数学思想及解题策略分类讨论思想方法
初中数学思想方法之分类讨论
初中数学思想方法之分类讨论数学是一门既抽象又具体的学科,它需要学生具备一定的思维方法和思想能力。
在初中数学中,分类讨论是一种常用的思想方法,它可以帮助学生分析问题、归纳规律并解决问题。
本文将详细介绍初中数学中分类讨论的基本思想和具体步骤,并通过例题来说明如何运用这种方法。
一、分类讨论的基本思想分类讨论是指将问题进行细化,将其分解成几个易于分析和解决的小问题,并分别进行讨论和解决。
通过这种方法可以更好地理解问题的本质,找到解题的关键点,并最终得到问题的解决办法。
分类讨论的基本思想包括以下几点:1.具体问题具体分析。
将问题进行细化后,每个小问题都有其独特的特点和解决思路,需要根据具体情况展开分析。
2.归纳总结。
在分析过程中,要总结出各个小问题之间的共同点和规律,以便更好地理解问题,并找到解决办法。
3.统一思考。
将各个小问题的解决办法进行归纳和整合,形成对大问题的解决思路。
二、分类讨论的具体步骤分类讨论的具体步骤可以简单概括为以下几点:1.理解问题。
仔细阅读题目,了解问题的背景和要求,确定需要解决的具体问题。
2.分析问题。
将大问题分解成几个小问题,每个小问题都有明确的目标和限制条件。
在分析过程中,可以通过画图、列举数据等方式进行辅助分析。
3.解决小问题。
按照特定的思路和方法,分别解决各个小问题。
在解决过程中,可以运用已经学过的数学知识、规律和公式。
4.总结归纳。
在解决小问题的过程中,要总结各个小问题之间的共同点和规律,归纳出解决大问题的关键思路和方法。
5.整合答案。
将各个小问题的解答整合成对大问题的解答。
在整合过程中,要仔细检查各个小问题的解答是否符合大问题的要求,并进行必要的修正和调整。
三、分类讨论的具体例题下面以一些常见的初中数学题目为例,说明如何运用分类讨论的方法解决问题。
例题1:现有一些白球和红球,共18个。
白球的个数不超过红球的个数。
问,最少有多少个红球?解题思路:根据题目要求和条件,可以将问题进行分类讨论。
初中数学思想方法有哪些
初中数学思想方法有哪些1、数形结合思想:就是依据数学问题的条件和结论之间的内在联系,既分析其代数含义,又显示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、分类讨论的思想:在数学中,我们经常必须要依据研究对象性质的差异,分各种不同状况予以考查;这种分类思索的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
3、联系与转化的思想:事物之间是互相联系、互相制约的,是可以互相转化的。
数学学科的各部分之间也是互相联系,可以互相转化的。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
2方法一1.对应的思想和方法在初一代数入门教学中,有代数式求值的计算题,通过计算发现:代数式的值是由代数式里字母的取值所决定的,字母的不同取值可得不同的计算结果。
这里字母的取值与代数式的值之间就建立了一种对应关系,再如实数与数轴上的点,有序实数对与坐标平面内的点都存在对应关系在进行此类教学〔制定〕时,应注意渗透对应的思想,这样既有助于培养同学用变化的观点看问题,又助于培养同学的函数观念。
2.整体的思想和方法整体思想就是合计数学问题时,不是着眼于它的局部特征,而是把注意和和着眼点放在问题的整体结构上,通过对其全面深入的观察,从宏观整体上熟悉问题的实质,把一些彼此独立但实质上又互相紧密联系着的量作为整体来处理的思想方法。
整体思想在处理数学问题时,有广泛的应用。
3.数形结合的思想和方法数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。
著名数学家华罗庚先生说:"数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休。
'这充分说明了数形结合思想在数学研究和数学应用中的重要性。
4.分类的思想和方法教材中进行分类的实例比较多,如有理数、实数、三角形、四边形等分类的教学不仅可以使同学明确分类的重要性:一是使有关的概念系统化、完整化;二是使被分概念的外延更清楚、更深入、更具体,并且还能使同学掌握分数的要点方法:3方法二1、数形结合的思想和方法在同学刚接触初中数学不久,教材中设置利用"数轴'这一图形,巩固"具有相反意义的量'的概念,了解相反数,绝对值的概念,掌握有理数大小的道理,理解有理数加法、乘法的意义,掌握运算法则等。
分类讨论思想在高中数学解题中的应用研究
分类讨论思想在高中数学解题中的应用研究分类讨论思想是一种在高中数学解题中十分常见的思维方式,它能够帮助学生更加系统、全面、深入地分析问题,从而得出更加准确、严谨的解答。
一、分类讨论思想的概念及特点分类讨论指的是将问题分成若干个独立的情况,并对每种情况进行分析,最终得出全面、深入的结论的思维方式。
分类讨论思想的特点是:有目的性、有系统性、有针对性、有全面性、有严谨性。
此外,分类讨论还要注意分类的互斥性和完备性。
1. 函数解析式的确定。
对于一些比较复杂的函数,可以采用分类讨论的思想来确定它的解析式。
例如,已知函数f(x)如下:$$f(x)=\begin{cases}x^2+1,&x\geqslant 0\\2x+1,&x<0\\\end{cases}$$我们可以发现,这个函数在x=0处存在“分界点”,如果使用同一种方法求解,就会产生问题。
因此,我们可以采用分类讨论的思想,将问题分为x≥0和x<0两种情况,对每种情况分别求解。
2. 组合数学问题。
组合数学中很多问题也可以使用分类讨论的思想进行求解。
例如,假设有n个格子要涂黑,但是其中的一些格子不能被涂黑。
我们可以考虑将格子分成两类:可以涂黑和不能涂黑的。
然后,对于可以涂黑的格子,我们可以使用组合数学的知识求解涂黑的方法数;对于不能涂黑的格子,我们可以先对它们进行计数,再将它们从总数中减去,得出最终的结果。
3. 几何问题。
几何问题中也常常需要使用分类讨论的思想。
例如,对于一个梯形,如果我们要计算它的面积,需要先确定底边长和高,这就需要对梯形进行分类讨论。
具体来说,我们可以将梯形分成上底和下底相等和上底和下底不相等两种情况,分别求解它们的面积,最终将两者相加即可得到梯形的面积。
三、分类讨论思想的教学策略针对分类讨论思想的教学,我们可以采用以下几种策略:1. 举例法。
在讲解分类讨论思想时,可以通过举一些对应的数学问题进行解析,让学生通过对具体问题的分析,加深对分类讨论思想的理解。
高考数学解题思想方法 分类讨论思想方法
