高中数学求数列的通项公式课件

合集下载

数列通项公式的求法PPT优秀课件1

数列通项公式的求法PPT优秀课件1

题型3:构造基本数列求通项公式
2 n 1 2 n
已知数列 { a } 中 a 1 , a 0 , 且 a a 4 , 例4: n 1 n 求数列 { a } 通项 n
分析: 由条件 a2n1 a2n 4可知 ,构造数列 {bn}
其中 bn a2n ,则bn1 bn 4,由此可知 bn b ) 4 1 (n 1) 4 4n 3 1 (n 1 即: a 4n 3, 又an 0,an 4n 3
例5:已知数列{an}中a1=1,且an+1=2an+3,求 {an}的通项。
解: a n 1 2 a n 3 ( n N *) a n 1 3 2 ( a n 3 ) { a n 3}是以 a 1 3 4 为首项, 2 为公比的等比数列 an 3 4 2 综上, a n 2
1 1 1 ( 2 ) 为 等 差 数 列 ( n 1 ) 2 = 2 n s s n n s 1 1 1 1 又a s s = sn = n n n 1 2 n 2 ( n 1 ) 2n
1 an ( n 2) 2n(n 1)
而 a1 1 ; 2
2
an a n 1 2 n 3
经检验: n 1时满足上式。 an ( n 1) 2 ( n ∈ N + )
题型2:利用累加(等差)、累积(等比)求数列的通项
思考:满足何种条件时,采用“累积法”求通项?
a n1 an
g () ng ( () n 能 求 乘 积 )
n2
时,有
a a a a 2 3 4 q , q , = q , , n q a a a a 1 2 3 n 1

高中数学必修5优质课件:数列的通项公式与递推公式

高中数学必修5优质课件:数列的通项公式与递推公式
第七页,编辑于星期日:二十三点 三十九分。
[类题通法] 根据递推公式写出数列的前几项,要弄清楚公式中各部 分的关系,依次代入计算即可.另外,解答这类问题时还需 注意:若知道的是首项,通常将所给公式整理成用前面的项 表示后面的项的形式;若知道的是末项,通常将所给公式整 理成用后面的项表示前面的项的形式.
第十二页,编辑于星期日:二十三点 三十九分。
[类题通法] 根据递推公式写出数列的前几项,然后由前几项分析其 特点、规律,归纳总结出数列的一个通项公式.
第十三页,编辑于星期日:二十三点 三十九分。
[对点训练] 3.已知数列{an}满足 a1=1,an=an-1+nn1-1(n≥2), 写出该数列前 5 项,并归纳出它的一个通项公式. 解:a1=1, a2=a1+2×1 1=1+12=32, a3=a2+3×1 2=32+16=53, a4=a3+4×1 3=53+112=74,
[类题通法] 通项公式法、列表法与图象法表示数列优点
(1)用通项公式表示数列,简洁明了,便于计算.公 式法是常用的数学方法.
(2)列表法的优点是不经过计算,就可以直接看出项 数与项的对应关系.
(3)图象能直观形象地表示出随着序号的变化,相应 项变化的趋势.
第四页,编辑于星期日:二十三点 三十九分。
第十七页,编辑于星期日:二十三点 三十九分。
3.已知 a1=1,an=1+an1-1(n≥2),则 a5=________. 解析:由 a1=1,an=1+an1-1得 a2=2,a3=32,a4=53, a5=85. 答案:85
第十八页,编辑于星期日:二十三点 三十九分。
4.已知数列{an}满足 a1>0,aan+n 1=13(n∈N*),则数列{an}是 ________数列(填“递增”或“递减”).

