有理数的加法 ppt课件12

合集下载

第1课时有理数的加法法则(39张PPT)数学

第1课时有理数的加法法则(39张PPT)数学

B
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
解析
答案
解析 -(-1)+|-1|=-(-1)+1=1+1=2,故选B.
3.下列运算正确的是( )A.(-2)+(-2)=0 B.(-6)+(+4)=-10C.0+(-3)=3 D.0.56+(-0.26)=0.3
1
2
3
4
5
6
7
8
9
10
11
答案
同号两数相加,取与 相同的符号,并把 相加;异号两数相加,取 的符号,并用 减去_____________;互为 的两个数相加得0;一个数同0相加,仍得这个数.
类型2
利用有理数的加法法则运算

例2 (教材例1针对训练)计算:
(2)(-39)+(-11).
解 (-39)+(-11)=-(39+11)=-50.

(4)(-10)+0.
解 (-10)+0=-10.
归纳总结 两个有理数相加的运算方法:(1)同号→确定符号(与加数同号)→把绝对值相加;(2)异号→确定符号(取绝对值较大的加数符号)→较大绝对值减较小绝对值;(3)数+0=原数.
0
-8
典例精析
类型1
利用数轴表示两个有理数相加
例1 (教材补充例题)在数轴上表示以下两数相加,并写出结果.(1)(-5)+(+3).

解 (-5)+(+3)=-2.

(2)(-2)+(-4).
解 (-2)+(-4)=-6.
归纳总结 利用数轴表示两个有理数相加的步骤:(1)画数轴;(2)从0开始进行移动;(3)根据终点确定和.

课件有理数的加法PPT_北师大版七年级数学上册PPT精品课件[完整版]

课件有理数的加法PPT_北师大版七年级数学上册PPT精品课件[完整版]

则:
(千米).
答:第二天勘察队在出发点的下游 千米处.
重难易错
7.计算:
(1)(+1.2)+(-0.3)=
(2)(-3.5)+
=
(3)
=
(4)
=
0.9 ; ;
; .
8.下列各式运算正确的是( D ) A. (-7)+(-7)=0 B. C. 0+(-101)=101 D.
三级检测练
一级基础巩固练 9. 下列运算过程正确的是( D ) A. (-3)+(-4)=-3+-4=… B. (-3)+(-4)=-3+4=… C. (-3)+(-4)=3+(-4)=… D. (-3)+(-4)=-(3+4)=…

第7课 知识点2 有理数加法的应用
(2)(-19)+(-3)=-(19+3)=-22.
(3)
=

有理数的加法(1)
(2)
=

(2)绝对值相等的两个数的和等于0.
.
(1)若x的相反数是3,y=5,则x+y=

(2)(-19)+(-3)=-(19+3)=-22.
新课学习
知识点1 借助数轴比较有理数的大小 1.(1)同号两数相加,取相同的符号,并把绝对值相加.
解:-35+50=15(℃).
两个点分别在原点的两侧,这两个点表示的有理数的和是2+(-3)=-1或-2+3=1.
答:求得的和中最小的是-12.
(4) 李老师在4张纸条上分别写上4个有理数:|-3|,-(+4),+|-9|,-8,他让同学们从中抽取2张,并求出其和.

北师大版七年级数学上册《有理数的加法》优质课件

北师大版七年级数学上册《有理数的加法》优质课件
• 8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。下午9时49 分12秒下午9时49分21:49:1221.11.7
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月下午9时49分21.11.721:49November 7, 2021
• 7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观 察是思考和识记之母。”2021年11月7日星期日9时49分12秒21:49:127 November 2021
有理数的加法
英超2003-2004赛季,中国球 员李铁效力的埃弗顿首轮以2:1输 给阿森纳,第2轮3:1战胜富勒姆, 该队这两轮比赛的净胜球是多少?
我们把应1个球记作“+1”, 输1个球记作“-1”,埃弗顿两场 比赛的净胜球分别是多少?这两 场比赛最终的净胜球是大小?
两个有理数相加,和的符号 怎样确定?和的绝对值怎样确 定?一个有理数同0相加,和是 多少?
土星表面的夜间平均温是 多少度?
请你设计一个运动的情景, 并用有理数加法算式表示这个 情景。
• 1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” • 2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 • 3、反思自我时展示了勇气,自我反思是一切思想的源泉。 • 4、好的教师是让学生发现真理,而不只是传授知识。 • 5、数学教学要“淡化形式,注重实质.