二、分类讨论思想方法在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。
分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。
有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。
引起分类讨论的原因主要是以下几个方面:①问题所涉及到的数学概念是分类进行定义的。
如|a|的定义分a>0、a=0、a<0三种情况。
这种分类讨论题型可以称为概念型。
②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。
如等比数列的前n项和的公式,分q=1和q≠1两种情况。
这种分类讨论题型可以称为性质型。
③解含有参数的题目时,必须根据参数的不同取值范围进行讨论。
如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。
这称为含参型。
另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。
进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。
其中最重要的一条是“不漏不重”。
解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。
Ⅰ、再现性题组:1.集合A={x||x|≤4,x∈R},B={x||x-3|≤a,x∈R},若A⊇B,那么a的范围是_____。
A. 0≤a≤1B. a≤1C. a<1D. 0<a<12.若a>0且a≠1,p=loga (a3+a+1),q=loga(a2+a+1),则p、q的大小关系是_____。
数学思想方法(整体思想、转化思想、分类讨论思想
专题知识突破五数学思想方法(一)(整体思想、转化思想、分类讨论思想)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。
数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。
数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。
抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。
三、中考考点精讲考点一:整体思想整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。
整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。
例1 (2014•德州)如图,正三角形ABC的边长为2,D、E、F分别为BC、CA、AB的中点,以A、B、C三点为圆心,半径为1作圆,则圆中阴影部分的面积是.思路分析:观察发现,阴影部分的面积等于正三角形ABC的面积减去三个圆心角是60°,半径是2的扇形的面积..考点二:转化思想转化思想是解决数学问题的一种最基本的数学思想。
在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。
分类讨论思想在初中数学解题中的应用
学习指导2023年8月下半月㊀㊀㊀分类讨论思想在初中数学解题中的应用◉江苏省昆山开发区青阳港学校㊀沈俊杰㊀㊀摘要:近年来,分类讨论的问题已经成为各地中考压轴试题的热门考点,这类问题学生在解答中极易出现漏解.本文中就分类讨论思想在初中数学各个专题中的应用浅谈应用策略.关键词:分类讨论;初中数学;解题;应用㊀㊀在初中数学教学过程中发现,大多数学生对分类讨论思想了解不够深入,把握不够牢固,分析问题比较片面,导致问题解决不彻底.本文中笔者根据自身教学实践,就分类讨论思想在初中数学各个专题中的应用进行探讨研究.1分类讨论思想在绝对值问题中的运用由绝对值的概念可知,绝对值可用来表示数轴上两点之间的距离,但无法明确这两点的具体位置,对此类问题,我们就需要进行分类讨论后再确定相应的值.例1㊀解决下面的问题:(1)如果|x +1|=2,求x 的值;(2)若数轴上表示数a 的点位于-3与5之间,求|a +3|+|a -5|的值;(3)当a =㊀㊀㊀时,|a -1|+|a +5|+|a -4|的值最小,最小值是㊀㊀㊀㊀.点拨:显然,例1中的每一个问题都涉及到了绝对值,由于绝对值里的式子不知是正还是负,因此需要进行分类讨论.(1)由|x +1|=2,可得x +1=2,或x +1=-2,解得x =1,或x =-3.(2)中因为已经明确表示数a 的点位于-3与5之间,故可以判断a +3和a -5的正负,则不需要进行分类讨论,可直接根据正负情况去掉绝对值进行解答.(3)中没有明确数a 的具体大小,无法直接判断a -1,a +5,a -4的正负,这就需要利用三个零点从四个方面进行分类讨论,再根据具体的取值分析最小值即可.从例1的分析可知,在遇到数轴上点的位置不明确时,就需要考虑使用分类讨论思想进行解答,从而将绝对值符号去掉并轻松解题[1].2分类讨论思想在二次根式中的运用在涉及有关二次根式的计算与化简问题时,常常会遇到形如a 2的式子,如何对这类式子进行化简,则需要进行分类讨论.例2㊀若代数式(2-a )2+(a -4)2=2,求a 的值.点拨:若对代数式进行化简,则要去掉根号,根据a 2=a ,将问题转化为含有绝对值的问题来处理,结合例1的分析可考虑利用分类讨论思想解题.(2-a )2+(a -4)2=|2-a |+|a -4|,再分别从a <2,2ɤa <4,a ȡ4三个方面进行分类讨论,进而化简求值.在解决与二次根式有关的求数的平方根或者化简二次根式等问题都要注意分类讨论思想的运用.3分类讨论思想在方程中的运用在一些与方程有关的问题中,若方程含有字母参数,根据题干我们无法直接判断参数的情况,从而无法判断方程的类型,对下一步的问题解答造成麻烦,这个时候就需要进行分类讨论[2].例3㊀已知关于x 的方程(m +1)x 2-(m -2)x +m 4=0.(1)若方程有实数根,求m 的取值范围;(2)已知x 1,x 2为方程的两个实数根,且x 21-x 22=0,求m 的值.点拨:第(1)问只是说明这是关于x 的方程,从方程式可以看出未知数的最高次数是2次,但由于二次项系数m +1有可能为0,因此可以从m +1ʂ0和m +1=0两方面判断该方程是一元二次方程或者一元一次方程.根据方程特点,可整理分析得25Copyright ©博看网. All Rights Reserved.2023年8月下半月㊀学习指导㊀㊀㊀㊀到Δȡ0或m +1=0两种情况,再解不等式或方程求出m 的取值范围即可.