数列通项公式的求法课件-高三数学一轮复习

数列通项公式的求法课件-高三数学一轮复习

(2)证明:∵cn=a2nn(n∈N*), ∴cn+1-cn=a2nn+ +11-a2nn=an+21-n+12an=2bn+n 1. 将 bn=3·2n-1 代入,得 cn+1-cn=34(n∈N*). ∴数列{cn}是公差为34的等差数列,c1=a21=12, 故 cn=12+34(n-1)=34n-14.
探究 5 此类题可由 an=SS1n(-nS=n-11()n,≥2)求出通项 an,但要注意 n=1 与 n ≥2 两种情况能否统一.
思考题 5 在数列{an}中,a1=1,a1+2a2+3a3+…+nan=n+2 1an+1,n∈
N*,求 an. 【解析】
由 a1+2a2+3a3+…+nan=n+2 1an+1,
例 4 已知数列{an}满足 a1=1,an+1=2aan+n 1(n∈N+).求数列{an}的通项公 式.
【解析】 易知 an>0,依题意得an1+1=2ana+n 1=a1n+2, ∴数列a1n是等差数列,公差为 2,首项为 1,∴a1n=1+(n-1)×2=2n-1, ∴an=2n1-1.
探究 4 已知数列递推公式的分母中含有通项公式的表达式,求解对应的通 项公式时,往往可以通过观察表达式的特点,通过倒数关系加以转化,利用等差 数列的性质分析相应的通项公式问题.
思考题 4 设数列{an}是首项为 1 的正项数列,且 an+1-an+an+1·an= 0(n∈N*),求{an}的通项公式.
【解析】 ∵an+1-an+an+1·an=0.∴an1+1-a1n=1. 又a11=1,∴a1n是首项为 1,公差为 1 的等差数列. 故a1n=n,∴an=1n.
题型四 已知 Sn 求 an
题型二 累乘法
例 2 在数列{an} 中,已知 a1=3,nan=(1+n)an+1,求 an. 【解析】 据题意有aan+n 1=n+n 1⇒aan-n 1=n-n 1(n≥2 且 n∈N*). ∴an=a1·aa21·aa32·…·aan-n 1 =3×12×23×34×…×n-n 1=3n(n≥2 且 n∈N*),把 n=1 代入上式也成立,故 an=3n(n∈N*).

数列通项公式的求法课件

数列通项公式的求法课件

2(
n 1) 2
n
1
此时,bn an
an n 1
故an
n 1, n为奇数, n, n为偶数.
解法2: an1 an 2n 当n 2时, an an1 2(n 1)
两式相减,得:an1 an1 2
a1, a3 , a5 , ,构成以a1为首项,以2为公差的等差数列
a2 ,a4 ,a6 , ,构成以a2为首项,以2为公差的等差数列
(1)若c=1时,数列{an}为等差数列;
(2)若d=0时,数列{an}为等比数列;
(3)若c≠1且d≠0时,数列{an}为线性递推数列,
其通项可通过构造辅助数列来求.方法1: 待定系数法
设an+1+m=c( an+m),得an+1=c an+(c-1)m,
与题设an+1=c an+d,比较系数得: (c-1)m=d,
an1 Sn1 Sn 2an1 1 2an 1
即an1 2an 即{an}为首项 1,公比为2的等比数列
an 1 2n1 2n1
5.构造等差、等比数列法
对于一些递推关系较复杂的数列, 可通过 对递推关系公式的变形、整理, 从中构造出一 个新的等比或等差数列, 从而将问题转化为前 面已解决的几种情形来处理。
an
解:
a2 a1
a2
21,
a3
an1 2n an
a3 a2
a4
2,2 a4
a3an
2, 3……
222
23
an 2n1 an1
2n1
a1 a2 a3
an1
n ( n 1)
a 2 2 n
1 23( n 1)

