系。

要考虑到脚手架的高度,结构与地基之间的连接方式以及各个构件之间的牢固程度。

通过结构的合理布置和加强连接点的稳定性,保证脚手架在使用过程中不发生倾覆或垮塌的情况。

3. 杆件强度计算:脚手架的结构主要由水平杆件和竖直杆件构成。

在设计过程中,需要对这些杆件进行强度计算,以确保其能够承受荷载并保持稳定。

强度计算可以采用静力学的公式和理论进行,根据材料的强度参数和构件的几何特征进行计算。

4. 节点设计:脚手架各节点的设计要考虑到连接点的稳定性和可靠性。

节点的设计需要满足一定的强度要求,并采用合适的连接方式,如焊接、螺栓连接等,以确保节点在受力时不发生松动或损坏。

二、动力分析动力学是研究物体在运动状态下的力学原理。

在脚手架设计中,动力学分析有助于了解脚手架在使用过程中的响应和稳定性。

主要包括以下几个方面:1. 风载分析:在户外施工的情况下,风力是脚手架的主要外部荷载之一。

通过风载分析,可以了解到风对脚手架所施加的作用力,包括风压力和风荷载。

根据地区的风速数据和相应的风荷载标准,对脚手架进行风载分析和设计。

2. 地震分析:在地震频繁的地区,脚手架的设计还需要考虑地震作用。

地震会产生震动和地震波,对脚手架结构造成横向和纵向的作用力。

通过地震分析,可以对脚手架的结构进行抗震设计,以保证其在地震中的稳定性和安全性。

杆件的静力分析课件

杆件的静力分析课件

胡克定律
胡克定律是杆件静力分析中常用的弹性力学定律之一,它表明杆件在弹性范围内 ,其应力和应变之间存在线性关系。
具体来说,胡克定律可以用公式表示为:σ=Eε,其中σ表示应力,E表示弹性模 量,ε表示应变。
01
杆件静力分析的步 骤和方法
确定约束和载荷
约束
约束是限制物体运动的外部条件 ,例如固定、滑动、滚动等。在 杆件静力分析中,需要明确杆件 所受的约束类型和约束条件。
总结词
等直杆在剪切力作用下会发生剪切变形,剪切力的大小与杆件的截面面积、材料属性等因素有关。
详细描述
当等直杆受到沿杆轴方向的剪切力作用时,杆件会发生剪切变形。在静力分析中,需要考虑剪切力的 大小、方向以及杆件的截面面积、材料属性等因素,以确定杆件是否能够承受剪切力而不发生剪切变 形或断裂。
01
杆件静力分析的软 件应用
有限元分析软件介绍
有限元分析软件是一种数值分析工具,用于模拟和分析复 杂的工程结构和现象。
它采用离散化的方法,将连续的结构或系统划分为有限个 小的单元,通过数学模型描述这些单元之间的相互作用关 系,并利用计算机进行数值计算和结果分析。
有限元分析软件在杆件静力分析中的应用
杆件静力分析是有限元分析的一 个重要应用领域,主要用于分析 杆件在静力载荷作用下的应力和
具体来说,对于一个处于平衡状态的杆件,其上任意一个微 元段上的受力都可以分解为切向力和法向力,切向力和法向 力分别满足切向力平衡和法向力平衡。
变形协调原理
变形协调原理表明杆件在受力变形后 ,其各部分之间的相对位置和形状仍 然保持协调。
在杆件静力分析中,变形协调原理通 常通过假设杆件在变形过程中保持连 续、光滑的曲线或曲面来实现。
01

