圆中阴影部分的面积求法.ppt

合集下载

六年级下册求阴影部分面积复习课件

六年级下册求阴影部分面积复习课件

通过填补法求阴影部分面积
总结词
将不规则图形周围的空间填补成规则图形,通过计算填补后的规则图形面积,减去填补的面积得到阴影部分面积 。
详细描述
这种方法是将不规则图形周围的空间用规则图形填补,比如用矩形或三角形填补。然后,我们计算填补后的规则 图形的面积,再减去填补的面积,就可以得到阴影部分的面积。
通过转化法求阴影部分面积
三角形
三角形阴影通常由一个或 多个三角形组成,可以通 过计算每个三角形的面积 然后相加得到。
阴影部分面积的计算方法概述
直接计算法
代数法
对于一些简单的阴影图形,可以直接 使用几何公式计算其面积。
对于一些不规则的阴影图形,可以使 用代数方法进行计算,如积分等。
分解法
对于复杂的阴影图形,可以将它们分 解成若干个简单的图形,然后分别计 算各部分的面积,最后相加得到总面 积。
02
在几何学中,阴影部分面积的计 算是解决许多问题的基础,如计 算立体图形的表面积、解决几何 光学问题等。
常见阴影图形及其特点
01
02
03
矩形
矩形阴影通常由两个平行 四边形的组合形成,可以 通过计算每个平行四边形 的面积然后相加得到。
圆形
圆形阴影通常由一个或多 个圆弧组成,可以通过计 算每个圆弧的面积然后相 加得到。
02
规则图形阴影部分面积的求法
三角形阴影部分面积的求法
总结词
利用三角形面积公式求解
详细描述
根据三角形面积公式,阴影部分面积等于底乘高的一半。通过测量底和高,可 以计算出阴影部分面积。
矩形阴影部分面积的求法
总结词
利用矩形面积公式求解
详细描述
根据矩形面积公式,阴影部分面积等于长乘宽。通过测量长和宽,可以计算出阴 影部分面积。

圆中阴影部分的面积求法

圆中阴影部分的面积求法

5.如图,在两个半圆中,大圆的弦MN与小圆相切于点 D,MN∥AB,MN=8cm,ON、CD分别是两圆的半径 ,求阴影部分的面积。
分析:
6. 已知直角扇形AOB,半径OA=2cm,以OB为直径 在扇形内作半圆⊙M,过M引MP∥AO交 于P,求 与半圆弧及MP围成的阴影部分的面积S阴。 分析:此阴影部分不是一个规则图形,不能用公式直
圆中阴影部分的面积求 法
2020年4月20日星期一
求解这类问题的关键:将要求的阴影部分的 图形转化为可求解的规则的图形的组合.
例1. 如图,在矩形ABCD中,AB=1,AD= ,以BC的中点E为圆心的弧与AD相切于点P ,则图中阴影部分的面积为(D)
A
B
C
D
一、直接法
当遇见熟悉的图形可以有公式可以套的我 们直接使用公式来求面积——直接法
•说出来,与同学们分享.
回顾与思考
反思自我
驶向胜利 的彼挑战 自我岸
• (1)学会了求不规则图形的面积的一般方法
• (2)深入的理解了化归的数学思想
• (3) 体会到数学的灵活性.多变性,以不变应万 变
结束寄语
下课了!
* 数学使人聪明,数学使 人陶醉,数学的美陶冶着 你,我,他.
如图,扇形AOB的圆心角为直角,若OA=4,以AB 为直径作半圆,求阴影部分的面积。
接求解。所以考虑将它分割为可求图形的面积求解。
7.如图,A是半径为2的⊙O外一点,OA=4, AB是⊙O的切线,点B是切点,弦BC∥OA,连 结AC,求图中阴影部分的面积。
8. 有六个等圆按如图甲、乙、丙三种形状摆放,使邻圆互相外
切,且圆心线分别构成正六边形、平行四边形、正三角形,将 圆心连线外侧的六个扇形(阴影部分)的面积之和依次记为S