常见递推数列通项公式的求法ppt课件

常见递推数列通项公式的求法ppt课件

1S 2
1 23
2 24
n2 2n
n 1 2 n+1

由①-②得
1S 2
1 22
1 23
1 2n
n 1 2n+1
1 2
n 1 2 n 1
S 1 n1 2n
an 2n
1
an 2n
2
n 1 2n
an 2n1 n 1
变式训练:答案an 6 4n1 (n 1) 2n
数列 满足 an
an1 3 4 5 6
n 1
an a1
1 2 n(n 1)
a1
1 an
2 n(n 1)
累乘
例 2:已知数列an 中,a1
1且满足 an1 an
n ,求数 n2
列an 的通项公式。
其他解法探究:
a n 1 an
n n2
(n 2)an1
nan
(n 1)(n 2)an1 n(n 1)an
则可构造n(n 1)an 是常数数列
故an n2 n 2(n 1,2,3,)
方法归纳:累加
可求和
变式训练:
1.已知数列an中, a1 2 满足 an1 an 2n n ,求数列an 的通 项公式. 2.已知数列an 中, a1 2 满足 an1 an n 2n n ,求数列an 的 通项公式.
类型二:形如 an1 f (n)
an1 2an n 2n1 2n1 2n1
an1 an n 2n1 2n 2n1
累加
a2 22
a1 2
1 ,a3 22 23
a2 22
2 23
,,
an 2n
an1 2n1
n 2n
1
,

人教A版高中数学选择性必修第二册4.2.1第一课时等差数列的概念及通项公式课件

人教A版高中数学选择性必修第二册4.2.1第一课时等差数列的概念及通项公式课件

()
答案:(1)× (2)√ (3)√ (4)√
2.[多选]下列各组数列能构成等差数列的为( ) A.2,2,2,2,2 B.cos 0,cos 1,cos 2,cos 3 C.3m,3m+a,3m+2a,3m+3a D.a-1,a+1,a+3 解析:A.∵2-2=2-2=2-2=2-2=0,∴该数列是等差数列.B.∵cos 1 -cos 0≠cos 2-cos 1,∴该数列不是等差数列.C.∵(3m+a)-3m=(3m+ 2a)-(3m+a)=(3m+3a)-(3m+2a)=a,∴该数列是等差数列.D.∵(a+1) -(a-1)=(a+3)-(a+1)=2,∴该数列是等差数列. 答案:ACD
[对点练清] 1.在等差数列{an}中,已知a5=10,a12=31,求a20,an.
解:法一:∵a5=10,a12=31, ∴aa11++411dd==1301,, ∴ad1==3-,2. ∴an=a1+(n-1)d=3n-5,∴a20=3×20-5=55. 法二:∵a12=a5+7d,即 31=10+7d,∴d=3, ∴an=a12+(n-12)d=3n-5, ∴a20=a12+8d=31+8×3=55.
这表明已知等差数列中的任意两项即可求得其公差,进而求得其通项公式.
[典例1] 在等差数列{an}中, (1)已知a5=-1,a8=2,求a1与d; (2)已知a1+a6=12,a4=7,求a9. [解] (1)∵a5=-1,a8=2, ∴aa11++74dd==2-,1, 解得ad1==1-. 5, (2)设数列{an}的公差为 d. 由已知得,aa11+ +a31d+=57d,=12, 解得ad1==21., ∴an=1+(n-1)×2=2n-1, ∴a9=2×9-列,求证:b+a c,a+b c,a+c b也成等差数列.

由数列的递推关系求通项公式PPT优秀课件

由数列的递推关系求通项公式PPT优秀课件

3,
设 bn

an1
an
,则 b1

a2
a1
6 ,且 bn1 bn

3,
所以 bn 6 3n1 2 3n ,即 an1 an 2 3n ,
有 3an 3 an 2 3n
所以
an

3n

3 2
.
解:由已知递推式得
an 3an1 3 ,
an

2n .
1
例题分析
例 1.
已知数列an 中, a1

3 2
,
an1

3an

3
(n N *), 求数列an 的通项公式.
.
巩固练习
1. 已知数列 an 中, a1 1, an1 3an 3n (n N *), 求数列an 的通项公式.
an n3n1
an 2n1
课堂热身
2.已知数列
an
中,
a1

