(完整版)八年级一道几何题的一题多解发散思维

合集下载

初二几何证明题的解题思路

初二几何证明题的解题思路

初二几何证明题的解题思路一、题目11. 题目- 已知:在平行四边形ABCD中,E、F分别是AB、CD的中点,连接DE、BF。

求证:四边形DEBF是平行四边形。

2. 解析- 思路:要证明四边形DEBF是平行四边形,根据平行四边形的判定定理,可以从对边平行且相等入手。

- 证明:因为四边形ABCD是平行四边形,所以AB = CD,AB∥ CD。

- 又因为E、F分别是AB、CD的中点,所以BE=(1)/(2)AB,DF=(1)/(2)CD。

- 所以BE = DF。

- 且BE∥ DF(因为AB∥ CD)。

- 根据平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,所以四边形DEBF是平行四边形。

二、题目21. 题目- 已知:在 ABC中,AD是BC边上的中线,E是AD的中点,连接BE并延长交AC于F。

求证:AF=(1)/(2)FC。

2. 解析- 思路:过点D作DG∥ BF交AC于G,利用中位线定理和平行线分线段成比例定理来证明。

- 证明:过点D作DG∥ BF交AC于G。

- 因为AD是BC边上的中线,所以D是BC中点。

- 又因为DG∥ BF,根据中位线定理,可得G是FC中点,即FG = GC。

- 因为E是AD的中点,DG∥ BF,根据平行线分线段成比例定理,可得AF = FG。

- 所以AF=(1)/(2)FC。

三、题目31. 题目- 已知:在矩形ABCD中,AC、BD相交于点O,AE平分∠ BAD交BC于E,∠ CAE = 15^∘。

求∠ BOE的度数。

2. 解析- 思路:先求出∠ BAE的度数,进而得出 ABE的形状,再求出∠ ACB的度数,最后根据三角形的内角和求出∠ BOE的度数。

- 证明:- 因为四边形ABCD是矩形,AE平分∠ BAD,所以∠ BAE = 45^∘。

- 又因为∠ CAE=15^∘,所以∠ BAC=∠ BAE +∠ CAE = 45^∘+15^∘=60^∘。

- 在矩形ABCD中,AC = BD,OA=OC=(1)/(2)AC,OB =OD=(1)/(2)BD,所以OA = OB。

一题多解 发展思维——一道中考几何题的解法探究

一题多解 发展思维——一道中考几何题的解法探究

一题多解发展思维——一道中考几何题的解法探究
刘钦娜
【期刊名称】《中学数学教学参考》
【年(卷),期】2024()6
【摘要】数学是思维的体操,如何通过解题活动培养学生的思维能力是数学教学的中心问题。

针对一道中考几何题,引导学生通过一题多解开阔思路、发散思维,同时借助多解归一加深对数学原理、通性通法的认识,帮助他们在变式中寻找通法、在探究中提升能力。

【总页数】3页(P57-59)
【作者】刘钦娜
【作者单位】河南省驻马店市泌阳县花园中心学校
【正文语种】中文
【中图分类】G63
【相关文献】
1.一题多解拓思维,数形结合来渗透——一道正方形几何证明解法探究
2.一题多解,提高学生思维与逻辑推理能力——2012年安徽省中考第23题的解法探究
3.关注一题多解强化思维训练--对一道中考几何题的探究
4.一题多解阔思路,发散思维形成中——对一道几何题多种解法的探索
5.一题多解,发散思维,多解归一,能力升华——以一道几何探究题为例
因版权原因,仅展示原文概要,查看原文内容请购买。

八年级上册几何问题全解

八年级上册几何问题全解

八年级上册几何问题全解
在八年级上册的几何问题中,涵盖了许多基础几何概念和定理,如三角形、四边形、多边形的基本性质、平行线、全等三角形、相似三角形、勾股定理、面积计算等。

由于无法提供全部解题方法,以下是一些常见的几何问题类型及解决思路:
1、三角形相关问题:
全等三角形:利用SSS(三边对应相等)、SAS(两边夹一角对应相等)、ASA(两角夹一边对应相等)或AAS(两角与其中一边对应相等)判定两个三角形全等,并通过全等关系找出未知量。

直角三角形和勾股定理:已知直角三角形两边求第三边或者已知一边和一个锐角求其他元素时,运用勾股定理。

2、相似三角形:
判定相似:AAA(三个角对应相等)、SAS(两边对应成比例且夹角相等)或SSS(三边对应成比例)。

相似三角形性质:对应高的比等于对应边的比,对应中线的比、对应角平分线的比也等于对应边的比,面积比等于对应边长比的平方。

3、平行线与垂直线:
平行线的性质:同位角相等、内错角相等、同旁内角互补;平行线间的距离处处相等。

垂直线的性质:垂线段最短,两条直线垂直则它们的斜率乘积为-1(在直角坐标系下)。

4、多边形:
多边形内角和公式:n边形的内角和为(n-2)×180°。

平行四边形、矩形、菱形、正方形的性质及其相互联系。

5、图形的周长和面积:
计算不同图形(如三角形、平行四边形、梯形、圆、扇形等)的周长和面积,应用相应的公式进行计算。

针对具体的问题,请给出详细题目,以便我能为您提供更精确的解答。

同时,解决几何问题时要善于观察图形特征、识别图形之间的关系,并灵活运用几何定理和性质。

利用一题多解、一题多变来提高初中学生的数学解题能力

利用一题多解、一题多变来提高初中学生的数学解题能力

利用一题多解、一题多变来提高初中学生的数学解题能力作者:苏淑妮来源:《中学课程辅导·教师教育(中)》2017年第04期(广东省惠州市惠阳区崇雅中学广东惠州 516000)【摘要】数学课程标准中,要求使学生站在不同角度,探索分析和解决问题的方法,此外,教育心理学也指出:问题解决有两种类型:一是常规性问题解决;二是创造性问题解决。

通过一题多解、一题多变训练,使学生能够体验到解决问题的多样性方式,能够掌握分析及解决问题的基本技巧和方法,使所学的知识得到活化,融会贯通,开阔思路,培养学生的发散、创新思维能力。

【关键词】一题多解一题多变初中数学发散思维【中图分类号】 G633.6 【文献标识码】 A 【文章编号】 1992-7711(2017)04-173-01先观察以下4个例题,是初中数学练习过程经常碰到的,具体的解答过程后文有详细的描述,以此四个例题用以论述本文的观点。

例1:相切两圆半径分别是4和6,求圆心距。

例2:在几何题型中:直角三角形两边长3和4,求第三边。

例3:一道求证题:顺次连接平行四边形各边中点所得的四边形是平行四边形变式1:顺次连接矩形各边中点所得的四边形是菱形变式2:顺次连接菱形各边中点所得的四边形是矩形变式3:顺次连接正方形各边中点所得的四边形变式4:顺次连接什么四边形各边中点可以得到平行四边变式5:顺次连接什么四边形各边中点可以得到矩形变式6:顺次连接什么四边形各边中点可以得到菱形例4:在梯形ABCD中,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中点.求证:CE⊥BE.一、一题多解、一题多变帮助学生循坏往复调动所学知识,强化记忆在学习生涯中,知识点是解题的基础和灵魂,千千万万的题目是从知识点出发延伸设计出来问题考察学生的。

由于时间和空间有限,学生不可能做完所有的题目,对于教师也不可能讲解完所有的题目。

而对于数学,单是一道题目中也不可能只有一个知识点的考察,例题1这道题中涉及的知识点有:相切圆、半径、圆心距,最终的问题虽然是求圆心距,但是如果没有正确的对于圆、半径以及相切的概念,那么也就无从下手。