阴影部分面积的求法

阴影部分面积的求法

求图形面积的几种常用方法1、割补法:对于一些求不在一起的几块阴影面积的和,往往需要把它们通过剪割、拼补在一起,才便于计算,在剪割、拼补过程中,一定要注意割下来的图形和补上去的图形的形状、大小必须完全一样。

【例1】如图,每个小圆的半径是2厘米,求阴影部分的面积是多少平方厘米?【例2】右图中三个圆的半径都是4厘米,三个圆两两交于圆心。

求阴影部分的面积是多少平方厘米?2,重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可•例如,求下图中阴影部分面积3、加减法:注意观察,所求阴影部分的面积看是由哪几个图形相加,再减去哪个图形变可以得到。

我们把这种通过加、减就能求出它的面积的方法,我们的把它称为“加减法”【例3】如图,正方形的边长为4厘米,求阴影部分的面积是多少?使之组合成一个 原来【例4】如图,长方形的长为 12厘米,宽为8厘米,求阴影部分的面积是多少?4.辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线, 使不规则图形转化 成若干个基本规则图形,然后再采用相加、相减法解决即可 例如,求下图中阴影部分面积5, 平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置, 新的基本规则图形,便于求出面积•例如,如下图,求阴影部分面积6. 对称添补法:这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形 图形面积就是这个新图形面积的一半 •例如,求下图中阴影部分的面积,7、旋转法:在求一些面积时,有时需要把某个图形进行一定方向的旋转,使之拼在一起, 变成另一个比较方便求的图形。

【例5】如图,梯形ABCD的上底是3厘米,下底是5厘米,高是4厘米,E是梯形的中点。

求阴影部分的面积是多少?8、等分法:就是将整个图形,平均分成若干份,再看所求的图形的面积占多少份,从而求得阴影部分的面积。

【例6】将三角形ABC的三条边分别向外延长一倍,得到一个大的六边形,已知三角形ABC【例7】如图,在正方形中,放置了两个小正方形,大正方形的面积是180平方厘米,求甲乙两个小正方形有面积各是多少?9、抓不变量:若甲比乙的面积大a,则甲和乙同时加上或减去相同的数,它们的大小不变,而图形发生变化,再通过变化后的图形进行求解,就可以使问题得到简便;若两个面积相等的图形,同时加上或差动相同的面积,则剩下的面积仍然相等。

专题8 巧求圆中阴影部分的面积(含答案)

专题8 巧求圆中阴影部分的面积(含答案)