2.1.1 第1课时 有理数的加法法则 课件2024-2025学年人教版数学七年级上册

2.1.1 第1课时 有理数的加法法则 课件2024-2025学年人教版数学七年级上册

与 应
起点向右(或左)运动了5 m.写成算式就是 5+0=5(或(-5)+0=-5) .

总结: 一个数与0相加,结果仍是这个数.
综合以上情形,我们得到有理数的加法法则:

究 1. 同号两数相加,和取相同的符号,且和的绝对值
与 应
等于加数的绝对值的和.
用 2. 绝对值不相等的异号两数相加,和取绝对值较
大的加数的符号,且和的绝对值等于加数的绝对
值中较大者与较小者的差.互为相反数的两个数
相加得0.
3. 一个数与0相加,仍得这个数.
注意:一个有理数 由符号和绝对值两 部分组成,所以进行 加法运算时,必须分 别确定和的符号和 绝对值.
两个有理数相加,和是一个有理数.
例题精讲

究 例1. 计算:


(1)(-3 )+(-9 );
课 堂 小 结 与 检 有理数的加法 测
法则 基本步骤 应用
1.先判断类型(同号、异号等); 2.再确定和的符号; 3.最后进行绝对值的加减运算.
课 堂
1.计算-|-3|+1的结果正确的是( C
)
小 A.4 B.2
C.-2
D.-4
结 2.如图,在一条东西向的笔直马路上,小亮从点O出发,沿箭头所指方向 与
应 根据以上三个算式能否尝试总结异号两数相加的法则?

总结:
1.绝对值不相等、符号相反两个数相加,和的符号与
绝对值较大的加数的符号相同,且和的绝对值等于加
数的绝对值中较大者与较小者的差
2..互为相反的两个数相加,结果为0
探究 一个数与0相加

究 如果物体第1 s向右(或左)运动5 m,第2 s原地不动,那么2 s后物体从

1.6 有理数的加法(第1课时 有理数加法法则)(课件) 七年级数学上册(华东师大版2024)

1.6 有理数的加法(第1课时 有理数加法法则)(课件) 七年级数学上册(华东师大版2024)
A. -5
B. 5
C. -1
D. 1
)
和的绝对值

20
20
20
-20
5. [2023·连云港]如图,数轴上的点 A , B 分别对应数 a , b ,
则a+b

0.(用“>”“<”或“=”填空)
【解析】由数轴可得 a <0< b ,| a |>| b |,根据异号两
数相加,取绝对值较大的数的符号,再用绝对值较大的数减去较小的


【解】因为| a |= ,所以 a =± .




因为| b |= ,所以 b =± .因为 a > b ,






所以 a = , b = 或- .所以 a + b =





.
11. [立德树人 民族精神]在某次抗洪抢险中,解放军战士的冲锋舟沿东西方向的河
流抢救灾民,早晨从甲村出发,晚上到达乙村,约定向东为正方向,当天的航
4
–2 –1 0
1
2
3
4
10
3
Байду номын сангаас
–7 –6 –5 –4 –3 –2 –1 0
7
1
2
3
4
5
–6 –5 –4 –3 –2 –1 0
2
1
2
3
1
2
3
6
–6 –5 –4 –3 –2 –1 0
还有两种特殊情形:
(5)第一次向西走了30米,第二次向东走了30米写成算式是.
(-30)+(+30)=( 0 )
(6)第一次向西走30米,第二次没走.写成算式是.