此类题型主要问题是概念指代不清,存在类似问题的还有函数是一次函数还是二次函数,都需要考虑分类讨论.4分类讨论思想在不等式中的运用在解决不等式的有关问题时,也常常遇到由a b >0或a b <0来判断a ,b 符号的问题,根据同号为正㊁异号为负的法则,需要我们针对具体情况进行分类讨论,如当a b >0时,有a >0,b >0,{或a <0,b <0.{两种情况.例4㊀解一元二次不等式:x 2-4>0.点拨:将x 2-4分解因式,得x 2-4=(x +2)(x -2),则原不等式转化(x +2)(x -2)>0即可.根据有理数的乘法法则 两数相乘,同号得正 ,进行分类讨论,则有x +2>0,x -2>0,{或x +2<0,x -2<0,{进而解得一元二次不等式x 2-4>0的解集为x >2或x <-2.在计算过程中出现同号为正㊁异号为负的情况时,都需要从两个方面进行计算,此时要关注分类讨论思想的体现,以防漏解或缺解.5分类讨论思想在几何图形中的应用几何图形中常见的分类讨论往往集中在等腰三角形的判定㊁相似三角形的判定㊁与圆相关的图形位置判断等方面.涉及几何图形的分类讨论问题往往融合在函数中,故处理相关问题时也要注意分类讨论[3].例5㊀已知øA O B =80.5ʎ,øA O D =12øA O C ,øB O D =3øB O C (øB O C <50ʎ),求øB O C 的度数.点拨:根据题干叙述,无法直接判断O C ,O D 的位置,从而无法进行计算,因此本题需要根据题干情况进行分类讨论.根据题意分析,可以得到符合要求的有三种情况,针对存在的三种情况,画出相应的图形,然后进行计算,即可得到øB O C 的度数[4].图1例6㊀如图1,在直角梯形A B C D 中,A D ʊB C ,øC =90ʎ,B C =16,A D =21,D C =12,动点P 从点D 出发,沿线段D A 方向以每秒2个单位长度的速度运动,动点Q 从点C 出发,在线段C B 以每秒1个单位长度的速度向点B 运动.点P ,Q 分别从点D ,C 同时出发,当点P 运动到点A 时,点Q 随之停止运动,设运动时间为t s .(1)设әB P Q 的面积为S ,求S 和t 之间的函数关系式;(2)当t 为何值时,以B ,P ,Q 三点为顶点的三角形是等腰三角形?点拨:显然,第(2)问中以B ,P ,Q 三点为顶点的三角形是等腰三角形,需要分三种情况讨论:①P Q =B Q ;②B P =B Q ;③P B =P Q .根据勾股定理最终求得t =72或t =163时,以B ,P ,Q 三点为顶点三角形是等腰三角形.图2例7㊀如图2,四边形A B C D 中,A D ʊB C ,øB =90ʎ,A B =8,B C =20,A D =18,Q 为B C 的中点,动点P 在线段A D边上以每秒2个单位长度的速度由点A 向点D 运动,设动点P 的运动时间为t s .在A D 边上是否存在一点R ,使得以B ,Q ,R ,P 四点为顶点的四边形是菱形若存在,请直接写出t 的值;若不存在,请说明理由.点拨:题目中要求探究的点R 在什么位置,我们一下子搞不清,故考虑分类讨论,可分为两种情况.一是点P 在点R 的左侧,四边形B Q R P 是菱形,此时B P =B Q =10,根据勾股定理求得A P =6,则D P =12,再列方程求出此时的t 值即可;二是点R 在点P 的左侧,四边形B Q P R 是菱形,此时B R =B Q =10,A P =6+10=16,再列方程求出t 值.结合上述五个方面的研究发现,在解答数学问题的过程中遇到一些点或线位置不明确㊁图形不固定的情况时,要考虑分类讨论,让问题解答更加全面.总之,在初中数学问题研究中,充分运用分类讨论思想更能深刻挖掘学生的生活体验,引导他们从多个角度感知㊁分析问题情境,更多地激励学生开动脑筋,运用新思想新方法,拓展思维,从而培养学生多角度全方位的解题习惯,全面提升数学核心素养.参考文献:[1]顾宣峰.分类讨论思想在高中数学解题中的应用[J ].高中数理化,2021(S 1):20.[2]任建平.分类讨论思想在初中数学解题教学中的运用探究[J ].数理天地(初中版),2023(13):37G38.[3]王珍.分类讨论思想在初中数学解题教学中的运用[J ].中学数学,2023(12):73G74.[4]孙高传.分类讨论思想在初中数学解题教学中的运用[J ].第二课堂(D ),2022(2):38G39.Z 35Copyright ©博看网. All Rights Reserved.。
分类讨论思想是解答数学问题的一种重要思想方法和解题策略
分类讨论思想是人们常用的重要思想方法,无论是在生产活动、科学实验中,还是在日常生活中,都常常需要用到它。
也是解答数学问题的一种重要思想方法和解题策略。
它是为理解决因各种因素制约着的数学问题,使原本变幻的不定的问题,分解成若干个相对确定的问题,再各个击破,从而获得完整的解答。
其实分类讨论思想的本质是“化整为零,积零为整”,从而增加了题设条件的解题策略。
在很多数学概念、公式、法则、性质、定理中都蕴含着分类讨论思想。
下面就常见的需分类讨论的几种情况实行归纳。
1、根据定义分类有些数学概念是分类定义的(如实数的绝对值),所以应用这些概念解题时,就需实行分类讨论。
有些数学概念在下定义已经对所考虑的对象的范围作了限制(如二次方程,要求二次项系数不为零),当解题过程的变换需要突破这些限制时,就必须分类讨论。
例:解方程|4x-4|-|2x+2|=14解(1)当x≥1时, 原方程化为 (4x-4)-(2x+2)=14, x=10当-1≤x≤1时,原方程化为4 – 4x-2x-2=14,x=-2, 应舍去.当x≤-1时,原方程化为4-4x+2x+2=14, x=-4∴ x=10或-4说明: 若在x的某个范围内求解方程时,若求出的未知数的值不属于此范围内,则这样的解不是方程的解应舍去.2、根据图形中位置的不同分类有些几何问题,因图形的位置不能确定或形状不能确定,就必须分类全面讨论。
例:一张桌子有四只角,砍掉一只角后,还剩几只角?当我们在上小学时,数学老师会问我们上述这个问题,当有的同学回答有3只角时,老师会说“错了”,而当有的同学回答有5只角时,老师则会表扬他们,称赞他们“聪明”。
实际上,砍去一只角后可能出现的多种情况,我们需分门别类,一一展示,再细细计算:(1)砍下去的那条边不经过桌面(矩形)顶点,那么还剩下 4-1+2=5只角(如图1所示(2)砍下去的那条边经过桌面的一个顶点,那么还剩下 4-1+1=4只角(如图2所示);(3)当砍下去的那条边经过桌面的两个顶点,那么还剩4-1=3只角(如图3所示)。