专题8 巧求圆中阴影部分的面积【知识解读】求与圆有关的阴影部分的面积,能考查同学们的观察能力、随机应变能力和综合运用数学知识的能力,解答此类问题要注意观察和分析图形的形成,学会分解和组合图形,消除思路中的“阴影”,明确要计算图形的面积,可以通过哪些图形的和或差得到,就能给解决问题带来一片光明,切勿盲目计算;下面介绍几种常用的解法.培优学案【典例示范】等积变换法:是在不改变图形面积的前提下,利用“等底、等高的两个三角形的面积相等”,将不规则图形转化为规则图形的面积来求解的方法.例1 如图1-8-1,点P 是半径为1的⊙O 外一点,OP =2,P A 切⊙O 于点A ,弦AB ∥OP ,连接PB ,则图中阴影部分的面积是.图181AB OP图182ABCDEMNO【跟踪训练】如图1-8-2,AB 是⊙O 的直径,MN 是⊙O 的切线,C 为切点,过点A 作AD ⊥MN 于点D ,交⊙O 于点E .已知AB =6,BC =3,求图中阴影部分的面积.【解答】和差法:是指将阴影部分看作两个规则图形的和或差.例2 如图1-8-3,扇形OAB 中,∠AOB =60°,扇形半径为4,点C 在BC 上,CD ⊥OA ,垂足为点D ,当CD =OD 时,图中阴影部分的面积为.图183BCD图184CEF【跟踪训练】如图1-8-4,在等腰直角三角形ABC 中,∠C =90°,点D 为AB 的中点,已知扇形EAD 和扇形FBD 的圆心分别为点A 、点B ,且AC =2,则图中阴影部分的面积为(结果不取近似值).割补法:是在不改变图形面积的前提下,通过割补,将发散的图形面积集中在一起,把不规则的图形凑合成规则图形的方法.例3 如图1-8-5,半径为2cm ,圆心角为90°的扇形OAB 中,分别以OA ,OB 为直径作半圆,则图中阴影部分的面积为cm 2.图185ABO图186A 'O 'O ABC【跟踪训练】如图1-8-6,将半圆O 绕直径AB 的端点B 逆时针旋转30°,得到半圆O ′,A ′B 交直径AB 于点C ,若BC =23,则图中阴影部分的面积为 .【提示】连接O ′C ,A ′C ,将阴影部分的面积通过割补,转化为△BO ′C 的面积加上扇形O ′AC 的面积.特殊位置法:是在不改变题意的前提下,通过取特殊位置,将图形特殊化,以方便求解.例4 如图1-8-7,一个半径为r 的圆形纸片在边长为a (a >3r )的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“接触不到的部分”的面积是()A .23r πB 233π- C .()233r πD .2r π【提示】解答本题的关键是搞清楚圆形纸片“不能接触到的部分”的面积,即圆形纸片与正三角形的相邻两边都相切时,两切点与正三角形的一个顶点形成的曲边三角形的面积.图187图188【跟踪训练】如图1-8-8,一张半径为1的圆形纸片在边长为a (a ≥3)的正方形内任意移动,则该正方形内,这张圆形纸片“不能接触到的部分”的面积是() A .2a π-B .()24a π-C .πD .4π-整体代换法:是指在解答过程中,可将某些不易求的且不发生变化的量看作整体处理. 例5 如图1-8-9,在Rt △ABC 中,∠C =90°,CA =CB =4,分别以A ,B ,C 为圆心,以12AC 为半径画弧,三条弧与边AB 所围成的阴影部分的面积是.图189CBA【提示】直接求阴影部分的面积是不可能的,根据题意结合图形,知阴影部分的面积等于直角三角形的面积减去三个扇形的面积,其中A ,B 两个扇形的面积无法直接求出,但若把它们看作一个“整体”,则问题易求.【跟踪训练】1.如图1-8-10,正方形的边长a ,以各边为直径在正方形内画半圆,则图中阴影部分的面积为 . 【提示】图中阴影部分的面积可以看作四个半圆的面积之和与正方形的面积之差.CBAOFEDCBA2.如图1-8-11,⊙A ,⊙B ,⊙C 两两不相交,且半径都是2cm ,则图中三个扇形(即阴影部分)面积之和是 cm 2.【提示】图中3个扇形正好拼成一个圆心角为180°的大扇形。

新人教版六年级上册求阴影部分面积圆ppt课件

新人教版六年级上册求阴影部分面积圆ppt课件
计算图中蓝色部分的面积 8分米
3分米
15分米
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
2 求阴影部分面积。(单位:dm)
1
3
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
• 8、求阴影部分的面积。
3.14×(4÷2)²×2-4² =3.14×4×2-16 =25.12-16 =9.12(dm²)
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
12 求阴影部分面积。(单位:cm)
9
求阴影部分周长和 面积。(单位:cm)
20
3.右面图形的中间是一个 为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能 边长为4厘米的正方形。 计算整个图形的面积是 多少平方厘米?
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
2 求阴影部分的周长与面积。(单位:cm
4
10
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
3 求阴影部分周长和 面积。(单位:dm)
3
5
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能