有理数的加法ppt课件

有理数的加法ppt课件
在财务管理中,有理数的加法用于计算总收入、总支出和净利润。 例如,一家公司的日收入为200元,支出为150元,净利润是多少呢?
200 + (-150) = 50(元)
Байду номын сангаас
日常生活中的应用
在日常生活中,有理数的加法用于计算购物的总花费、 旅行的总距离等。
例如, 一个人带了100元在超市购物,在超市购买了价值10元、20元 和30元的商品,还有多少钱呢?
0+ (-11) =
加法的结合律
加法的结合律表明,加数的分组方式可以改变,但和不变。 加法结合律: a + (b + c ) = (a + b ) + c
8 + (-10) + (- 8) =[8 + (- 8)] + (- 10) =0 +(- 10) =- 10
有理数加法的实际应用
财务计算中的应用
11 + 0= 11 0+0= 0
有理数加法的运算律
加法的交换律
加法的交换律表明,加数的顺序可以改变,但和不变。 加法交换律: a + b = b + a
5 + 10= 15
10 + 5=
(-11) +(-1) = -12
(-1) + (-11) =
(-5) + 1= -4
1 + (-5)=
(-11) + 0 = -11
加法的基本概念
(1)如果物体沿着一条直线先向左运动3m,再向右运动5m,那 么两次运动的最后结果是什么?如何用算式表示?
(2)如果物体沿着一条直线先向右运动3m,再向左运动5m,那 么两次运动的最后结果是什么?如何用算式表示?

2.1.1 有理数的加法(第1课时 有理数的加法法则)(课件)七年级数学上册(人教版2024)

2.1.1 有理数的加法(第1课时 有理数的加法法则)(课件)七年级数学上册(人教版2024)
+2 两次运动的最后结果是,物体从起点向右运动了2m, 用算式表示是: (﹣3)+(+5)=+2.
简记为: (﹣3)+5=2. ③
新知探究
问题4:如果物体沿着一条直线先向右运动3m,再向左运动5m,
那么两次运动的最后结果是什么?如何用算式表示?
﹣5
+3
-5 -4 -3 -2 -﹣1 2 0
123
45
当堂巩固
口算下列各题,并说明理由: (+3)+(+5); (﹣3)+(﹣5); (+3)+(﹣5); (﹣3)+(+5); (+4)+(﹣4); (+9)+(﹣2); (﹣9)+(+2); (﹣9)+0.
能力提升
1. 用“> ”或“<”填空: ①如果a>0,b>0,那么a+b > 0; ②如果a<0,b<0,那么a+b < 0; ③如果a>0,b<0,|a|>|b|,那么a+b > 0; ④如果a<0,b>0,|a|<|b|,那么a+b > 0.
+5
-5 -4 -3 -2 -1 0 1 2 3 4 5
﹣5
-5 -4 -3 -2 -1 0 1 2 3 4 5
用算式表示为: 5+0=5或(﹣5)+0=﹣5. ⑥
探索归纳
5+0=5或(﹣5)+0=﹣5. ⑥ 算式⑥表明:一个数与0相加,结果仍是这个数.
思考归纳
有理数加法的分类
5+3=8. (﹣5)+(﹣3)=﹣8.