高中数学常见解题思想方法——思想篇(高三适用)九、分类讨论思想 含解析
分类讨论思想是高中重要数学思想之一,是历年高考数学的重点与难点.突出考察思维的逻辑性、全面严谨性,比如在不等式、数列、导数应用相关的习题中,分类讨论思想很常见。
一、什么是分类讨论思想:每个数学结论都有其成立的条件,每一种数学方法的使用也往往有其适用范围,在我们所遇到的数学问题中,有些问题的结果不能唯一确定,有些问题的结论不能以统一的形式进行研究,还有些含参数的问题,参数的取值不同也会影响问题的结果,那么就要根据题目的要求,将题目分成若干类型,转化成若干个小问题来解决,这种按不同情况分类,然后再对分好的每类逐一研究、解决问题的数学思想,就是分类讨论思想。
二、分类讨论的一般步骤:第一,明确讨论对象,确定对象的取值范围;第二,确定分类标准,进行合理分类,不重不漏;第三,对分好的每类进行讨论,获得阶段性结果;第四,归纳总结,得出结论。
三、分类讨论的常见情形:1.由数学概念引起的分类:有的概念本身就是分类给出的,在不同条件下有不同结论,则必须进行分类讨论求解,如绝对值、指数与对数函数、直线和平面所成的角等。
2.由性质、定理、公式的限制引起的分类:有的数学定理、公式、性质是分类给出的,在不同条件下结论不一致,如二次函数y=ax2+bx+c(a≠0),由a的正负而导致开口方向不确定;等比数列前n项和公式因公比q是否为1而导致公式的表达式不确定等.3。
由某些数学运算要求引起的分类讨论:如解不等式ax2+bx+c >0,a=0,a<0,a>0解法是不同的;除法运算中除数不为零,偶次方根为非负,对数真数与底数的要求,指数中底数的要求,不等式两边同乘以一个正数、负数时不等号的方向,三角函数的定义域等.4。
由图形引的不确定性起的分类:有的图形的类型、位置需要分类,比如角的终边所在象限;立体几何中点、线、面的位置关系等。
5.由实际意义引起的分类:此类问题在实际应用题中常见.特别是在解决排列、组合中的计数问题时常用.6。
由参数变化引起的分类:如含参数的方程、不等式,由于参数的取值不同会导致所得结果不同,所以必须对参数的不同取值进行分类讨论;或对于不同的参数值运用不同的求解或证明方法.四、下面我们通过几种具体问题来看看常见的分类讨论情形:1。
分类讨论思想解题的策略与研究
分类讨论思想解题的策略与研究低塘中学 曾凯学会解题是学习数学的一个重要方面。
熟练掌握数学的基础知识和基本技能是能否顺利解题的基础,深刻理解数学的基本方法、基本思想是能否顺利解题的关键。
“分类讨论”是一种重要的数学思想,也是一种重要的解题策略。
它揭示着数学对象之间的内在规律,有助于学生总结归纳数学知识,使所学知识条理化,提高思维的条理性和概括性。
解答分类讨论问题时的解题策略:首先,要确定讨论对象以及所讨论对象的全体的范围;其次,确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥;再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。
怎样利用分类讨论思想解题呢? 下面本文结合近几年全国各省市中考题归纳以下几类需要运用分类讨论思想解题的重要题型:一、 分类讨论思想解决“数与代数”问题1、根据参数的不同取值范围引起的分类讨论例1(2010年新疆)已知c b a ,,为非零实数,且满足k ba c c abc b a =+=+=+,则一次函数)1(k kx y ++=的图像一定经过( )A 第一﹑二﹑三象限B 第二﹑四象限C 第一象限D 第二象限解:①若0≠++c b a ,则由等比定理性质得:021)(2)()()(>=++++=+++++++=c b a c b a c b c a b a c b a k ,从而有0231>=+k , 此时)1(k kx y ++=的图像经过第一﹑二﹑三象限②若0=++c b a ,则有c b a -=+,b c a -=+,a c b -=+,此时01,1=+-=k k 从而知)1(k kx y ++=的图像经过第二﹑四象限综合①和②得,)1(k kx y ++=的图像一定经过第二象限,故选D点评:分式方程、代数恒等式变形以及一些综合题型中常会出现由分母是否为零引起的分类讨论,此时要注意“分而治之”。
2、根据分式是否有意义引起的分类讨论例2(2009年牡丹江)若关于x 的分式方程311x a x x--=-无解,则a = . 解:方程两边同乘以x(x-1), 得 (x-a)x-3(x-1)= x(x-1),整理,得:(a+2)x =3.当a+2=0,即a =-2 时,新方程无解,那么原方程也一定无解;当x=0 时,原方程无解,此时(a+2)×0 = 3,方程无解;当x=1 时,原方程无解,此时(a+2)×1=3, a=1。
初中常用的数学思想方法
初中常用的数学思想方法1、分类讨论的思想在数学问题中,我们常常需要根据研究对象的差异,分不同情况予以讨论,比如:当X>0,X=0,X<0的情况,我们需要进行讨论,从而得出正确结果,这是一种重要的解题方法。
2、数形结合思想就是利用代数和几何图形相结合的方法,相互辅助,以便于我们更好解决数学问题。
例如:求线段最值问题。
就需要借助图形帮助我们更好理解及作答。
3、待定系数法此法常用于方程组或方程式中,我们在计算数学式子具有某种特定形式时,我们只需求出式子中待确定的字母的值就可以了。
我们可以把已知条件代入这个待定形式的式子中,就能轻松求解出这个问题了。
4、配方法利用已知代数式构造成平方差或完全平方式,再根据需要进行计算。
配方法在计算分解因式、解方程、讨论二次函数等问题上起着重要的作用。
6、换元法就是把带有某个或某些字母的式子看成一个整体,用一个新的字母进行表示,把一个复杂的式子进行化简进行计算,从而求出正确答案。
7、分析法常用于证明命题时,从结论向已知条件推理,推理出它成立的充分条件。
我们通过逆向思维思考问题,从而使问题更加简明,正所谓正难则反易。
8、联系与转化的思想事物之间是可以相互联系、相互转化的。
数学学科的知识点各部分之间也是相互联系的。
在解题时,如果能巧妙利用处理它们往往可以使问题化难为易,化繁为简。
如:代换转化、数形转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化等等。
9、演绎归纳法即从一般到特殊的演绎,把握现象,抓住本质,总结归纳其一般规律,并将其运用到解决实际问题当中。
10、类比法此法和上面一法有相似之处,其利用某些事物属性相同或相似的一面,推理到其他属性方面也可能有相同或相似的一面。
类比法既可能是从特殊到特殊,也可能从一般到一般的推理。