工程力学中的杆件受力分析方法总结

工程力学中的杆件受力分析方法总结

工程力学中的杆件受力分析方法总结引言:工程力学是研究物体在受力作用下的力学性质和运动规律的学科。

在工程实践中,杆件是一种常见的结构元素,其受力分析是解决工程问题的关键。

本文将对工程力学中常用的杆件受力分析方法进行总结,旨在帮助读者更好地理解和应用这些方法。

一、静力平衡法静力平衡法是最基本、最常用的杆件受力分析方法之一。

它基于牛顿第一定律,即物体处于静止或匀速直线运动时,受力平衡。

在分析杆件受力时,我们可以通过绘制自由体图,将杆件从整体中分离出来,然后根据受力平衡条件,求解各个受力分量的大小和方向。

这种方法简单直观,适用于各种杆件结构。

二、杆件内力分析法杆件内力分析法是一种基于杆件内力平衡的方法。

在这种方法中,我们将杆件切割为若干个自由体,并分析每个自由体的内力平衡。

通过求解各个切割面上的内力分量,我们可以得到杆件内部各点的内力大小和方向。

这种方法适用于复杂的杆件结构,能够提供更详细的内力信息,对于杆件的设计和优化具有重要意义。

三、位移法位移法是一种基于杆件变形特性的受力分析方法。

根据杆件的几何形状和边界条件,我们可以推导出杆件在受力作用下的变形情况。

通过测量杆件的位移量,我们可以计算出杆件受力的大小和方向。

位移法适用于弹性杆件的受力分析,对于杆件的刚度和稳定性分析有重要意义。

四、弯矩法弯矩法是一种适用于梁杆结构的受力分析方法。

在这种方法中,我们将杆件简化为梁,通过计算梁的弯矩分布,进而推导出杆件各点的受力情况。

弯矩法基于梁的弯曲理论,适用于解决梁杆结构中的受力问题。

它在工程实践中得到广泛应用,对于梁杆结构的设计和分析具有重要意义。

五、应力分析法应力分析法是一种基于材料力学的受力分析方法。

在这种方法中,我们通过计算杆件各点的应力分布,进而推导出杆件各点的受力情况。

应力分析法适用于杆件的强度和刚度分析,对于杆件的设计和安全评估具有重要意义。

它涉及到材料的弹性模量、截面形状等因素,需要结合具体的杆件材料和几何特性进行分析。

云天课件-中职《机械基础》第二章 杆件的静力分析(栾学钢、赵玉奇、陈少斌)

云天课件-中职《机械基础》第二章 杆件的静力分析(栾学钢、赵玉奇、陈少斌)

力偶的三要素 (1)力偶矩的大小
M (F1,F2 ) M Fd
(3)力偶作用面的方位(略)
单位与力矩相同
(2)力偶的转向 在作用面内,顺时针、逆时针(为正)
第二节 力矩、力偶与力的平移 三、 力的平移定理
力的平移定理
P.39
作用在刚体上A点处的力F,可以平移到刚体内任意点O,但必须同时附 加一个力偶,其力偶矩等于原来的力F对新作用点O的矩。这就是力的平移定
第一节 力的概念与基本性质 二、 力的基本性质
观察与思考
P.36
如图所示,两人抬水桶时,两人手臂之间的夹角α大一些还是小一些更省 力?
第一节 力的概念与基本性质 巩固练习
1. 力的三要素是 大小
机械作用。
P.36
、 方向
和 作用点 。
2. 力是使物体的 运动状态发生变化或使物体产生 变形 的物体间的相互
3. 作用于刚体上的两个力,使刚体处于平衡状态的必要和充分条件是
两力大小相等,方向相反 且作用在 同一直线 上。
4. 作用力与反作用力总是同时存在 ,两力的大小相等 方向 相反 , 沿着同一直线分别作用在 两个 相互作用的物体上。 5. 只受 两个 力的作用并处于 平衡 状态的物体称为二力构件 。
第二节 力矩、力偶与力的平移 一、 力矩
P.35
解:根据题意要求,将重力沿斜面方向和垂直于斜面方向按平行四边形 法则进行分解。 沿斜面的分力 F1 = G sin α = 20
╳sin
30° = 10 KN
╳cos
沿垂直于斜面的分力 F2 = G cos α = 20
30° = 17.32 KN
讨论:F1 具有使物体沿斜面向下滑动的作用,F2 具有压向斜面的作用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档