1 2
,
an1

an

1 3n
(n N*), 求数列an 的通项公式.
1
an
1
.
2
3n1
课堂热身
3.已知数列 an 中 a1 3, an1 3an (n N*).求数列an 的通项公式.
an 3n

1 3n
,所以 an1 3n1

an 3n

1 3n

设 bn

an 3n
, 则 b1

a1 3
1,, 2
且 bn1
bn

1 3n

等差数列(概念和通项公式)课件-高二数学人教A版(2019)选择性必修第二册

等差数列(概念和通项公式)课件-高二数学人教A版(2019)选择性必修第二册



又因为 = ( ∈ N ),所以+1 − =3( ∈ N ),且1

1
所以数列{}是等差数列,首项为 ,公差为3.

=
1

=
1
.

典例讲解


例2、①已知数列{ }满足+ − = , ∈ ,且 = ,则 =_____.



复习引入
1.数列的定义:
按一定次序排列的一列数
2.数列的通项公式:
数列 的第项 与项数之间的函数关系式,

即 = ∈ .
人教A版同步教材名师课件
等差数列
---概念和通项公式
学习目标
学习目标
理解等差数列的概念
掌握等差数列通项公式的求法
理解等差数列与一次函数的关系
核心素养
在等差数列通项公式中,有四个量,
, , , ,
知道其中的任意三个量,就可以求出另一个量,即知三求一 .
探究新知
等差数列的通项公式与一次函数有怎样的关系?
= + ( − ) = + − ,当 ≠ 时,是一次函数() = +
( − )( ∈ ),当 = 时的函数 = ().
实际上,等差数列中的某一项是与其等距离的前后两项的等差中项,

即 = − + + (, ∈ , < ).
2.等差中项法判定等差数列
若数列{ }满足 = − + + ( ≥ ),则可判定数列{ }是等差数列.
变式训练
��
2.已知
解析 (2)∵ = −, = − − − = −,

高中数学选择性必修二(人教版)《4.1 数列的概念 第二课时 数列的通项公式与递推公式》课件

高中数学选择性必修二(人教版)《4.1  数列的概念  第二课时  数列的通项公式与递推公式》课件

题型二 由前 n 项和 Sn 求通项公式 an [学透用活]
[典例 2] 设数列{an}的前 n 项和为 Sn.已知 2Sn=3n+3,求{an}的通项 公式.
[解] 因为 2Sn=3n+3,所以 2a1=3+3,故 a1=3. 当 n≥2 时,2Sn-1=3n-1+3, 两式相减得 2an=2Sn-2Sn-1=3n-3n-1=2×3n-1, 即 an=3n-1,所以 an=33n,-1n,=n1≥,2.
题型三 数列中的最大项、最小项 [学透用活]
[典例 3] 已知数列{an}的通项公式为 an=n2-5n+4. (1)数列中有多少项是负数? (2)n 为何值时,an 有最小值?并求出最小值. [解] (1)由 n2-5n+4<0,解得 1<n<4.
∵n∈N *,∴n=2,3.∴数列中有两项是负数.
(二)基本知能小试
1.判断正误
(1)已知数列{an}的前 n 项和 Sn,若 Sn=n2-n,则 an=2n-2. ( ) (2)已知数列{an}的前 n 项和 Sn,若 Sn=3n-2,则 an=2×3n-1.
答案:(1)√ (2)×
()
2.已知数列{an}的前 n 项和 Sn 满足 Sn+Sm=Sn+m,且 a1=1,那么 a10
(2)法一:∵an=n2-5n+4=n-522-94, 可知对称轴方程为 n=52=2.5.
又∵n∈N *,故 n=2 或 3 时,an 有最小值, 且 a2=a3,其最小值为 22-5×2+4=-2.
法二:设第 n 项最小,由aann≤ ≤aann+ -11, , 得nn22--55nn++44≤≤nn-+1122--55nn-+11++44, . 解不等式组,得 2≤n≤3, ∴n=2 或 3 时 an 有最小值且 a2=a3, ∴最小值为 22-5×2+4=-2.