初中多解题型思路方法总结

初中多解题型思路方法总结

初中多解题型思路方法总结宝子们,咱们来唠唠初中那些多解题型哈。

一、几何图形类。

在初中几何里呀,多解情况可不少呢。

就说三角形吧,给你几个条件让你求边长或者角度的时候,可别想当然就一种答案哦。

比如说等腰三角形,已知一个角的度数,让你求另外的角。

这里面就有坑啦,如果给的这个角是锐角,它可能是底角,也可能是顶角呢。

你得把这两种情况都考虑到。

画个图出来,把自己想象成一个小画家,把等腰三角形的不同样子画出来,一种是这个已知角在下面当底角,一种是在上面当顶角,这样就不容易漏解啦。

还有四边形,特别是平行四边形相关的题目。

有时候给你一些边和角的关系,让你求平行四边形的面积或者边长。

那你得想想这个平行四边形是不是特殊的平行四边形呀,比如矩形或者菱形。

如果是在坐标系里的平行四边形,给你三个顶点坐标,求第四个顶点坐标,那可就有三种情况啦。

因为这个平行四边形的四条边都有可能作为平行四边形的“底”,所以要分别计算,就像你在不同的小路上找宝藏一样,每条路都有可能通向正确答案呢。

二、代数方程类。

代数里的多解题型也很调皮哦。

像一元二次方程,ax² + bx + c = 0(a≠0)。

当你用求根公式x = (-b ± √(b² - 4ac))/(2a)的时候,这个“±”就告诉我们有两个解啦。

不过呢,有时候题目里会有一些限制条件,比如说这个方程的解要是正整数之类的。

那你就得在求出两个解之后,再根据这个限制条件筛选一下,就像从一堆苹果里挑出又大又红的一样。

还有分式方程,解完之后一定要检验哦。

为啥呢?因为有可能产生增根。

有时候分式方程会有多个解,但是经过检验之后,可能有些解是不符合要求的,就像有些小朋友想参加一个很严格的比赛,虽然报名了(求出解了),但是经过资格审查(检验),发现不符合参赛条件(是增根),就得淘汰掉啦。

三、函数类。

函数也有很多多解的情况呢。

一次函数y = kx + b,如果给你两个点的坐标,让你求函数表达式,这比较简单。

一道数学题的解决策略------通过一题多解,一题多变培养学生思维

一道数学题的解决策略------通过一题多解,一题多变培养学生思维

一道数学题的解决策略------通过一题多解,一题多变培养学生思维发布时间:2021-09-28T05:30:57.540Z 来源:《中小学教育》2021年15期作者:薛发楷[导读] 九年级的数学复习每年都面临时间紧,任务重的状况,几乎所有的数学老师都在寻求一种复习的最佳方法和途径,以便在中考中能取得满意的成绩。

尤其是现在国家又颁布了双减政策之后,提高老师在课堂教学的高效性尤为重要,不能在就题论题,追求做题的数量而陷入题海战术。

薛发楷四川省成都市双流区胜利初级中学 610200九年级的数学复习每年都面临时间紧,任务重的状况,几乎所有的数学老师都在寻求一种复习的最佳方法和途径,以便在中考中能取得满意的成绩。

尤其是现在国家又颁布了双减政策之后,提高老师在课堂教学的高效性尤为重要,不能在就题论题,追求做题的数量而陷入题海战术。

不管哪一年级的数学复习,每次考试下来之后常常听到老师在抱怨,这些题都做了千遍万遍了,学生还是做不起,没有达到老师预设的效果,尤其是几何题的复习,收效更是甚微,只要遇到辅助线的添法,无论上课怎么讲,课下刷了多少题,一到考试学生拿到这样的题还是束手无策,于是我就在反思,导致这样的结果到底是什么,我想无非就是老师为了赶进度,在讲解几何题的辅助线的添法时,往往是按照老师预设的方法去引导学生,学生说出了辅助线的添法,但不能举一反三。

我们不得不承认理科学习一定要刷一定数量的题,但知识没有理性化,没有悟出其中的数学方法,学生永远是门外汉,并没有真正掌握理解,如果每做一道题都让学生探索其解题的思想方法,拓展其外延,总结其规律,这样学生的复习就会融会贯通,达到事半功倍的效果。

在现代数学教学中,教师应按照数学思维的规律和方式方法,去启发引导学生思考,让学生的一些重要想法、符合情理的思维过程都展现出来,还学生一个真实而科学的思维过程并究其原因。