11、综合法在处理数学问题时,当使用一种方法不能很好解决问题时,我们可利用多种方法进行解决,选取适合的方法往往有助于我们快速解决难题,从而大大节省我们的时间。
浅谈分类讨论思想在高中数学解题中
㊀㊀解题技巧与方法㊀㊀146数学学习与研究㊀2022 32浅谈分类讨论思想在高中数学解题中的应用浅谈分类讨论思想在高中数学解题中的应用Һ曾祥均㊀(绵阳普明中学,四川㊀绵阳㊀621000)㊀㊀ʌ摘要ɔ分类讨论是高中数学重要的思想方法和解题策略,可以简化研究对象,提高解题效率.本文就此类问题进行过程分析,意在展现方法的思想原则,并给出了其在解题中的应用策略.ʌ关键词ɔ数学思想;分类讨论;高中数学;应用策略一㊁分类讨论思想在高中数学解题中的作用和地位在近年高考中,有一类题因题目已知条件存在一些不确定因素,无法用统一的方法解答,我们往往将问题划分为若干类,或若干个局部问题来解决,这就是数学中重要的一种数学思想 分类讨论思想.在新课标的指引下,这一思想已经成为高中数学教学中的重点和难点.分类讨论的试题覆盖文理科,试题题型包括选择题㊁填空题㊁解答题,知识面覆盖广,几乎涵盖了高中所有章节.数学作为选拔人才的考试科目之一,必定会突出对数学思想方法的考查,分类讨论是一种重要的数学思想方法,这种思想方法对于简化研究对象㊁发展人的思维起到重要的帮助作用.分类是为了明确题设条件中所蕴含的逻辑关系和因果关系,化整为零,形成解决问题的方案,进而从局部问题开始探究,逐个击破,最后综合各类结果,形成系统的研究结论.二㊁分类讨论的原则第一,同一性原则.在分类的时候我们要注意分类的标准应当是统一的.对整体进行统一分类,采用相同的标准,这样才能使得分类更加科学合理,避免出现错误.第二,互斥性原则.如果各部分相互包含,就会造成部分之间的关系混乱,容易出现错误.第三,相称性原则.划分后的部分内容在考虑和计算时,应当进行分类讨论,不能超出之前的范围.第四,分层次原则.通过多次分层,直到找到解决问题的方法,满足解题的要求,在分类时要避免层次之间的混乱,最后通过整合得到正确答案.三㊁分类标准和原则对问题进行分类讨论时,我们必须按同一标准分类,且做到不重不漏.解题时,分类讨论通常分为四步:第一,明确目标且确定目标的取值范围;第二,采用合适的分类标准进行分类;第三,逐类㊁逐段分类讨论;第四,归纳概括.四㊁解题中分类讨论思想应用策略第一,图形的形状不同.若图形存在不同的形状,则需要讨论可能出现的形状,做到不重不漏.例1㊀平面内有两定点A㊁B,直线AB的垂线上有一动点M,垂足为N.若MNң2=λANң㊃NBң(λ为常数),确定动点M的轨迹形状.分析㊀此题涉及曲线的轨迹方程和轨迹的对应关系,考查分类讨论思想以及计算能力.建立直角坐标系,设A㊁B坐标,以及M坐标,利用向量运算建立动点M的轨迹方程,然后由λ的取值范围判断曲线类型.解㊀将AB所在直线作为x轴,AB中垂线为y轴,建立直角坐标系,设M(x,y),A(-a,0),B(a,0);因为MNң2=λANң㊃NBң,所以y2=λ(x+a)(a-x),即λx2+y2=λa2,则:(1)当λ=1时,轨迹是圆;(2)当λ>0且λʂ1,是椭圆的轨迹方程;(3)当λ<0时,是双曲线的轨迹方程;(4)当λ=0时,是直线的轨迹方程.第二,图形的位置无法确定.若图形的位置可能有多种情况并且会对问题的结果产生影响,则必须分类讨论.学生要对各种可能出现的位置关系全面考虑,合理分类,逐一验证,做到不重不漏.例2㊀已知圆O和定点A,动点P是圆上任意一点,线段AP的垂直平分线和直线OP相交于点Q,则点Q的轨迹可以是下列图形中的(㊀㊀).①点㊀②直线㊀③圆㊀④椭圆㊀⑤双曲线㊀⑥抛物线分析㊀本题主要考查求动点的轨迹,考查与圆㊁椭圆㊁双曲线有关的轨迹问题,关键是数形结合㊁分类讨论思想的应用.我们分类讨论点A与圆O及点Q的关系,根据圆㊁椭㊀㊀㊀解题技巧与方法147㊀数学学习与研究㊀2022 32圆㊁双曲线的定义,可得结果.解㊀设圆O的半径为r,连接AQ㊁OA.(1)当点A在圆O外时,|QA-QO|=|QP-QO|=OP=r<OA,则点Q的轨迹是以两定点O㊁A为焦点,r为实轴长的双曲线.(2)当点A在圆O内时,QA+QO=QP+QO=OP=r>OA,则点Q的轨迹是以两定点O㊁A为焦点,r为长轴长的椭圆.(3)当点A与点O重合时,点Q为OP的中点,OQ=12OP=12r,则点Q的轨迹是以定点O为圆心,12r为半径的圆.(4)当点A在圆O上时,OP=OA,线段AP的垂直平分线和直线OP相交于点O,则点Q的轨迹是定点O.综上所述,点Q的轨迹可以是点㊁圆㊁椭圆或双曲线.第三,解题时采用的各种方法,比如化简㊁求值或论证,都离不开运算.我们在不同条件下进行运算会引起分类讨论,比如利用导数讨论函数的极值.例3㊀设函数f(x)=(1-a)lnx-x+ax22,求函数f(x)的极值.分析㊀求导过后fᶄ(x)中存在参数a,因此令fᶄ(x)=0得到的函数零点中同样存在参数a,考虑三个问题:(1)零点是否存在;(2)零点是否在定义域内;(3)零点之间的大小关系.这三个问题涉及了对参数a的取值范围的讨论,即按照这一原则把a的取值精准地分成多个区间,做到对参数a的取值不重不漏,然后按照区间分情况讨论函数f(x)的单调性.解㊀函数定义域为(0,+ɕ),对f(x)求导fᶄ(x)=(x-1)[ax(1-a)]x,令fᶄ(x)=0,得x1=1,x2=1-aa.(1)若a<0,此时函数f(x)在区间(0,1)递增,区间(1,+ɕ)递减,所以f(1)为极大值.(2)若a=0,则fᶄ(x)=1-xx,此时函数f(x)在区间(0,1)递增,区间(1,+ɕ)递减,所以f(1)为极大值.(3)若0<a<12,此时函数f(x)在区间(0,1)递增,区间1,1-aa()递减,区间1-aa,+ɕ()递增,所以f(1)为极大值,f1-aa()为极小值.(4)若a=12,此时函数f(x)在区间(0,+ɕ)递增,无极值.(5)若12<a<1,此时函数f(x)在区间0,1-aa()递增,区间1-aa,1()递减,区间(1,+ɕ)递增,所以f(1)为极小值,f1-aa()为极大值.(6)若1ɤa,此时函数f(x)在区间(0,1)递减,区间(1,+ɕ)递增,所以f(1)为极小值.第四,在概率解题时的应用.在解答概率问题时,我们也可以采用分类讨论的方法,通过分类讨论解决一些常见的概率问题.在概率题目当中经常会出现 最多 最少 等相关的关键词,在遇到这些相关的词语时,教师可以让学生利用分类讨论的方法结合题目当中的具体问题进行解答,提高学生的解题效率.在解答问题之前,学生应当准确推断出概率的类型,然后根据题目的要求对情况进行分类,最后在综合分类讨论的情况得出结论.