2025年沪科版九年级下册数学第24章专题6 求与圆有关的阴影部分面积的技巧

2025年沪科版九年级下册数学第24章专题6 求与圆有关的阴影部分面积的技巧
第24章 圆 24.7 弧长与扇形面积 专题6 求与圆有关的阴影部分面
积的技巧
习题链接
温馨提示:点击 进入讲评
1 2 3D 4 5
答案呈现
6 7 8 9 10
专题
1.[2024·山西]如图①是小区围墙上的花窗,其形状是扇 形的一部分,图②是其几何示意图(阴影部分为花 窗).通过测量得到扇形AOB的圆心角为90°,OA=1 m, 点C,D分别为OA,OB
专题
∵OD=OE,∴∠EDO=∠DEO=45°. ∴∠ODC=45°.∴∠ODC=∠DEO. ∵OA⊥OB,∴∠MON=90°, ∴∠MON-∠DON=∠DOE-∠DON, 即∠MOD=∠NOE.
专题
∠MOD=∠NOE, 在△ODM 与△OEN 中,OD=OE,
∠ODM=∠OEN,
∴△ODM≌△OEN(ASA).
(2)若
sin∠CFB=
22,AB=8,求图中阴影部分的面积.
【解】∵sin∠CFB= 22,∴∠CFB=45°.
∵∠OCF=90°,∴∠COF=45°.
又∵∠CDO=90°,OC=12AB=4,∴CD= 22OC=2 2, ∠OCD=45°=∠COD. ∴OD=CD=2 2.
∴图中阴影部分的面积=扇形 AOC 的面积-△COD 的面
的为中__π4点_-__,18_m则2花. 窗的面积
返回
专题
2.[2024·重庆九龙坡一模]如图,已知四边形 ABCD 内接于 ⊙O,连接 AC,BD.若△ACD 为等边三角形,AC=4 3,
点 B,O,D 共线,则阴影部分的面积为___13_6_π___.
专题
【点拨】连接 OA,OC.设 AC 与 BD 交于点 M. 易知 BD 是⊙O 的直径,∴∠BAD=∠BCD=90°. ∵△ACD 是等边三角形.∴AD=CD=AC=4 3,∠ADC=60°.

求阴影部分面积(圆和扇形)知识讲解

求阴影部分面积(圆和扇形)知识讲解

添辅助线回归基本图形
∠1=15°,平行四边形面积为100, 圆直径为20,求S阴(48又6分之5)
tips:平行四边形对 角线平分其面积
2013新知杯
添以辅B、助C线为圆回心归的基两半本圆图直形径都是2厘米,
求阴影部分的周长(精确到0。01cm) (3.09)
添辅助线回归基本图形
矩形ABCD中AB=8,AD=6,现将矩形A沿着水 平向右作无滑动地翻滚,当它翻滚至A1B1C1D1时, 顶点A所经过的路线长是多少? .
拼补法
拼补法
求S阴
tips:图中哪些角 是45°?
拼补法
圆○直径为8cm,求S阴。(18.24)
拼补法
整体代换的思路
已知正方形面积为12平方厘米, 求S阴(2.58)
已知S阴=15平方厘米, 求S圆环(47.1)
.如图,⊙A、⊙B、⊙C、⊙D相互外离,它们的 半径都是1,顺次连接四个圆心得到四边形 ABCD,则图形中四个扇形(阴影部分)的面积之 和是___________.
求阴影部分面积(圆和扇形)
开口型扇形
S阴影 3n6π 0r2
Q:这里的n是几?
扇面
S阴影 S大扇 -S 形 小扇形
Q:周长由哪几段构成?
风筝形
不规则图形
规则图形(基本图形)
正方形 扇形
S阴影 S正-S扇
橄榄形与弓形
1
A
B
D
10cm
C
例题:如图,正方形ABCD的边长为10厘米, 分别以点A和点B为圆心,正方形边长为半 径画弧,求阴影部分面积,。
解:"翻滚"即矩形绕着一个点旋转,
而旋转的本质是线段绕一端点转。
三条弧的长度和为1/4×2π×(8+10+6)=12π

圆_阴影部分面积(含答案)

圆_阴影部分面积(含答案)