注重学生一题多解,一题多变,培养学生思维的深刻性,拓展学生的思路,发展学生的思维,有利于学生创造性的发挥。

初中几何多解题

初中几何多解题

初中几何多解题
初中几何多解题是一种常见的数学题型,通常要求学生掌握一定的几何知识和推理能力,通过多角度思考和探究,找到多种解题方法。

以下是一个初中几何多解题的示例:
题目:在△ABC中,AB=AC,∠BAC=120°,D是BC上一点,DE⊥AB于E,DF⊥AC于F。

求证:△DEF是等边三角形。

证明方法一:
第一步,由于AB=AC,所以∠B=∠C。

第二步,根据三角形内角和为180°,我们可以得到∠B=∠C=30°。

第三步,因为DE⊥AB,DF⊥AC,所以∠BED=∠CFD=90°。

第四步,根据直角三角形中30°角所对的直角边等于斜边的一半,我们得到BD=CD,DE=DF。

第五步,由于∠EDF=360°-90°-90°-120°=60°,所以△DEF是等边三角形。

证明方法二:
第一步,作DM⊥BC于M。

第二步,由于AB=AC,根据等腰三角形三线合一,我们得到BM=CM。

第三步,根据三角形的全等判定条件SAS,我们可以得到△BED≌△CFD≌△DMF。

第四步,由于△BED≌△CFD≌△DMF,所以DE=DF=FM。

第五步,由于∠EDF=60°,所以△DEF是等边三角形。

八年级下学期数学人教版习题思维点拨:巧解三角形典型例题

八年级下学期数学人教版习题思维点拨:巧解三角形典型例题

思维点拨:巧解三角形典型例题【例1】如图,已知五角星ABCDE,求∠A+∠B+∠C+∠D+∠E的度数和.【思考与分析】我们可以连结DE,在由三角形ACF和三角形DEF构成的图形中,∠A+∠C=∠CED+∠EDA,从而把五角星ABCDE的五个内角放到了三角形BED中,根据三角形内角和定理即可求出∠A+∠B+∠C+∠D+∠E的度数.解:连结DE,由以上结论可知:∠A+∠C=∠CED+∠EDA,又因为在三角形BED中,∠B+∠BEC+∠BDA+∠CED+∠EDA=180°,所以∠B+∠BEC+∠BDA+∠A+∠C=180°.即∠A+∠B+∠C+∠D+∠E=180°.【例2】如图,求∠1+∠2+∠3+∠4+∠5的度数和.【思考与分析】我们按照例1的思路,连结CD,则在三角形AEF和三角形DCF 所构成的图形中,∠3+∠4=∠EDC+∠DCA,这样就把∠1、∠2、∠3、∠4、∠5同时放到了三角形BDC中,即可求出∠1+∠2+∠3+∠4+∠5的度数和.解:连结CD,则∠3+∠4=∠EDC+∠DCA,又因为在三角形BDC中,∠1+∠5+∠2+∠EDC+∠DCA=180°,所以∠1+∠5+∠2+∠3+∠4=180°,即∠1+∠2+∠3+∠4+∠5=180°.【小结】按照这种思路,以上两题还有多种解法,大家不妨试一试,看能找到多少种解法.【例3】如图,三角形ABC中,AD平分∠BAC,EG⊥AD,且分别交AB、AD、AC及BC的延长线于点E、H、F、G,下列四个式子中正确的是().【思考与解】因为EG⊥AD,交点为H,AD平分∠BAC,所以在直角三角形AHE中,∠1=90°-12BAC在三角形ABC中,易知∠BAC=180°-(∠2+∠3),所以∠1=90°-12[180°-(∠2+∠3)]=12(∠3+∠2).又因为∠1是三角形EBG的外角,所以∠1=∠2+∠G.所以∠G=∠1-∠2=12(∠3+∠2)-∠2=12(∠3-∠2).所以应选C.【例4】如图,点D为三角形ABC内的一点,已知∠ABD=20°,∠ACD=25°,∠A=35°.你能求出∠BDC的度数吗?【思考与解】延长BD,与AC交于E点,因为∠DEC是三角形ABE的外角,所以∠DEC=∠A+∠ABD=35°+20°=55°.又因为∠BDC是三角形CDE的外角,所以∠BDC=∠DEC+∠ACD=55°+25°=80°.【小结】记准一些常用的结论,有助于我们快速地、正确地解题.【例5】如图,已知∠B=10°,∠C=20°,∠BOC=110°,能求出∠A的度数吗?【思考与分析】要求∠A的度数,我们可以设法让∠A成为某个与已知角相关的三角形的内角.我们可延长BO交AC于D,则∠A、∠B即为三角形ABD 的两个内角.根据三角形外角的性质,欲求∠A的度数,可先求∠ODC的度数,由∠BOC=110°,∠C=20°即可求出∠ODC的度数.解:延长BO交AC于D.因为∠BOC是三角形ODC的外角,所以∠BOC=∠ODC+∠C.因为∠BOC=110°,∠C=20°,所以∠ODC=110°-20°=90°.因为∠ODC是三角形ABD的外角,所以∠ODC=∠A+∠B.因为∠B=10°,所以∠A=90°-10°=80°.【例6】如图,点D是三角形ABC内一点,连结BD、CD,试说明∠BDC>∠BAC.【思考与分析】∠BDC和∠BAC在两个不同的三角形内,而且不能直接比较它们的大小,必须做辅助线把这两个角联系起来.我们延长BD交AC于P,或连结AD并延长交BC于Q,都可以利用三角形外角的性质解题.解:延长BD交AC于P,则∠BDC>∠DPC,∠DPC>∠BAC,所以∠BDC>∠BAC.【反思】我们还可以连结AD并延长交BC于Q,如图,请大家试一试,看能不能得到相同的结论.【例7】已知三角形ABC的一个内角度数为40°,且∠A=∠B,你能求出∠C的外角的度数吗?【思考与分析】在三角形ABC中,∠A=∠B,因此三角形ABC是一个等腰三角形,我们必须要讨论40°的角是三角形ABC的顶角还是底角,应分两种情况解答.解:(1)设∠α=40°,当∠α是等腰三角形的顶角时,则∠α的外角等于180°-40°=140°,而∠C=∠α,所以∠C的外角的度数为140°.(2)设∠α=40°,当∠α是等腰三角形的底角时,∠A=∠B=∠α=40°,此时∠C的外角=∠A+∠B=80°.【例8】已知非直角三角形ABC中,∠A=45°,高BD和CE所在的直线交于H,你能求出∠BHC的度数吗?【思考与分析】三角形的形状不同,高的交点的位置也就不同.高的交点的位置可能在三角形的内部,也可能在三角形的外部,因此我们应该分两种情况进行讨论.解:(1)当三角形ABC为锐角三角形时,如图1所示.因为BD、CE是三角形ABC的高,∠A=45°,所以∠ADB=∠BEH=90°,∠ABD=90°-45°=45°.所以∠BHC=∠ABH+∠BEH=45°+90°=135°.(2)当三角形ABC为钝角三角形时,如图2所示.因为H是三角形的两条高所在直线的交点,∠A=45°,所以∠ABD=90°-45°=45°.所以在直角三角形EBH中,∠BHC=90°-∠ABD=90°-45°=45°.由(1)、(2)可知,∠BHC的度数为135°或45°.【小结】我们在解题中,经常遇到题目中某些条件交代不清,此时,我们一定要注意分情况考虑,用分类讨论的方法使解完整.【例9】如图,已知三角形ABC中,∠B=∠C=2∠A,你能求出∠A的度数吗?【思考与分析】我们由三角形内角和可知,∠A+∠B+∠C=180°,又因为∠B=∠C=2∠A,可得∠A+∠B+∠C=∠A+2∠A+2∠A=180°,即可求出∠A 的度数.我们还可以用方程来解这道题,根据三角形内角和定理与∠B=∠C=2∠A 这两个已知条件求未知量∠A的度数.用方程解决问题,我们必须在弄清题中已知数量和未知数量的关系的基础上,要抓住题中的不变量,建立等量关系.题中的不变量是三角形内角和等于180°,其等量关系是∠A+∠B+∠C=180°,然后我们用数学语言把这个等量关系式转化为方程.设∠A的度数为x,则可以用2x分别表示∠B、∠C的度数,将这个等式转化为方程x+2x+2x=180°,即可求出∠A的度数.解法一:因为∠B=∠C=2∠A,∠A+∠B+∠C=180°,所以∠A+∠B+∠C=∠A +2∠A+2∠A=180°,即∠A=36°.解法二:设∠A的度数为x,则∠B、∠C的度数都为2x,列方程得x+2x+2x=180°,解得x=36°,即∠A=36°.【例10】判断适合下列条件的三角形ABC是锐角三角形、钝角三角形还是直角三角形.(1)∠A=80°,∠B=25°;(2)∠A-∠B=30°,∠B-∠C=36°;【思考与分析】根据角判断三角形的形状,我们只需求出三角形中各角的度数就可以了,本题判断三角形是否是锐角三角形、钝角三角形、直角三角形,只需求出三角形中最大角的度数即可.(1)题通过直接计算就可以求出∠C的度数,(2)(3)题不便于直接计算,可以运用方程思想抓住等量关系,列方程进行求解.解:(1)因为∠A=80°,∠B=25°,所以∠C=180°-80°-25°=75°,所以三角形ABC是锐角三角形.(2)设∠B=x°,则∠A=(30+x)°,∠C=(x-36)°,所以x°+(30+x)°+(x-36)°=180°,解得x=62,所以最大角∠A=92°,所以三角形ABC是钝角三角形.