例4㊀甲乙两个人参加同一场知识竞赛,竞赛当中共有十道题目,包括六道选择题和四道判断题,如果两人各抽取一道题目,求最少有一个人抽到判断题的概率.在解答这道问题时学生需要仔细阅读题目,理解题目当中 最少有一个人 信息的含义,在分析这一问题时可以进行分类讨论,把 最少有一个人 分为三种情况.学生可以综合这三种情况进行分类讨论,通过分析得出三种不同分类的结果,然后综合三种结果,得出最终的答案.第五,在数列解题中的应用.在解答数列的相关问题时,我们也可以采用分类讨论的方法.数列是高中数学的基础内容,学生在解决一些数列问题时,采用分类讨论的方法也能快速解决问题,同时能避免出现纰漏.在解决问题时,学生应当根据具体的内容对给出的信息进行分类,这样才能提高解答的准确度.此外,如果在数列求解公差㊁公比的取值范围时,并没有给出具体的取值范围,学生也需要进行分类讨论,考虑到取值范围的各种情况,这样才能考虑全面,得出准确的结果.㊀㊀解题技巧与方法㊀㊀148数学学习与研究㊀2022 32例5㊀设数列{an}是公比为q的等比数列,Sn>0,求公比q的取值范围.在解答这道问题时,我们就需要分类讨论,根据题目当中给出的条件,Sn>0,可以得出a1>0,qʂ0.这时候学生需要思考讨论q=1和qʂ1两种情况,采用分类讨论的思想解答问题,得出q的取值范围.第六,在函数解题中的应用.教师可以利用分类讨论的方法帮助学生解决学习的重难点问题.函数问题经常会出现参数值变化的情况,这时函数的一些参数就会存在不同的取值情况,学生可以对参数进行分类讨论.在解答问题时,学生要明确分类的思想,全面考虑问题,这样才能提高准确率.学生要从具体的条件出发,考虑具体的情况,要学会灵活应变.例6㊀已知函数f(x)=-x2+2ax+1-a在xɪ[0,1]内有最大值2,求a的值.这一问题就存在不确定性的参数.这道函数题中已经给出了函数的定义域,学生需要结合二次函数的特点,确定函数最值的取值范围.在取到最大值时,学生要考虑极值和定义域的端点.而二次函数的极值点和它的对称轴有密切的联系,学生需要结合具体的问题进行讨论,考虑在定义域内是否存在二次函数的对称轴.学生采用分类讨论的思想,根据给出的条件进行分类思考,从而计算出a的取值.以上几种情形是近几年高考中的热点类型,除了这几种情形还有以下几种:概念分段定义.绝对值属于分段定义概念,类似的还有偶次根式㊁线面角㊁分段函数㊁直线斜率等,它们都属于分段定义概念.定义本身决定了在解决包含这些概念的题目时要进行分类讨论.公式分段表达.解题会用到数学公式和定理,如果公式或定理本身有附加的限制条件,那么必须分段表达,学生在应用这些公式时,需要分类讨论,比如反比例函数解析式中k的正负决定了函数本身的单调性.参数系数参与引起分类讨论.问题中如果包含了参数系数,则会使问题结果出现多种情况,必须分类讨论.例如集合间的基本关系会因其中参数值的改变而发生变化.圆锥曲线中曲线类型是根据离心率的取值范围进行划分的.条件不唯一导致分类讨论.条件不唯一直接导致方程类型不确定㊁曲线种类不确定㊁位置关系不确定等情况出现,解题关键是对分析情况合理分类,正确讨论.五㊁分类讨论思想的注意点在采用分类讨论思想解答问题时,教师要让学生学会分类,以免讨论时出现遗漏的情况,这样才能在考试中取得理想分数.在解题时要注意几点:第一,要学会划定范围.一些学生在划定范围时存在困难,导致解题受到阻碍无法解出最终的答案.因此教师要注意培养学生划定范围的能力.如果题目当中没有给出明确的范围,教师可以让学生通过分析题目当中的其他信息进行分析计算,在学习过程中理清思路.第二,学会大范围分类讨论.在掌握了划定范围的能力后,一些学生在细分范围时不知道如何进行分类,教师需要帮助学生解决这类问题,培养学生的分类能力,要让学生明白分类的依据,结合题目当中的条件进行分析,培养学生的思维能力,让学生认真读题,理清解题的思路,然后对问题进行分类汇总.第三,重视培养学生的解题敏感度,分类讨论思想是解决数学问题的一种重要思想,需要学生重点掌握.在训练过程中,学生要提高解题速度和准确度.在解决需要分类讨论的问题时,一些学生往往想不到采用分类讨论的方法,缺乏对于题目的敏感性,因此教师需要重视学生的训练,让学生多做一些相关的习题,找出相关习题的规律和解题方法,这样才能有效地提高学生的学习能力,培养学生的数学素养,提高学生的学习成绩.六㊁总结高中数学几乎所有板块都涉及了分类讨论思想,因此培养学生运用分类讨论思想去解决问题是非常有必要的,它可以帮助学生找到解题思路,化繁为简,提高解题效率,帮助学生形成科学严谨的学习态度,进而强化逻辑推理能力,提升数学核心能力,推动学生综合素质的提升.教师要着眼于引导学生感受其思想精髓,学会运用分类讨论思想解决问题,以此来培养学生综合分析问题的能力,使学生形成正确的数学观,帮助学生高效地解决数学问题.ʌ参考文献ɔ[1]胡向斌.分类讨论思想在高中数学解题中的应用[J].学周刊,2020(8).[2]郭美迪.分类讨论思想在高中数学教学中的应用[J].高中数学教与学,2019(4).[3]王全庆.试论数学的分类讨论思想[J].南阳师范学院学报,2006(9).。
专题二 第三讲 数学思想方法与答题模板建构(文)
(2)∵a1=2,a1+a2=1,∴a2=-1. 又∵an+2-an=4, ∴数列的奇数项与偶数项分别成等差数列,公差均为 4. S2n+1=(a1+a3+„+a2n+1)+(a2+a4+„+a2n) n+1n nn-1 =(n+1)×2+ 2 ×4+n×(-1)+ 2 ×4 =4n2+n+2.
[点评] 本题考查数列的通项与前n项和的关系,以及等差数
列的定义,单调数列的判断等内容.转化条件4Sn=(an+1)2
为解题的关键.
在等比数列求和中经常对公比q进行分类,而有的数列通
项公式以分段函数给出,或以(-1)n形式给出的,要分类 求解.求含参数极限有时也要分类讨论.
[例1] (2011· 四川高考)已知{an}是以a为首项,q为公比的等 比数列,Sn为它的前n项和. (1)当S1,S3,S4成等差数列时,求q的值; (2)当Sm,Sn,Sl成等差数列时,求证:对任意自然数k,am+
2.在等差(比)数列的通项公式和前n项和公式中共有5个量
a1、d(或q)、n、an及Sn,这5个量中知道其中任意3个量
的值,就可以通过运用方程思想,解方程(或方程组)求 出另外2个量的值.
[例2] (2011· 江西高考)已知两个等比数列{an},{bn},满 足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3. (1)若a=1,求数列{an}的通项公式;
⇒第一步 列出含有a1和d的方程; ⇒第二步 推出a1=d=a; ⇒第三步 写出an.