求阴影部份面积之答禄夫天创作时间:二O二一年七月二十九日例1.求阴影部份的面积.(单元:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部份的面积.(单元:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积.设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部份的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部份的面积.(单元:厘米) 解:最基本的方法之一.用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部份的面积:2×2-π=0.86平方厘米. 例4.求阴影部份的面积.(单元:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部份的面积.(单元:厘米)解:这是一个用最经常使用的方法解最罕见的题,为方便起见,我们把阴影部份的每一个小部份称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部份的8倍. 例6.如图:已知小圆半径为2厘米,年夜圆半径是小圆的3倍,问:空白部份甲比乙的面积多几多厘米?解:两个空白部份面积之差就是两圆面积之差(全加上阴影部份)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部份的面积.(单元:厘米) 解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π例8.求阴影部份的面积.(单元:厘米) 解:右面正方形上部阴影部份的面积,即是左面正方形下部空白部份面积,割补÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)以后为圆,所以阴影部份面积为:π()=3.14平方厘米例9.求阴影部份的面积.(单元:厘米)解:把右面的正方形平移至左边的正方形部份,则阴影部份合成一个长方形,所以阴影部份面积为:2×3=6平方厘米例10.求阴影部份的面积.(单元:厘米)解:同上,平移左右两部份至中间部份,则合成一个长方形,所以阴影部份面积为2×1=2平方厘米(注: 8、9、10三题是简单割、补或平移)例11.求阴影部份的面积.(单元:厘米)解:这种图形称为环形,可以用两个同心圆的面积差或差的一部份来求.(π-π)×=×3.14=3.66平方厘米例12.求阴影部份的面积.(单元:厘米)解:三个部份拼成一个半圆面积.π()÷2=14.13平方厘米例13.求阴影部份的面积.(单元:厘米)解: 连对角线后将"叶形"剪开移到右上面的空白部份,凑成正方形的一半.所以阴影部份面积为:8×8÷2=32平方厘米例14.求阴影部份的面积.(单元:厘米)解:梯形面积减去圆面积,(4+10)×4-π=28-4π=15.44平方厘米.例15.已知直角三角形面积是12平方厘米,求阴影部份的面积.分析: 此题比上面的题有一定难度,这是"叶形"的一个半.解: 设三角形的直角边长为r,则=12,例16.求阴影部份的面积.(单元:厘米)=6圆面积为:π÷2=3π.圆内三角形的面积为12÷2=6,阴影部份面积为:(3π-6)×=5.13平方厘米解:[π+π-π]=π(116-36)=40π=125.6平方厘米例17.图中圆的半径为5厘米,求阴影部份的面积.(单元:厘米)解:上面的阴影部份以AB为轴翻转后,整个阴影部份成为梯形减去直角三角形,或两个小直角三角形AED、BCD面积和.所以阴影部份面积为:5×5÷2+5×10÷2=37.5平方厘米例18.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部份的周长.解:阴影部份的周长为三个扇形弧,拼在一起为一个半圆弧,所以圆弧周长为:2×3.14×3÷2=9.42厘米例19.正方形边长为2厘米,求阴影部份的面积.解:右半部份上面部份逆时针,下面部份顺时针旋转到左半部份,组成一个矩形.所以面积为:1×2=2平方厘米例20.如图,正方形ABCD的面积是36平方厘米,求阴影部份的面积.解:设小圆半径为r,4=36,r=3,年夜圆半径为R,=2=18,将阴影部份通过转动移在一起构成半个圆环,所以面积为:π(-)÷2=4.5π=14.13平方厘米例21.图中四个圆的半径都是1厘米,求阴影部份的面积.解:把中间部份分成四等分,分别放在上面圆的四个角上,补成一个正方形,边长为2厘米,所以面积为:2×2=4平方厘米例22. 