(3)设∠A=x°,∠B=2x°,∠C=6x°,则x°+2x°+6x°=180°,解得x =20,所以∠C=120°,所以三角形ABC是钝角三角形.【小结】利用方程求角度是我们常用的方法之一.在三角形中,给出的条件不能直接求出结果,且各角之间有相互关系,我们可以设其中一个角为未知数,再把其它角用此未知数表示,然后列方程即可求解.1.利用高线与边垂直的性质求度数【例11】已知△ABC的高为AD,∠BAD=70°,∠CAD=20°,求∠BAC的度数.【思考与分析】由于AD为底边BC上的高,过A做底边BC的垂线时,垂足D可能落在底边BC上,也有可能落在BC的延长上.因此,我们需要分情况讨论.解:(1)当垂足D落在BC边上时,如图,因为∠BAD=70°,∠CAD=20°,所以∠BAC=∠BAD+∠CAD=70°+20°=90°.(2)当垂足D落在BC的延长线上时,如图,因为∠BAD=70°,∠CAD=20°,所以∠BAC=∠BAD-∠CAD=70°-20°=50°.所以∠BAC为90°或50°.【小结】由于三角形可以分为锐角三角形、直角三角形与钝角三角形,在题目所给条件中如果没有确切说明三角形的具体类型时,我们就要分类讨论,以防遗漏.2. 利用三角形面积公式求线段的长度【例12】如图,△ABC中,AD,CE是△ABC的两条高,BC=5cm,AD=3cm,CE=4cm,你能求出AB的长吗?【思考与分析】由于三角形面积等于底与高乘积的一半.因此,三角形的面积就有三种不同的表达方式.我们若设△ABC的三边长分别为a,b,c,对应边上的高分别为h a,h b,h c,那么三角形的面积S=12ah a=12bh b=12ch c.本题中已知三角形的两条高与其中一条高所对应的边,求另一条边,利用三角形面积S△ABC=12BC·AD=12AB·CE,解决十分方便.解:S△ABC =12BC·AD=12AB·CE1 2×5×3=12AB·4,解得AB=154(cm).【小结】用同一个三角形不同的面积表达式建立等式求线段的长度,是一种很重要的方法,在今后的学习中,我们应注意这种方法的运用.【例13】如图,已知AD、AE分别是三角形ABC的中线、高,且AB=5cm,AC=3cm,则三角形ABD与三角形ACD的周长之差为,三角形ABD 与三角形ACD的面积之间的关系为.【思考与解】(1)三角形ABD与三角形ACD的周长之差=(AB+BD+AD)-(AD+CD+AC)=AB+BD-CD-AC.而BD=CD ,所以上式=AB-AC=5-3=2(cm ).(2)因为S 三角形ABD =12BD×AE ,S 三角形ACD =12CD×AE ,而BD=CD ,所以S 三角形ABD =S 三角形ACD .【例14】如图,在三角形ABC 中,∠1=∠2,G 为AD 的中点,延长BG 交AC 于E.F 为AB 上的一点,CF ⊥AD 于H.下列判断正确的有( ).(1)AD 是三角形ABE 的角平分线.(2)BE 是三角形ABD 边AD 上的中线.(3)CH 为三角形ACD 边AD 上的高.A.1个B.2个C.3个D.0个【思考与解】由∠1=∠2,知AD 平分∠BAE ,但AD 不是三角形ABE 内的线段,所以(1)不正确;同理,BE 虽然经过三角形ABD 边AD 的中点G ,但BE 不是三角形ABD 内的线段,故(2)不正确;由于CH ⊥AD 于H ,故CH 是三角形ACD 边AD 上的高,(3)正确.应选A.【例15】如图,在直角三角形ABC 中,∠ACB =90°,CD 是AB 边上的高,AB =13cm ,BC=12cm ,AC=5cm.(1)求三角形ABC 的面积.(2)求CD 的长.【思考与分析】求直角三角形的面积,有两种方法:①S △=12ab (a 、b 为两条直角边的长);②S △=12ch (c 为直角三角形斜边的长,h 为斜边上的高).由此可知ab =ch ,在a 、b 、c 、h 四个量中,已知其中三个量,就可以求出第四个量.解:(1)在直角三角形ABC 中,∠ACB =90°,BC=12cm ,AC=5cm ,所以S△ABC =12AC×BC=30(cm2).(2)因为CD是AB边上的高,所以S△ABC =12AB×CD,即12×13×CD=30.解得CD=6013cm.【例16】如图1所示,你能求出∠A+∠B+∠C+∠D+∠E+∠F的度数吗?【思考与解】我们可以连结EF,把∠A+∠B+∠C+∠D+∠E+∠F的度数转化为求四边形BCEF的内角和.如图2所示.因为∠A+∠D+∠AOD=∠OFE+∠EOF+∠OEF=180°,所以∠A+∠B+∠C+∠D+∠E+∠F=∠OFE+∠OEF+∠C+∠B+∠E+∠F=360°.【例17】如图3,凸六边形ABCDEF的六个角都是120°,边长AB=2cm,BC=8cm,CD=11cm,DE=6cm,你能求出这个六边形的周长吗?【思考与分析】要求六边形的周长,必须先求出边EF和AF的长.由六边形ABCDEF的六个角都是120°,可知六边形的每一个外角的度数都是60°,如图4,如果延长BA,得到的∠PAF=60°,延长EF,得到的∠PFA=60°,两条直线相交形成三角形APF,在三角形APF中,∠P的度数为180°-60°-60°=60°,因此三角形APF是等边三角形.同样的道理,我们分别延长AB、DC,交于点G,那么三角形BGC为等边三角形.分别延长FE、CD交于点H,则三角形DHE也是等边三角形.所以∠P=∠G=∠H=60°.所以三角形GHP也是等边三角形.于是我们得到三角形APF、三角形BGC、三角形DHE、三角形GHP四个等边三角形.于是就把多边形的问题转化为和等边三角形有关的问题.利用等边三角形的三边相等的性质,可以轻松的求出AF和EF的长,从而求出六边形ABCDEF的周长.解:如图4,分别作直线AB、CD、EF的延长线使它们交于点G、H、P.因为六边形ABCDEF的六个角都是120°,所以六边形ABCDEF的每一个外角的度数都是60°.所以三角形APF、三角形BGC、三角形DHE、三角形GHP都是等边三角形.所以GC=BC=8cm,DH=DE=6cm.所以GH=8+11+6=25cm,FA=PA=PG-AB-BG=25-2-8=15cm,EF=PH-PF-EH=25-15-6=4cm.所以六边形的周长为2+8+11+6+4+15=46cm.【反思】本题解题的关键是利用多边形和三角形的关系,通过添加辅助线,利用六边形构造出等边三角形,从而利用转化的思想,把多边形问题转化为和三角形有关的问题,利用三角形的性质、定理来解答多边形的问题.方程思想是我们学习数学的重要思想方法之一.用方程思想求解数学问题时,应从题中的已知量与未知量的关系入手,找出相等关系,运用数学符号语言将相等关系转化为方程,再通过解方程,使问题得到解决.方程思想应用非常广泛.我们不但能用方程思想解决代数问题,而且还能够解决有关的几何问题.【例18】已知三角形的第一个内角是第二个内角的1.5倍,第三个内角比这两个内角的和大30°,求这三个内角的度数.【思考与分析】题中的已知量是“第一个内角是第二个内角的1.5倍,第三个内角比这两个内角的和大30°”,未知量是这三个角的度数.题中没有给出三角形内角的度数.但第一个内角和第三个内角与第二个内角的度数相关联,所以解这道题的关键是求出第二个内角的度数.要想解决这个问题,不妨设第二个内角的度数为x,利用方程思想来解.根据三角形的内角和为180°,由此我们可以得到这样的等式关系:第一个内角+第二个内角+第三个内角=180°.当我们用数学语言表示第二个内角为x,第一个内角为1.5x,第三个内角为x+1.5x+30°,利用代换法,将上述的等量关系转化为方程:x+1.5x+(x+1.5x+30°)=180°.通过解这个方程就能使问题得到解决.解:设这个三角形的第二个内角的度数为x,则第一个内角的度数为1.5x,第三个内角的度数为(x+1.5x+30°),列方程可得x+1.5x+(x+1.5x+30°)=180°,解得x=30°.所以三角形的三个内角分别为45°,30°,105°.【例19】如图,已知在三角形ABC中,∠C=∠ABC=2∠A,BD是AC 边上的高,求∠DBC的度数.【思考与分析】我们欲求∠DBC的度数,因为∠DBC是直角三角形DBC的一个内角,因此问题转化为求∠C的度数,由已知条件知三角形ABC的三个内角关系为∠C=∠ABC=2∠A,又根据三角形内角和定理有等量关系:∠A+∠ABC+∠C=180°,从而我们用一个角的度数来表示另外两个角,代入这个等量关系求三个内角的度数,即用方程的方法解决问题.可设∠A=x,则∠C=∠ABC=2x,代入上述等量关系得方程x+2x+2x=180°,可解得x的值,从而可求得∠DBC的度数.解:设∠A=x,∠C=∠ABC=2x,在三角形ABC中,x+2x+2x=180°,解得x=36°,则∠C=72°.因为BD是AC边上的高,所以∠BDC=90°.在直角三角形BDC中,∠DBC=90°-72°=18°.11 / 11。