北师大七年级数学上册《有理数的加法》课件

北师大七年级数学上册《有理数的加法》课件
2.4 有理数的加法
1.有理数加法法则: (1)同号两数相加,取__相__同____的符号,并把绝对值__相__加____ ; (2)绝对值不相等的异号两数相加,取绝对值较___大_____的加 __小__的__绝__对__值_,互为相反数 的两个数相加得____0____. (3)一个数同0相加,仍得_这__个__数___.
谢谢观赏
You made my day!
我们,还在路上……
21.0.3+(-0.4)+0.25+(-0.2)+(-0.7)+1.1+(-1)=- 0.65(千克),7×15+(-0.65)=104.35(千克),称得的总质 量与总标准质量不足0.65千克,7箱橘子共有104.35千克
22.已知|a|=23,|b|=32,且a>b,求a+b的值.
22.根据题意得 ①a=23,b=-32,a+b=-9 ②a=-23,b=-32,a+b=-55
(1)收工时距A地多远? (2)若每千米耗油0.2 L,从A地出发到收工时,共耗油多少 升?
24.(1)(+10)+(-3)+(+4)+(+2)+(-8)+(+13)+(-2)+ (+12)+(+8)+(+5)=41(km)
(2)|+10|+|-3|+|+4|+|+2|+|-8|+|+13|+|-2|+|+12|+| +8|+|+5|=67(km),0.2×67=13.4(L)
11.计算:(-7)+(+11)+(-13)+9=( B )
A.-1 B.0 C.1 D.3
12.有理数a,b在数轴上的对应位置如图所示,则a+b的值 为( B )
A.大于0 B.小于0 C.等于0 D.大于a
13.若两个有理数的和为正数,则这两个数( D ) A.均为正数 B.均不为零 C.至少有一个为负数 D.至少有一个为正数

有理数加法的运算律(优质课件)

有理数加法的运算律(优质课件)

(5) -9+15+(-11)
小 结
(5)[(-22)+(-27)]+(+27) = -22 (6)(-22)+[(-27)+(+27)] = -22
加法结合律:三个数相加,先 把前两个数相加,或者先把后 两个数相加,和不变 (a+b)+c=a+(b+c)
一般地,任意若干个数相加,无论各 数相加的先后次序如何,其和都不变。
例1、 5-3+7-9+12=(5+7+12)+(-3-9)是应用 了( ) A. 加法交换律 B. 法结加合律 C.分配律 D. 加法交换律和结合律
2 (8)(+ 3 2 3
)+(-
) =0
问:在小学学过哪些加法的运算律?
加法交换律与加法结合律
在小学学过: 加法交换律与加法结合律 思考: 引入负数后,这些运算律还成立吗?
(1)(-9.18)+6.18 = -3 (2)6.18+(-9.18)= -3
(3)(-2.37)+(-4.63)= -7
(1)正负号相同的数可以先相加; (2)凑整法:几个数相加得整数时,可先相 加; (3)凑0,即几个和为0的先加,尤其将互为 相反数的数结合在一起; (4)同分母运算:分数运算时,可以把分母 相同的先进行运算。
计算:
(1) (-14)+(+12)+(-6)+13
(2) 2.36+(-25)+(-2)+2.64+(-6) (3) 12+(-3)+(-15)+(+6) (4) -15+(-19)+15+(-21)

(2024秋新版本)北师大版七年级数学上册 《 有理数的加减运算》PPT课件

(2024秋新版本)北师大版七年级数学上册 《 有理数的加减运算》PPT课件
5
4
5
4
2
3
思考:有没有简便的方法?
探究新知
(1)解:原式=(31+69)+[(-28)+28](加法交换律和结合律)
=100+0 (一个数同0相加,仍得这个数)
=100;
(2) 解:原式=[(-64)+(-23)]+(17+68)
(加法交换律和结合律)
=(-87)+85 (异号相加法则)
=-2.
加法的结合律: (a+b)+c=a+(b+c).
探究新知
知识点
有理数加法的运算律
计算并比较每组的两个算式的结果:
(1)(-8)+(-9)= -17
(-9)+(-8)= -17
(2) 4 +(-7)= -3
(-7) + 4 = -3
(3) [2+(-3)]+(-8)= -9
2+[(-3)+(-8)]= -9
同号两数相加,取相同的符号,并把绝对值相加.
异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对
值较大的数的符号,并用较大的绝对值减去较小的绝对值.
一个数同0相加,仍得这个数.
探究新知
( - 4 ) + ( - 8 ) = - ( 4 + 8 )= - 12