如图,正方形边长为8厘米,求阴影部份的面积.解法一: 将左边上面一块移至右边上面,补上空白,则左边为一三角形,右边一个半圆.阴影部份为一个三角形和一个半圆面积之和.π()÷2+4×4=8π+16=41.12平方厘米解法二: 补上两个空白为一个完整的圆.所以阴影部份面积为一个圆减去一个叶形,叶形面积为:π()÷2-4×4=8π-16所以阴影部份的面积为:π()-8π+16=41.12平方厘米例23.图中的4个圆的圆心是正方形的4个极点,,它们的公共点是该正方形的中心,如果每个圆的半径都是1厘米,那么阴影部份的面积是几多?解:面积为4个圆减去8个叶形,叶形面积为:π-1×1=π-1所以阴影部份的面积为:4π-8(π-1)=8平方厘米例24.如图,有8个半径为1厘米的小圆,用他们的圆周的一部份连成一个花瓣图形,图中的黑点是这些圆的圆心.如果圆周π率取3.1416,那么花瓣图形的的面积是几多平方厘米?分析:连接角上四个小圆的圆心构成一个正方形,各个小圆被切去个圆,这四个部份正好合成3个整圆,而正方形中的空白部份合成两个小圆.解:阴影部份为年夜正方形面积与一个小圆面积之和.为:4×4+π=19.1416平方厘米例25.如图,四个扇形的半径相等,求阴影部份的面积.(单元:厘米)分析:四个空白部份可以拼成一个以2为半径的圆.所以阴影部份的面积为梯形面积减去圆的面积,4×(4+7)÷2-π=22-4π=9.44平方厘米例26.如图,等腰直角三角形ABC和四分之一圆DEB,AB=5厘米,BE=2厘米,求图中阴影部份的面积.解: 将三角形CEB以B为圆心,逆时针转动90度,到三角形ABD位置,阴影部份成为三角形ACB 面积减去个小圆面积,为: 5×5÷2-π÷4=12.25-3.14=9.36平方厘米例27.如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部份,求阴影部份的面积.解: 因为2==4,所以=2以AC为直径的圆面积减去三角形ABC面积加上弓形AC面积,π-2×2÷4+[π÷4-2]=π-1+(π-1)=π-2=1.14平方厘米例28.求阴影部份的面积.(单元:厘米)解法一:设AC中点为B,阴影面积为三角形ABD面积加弓形BD的面积,三角形ABD的面积为:5×5÷2=12.5弓形面积为:[π÷2-5×5]÷2=7.125所以阴影面积为:12.5+7.125=19.625平方厘米解法二:右上面空白部份为小正方形面积减去小圆面积,其值为:5×5-π=25-π阴影面积为三角形ADC减去空白部份面积,为:10×5÷2-(25-π)=π=19.625平方厘米例29.图中直角三角形ABC的直角三角形的直角边AB=4厘米,BC=6厘米,扇形BCD所在圆是以B为圆心,半径为BC的圆,∠CBD=,问:阴影部份甲比乙面积小几多?解: 甲、乙两个部份同补上空白部份的三角形后合成一个扇形BCD,一个成为三角形ABC,此两部份差即为:π×-×4×6=5π-12=3.7平方厘米例30.如图,三角形ABC是直角三角形,阴影部份甲比阴影部份乙面积年夜28平方厘米,AB=40厘米.求BC的长度.解:两部份同补上空白部份后为直角三角形ABC,一个为半圆,设BC长为X,则40X÷2-π÷2=28所以40X-400π=56 则X=32.8厘米例31.如图是一个正方形和半圆所组成的图形,其中P为半圆周的中点,Q为正方形一边上的中点,求阴影部份的面积.解:连PD、PC转换为两个三角形和两个弓形,两三角形面积为:△APD面积+△QPC面积=(5×10+5×5)=37.5两弓形PC、PD 面积为:π-5×5所以阴影部份的面积为:37.5+π-25=51.75平方厘米例32.如图,年夜正方形的边长为6厘米,小正方形的边长为4厘米.求阴影部份的面积.解:三角形DCE的面积为:×4×10=20平方厘米梯形ABCD的面积为:(4+6)×4=20平方厘米从而知道它们面积相等,则三角形ADF面积即是三角形EBF面积,阴影部份可补成圆ABE的面积,其面积为:π÷4=9π=28.26平方厘米例33.求阴影部份的面积.(单元:厘米)解:用年夜圆的面积减去长方形面积再加上一个以2为半径的圆ABE面积,为(π+π)-6=×13π-6=4.205平方厘米例34.求阴影部份的面积.(单元:厘米)解:两个弓形面积为:π-3×4÷2=π-6阴影部份为两个半圆面积减去两个弓形面积,结果为π+π-(π-6)=π(4+-)+6=6平方厘米例35.如图,三角形OAB是等腰三角形,OBC 是扇形,OB=5厘米,求阴影部份的面积.解:将两个同样的图形拼在一起成为圆减等腰直角三角形[π÷4-×5×5]÷2=(π-)÷2=3.5625平方厘米时间:二O二一年七月二十九日。