零件是否合格(一题多解,发散思维)

零件是否合格(一题多解,发散思维)

E CD A B 图6F零件是否合格?我们在学完了三角形内与外角后经常会遇到这样一道实际问题:一个零件的形状如图1,零件要求∠A 应等于900,∠B 和∠C 应分别为350和230,检验工人量得∠BDC=1510就判定这个零件不合格,你知道为什么吗?能否运用你学过的有关知识说明不合格的理由?分析:本题是一个凹四边形,并非我们通常学习过的三角形和凸四边形,因此必须通过作适当的辅助线,把它转化为已知熟悉的三角形或凸四边形,这样就可以利用已有的知识和经验来解决这个问题.解法一:如图2,连结BC ,在△ABC 中,根据三角形内角和等于 1800,得(∠CBD+350)+(∠BCD+230)+900=1800, 所以,∠CBD+∠BCD=320,在△BDC 中,∠BCD=1800-(∠CBD+∠BCD )=1800-320=1480,而量出的∠BCD=1510,所以这个零件是不合格的.解法二:如图3,延长BD 交AC 于E ,因为∠DEC 是△ABE 的外角,所以∠DEC=∠B+∠A=350+900=1250,同理,∠BDC=∠DEC+∠C=1250+230=1480,(以下略).解法三: 如图4,连结AD ,在△ABD 和△ADC 中, 根据三角形内角和等于1800,得∠ADB=1800-(∠BAD+∠B ),∠ADC=1800-(∠DAC+∠C ),所以∠BDC=3600-∠ADB-∠ADC=3600-[1800-(∠BAD+∠B )]- [1800-(∠DAC+∠C )] =(∠DAC+∠BAD )+∠B+∠C=900+350+230=1480,(以下略).解法四:如图5,连结AD 并延长,因为∠FDC 是△ADC 的外角,所以∠FDC=∠DAC+∠C ,同理∠BDF=∠BAD+∠B ,则∠BDC=∠FDC+∠BDF=(∠FAC+∠C )+(BAF+∠B )=(∠FAC+ BAF )+∠B+∠C=900+350+230=1480,(以下略).以上几种解法都是将凹四边形转化为我们熟悉的三角形,在实际的操作中,还可以转化为我们熟悉的其他图形,如图6所示,详解请同学们自己完成。

八年级上 数学几何典型例题 及 解题思路

八年级上 数学几何典型例题 及 解题思路

数学几何是初中数学的一个重要部分,也是学生们比较容易感到困惑的一个知识点。

通过典型例题的学习,可以帮助学生掌握数学几何的解题方法,提高他们的解题能力。

下面就一些典型的数学几何例题进行详细讲解,希望能够对广大学生有所帮助。

【例题一】已知直角三角形ABC中,∠B=90°,AB=5cm,BC=12cm,求AC的长度。

解题思路:1. 根据勾股定理,直角三角形的斜边长度可以通过其两条直角边的长度求得。

2. AC的长度即为三角形ABC的斜边长度,可以使用勾股定理求解。

具体步骤:1. 根据勾股定理,AC的长度可以通过AB和BC的长度求得,即AC²=AB²+BC²。

2. 代入数据,得到AC²=5²+12²=25+144=169。

3. 开平方,得到AC=√169=13cm。

AC的长度为13cm。

离心力计算题:一杯长10cm,杯口宽4cm的杯子内装满水,该杯子立在旋转盘上,旋转盘以每秒200转的角速度匀速旋转,求杯口边缘的水滴的离心力。

解题思路:1. 离心力是一个物体在旋转运动时产生的一种惯性力,可以通过公式计算得出。

2. 对于杯口边缘的水滴,可以看作是在旋转盘上做匀速圆周运动,因此可以利用离心力的公式进行计算。

具体步骤:1. 离心力的公式为F=mω²r,其中m为物体的质量,ω为角速度,r 为旋转半径。

2. 首先计算出水滴的质量,然后根据旋转盘的角速度和杯子的半径计算出离心力的大小。

这里就不再罗列具体计算步骤,具体计算过程略。

最后得出水滴的离心力为XXX。

【例题三】已知矩形ABCD中,AB=8cm,BC=6cm,P是AB的中点,E是BC 上一点,使得PE⊥AB,求PE的长度。

解题思路:1. 首先利用矩形的性质和垂直平分线的性质进行分析。

2. 利用相似三角形的性质,通过比较辅助线的长度来求解PE的长度。

具体步骤:1. 由矩形的性质可知,AD=BC=6cm,同时由垂直平分线的性质可知,PE=EC,且PE⊥AB。

(完整word版)初二数学经典几何题型及答案

(完整word版)初二数学经典几何题型及答案

初二数学经典几何题型1.已知:如图, P 是正方形ABCD内点,∠ PAD=∠ PDA= 150.求证:△ PBC是正三角形.证明以下。

第一, PA=PD,∠ PAD=∠ PDA=(180° - 150°)÷2=15°,∠PAB=90° - 15°=75°。

A D 在正方形ABCD以外以 AD为底边作正三角形ADQ,连结PQ,则P∠P DQ=60°+15°=75°,相同∠ PAQ=75°,又 AQ=DQ,,PA=PD,因此△PAQ≌△ PDQ,那么∠ PQA=∠PQD=60°÷ 2=30°,在△ PQA中,∠A PQ=180° - 30° - 75°=75°=∠ PAQ=∠ PAB,于是 PQ=AQ=AB,明显△ PAQ≌△ PAB,得∠ PBA=∠PQA=30°,PB=PQ=AB=BC,∠ PBC=90° - 30°=60°,因此△PBC是正三角形。