2023新教材高中数学第4章数列等差数列的概念及通项公式课件新人教A版选择性必修第二册

2023新教材高中数学第4章数列等差数列的概念及通项公式课件新人教A版选择性必修第二册

得aa11+ +1549dd= =82, 0,
解得a1=6145, d=145.
故a75=a1+74d=1654+74×145=24.
法二
∵a60=a15+(60-15)d,∴d=
20-8 60-15

4 15
,∴a75=a60+
(75-60)d=20+15×145=24. 法三 已知数列{an}是等差数列,可设an=kn+b.由a15=8,
ACD [由条件可知an+1-an=-3,∴该数列为等差数列,公差 为-3,这时an=-3n+30.∴a5=-3×5+30=15,又由-3n+30 =-3得n=11,故ACD正确.]
3.在等差数列{an}中,已知a2=2,a5=8,则a9=( )
A.8
B.12
C.16
D.24
C [设等差数列{an}的首项为a1,公差为d, 则由a2=2,a5=8,得 aa11+ +d4= d=2, 8, 解得a1=0,d=2,所以a9 =a1+8d=16.故选C.]
[跟进训练] 2.若等差数列的前三项分别为a,2a-1,3-a,求其第2 022项.
[解] 由等差中项公式可得2(2a-1)=a+(3-a),解得a=54,所
以首项为
5 4
,公差为
2×54-1
数列的通项公式为an=
5 4
+(n-1)×14=14n+1,故其第2 022项为a2 022=14×2 022+1=1 0213.
(2)求数列{an}的通项公式. [解] 由(1)知bn=12+(n-1)×12=n2. ∵bn=an-1 2, ∴an=b1n+2=2n+2. ∴数列{an}的通项公式为an=2n+2.
2.(变条件)将本例中的条件“a1=2,an+1=

高考数学微专题3 数列的通项课件(共41张PPT)

高考数学微专题3 数列的通项课件(共41张PPT)
内容索引
内容索引
目标1 根据规律找通项公式
1 (2023吉林三模)大衍数列,来源于《乾坤谱》中对易传“大
衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,
数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总
和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其前10项
依 次 是 0,2,4,8,12,18,24,32,40,50 , 则 此 数 列 的 第 25 项 与 第 24 项 的 差 为
高考命题方向: 1. 根据前几项来寻找序号 n 与项之间的关系. 2. 根据前几项所呈现的周期性规律,猜想通项. 3. 抓住相邻项的关系转化为熟悉问题.
内容索引
内容索引
说明: 1. 解决方案及流程 (1) 归纳猜想法: ①确定数列的前几项; ②分析序号 n 与项有何关系,初步确定分类标准; ③研究数列整体或部分规律; ④归纳数列的项用序号 n 表示的规律; ⑤证明归纳的正确性.
内容索引
内容索引
1. (2022泰安三模)已知数列{an}满足:对任意的m,n∈N*,都有aman
=am+n,且a2=3,则a20的值为( )
A. 320
B. 315
C. 310
D. 35
【解析】 因为对任意的 m,n∈N*,都有 aman=am+n,所以 a1a1=a2, a1an=a1+n.又 a2=3,所以 a1=± 3,所以aan+n 1=a1,所以数列{an}是首项 为 a1,公比为 a1 的等比数列,所以 an=a1·an1-1=an1,所以 a20=a210=310.
重复循环,2 022=674×3,恰好能被3整除,且a3为偶数,所以a2 022也 为偶数,故B错误;对于C,若C正确,又a2 022=a2 021+a2 020,则a2 021= a1+a2+…+a2 019,同理a2 020=a1+a2+…+a2 018,a2 019=a1+a2+…+ a2 017,依次类推,可得a4=a1+a2,显然错误,故C错误;对于D,因为 a2 024=a2 023+a2 022=2a2 022+a2 021,所以a2 020+a2 024=a2 020+2a2 022+a2 021=2a2 022+(a2 020+a2 021)=3a2 022,故D正确.故选AD.