1 1 1 (2)记 Tn= + a +„+ a ,因为 a2n=2na,┄┄┄┄┄┄(7 分) a2 22 2n 1 1n 1- 2 11 1 1 12 所以 Tn=a( + 2+„+ n)=a· 2 2 2 1 1- 2 1 1 =a[1-( )n].┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(10 分) 2 1 1 从而,当 a>0 时,Tn< ;当 a<0 时,Tn> .┄┄┄┄(12 分) a1 a1
初中数学分类讨论思想在解题中的应用探讨
初中数学分类讨论思想在解题中的应用探讨篇一初中数学分类讨论思想在解题中的应用探讨一、引言初中数学作为学生数学学习的重要阶段,不仅在知识体系上有着独特的特点,而且在思想方法上也有着重要的转折点。
其中,分类讨论思想是一种重要的数学思想,它通过对问题进行分类和细化,将复杂的问题分解为若干个简单的问题,从而帮助学生更好地理解和解决这些问题。
本文将就初中数学分类讨论思想在解题中的应用进行深入探讨。
二、分类讨论思想的基本概念分类讨论思想是一种数学思想,它根据一定的标准,将问题按照不同的类别进行划分,并对每一类问题进行分别讨论。
通过对问题进行分类和细化,可以帮助学生更好地理解问题的本质和特点,从而更好地解决问题。
在初中数学中,分类讨论思想主要应用在代数、几何等领域。
三、分类讨论思想在解题中的应用在代数中的应用在初中代数中,分类讨论思想的应用主要体现在以下几个方面:(1)实数的分类:实数可以分为正数、负数和零三类。
正数包括正整数和正小数;负数包括负整数和负小数;零是实数的中性元素。
通过对实数进行分类,可以帮助学生更好地理解实数的性质和运算规则。
(2)方程的分类:方程可以分为一元方程和多元方程两类。
一元方程是指只有一个未知数的方程;多元方程是指含有两个或两个以上未知数的方程。
通过对方程进行分类,可以帮助学生更好地理解方程的解法和特点。
(3)函数的分类:函数可以分为一次函数、二次函数、反比例函数等类型。
一次函数是指未知数的最高次数为1的函数;二次函数是指未知数的最高次数为2的函数;反比例函数是指形如y=k/x的函数。
通过对函数进行分类,可以帮助学生更好地理解函数的性质和图像特点。
在几何中的应用在初中几何中,分类讨论思想的应用主要体现在以下几个方面:(1)三角形的分类:三角形可以分为锐角三角形、直角三角形和钝角三角形三类。
锐角三角形是指三个内角都小于90度的三角形;直角三角形是指有一个内角等于90度的三角形;钝角三角形是指有一个内角大于90度的三角形。
分类讨论思想在高中数学教学中的应用策略
分类讨论思想在高中数学教学中的应用策略在高中数学的学习中,分类讨论思想是一种非常重要的思维方法。
它不仅能够帮助学生更好地理解和解决数学问题,还能培养学生严谨的逻辑思维和全面考虑问题的能力。
本文将探讨分类讨论思想在高中数学教学中的应用策略。
一、分类讨论思想的内涵及重要性分类讨论思想,简单来说,就是当一个数学问题不能以统一的形式进行解决时,需要根据问题的特点将其划分为不同的情况,然后分别对每种情况进行讨论和求解,最后综合各种情况得到问题的完整答案。
其重要性主要体现在以下几个方面:首先,有助于提高学生思维的严谨性。
在分类讨论的过程中,学生需要明确分类的标准,确保不重不漏,这能有效避免思维的漏洞和错误。
其次,增强学生解决问题的能力。
许多高中数学问题都需要通过分类讨论来解决,掌握这一思想方法能让学生在面对复杂问题时更加从容。
最后,为后续的学习和研究打下基础。
无论是在高等数学还是其他学科领域,分类讨论思想都有着广泛的应用。
二、分类讨论思想在高中数学教学中的应用场景1、函数问题函数是高中数学的重点内容,其中涉及到很多需要分类讨论的情况。
例如,对于二次函数,需要根据二次项系数的正负、判别式的大小等进行分类讨论来确定函数的单调性、最值、零点等。
2、不等式问题在解不等式时,常常需要考虑不等式的类型、参数的取值范围等进行分类讨论。
3、数列问题数列的通项公式、求和公式等的求解中,可能会因为数列的类型(等差、等比或其他)、项数的奇偶性等因素而需要分类讨论。
4、几何问题在几何图形的性质研究、位置关系判断等方面,如直线与圆的位置关系,需要根据圆心到直线的距离与半径的大小关系进行分类讨论。
三、引导学生掌握分类讨论思想的教学策略1、注重概念教学在讲解数学概念时,教师要善于揭示概念中蕴含的分类讨论思想。
例如,在讲解绝对值的概念时,要让学生明白绝对值的定义是根据数值的正负进行分类的。
2、精选例题选择具有代表性的例题,引导学生分析问题中需要分类讨论的因素,以及如何确定分类的标准和步骤。
初中数学解题常用的数学思想方法
初中数学解题常用的数学思想方法数学学习分为好多个环节,比如预习、上课、作业、复习、考试等等,而上课的部分是非常关键的环节。
小编整理了初中数学解题常用的数学思想方法,欢迎参考借鉴。
初中数学解题常用的数学思想方法1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。
数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。
5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。
配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。
6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。
换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。
7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。
数学论文分类讨论思想在初中数学解题中的运用策略
物以类聚,人以群分。
《易经》文/周金林数学思想是人们对现实世界的数量关系、空间形式、模式结构的意识反映,是思维活动的结果。
它能帮助人们系统化地学习知识、掌握结构,提供最佳解决问题的策略,诸如数形结合思想、化归思想、方程与函数思想、分类讨论思想等等。
分类讨论思想最早源于《九章算术》中关于盈亏问题的讨论,它指在部分数学问题中存在着一些不确定的因素,结论不是能够唯一确定的,要根据题目特点和要求,按不同的情况进行分类,将原题转化为若干个小问题逐项讨论,最后综合求解的过程。
一、渗透分类讨论思想的意义1.有助于养成分类的意识。
物以类聚,每个人在日常生活中都积累了一定的分类经验,教师在课堂教学中要将生活中的分类知识迁移到数学教学中,如数的分类、三角形的分类等等,力求做到目标明确、标准统一,要充分挖掘教材,抓住渗透的契机,将分类讨论应用于生活之中。
2.有助于掌握分类的方法。
在分类讨论教学中,教师要引导学生根据对象的属性进行分类讨论,不遗漏、不重复地划分子类,并对每一类加以解答,能有效地培养学生思维的缜密性。
3.有助于形成一题多解的能力。
分类讨论教学为学生营造了合作、交流、争辩的氛围,学生往往不满足于一种解法,对一些题目提出两种、三种甚至多种解法,能有效培养学生思维的灵活性,从而促进学生创新思维能力的发展。
4.有助于形成良好的认知结构。
学生认知结构的发展是通过学生主动同化、顺应,在原有的认知结构上进行拓展、延伸,从而形成新的系统。
分类讨论思想揭示知识间的内在联系,能帮助学生完善认知结构,培养思维的灵活性和创造性。
二、当前分类讨论思想渗透存在的主要问题1.教学思想陈旧。
长期以来,受“传道、授业、解惑”的传统影响,部分教师教学思想陈旧,沿袭传统的教学理念,以传授知识作为主要教学目标,他们只注重知识的传授,而忽视思想方法的渗透,他们从不主动考虑解题意图,不能从多角度分析问题,往往是一解了之,缺乏深层次的探索,掩盖了学生的思维困惑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分类讨论思想方法在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。
分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。
有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。
引起分类讨论的原因主要是以下几个方面:①问题所涉及到的数学概念是分类进行定义的。
如|a|的定义分a>0、a=0、a<0三种情况。
这种分类讨论题型可以称为概念型。
②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。
如等比数列的前n项和的公式,分q=1和q≠1两种情况。
这种分类讨论题型可以称为性质型。
③解含有参数的题目时,必须根据参数的不同取值范围进行讨论。