BC2.已知:如图,在四边形 ABCD中, AD=BC,M、N 分别是 AB、CD的中点, AD、BC的延伸线交 MN于 E、F.求证:∠ DEN=∠ F.F证明 : 连结 AC,并取 AC的中点 G,连结 GF,GM.又点 N为 CD的中点 , 则 GN=AD/2;GN∥ AD,∠GNM=∠ DEM;(1)同理 :GM=BC/2;GM∥ BC,∠ GMN=∠ CFN;(2)又 AD=BC,则 :GN=GM,∠ GNM=∠ GMN故. : ∠ DEM=∠ CFN.3、如图,分别以△ABC的 AC和 BC为一边,在△ ABC的外侧作正方形的中点.求证:点 P 到边 AB的距离等于 AB的一半.EN CDA BMACDE和正方形CBFG,点 P 是 EF证明:分别过 E、 C、 F 作直线 AB 的垂线,垂足分别为 M、 O、 N,在梯形 MEFN中, WE平行 NF由于 P为 EF 中点, PQ平行于两底因此 PQ为梯形 MEFN中位线,因此 PQ=( ME+ NF) /2又由于,角 0CB+角 OBC=90°=角 NBF+角 CBO因此角 OCB=角 NBF而角 C0B=角 Rt=角 BNFCB=BF因此△ OCB全等于△ NBF△MEA全等于△OAC(同理)因此 EM= AO, 0B= NF因此 PQ=AB/2.4、设 P 是平行四边形ABCD内部的一点,且∠PBA=∠ PDA.求证:∠DGCEP FA Q BPAB=∠ PCB.过点 P作 DA的平行线,过点 A 作 DP的平行线,二者订交于点E;连结 BE由于 DP//AE, AD//PE因此,四边形 AEPD为平行四边形A D 因此,∠ PDA=∠AEP已知,∠ PDA=∠PBAP因此,∠ PBA=∠AEP因此, A、 E、 B、 P 四点共圆B C因此,∠ PAB=∠PEB由于四边形 AEPD为平行四边形,因此:PE//AD,且 PE=AD而,四边形 ABCD为平行四边形,因此:AD//BC,且 AD=BC因此, PE//BC ,且 PE=BC即,四边形 EBCP也是平行四边形因此,∠ PEB=∠PCB因此,∠ PAB=∠PCB5.P 为正方形ABCD内的一点,而且PA= a, PB= 2a, PC=3a正方形的边长.解:将△ BAP绕 B 点旋转 90°使 BA 与 BC重合, P 点旋转后到 Q点,连结 PQ 由于△ BAP≌△ BCQ因此 AP= CQ, BP= BQ,∠ ABP=∠ CBQ,∠ BPA=∠BQC 由于四边形 DCBA是正方形因此∠ CBA=90°,因此∠ ABP+∠ CBP=90°,因此∠ CBQ+∠ CBP=90°即∠ PBQ=90°,因此△ BPQ是等腰直角三角形因此 PQ=√ 2*BP,∠ BQP= 45由于 PA=a, PB=2a, PC=3a因此 PQ=2√2a, CQ= a,因此 CP^2= 9a^2, PQ^2+CQ^2= 8a^2+ a^2=9a^2因此 CP^2= PQ^2+ CQ^2,因此△ CPQ是直角三角形且∠ CQA=90°因此∠ BQC=90°+ 45°= 135°,因此∠BPA=∠ BQC=135°作 BM⊥ PQ则△ BPM是等腰直角三角形因此 PM= BM=PB/√2=2a/ √2=√ 2a因此依据勾股定理得:AB^2=AM^2+ BM^2=(√2a+ a)^2 +( √2a)^2=[5 +2√2]a^2A DPBC因此 AB=[ √(5 +2√2)]a6.一个圆柱形容器的容积为 V 立方米,开始用一根小水管向容器内灌水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管灌水。

初二三角形一题多解

初二三角形一题多解

初二三角形一题多解摘要:1.题目概述2.三角形的基本概念和性质3.初二三角形一题多解的解题方法4.举例说明5.总结正文:1.题目概述初二三角形一题多解,是指在初中二年级数学课程中,关于三角形题目的解答有多种方法。

三角形作为几何图形的基本元素,其相关题目在数学考试中占有很大比重,熟练掌握三角形的解题技巧对于学生的学习具有重要意义。

2.三角形的基本概念和性质三角形是由三条边和三个顶点组成的平面几何图形。

三角形的基本性质包括:任意两边之和大于第三边,任意两边之差小于第三边,以及三角形内角之和等于180 度。

掌握这些基本性质,对于解决三角形题目至关重要。

3.初二三角形一题多解的解题方法初二三角形一题多解的解题方法主要包括以下几种:(1)直接法:通过三角形的基本性质,利用已知条件直接求解。

(2)间接法:通过辅助线、角平分线、中线等构造新的图形,从而转化为容易解决的问题。

(3)代数法:利用三角形的边长关系,列方程求解。

(4)几何法:利用三角形的面积公式、勾股定理等几何公式求解。

4.举例说明例如,一个初二三角形题目:已知三角形ABC 的两边长分别为5 和9,角BAC 的大小为60 度,求第三边长和角ACB 的大小。

(1)直接法:根据三角形内角之和等于180 度,可求得角ACB 的大小为60 度。

再利用任意两边之和大于第三边的性质,求得第三边长为7。

(2)间接法:通过作辅助线,将三角形ABC 分为两个直角三角形,利用勾股定理分别求解,最后得出相同的结果。

(3)代数法:根据三角形的边长关系,列出方程,求解得到第三边长为7。

(4)几何法:利用三角形的面积公式,求解得到第三边长为7。

5.总结初二三角形一题多解的解题方法,可以帮助学生从不同角度理解和解决三角形题目,提高解题能力和技巧。

八年级数学思维训练答案

八年级数学思维训练答案

八年级数学思维训练答案篇1:八年级数学思维训练答案发散思维是指大脑在思维时呈现的一种扩散状态的思维模式,比较常见,它表现为思维视野广阔,思维呈现出多维发散状。

发散思维又称辐射思维、放射思维、扩散思维或求异思维。

八年级数学思维训练(一)1、有两个桶,一个三斤,一个五斤,水无限,如何得出精确的四斤水。

2、夜晚过一桥,甲过需要一分钟,乙两分钟,丙五分钟,丁十分钟。

桥一次最多只能承受两人,过桥必须使用手电筒,现在只有一只手电筒。

请问4人如何在17分钟内全部过桥。

3、小赵的店里来了一位顾客,挑了20元的货,顾客拿出50元,小赵没零钱找不开,就到隔壁小韩的店里把这50元换成零钱,回来给顾客找了30元零钱。

过一会,小韩来找小赵,说刚才的是假钱,小赵马上给小李换了张真钱。

问:在这一过程中小赵赔了多少钱?4、鸡妈妈领着自己的孩子出去觅食,为了防止小鸡丢失,她总是数着,从后向前数到自己是8,从前向后数,数到她是9。

鸡妈妈最后数出来她有17个孩子,可是鸡妈妈明明知道自己没有这么多孩子。

那么这只糊涂的鸡妈妈到底有几个孩子呢?鸡妈妈为什么会数错?5、用水果刀平整地去切一个大西瓜,一共切10刀,最多能将西瓜切成多少块?最少能切多少块?6、小李有40元钱,他想用他们买饮料,老板告诉他,2元钱可以买一瓶饮料,4个饮料瓶可以换一瓶饮料。

那么,小李可以买到多少瓶饮料?7、有一口深4米的井,井壁非常光滑。

井底有只青蛙总是往井外跳,但是,这只青蛙每次最多能跳3米,你觉得这只青蛙几次能跳到井外去吗?为什么?8、小红和小丽一块到新华书店去买书,两个人都想买《综合习题》这本书,但钱都不够,小红缺少4.9元,小丽缺少0.1元,用两个人合起来的钱买一本,但是钱仍然不够,那么,这本书的价格是多少呢?9、明明牵着一只狗和两只小羊回家,路上遇到一条河,没有桥,只有一条小船,并且船很小,他每次只能带狗或一只小羊过河。

你能帮他想想办法,把狗和羊都带过河去,又不让狗咬到小羊。

用一题多解培养学生发散思维

用一题多解培养学生发散思维

用一题多解培养学生发散思维绵阳市游仙区新桥中学何道华几何问题的计算与证明是初中数学中非常重要的内容。

通过解决几何问题,能有效地培养学生丰富的空间想象能力和严密的逻辑思维能力。

但是初中几何难学是绝大多数学生暴露出的短板和障碍。

通常一道文字不多配上几个简单图形的几何题,都需要通过较复杂的动手作图、动脑分析等过程才能进行解答,这让很多学生苦思不得其解。

那么初中几何难吗? 对于不会的孩子来说,当然是难的!主要难在作辅助线以及解法的灵活性。

几何题的解答是离不开辅助线的构造,能够正确做出辅助线,一道几何题便能轻松解决,这是为什么一些学生觉得几何题很难,完全没有头绪,而另一些学生却觉得很简单的重要原因。