同号两数相加
取相同符号
通过绝对值化归
不合格
径18mm,该零件____________
(填“合格”或“不合格”)。
课堂检测
基 础 巩 固 题
5.小虫从某点O出发在一条直线上来回爬行,假定向右为正方

2.1.1有理数的加法 课件 (16张PPT)人教版(2024)七年级数学 上册

2.1.1有理数的加法 课件 (16张PPT)人教版(2024)七年级数学 上册
(+3)+(-4)= ?-1 -1
思考:从上面问题中,你能得出异号两数相加的方法吗?
结论:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的 绝对值。
问题4:如果星期三那天,水泥进货5吨,同时出货5吨,那么那天的 库存有没有变化?
(+5)+(-5)= 0
结论:互为相反数的两个数相加得零。
学以致用
3、在数轴上表示下列有理数的运算,并求出计算结果.
(1)2+3
(1) −5 (2) −7
(3)
−8 (4) −7
(2)(-5)+(-2) (3)(-8)+(+5) (4)(-6)+6
+2
+3
−4 −3 −2 −1 0 1 2 3 4 5 2+3=5
+5
-2
-5
(-5)+(-2)=-7
−6 −5 −4 -7−3 −2 −1 0
结论:同号两数相加,取与加数相同的符号,并把绝对值相加.
请尝试完成下列问题:
一建筑工地仓库记录星期一和星期二水泥的进货和出货数量如 图,其中进货为正,出货为负(单位:吨):
日期 星期一 星期二
进出货情况
+5
-2
+3
-4
库存变化
问题3:星期一该建筑工地仓库的水泥库存是增加了还是减少了? 星期二该建筑工地仓库的水泥库存是增加了还是减少了?
一建筑工地仓库记录星期一和星期二水泥的 进货和出货数量,如下表,其中进货为正,出货 为负,库存增加为正,库存减少为负(单位:吨).
星期一 星期二 合计
进出货数量
+5 -2
+3 -4
+8
-6
库存变化
+3 -1 +2
根据你的生活经验,填写表中的空格, 然后思考以下问题:

1.6.1 有理数的加法法则(课件)-七年级数学上册(华东师大版2024)

1.6.1 有理数的加法法则(课件)-七年级数学上册(华东师大版2024)
67 × 0.2 = 13.4(升).
答:从A地出发到收工时共耗油13.4升.
课后小结
华东师大版(2024)七年级上册
感谢聆听
主讲:
【详解】解:∵ −13 + −15 + 0 + 20 + −2 = −10,
∴第6位同学小叶的实际成绩超出标准分10分.
∴小叶的实际成绩是80 + 10 = 90分,
答:小叶的实际成绩是90分..
课堂测试
8.(22-23七年级上·河南许昌·阶段练习)某检修小组乘汽车沿公路检修线路,约定前进为
正,后退为负,某天自A地出发到收工时所走路线(单位:千米)为:+10, −3, + 4, +
6) (-5)+13 =
+8
7) (-23)+0 =
-23
8) (-45)+15 = -30
-32
典例分析
例2 子贡:复姓端木名赐,字子贡,华夏族,春秋末年卫国人.孔子的得意门生,生
于公元前520年,比孔子小31岁.现规定公元前记为-,公元后记为+ .则孔子的出生
年份可记为(
A.-551

B.-489
华东师大版(2024)七年级上册
第1章
有理数
1.6.1 有理数的加法法则
主讲:
学习目标
1
目标
1.了解有理数加法的意义.
2.通过观察、比较、归纳等得出有理数加法法则,并会根据法则进行
有理数的加法运算.
3.使学生能运用有理数加法法则解决简单的实际问题.
2
重难点
重点:会根据有理数加法法则进行有理数的加法运算,理解有理数加
30

2.1.1 有理数的加法(第1课时 有理数的加法法则)(课件)七年级数学上册(人教版2024)