如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。
这称为含参型。
另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。
进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。
其中最重要的一条是“不漏不重”。
解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。
Ⅰ、再现性题组:1.集合A={x||x|≤4,x∈R},B={x||x-3|≤a,x∈R},若A⊇B,那么a的范围是_____。
A. 0≤a≤1B. a≤1C. a<1D. 0<a<12.若a>0且a≠1,p=loga (a3+a+1),q=loga(a2+a+1),则p、q的大小关系是_____。
A. p=qB. p<qC. p>qD.当a>1时,p>q;当0<a<1时,p<q3.函数y=sin|sin|xx+cos|cos|xx+tgxtgx||+||ctgxctgx的值域是_________。
4.若θ∈(0, π2),则limn→∞cos sincos sinn nn nθθθ+θ-的值为_____。
A. 1或-1B. 0或-1C. 0或1D. 0或1或-15.函数y=x+1x的值域是_____。
A. [2,+∞)B. (-∞,-2]∪[2,+∞)C. (-∞,+∞)D. [-2,2]6.正三棱柱的侧面展开图是边长分别为2和4的矩形,则它的体积为_____。
A. 893 B.493 C.293 D.493或8937.过点P(2,3),且在坐标轴上的截距相等的直线方程是_____。
A. 3x -2y =0B. x +y -5=0C. 3x -2y =0或x +y -5=0D.不能确定【简解】1小题:对参数a 分a>0、a =0、a<0三种情况讨论,选B ;2小题:对底数a 分a>1、0<a<1两种情况讨论,选C ;3小题:分x 在第一、二、三、四象限等四种情况,答案{4,-2,0};4小题:分θ=π4、0<θ<π4、π4<θ<π2三种情况,选D ; 5小题:分x>0、x<0两种情况,选B ;6小题:分侧面矩形长、宽分别为2和4、或4和2两种情况,选D ;7小题:分截距等于零、不等于零两种情况,选C 。
Ⅱ、示范性题组:例1. 设0<x<1,a>0且a ≠1,比较|log a (1-x)|与|log a (1+x)|的大小。
【分析】 比较对数大小,运用对数函数的单调性,而单调性与底数a 有关,所以对底数a 分两类情况进行讨论。
【解】 ∵ 0<x<1 ∴ 0<1-x<1 , 1+x>1① 当0<a<1时,log a (1-x)>0,log a (1+x)<0,所以|log a (1-x)|-|log a (1+x)|=log a (1-x)-[-log a (1+x)]=log a (1-x 2)>0; ② 当a>1时,log a (1-x)<0,log a (1+x)>0,所以|log a (1-x)|-|log a (1+x)|=-log a (1-x) -log a (1+x)=-log a (1-x 2)>0;由①、②可知,|log a (1-x)|>|log a (1+x)|。
【注】本题要求对对数函数y =log a x 的单调性的两种情况十分熟悉,即当a>1时其是增函数,当0<a<1时其是减函数。
去绝对值时要判别符号,用到了函数的单调性;最后差值的符号判断,也用到函数的单调性。
例2. 已知集合A 和集合B 各含有12个元素,A ∩B 含有4个元素,试求同时满足下面两个条件的集合C 的个数: ①. C ⊂A ∪B 且C 中含有3个元素; ②. C ∩A ≠φ 。
【分析】 由已知并结合集合的概念,C 中的元素分两类:①属于A 元素;②不属于A 而属于B 的元素。
并由含A 中元素的个数1、2、3,而将取法分三种。
【解】 C 121·C 82+C 122·C 81+C 123·C 80=1084【注】本题是排列组合中“包含与排除”的基本问题,正确地解题的前提是合理科学的分类,达到分类完整及每类互斥的要求,还有一个关键是要确定C 中元素如何取法。
另一种解题思路是直接使用“排除法”,即C 203-C 83=1084。
例 3. 设{a n }是由正数组成的等比数列,S n 是前n 项和。
①. 证明: lg lg S S n n ++22<lgS n +1; ②.是否存在常数c>0,使得lg()lg()S c S c n n -+-+22=lg (S n +1-c )成立?并证明结论。
(95年全国理)【分析】 要证的不等式和讨论的等式可以进行等价变形;再应用比较法而求解。
其中在应用等比数列前n 项和的公式时,由于公式的要求,分q =1和q ≠1两种情况。
【解】 设{a n }的公比q ,则a 1>0,q>0①.当q =1时,S n =na 1,从而S n S n +2-S n +12=na 1(n +2)a 1-(n +1)2a 12=-a 12<0;当q ≠1时,S n =a q qn 111()--,从而 S n S n +2-S n +12=a q q q n n 1222111()()()---+-a q q n 1212211()()--+=-a 12q n <0; 由上可得S n S n +2<S n +12,所以lg(S n S n +2)<lg(S n +12),即lg lg S S n n ++22<lgS n +1。
②. 要使lg()lg()S c S c n n -+-+22=lg (S n +1-c )成立,则必有(S n -c)(S n +2-c)=(S n +1-c)2,分两种情况讨论如下:当q =1时,S n =na 1,则(S n -c)(S n +2-c)-(S n +1-c)2=(na 1-c)[(n +2)a 1-c]-[(n +1)a 1-c]2=-a 12<0 当q ≠1时,S n =a q q n 111()--,则(S n -c)(S n +2-c)-(S n +1-c)2=[a q qn 111()---c][ a q q n 1211()--+-c]-[a q qn 1111()--+-c]2=-a 1q n [a 1-c(1-q)] ∵ a 1q n ≠0 ∴ a 1-c(1-q)=0即c =a q11-而S n -c =S n -a q 11-=-a q qn11-<0 ∴对数式无意义 由上综述,不存在常数c>0, 使得lg()lg()S c S c n n -+-+22=lg (S n +1-c )成立。
【注】 本例由所用公式的适用范围而导致分类讨论。
该题文科考生改问题为:证明log log ..050522S S n n ++>log 05.S n +1 ,和理科第一问类似,只是所利用的是底数是0.5时,对数函数为单调递减。
例1、例2、例3属于涉及到数学概念、定理、公式、运算性质、法则等是分类讨论的问题或者分类给出的,我们解决时按要求进行分类,即题型为概念、性质型。
例4. 设函数f(x)=ax 2-2x +2,对于满足1<x<4的一切x 值都有f(x)>0,求实数a 的取值范围。
【分析】 含参数的一元二次函数在有界区间上的最大值、最小值等值域问题,需要先对开口方向讨论,再对其抛物线对称轴的位置与闭区间的关系进行分类讨论,最后综合得解。
【解】当a>0时,f(x)=a (x -1a )2+2-1a∴ 111220a f a ≤=≥()-+⎧⎨⎪⎩⎪或1141210<<->⎧⎨⎪⎪⎩⎪⎪a f aa ()= 或14416820a f a ≥=≥()-+⎧⎨⎪⎩⎪∴ a ≥1或12<a<1或φ 即 a>12; 当a<0时,f a f a ()()1220416820=≥=≥-+-+⎧⎨⎩,解得φ; 当a =0时,f(x)=-2x +2, f(1)=0,f(4)=-6, ∴不合题意由上而得,实数a 的取值范围是a>12。
【注】本题分两级讨论,先对决定开口方向的二次项系数a 分a>0、a<0、a =0三种情况,再每种情况结合二次函数的图像,在a>0时将对称轴与闭区间的关系分三种,即在闭区间左边、右边、中间。
本题的解答,关键是分析符合条件的二次函数的图像,也可以看成是“数形结合法”的运用。
例5. 解不等式()()x a x aa+-+4621>0 (a为常数,a≠-12)【分析】含参数的不等式,参数a决定了2a+1的符号和两根-4a、6a的大小,故对参数a分四种情况a>0、a=0、-12<a<0、a<-12分别加以讨论。
【解】 2a+1>0时,a>-12;-4a<6a时,a>0 。
所以分以下四种情况讨论:当a>0时,(x+4a)(x-6a)>0,解得:x<-4a或x>6a;当a=0时,x2>0,解得:x≠0;当-12<a<0时,(x+4a)(x-6a)>0,解得: x<6a或x>-4a;当a>-12时,(x+4a)(x-6a)<0,解得: 6a<x<-4a 。