几何题让学生束手无策的另一个主要原因是解法单一,思维不够灵活,就算遇见了相似的题型也无法解答。

因此在平时的学习生活中学生就该注重勤动手作图勤动脑思考习惯的培养,几何问题中的一题多解就能达到这样的目的。

下面为大家介绍一道八年级下册课本中一道经典几何题的多种解法。

教材原题:如图,四边形ABCD是正方形,点E是边BC的中点,∠AEP=90°,且EP交正方形外角的平分线CP于点P,求证:AE=EP.思路:取AB的中点M,连接ME,则AM=EC,利用△AME≌△ECF(ASA),易得AE=EF.经典变试题:把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,求证:AE=EF 。

图1 图2 图3法一:如图1,在AB 上取AG=EC ,由△AEG ≅△EPC(ASA),可得AE=CP 。

法二:如图2,在AC 延长线上取CG=CP ,由△ECP ≅△ECG(SAS),先得∠G=∠P=∠EAC (蝴蝶△),再得AE=CP 。

法三:如图3,在AB 延长线上取BG=BE ,由△ABE ≅△CBG(SAS),先得AE=GC ,且AE ⊥GC ,再证平行四边形GCPE (两组边分别平行),可得AE=CP 。

初中数学一题多变一题多解(二)

初中数学一题多变一题多解(二)

一题多解一题多变(二)1、一题多解,培养思维的发散性一题多解实际上是解题或证明定理、公式的变式,因为它的实质是以不同的论证方式反映条件和结论问的同一必然的本质联系,运用这种变式教学,可以引导学生对同一材料,从不同角度、从不同方位、用各种途径、多种方法思考问题,探求不同的解答方案,这样,既可暴露学生解题的思维过程,增加教学透明度,又能够拓广学生思路,使学生熟练掌握知识的内在联系,使思维向多方向发展,培养思维的发散性。

这方面的例子很多,尤其是几何证明题。

已知:点O是等边△ABC内一点,OA=4,OB=5,OC=3求∠AOC的度数。

练习:把此题适当变式:变式在△ABC中,AB=AC,∠BAC=90°OA=4,OB=6,OC=2求∠AOC的度数。

变式2:如图,点O是等边△ABC内一点,∠AOB=110°, ∠BOC=135°试问:(1)以OA、OB、OC为边能否构成一个三角形?若能,请求出三角形各内角的度数;若不能,请说明理由.(2)如果∠AOB的大小保持不变,那么当∠BOC等于多少度时, 以OA、OB、OC为边的三角形是一个直角三角形?2、一题多变,培养思维的灵活性一题多变是题目结构的变式,是指变换题目的条件或结论,或者变换题目的形式,而题目的实质不变,以便从不同角度,不同方面揭示题目的本质,用这种方式进行教学,能使学生随时根据变化了的情况积极思索,设法想出解决的办法,从而防止和消除呆板和僵化,培养思维的灵活性。

一题多变可以改变条件,保留结论;也可以保留条件,改变结论;或者同时改变条件和结论;也可以将某项条件与结论对换等等。

例如:已知:C 为AB 上一点,△ACM 和△CBN 为等边三角形(如图所示)求证:AN=BM(分析:如对此题多做一些引申,既可以培养学生的探索能力,又可培养学生的创新素质)探索一:设CM 、CN 分别交AN 、BM 于P 、Q ,AN 、BM 交于点R 。

2020年中考数学 一题多解 开拓思路

2020年中考数学    一题多解 开拓思路

C B一题多解 开拓思路题目:如图,△ABC 中,AB=AC ,BD ⊥AC 于D . 求证:BC 2=2AC ·CD .B一道题由不同的思路,可以得出多种解法.等积式的证明,基本思路是化为比例式,解此题的关键之一,是如何处理系数的问题.思路一:将BC 2=2AC ·CD 化为比例式2AC/BC=BC/CD,或AC/BC=BC/2CD ,设法取一条线段,使它等于2AC 或2CD ,构造相似三角形进行证明. 证法一:延长CA 至E ,使AE=AC ,连结BE ,则CE=2AC . ∵AB=AE=AC ,∴∠EBC=90°=∠BDC . ∵∠C=∠C ,∴△ECB ∽△BCD .∴EC/BC=BC/CD . ∴2AC/BC=BC/CD .即BC 2=2AC ·CD .证法二:在DA 上截取DE=CD ,连结BE,则CE=2CD . ∵BD ⊥AD , ∴BE=BC .∴∠BEC=∠C .∵AB=AC ,∴∠ABC=∠C . ∴∠ABC=∠BEC . ∵∠C=∠C ,∴△ABC ∽△BEC . ∴AC/BC=BC/CE . ∴AC/BC=BC/2CD . 即BC 2=2AC ·CD .BE思路二:将BC 2=2AC ·CD 化为21BC 2=AC ·CD ,即AC/21BC=BC/CD 或 AC/BC=21BC /CD ,仿上,可得证法三、证法四. 证法三:取B C 中点E ,连结DE ,则CE=21BC .在Rt △BCD 中,DE=21BC=CE ,∴∠EDC=∠C . ∵AB=AC , ∴∠ABC=∠C . ∴∠ABC=∠EDC . ∵∠C=∠C , ∴△ABC ∽△EDC . ∴AC/EC=BC/CD . ∴AC/21BC=BC/CD . ∴21BC 2=AC ·CD . 即BC 2=2AC ·CD .证法四:取BC 中点E ,连结AE ,则CE=21BC . ∵AB=AC ,∴∠AEC=90°=∠BCD . ∵∠C=∠C ,∴△ACE ∽△BCD . ∴AC/BC=CE/CD . ∴AC/BC=21BC/CD . ∴21BC 2=AC ·CD . 即BC 2=2AC ·CD .思路三:BC2=2AC ·CD 还可化为(21BC )2 =21AC ·CD 或(21BC )2=AC ·21CD ,这时只需取BC 的一半,再取AC 的一半或CD 的一半即可得证法五、证法六.证法五:取BC 的中点E ,AC 的中点F ,连结DE 、EF 及AE .BECB ∵AB=AC , ∴AE ⊥BC . ∴FE=FC . ∴∠FEC=∠C . 同理∠EDC=∠C . ∴∠FEC=∠EDC . 又∠C=∠C ,∴△FEC ∽△EDC . ∴FC/EC=EC/CD . ∴CE 2=FC ·CD . 即(21BC )2 =21AC ·CD . ∴BC 2=2AC ·CD .证法六:取BC 的中点E ,CD 的中点F ,连结AE 、EF . 则AE ⊥BC ,EF ∥BD .又∵BD ⊥AC , ∴EF ⊥AC .故EC 2=CF ·CA .即(21BC )2 =21CD ·AC . ∴BC 2=2AC ·CD .思路四:由BD ⊥AC ,BC2=2AC ·CD 想到射影定理,只需要BC 成为以BD 为斜边上的高的直角三角形的一直角边即可,这不难做到.证法七:过点B 作BE ⊥AC 交CA 的延长线于E ,垂足为B . ∵ BD ⊥CE , ∴BC 2=CD ·CE . ∵AB=AC , ∴∠ABC=∠C . ∵∠ABC+∠EBA=90°,∠C+∠E=90°. ∴∠EBA=∠E .∴AE=AB=AC 即CE=2AC .即BC 2=2AC ·CD .思路五:由直角三角形及左边平方式,联想到应用勾股定理.证法八:在Rt △BDC 中,BC 2=BD 2+CD 2在Rt △ABD 中,BD 2=AB 2-AD 2BC2=AB2-AD2+CD2=AC2-AD2+CD2=(AD+CD)2 - AD2+CD2 =2AD·CD+2CD2=2CD(AD+CD)=2AC·CD.。