2024届高三数学一轮复习-求数列通项公式的方法 课件(共25张ppt)

2024届高三数学一轮复习-求数列通项公式的方法 课件(共25张ppt)

再得出 的表达式
例五.2
在数列 中,1 = 1,+1 =

,求通项公式 ?
3 +2
解:由题意,两边同取倒数,得

1
an+1
+k=2
1
an
+k

1
an+1
1
an+1
=
=
1
2
an
1
2 +3
an
+k
对比原式,得k = 3

1
an
1
an
+ 3 为首项为4,公比为2的等比数列
+ 3 = 4 · 2n−1 = 2n+1
解题思路:设 ,构造等比数列{ + }
具体步骤: 设+1 + = +
即+1 = ⋅ + − 1 ·
对比原式,得k =
q
p−1
得到以1 +为首项,为公比的等比数列{ + }
例四.1
在数列 an 中,a1 = 1,an+1 = 3an + 1,求通项公式an ?
故an =
1
2n+1 −3
六、取对数法
①形如+1 = ⋅
对数运算法则: log ⋅ = log + log
解题思路:等式两边同取对数,构造等比数列
log ⋅= · log
具体步骤: 两边同取以p为底的对数,得log +1 = log + 1
使用条件:已知+1 − =
解题思路: 2 − 1 = 1

数学人教A版选择性必修第二册4.3.1等比数列的概念及其通项公式课件

数学人教A版选择性必修第二册4.3.1等比数列的概念及其通项公式课件
出的,公式只是一个猜想,不算是证明,那么,如何证明?
等差数列an 1 an d
a n 1
等比数列
q (a1 , q 0)
an
a2 a1 d
a3 a2 d
a4 a3 d

an an 1 d (n 2)
累加法得an-a1=(n-1)d,n≥2
a n a1 ( n 1)d
9,
15,
21,
27,
33; 不是; (2) 1,
1.1,
1.21,
1.331,
1,
4641; 是,公比为1.1;
1 1 1 1 1 1
(3) , , , , , ; 不是;(4) 4, 8,
16, 32,
64, 128. 是,公比为 2.
3 6 9 12 15 18
(6) 2,0,2,0,2,… 不是;
q (n 1)
an 1
an
递推关系:
等比数列的
项,公比q有
无条件限制?
常被用来证明等比数列
an 1
n N ,
q(q为非零常数 ) {an }为等比数列
an
*
1
例如, 数列① ~ ⑥的公比依次是9, 100, 5, , 2, 1 r .
2
1.等比数列的定义
an
an 1
1
析:

q ,
a2 a5a2 a52源自1 n 111
6n
4
a2 a5 a1q a1q a1 a1 18, a1 32. an 32 ( ) 2
2
16
2
(4)若a1 a2 a3 168 , a2 a5 42 , 求a6 .

数学必修5第二章求数列的通项公式课件

数学必修5第二章求数列的通项公式课件
an 2(n 1), bn 4 (2) n 1
定义法:当已知数列为等差或等比数列时,可直接利用等差或等比数列的通项公式, 只需求得首项及公差(公比)。 练2.设数列 {Cn }的各项是一个等差数列与一个等比数列对应项的和, 若c 2, c 4, c 7, c 12 ,求通项公式 {Cn }