圆中阴影部分的面积求法

圆中阴影部分的面积求法
4 π3
3
一. 割补法
例1. 如图,扇形AOB的圆心角为直角, 若OA=4,以AB为直径作半圆,求阴影 部分的面积。
如图,扇形AOB的圆心角为直角,若OA=4,以AB 为直径作半圆,求阴影部分的面积。
反思:不规则图形的面积一般转化为扇形与三角形面积的和差。
二. 等积变换法
例2.如图,A是半径为2的⊙O外一点, OA=4,AB是⊙O的切线,点B是切 点,弦BC∥OA,连结AC,求图中阴 影部分的面积。
如图,A是半径为2的⊙O外一点,OA=4,AB是⊙O 的切线,点B是切点,弦BC∥OA,连结AC,求图中 阴影部分的面积。
反思: 1.观察三角形之间 的关系。 2.平行线间的距离 相等. 3.边角转化。
三、整体思想 例3. 如图,⊙A、⊙B、⊙C、⊙D、 ⊙E相外离,它们的半径都是1,顺次连 接五个圆心得到五边形ABCDE,则图 中五个扇形(阴影部分)的面积之和是 多少?
的面积为
4
D
3
A
C
B
2.
矩形ABCD中,BC=2,DC=4,以AB
为直径的半圆O与DC相切于点E,则
π 阴影部分的面积是
3.直线y=kx+b过M(1,3)N(-1,3 3) 与坐标轴的交点为A、B,以AB为直径 ‫סּ‬C,求此圆与y轴围成的阴影部分的面 积。
0y
4 π3
3
B
C
O
A
0x
4.AB是‫סּ‬O的直径,点D.E是半圆的三 等分点,AE.BD的延长线交于点C,若 CE=2,则图中阴影部分的面积为
S阴=S三角形ABC-S半圆 1 1 2 = 16 8 3 8 2 2 64 3 32
D
E
B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中五个扇形(阴影部分)的面积之和是 多少?
巩固练习
1.如图,在两个半圆中,大圆的弦 MN与小圆相切于点D,MN∥AB,MN =8cm,ON、CD分别是两圆的半径, 求阴影部分的面积。
分析:
S阴 S半圆⊙O S半圆⊙C
1 R2 1 r2
2
2
1 (R2 r2)
2
如图,在两个半圆中,大圆的弦MN与小圆相切于点D, MN∥AB,MN=8cm,ON、CD分别是两圆的半径, 求阴影部分的面积。
如图,A是半径为2的⊙O外一点,OA=4,AB是⊙O 的切线,点B是切点,弦BC∥OA,连结AC,求图中阴 影部分的面积。
反思: 1.观察三角形之间 的关系。 2.ቤተ መጻሕፍቲ ባይዱ行线间的距离 相等. 3.边角转化。
三、整体思想
例3. 如图,⊙A、⊙B、⊙C、⊙D、 ⊙E相外离,它们的半径都是1,顺次连 接五个圆心得到五边形ABCDE,则图
D、E、F分别是各边中点,求阴影
部分的面积。
A
S阴=S三角形ABC-S半圆
=1 168 3 1 •82
2
2
64 3 32
D B
E
F
C
2.如下图,正方形的边长为a,以各 边为直径在正方形内画半圆,所以围 成的图形(阴影部分)的面积为 ______________。
S阴影=4
1 2

a 2
)2
B,弦BC||OA,连接AC,
则阴影部分面积为
O
A
2
π
C
B
3
A组
课堂训练
1 .某长方形广场的四 角都有一块半径相同 的四分之一圆形的草 地,若圆形的半径为r 米,长方形的长为a米, 宽为b米,用代数式表 示空地的面积是 ab- πr2
2. ∆ABC中BC=4,以点A为圆心, 以2为半径的⊙ A与BC相切于D,P为 ⊙ A上一点,且∠EPF=40°,则阴