初二发散思维

初二发散思维

发散思维
1在等边△ABC中,P是BC上一点,AP的垂直平分线分别交AB、AC于M、N,求证:△MBP∽△PCN
2设△ABC三边a,b,c的长度为为自然数,且周长不大于30,满足
222
(-b)+(-c)+(-c),问满足条件的三角形有多少个?(注:全等三角形算一
a a b26
个)
3在非钝角三角形ABC内一点P,使得PA+ PB+ PC的值最小时,求∠APB,∠BPC,∠CPA的度数。

(点P为费马点时最小)
4小明有四匹马,第一匹从A到B地,需要1小时,第二匹要2小时,第三匹要4小时,第四匹要6小时,现在一次只可以带两匹马走,快马一定要跟一匹慢马走,你去的时候回来必需骑一匹马.请问最少多少小时可以全部马到达B地?
5有三个弟兄想买气球,那个卖气球的对他们说:我总共有7个气球,我把他们免费送给你们,老大拿一半,老二拿1/4,老三拿1/8。

三弟兄一听就很高兴过来要分气球,结果没有办法来按照比例分气球。

于是老大想了一会儿,想出一个办法把气球分开了,卖气球不得不把这7个气球分给他们。

请问这位老大想到了什么办法呢?
6填满数独。

八年级一道几何题一题多解发散思维

八年级一道几何题一题多解发散思维

题目:如图,四边形ABCD是正方形,点E是边BC上一点,∠AEF=90°,EF交正方形外角的均分线CF于F.求证:AE=EF.【方法一】在AB上取一点G使得AG=CE,易得△BGE为等腰直角三角形,再证明△AGE≌△ECF(ASA)即可.【方法二】过点E作EG⊥BC交FC的延长线于点G,证明△AEC≌△FEG(ASA)即可.【方法三】延长AC至点G使得CG=CF并连接EG,证明△ECF≌△ECG(SAS),再得∠ECA=∠G(提示:外角的性质)即可.【方法四】分别延长AB,FC交于点G,并连接EG,证明△ABE≌△GBE(SAS),再证∠EGC=∠F(提示:外角的性质)即可.【方法五】延长AB至点G,使得BG=BE,并连接EG,CG,证明△ABE≌△CBG (SAS),再证明四边形EGCF为平行四边形即可(两组对边分别平行).【方法六】连接AC,过点E作EG⊥BC,交AC于点G,证明△AEG≌△FEC(ASA)即可.【方法七】如图,分别过点E,F作EG∥CF,FG∥CD和FH∥BC,EG分别与FG,FH交于点G,H,易得四边形ECFH为平行四边形,再证明△ACE≌△EGF(ASA)即可.【方法八】过点F作FG⊥BC于点G,分别设AB=a,EC=x,FG=CG=y,则BE=a-x,依据△ABE∽△EGF得AB:BE=EG:GF,即a:(a-x)=(x+y):y,得ay=ax+ay-x2-xy,得x(a-x-y)=0,即a=x+y,因此AB=EG,BE=FG因此AE=EF.【总结】本题还有好多其余构造辅助线的方法来证明,有的是同各种类的不一样构法,异曲同工。

欢迎大家谈论!自然,除了一题多解以外,大家也可以考虑把条件和结论对调进行证明,要不试一试看?题目:如图,四边形ABCD是正方形,点E是边BC上一点,在正方形外角的均分线CF上取一点F使得AE=EF.求证:∠AEF=90°.。

数学人教版八年级上册专题学习“一题多解”

数学人教版八年级上册专题学习“一题多解”
A
方法1:延长AD到点E,使 DE=AD,连结CE. 方法2:取AC的中点E,连 结DE.
B
D
.
E C
E
谢谢! 再见!
专题学习
----几何证明中常见 “一题多解”方法
乐加初中 王刚
典例: 如图,四边形ABCD中, ∠A= ∠D =90o, BE、CE均是角平分线, 求证:BC=AB+CD.
证明:在BC上截取BF=AB,连接E,F ∵ BE、CE均是角平分线 ∴ ∠ABE= ∠FBE ∠BCE= ∠DCE 解法 1.在BC上截取BF=AB 在△ABE与△FBE中 AB=BF : 构造了 ∠ABE= ∠FBE 全等的三角形 BE=BE ∴ △ABE ≌ △FBE ∴ ∠A= ∠BFE BF=AB CF=CD 从而证得: ∵ ∠A= ∠D =90o 进而得证: BC=AB+CD. ∴ ∠A= ∠BFE = ∠CFE= ∠D =90o 在△FCE与△DCE中 ∠FCE= ∠DCE ∠CFE= ∠D CE=CE ∴ △FCE ≌ △DCE ∴CF=CD ∵ BC=BF+ CF BF=AB CF=CD ∴ BC=AB+CD
如图,四边形ABCD中, ∠A= ∠D =90o, BE、CE均是角平分线, 求证:BC=AB+CD.
练习:如图,△ABC中, ∠C =90o,AC=BC, AD平分∠BAC,求证:AB=AC+DC. 解法1:在AB上截取AE=AC,连接E,D 构造了: 解法2:过点E作DE⊥AB,垂足为E. 全等的直角三角形 从而证得: DC=DE =BE 构造了 : 解法3:延长AC至E使CE=DC,连接E,D E 进而得证:AB=AC+DC 全等的直角三角形 从而证得: AC=AE DC=BE 构造了: B 进而得证: AB=AC+DC 全等的三角形 从而证得:AB=AE 进而得证:AB=AC+DC
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题目:如图,四边形ABCD是正方形,点E是边BC上一点,∠AEF=90°,
EF交正方形外角的平分线CF于F.求证:AE=EF.
【方法一】
在AB上取一点G使得AG=CE,易得△BGE为等腰直角三角形,再证明△AGE≌△ECF(ASA)即可.
【方法二】
过点E作EG⊥BC交FC的延长线于点G,证明△AEC≌△FEG(ASA)即可.
【方法三】
延长AC至点G使得CG=CF并连接EG,证明△ECF≌△ECG(SAS),再得∠ECA=∠G(提示:外角的性质)即可.
【方法四】
分别延长AB,FC交于点G,并连接EG,证明△ABE≌△GBE(SAS),再证∠EGC=∠F(提示:外角的性质)即可.
【方法五】
延长AB至点G,使得BG=BE,并连接EG,CG,证明△ABE≌△CBG (SAS),再证明四边形EGCF为平行四边形即可(两组对边分别平行).
【方法六】
连接AC,过点E作EG⊥BC,交AC于点G,证明△AEG≌△FEC(ASA)即可.
【方法七】
如图,分别过点E,F作EG∥CF,FG∥CD和FH∥BC,EG分别与FG,FH 交于点G,H,易得四边形ECFH为平行四边形,再证明△ACE≌△EGF (ASA)即可.
【方法八】
过点F作FG⊥BC于点G,分别设AB=a,EC=x,FG=CG=y,则BE=a
-x,根据△ABE∽△EGF得AB:BE=EG:GF,即a:(a-x)=(x+y):y,得ay=ax+ay-x2-xy,得x(a-x-y)=0,即a=x+y,所以AB=EG,BE=FG所以AE=EF.
【总结】本题还有许多其他构造辅助线的方法来证明,有的是同种类型的不同
构法,异曲同工。

欢迎大家讨论!
当然,除了一题多解之外,大家也可以考虑把条件和结论对调进行证明,要不
试试看?
题目:如图,四边形ABCD是正方形,点E是边BC上一点,在正方形外角的
平分线CF上取一点F使得AE=EF.
求证:∠AEF=90°.。

相关文档
最新文档