n n
2 n 2
n
n 1
n
观察法:观察各项的特点,观察数列中各项与其序号间的关系,分解 各项中的变化部分与不变部分,再探索各项中变化部分与序号间的 关系,从而归纳出构成规律写出通项公式,关键是找出各n} 是公差为d的等差数列,数列 {bn } 是公比为q 的(q∈R且q≠1)的等比数列,若函数 f ( x) ( x 1) 2 且 a1 f (d 1), a3 f (d 1), b1 f (q 1), b3 f (q 1) , (1)求数列 {an}和 {bn } 的通项公式;
当给出递推关系求 an时,主要掌握通过引进 辅助数列能转化成等差或等比数列的形式。 例6,已知数列{an}的递推关系为an 1 2an 1 ,且 a1 1 求通项公式 an 。
换元法
解:∵ an 1 2an 1 ∴ an1 1 2(an 1) bn 1 an 1 1 2 an 1 令 bn an 1 ∴ bn 则辅助数列 {bn} 是公比为2的等比数列 n 1 n 1 n ∴bn b1q 即 an 1 (a1 1)q 2 n ∴ an 2 1
求an .
2 . n 1 2 3 1
倒数法:数列有形如 1 等式两边同乘以 a a
n
f (an , an1 , an an1 ) 0
,

2020新人教A版高中数学必修5同步课件:第二章 习题课(一) 求数列的通项公式

2020新人教A版高中数学必修5同步课件:第二章 习题课(一) 求数列的通项公式

∴an=
2.
2������ -1
(2)∵an+1=3an+2,∴an+1+1=3(an+1).
又a1+1=2≠0,
∴数列{an+1}是首项为2,公比为3的等比数列.
∴an+1=2·3n-1.
∴an=2·3n-1-1.
=
������ (������ -1)
22 .
反思已知数列的递推公式求通项,通常有以下几种情
形:(1)an+1-an=f(n),常用累加法求通项;(2)
������������ +1 ������������
=
������(n),常用累乘法求
通项;(3)an+1=pan+q,通常构造等比数列求通项.
习题课(一) 求数列的通项公式
1.巩固等差数列与等比数列的通项公式. 2.掌握求数列通项公式的常见方法,并能用这些方法解决一些简 单的求数列通项公式的问题.
1.等差数列的通项公式
若数列{an}为等差数列,其首项为a1,公差为d,则an=a1+(n1)d=am+(n-m)d (n,m∈N*).
【做一做1】 已知数列{an}是等差数列,且a2=6,a11=24,则
给项是分数,那么先把它们统一为相同的形式,再分子、分母分别
寻找规律.
题型一 题型二 题型三
【变式训练1】 根据下面数列的前几项,写出数列的一个通项公
式.
பைடு நூலகம்
(1)1,1,
5 7
,
7 15
,
9 31
,

;
(2)2,22,222,2 222,…;
(3)3,0,-3,0,3,….
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.已知数列an,a1
2 3
,3an1
3an
2
则数列an的通项公式
3.已知数列 an中,a1 2,an1 2an 3
求数列 an的通项公式
变式:条件改为 an1 2an 3 • 5n
4.在数a列 n中, a153,an1
an 2an1
求数a列 n的通项公式
变式:条件改为an1
2an 2an 1
5.已知 an数 满列 足 a11 2 , ,an1ann21 n,
求 an
6.设数列an满足a1 1,3sn n 2an
求通项 an
7.已知数列an的前n项和为 sn , 且满足 a1 1
sn2
an
sn
1 2
n
2.求an
高考链接
1.2015 全国卷 设 sn是数列 an 的前 n项和,
且 a1
1, a n1
s
n
s
n

1
s
n
2.2015 全国卷 sn是数列 an 的前 n项和,
已知ቤተ መጻሕፍቲ ባይዱ
an
0
,
a
2 n
2an
4sn
3
1求an 的通项公式
2 设 bn
1 an an1
, 求数列
bn 的前
n 项和
作业:《与名师对话》 P68
求数列的通项公式 a n
考纲要求
1.了解数列的概念和几种简单的表示方法 (列表,图像,通项公式) 2.理解等差数列、等比数列的通项公式与
n 前 项和公式
3.能在具体情境中识别数列的等差关系和 等比关系,并能用有关知识解决相应问题。
针对性练习
1. 1,2,9,8, 25请写出数列的通项公式 22 2
相关文档
最新文档