5. ⊙O2的弦AB切⊙O1于
C点且AB||O1O2, AB=8cm,则阴影部分的面
积为 . 16πcm2
A
C
B
O1 O2
6. 在∆ABC中,∠BAC=90°,
AB=AC=2,以AB为直径的圆交 B
BC于D,则图中阴影部分的面积
为1
D
7. A是半径为2的‫סּ‬O外一 C
A
点,OA=4,AB切‫סּ‬O于
4π- 3
3
面积为
D
A
C
43
B
2. 矩形ABCD中,BC=2,DC=4,以 AB为直径的半圆O与DC相切于点E, 则阴影部分的面π积是
3.直线y=kx+b过M(1,3)N(-1, 3 3)与坐标轴的交点为A、B,以AB 为直径‫סּ‬C,求此圆与y轴围成的阴影部 分的面积。
0y
4π- 3
3
B
C
O
A
0x
4.AB是‫סּ‬O的直径,点D.E是半圆的 三等分点,AE.BD的延长线交于点C, 若CE=2,则图中阴影部分的面积为
反思:不要将图形CBD当作扇形计算,再次强化不规则图形的面 积一般转化为规则图形的和差。
回顾与思考
反思自我
驶向胜利 的彼挑战
自我岸
• (1)学会了求不规则图形的面积的一般方法
• (2)深入的理解了化归的数学思想
• (3) 体会到数学的灵活性.多变性,以不变应万 变
4. 在两个同心圆中,三条直 径把大圆分成相等的六部分, 若大圆半径为2,则阴影部 分的面积为
一. 割补法
例1. 如图,扇形AOB的圆心角为直角, 若OA=4,以AB为直径作半圆,求阴影 部分的面积。
如图,扇形AOB的圆心角为直角,若OA=4,以AB 为直径作半圆,求阴影部分的面积。
反思:不规则图形的面积一般转化为扇形与三角形面积的和差。
二. 等积变换法
例2.如图,A是半径为2的⊙O外一点, OA=4,AB是⊙O的切线,点B是切 点,弦BC∥OA,连结AC,求图中阴 影部分的面积。
反思:整体代换
2. 已知直角扇形AOB,半径OA= 2cm,以OB为直径在扇形内作半圆 ⊙M,过M引MP∥AO交 AB于P,求 AB 与半圆弧及MP围成的阴影部分的面积 S阴。
反思: 1.不规则图形的面积 转化为扇形与三角形面积 的和差。
2.边角转化
当堂检测
1.在等边△ ABC中,BC=16cm,点
a
2
1 a 2 a 2。
2
3.如图所示,半径OA=2cm,圆心角 为90°的扇形AOB中,C为AB 的中 点,D为OB的中点,求阴影部分的 面积。
S阴=S扇形BOC S三角形COD
如图所示,半径OA=2cm,圆心角为90°的扇形AOB 中,C为 AB 的中点,D为OB的中点,求阴影部分的面积。
(甲)
(乙)
(丙)
4.图4中正比例函数与反比例函数的 图象相交于A、B两点,分别以A、B 两点为圆心,画与y轴相切的两个圆。 若点A的坐标为(1,2),则图中两 个阴影面积的和为
π
B组
1. 某种商品的商标图案如图(阴影部分)
已知菱形ABCD的边长为4,∠A=60°,
是以A为圆心B⌒ADB长为半径的弧 是以B 为圆心BC⌒为D 半径的弧,则该商标图案的
求阴影部分的面积,在近几年中考题中,形成一个新 的热点。在求阴影部分的面积试题中,图形一般都是一 些不规则的图形或没有公式可以直接套用的.在计算由圆、 扇形、三角形、四边形等组成的图形面积时,要注意观 察和分析图形,学会分解和组合图形,明确要计算图形 的面积,可以通过哪些图形的和或差得到,切勿盲目计 算。求解这类问题的关键:将要求的阴影部分的图形转 化为可求解的规则的图形的组合.通过本节课的学习,希 望能帮助同学们突破难点,对您有所帮助!
影部分的面积=
4 - 8π
9
A
P
E
F
B
D
C
3. 有六个等圆按如图甲、乙、丙三种形状 摆放,使邻圆互相外切,且圆心线分别构 成正六边形、平行四边形、正三角形,将 圆心连线外侧的六个扇形(阴影部分)的 面积之和依次记为S、P、Q则(D ) A、S>P>Q B、S>Q>P C、S>P=Q D、S=P=Q
相关文档
最新文档