2.1.1 有理数的加法(第1课时 有理数的加法法则)(课件)七年级数学上册(人教版2024)

(2)(-13)+(-8);
解:原式=-(22-15)
=-7
解:原式=-(13+8)
=-21
(3)(-0.9)+1.5;
解:原式=+(1.5-0.9)
=-0.6
1 2
(4) +(- ).
2 3
2 1
解:原式=-( - )
3 2
1
=6
4.请你用生活实例解释(-3)+2=-1,(-3)+(-2)=-5的意义.
和是( D
)
A. 2
B. -1
C. - 3
D. - 4
5. 【新考法数学文化】我国是最早认识负数并进行相关运算
的国家,魏晋时期的数学家刘徽在其著作《九章算术注》
中,用算筹(小棍形状的记数工具)来表示正负数,其中正
放表示正数,斜放表示负数,例如图①表示的是(-2)+(+
4)=+2的运算过程.按照这种方法,可推算图②中表示的
人教版(2024)七年级数学上册 第二章 有理数的运算
2.1.1 有理数的加法
(第一课时) 有理数的加法法则
目录/CONTENTS
学习目标
情景导入
新知探究
分层练习
课堂反馈
课堂小结
学习目标
1.了解有理数加法的意义,理解有理数加法法则的合理
性.
2.能运用该法则准确进行有理数的加法运算.(重点)
3.经历探索有理数加法法则的过程,理解并掌握有理数
x 值为7,则输出的 y 值为
-1 .

9. [2024·长沙雨花区期末]若有理数 a , b , c 在数轴上对应
点的位置如图所示,且| b |=| c |.

2.1.1 有理数的加法法则课件(第1课时)(19张PPT) 人教版(2024)数学七年级上册

2.1.1 有理数的加法法则课件(第1课时)(19张PPT) 人教版(2024)数学七年级上册
(2) 3.7+(-8.4)=-(8.4-3.7)=-4.7.
(3) 3.22+1.78=+(3.22+1.78)=5.
(4) 7+(-3.3)=+(7-3.3)=3.7.
2. 如果两个数的和为正数,那么下列描述中,一定错误的是 ( )A. 两个数均为正数B. 两个数一个是正数,另一个是零C. 两数一正一负,正数比负数的绝对值大D. 两数一正一负,正数比负数的绝对值小
魏晋时期的数学家刘徽在其著作《九章算术注》中用不同颜色的算筹(小棍形状的记数工作)分别表示正数和负数(红色为正,黑色为负). 你能写出下列算筹表示的数和最终结果吗?
( ) + ( ) 何计算?
探究一 一个物体作左右方向的运动,我们规定向右为正,向左为负.向右运动 5m 记作 5m ,向左运动 5m 记作-5m.
(+15)+(-25)+(+20) =-(25-15)+(+20)
答:卡车最后停在 A 站东面 10 km 处.
=(-10)+20=10 (km).
同学们再见!
授课老师:
时间:2024年9月1日
符号不变
绝对值相加
例1 填表:
算式
结果符号
+3+(+8)
-6+(-4)
+2024+(+2025)
-1.3+(-9.9)




3. 如果物体先向左运动 3 m,再向右运动 5 m,那么两次运动后的最终结果是什么?可以用怎么样的算式表示?4. 如果物体先向右运动 3 m,再向左运动 5 m,那么两次运动后的最终结果是什么?可以用怎么样的算式表示?
1. 计算:(1) 180 + (-10); (2) (-10) + (-1);(3) 5 + (-5); (4) 0 + (-2).

2.1.2.2有理数的加减混合运算 课件(共22张PPT)

2.1.2.2有理数的加减混合运算  课件(共22张PPT)
2.1 有理数的加减法 2.1.2 有理数的减法 2.1.2.2 有理数的加减混合运算
学习目标
1.学会把有理数加减法的算式统一成只有加法的算式. 2.能正确熟练地进行有理数的加减混合运算. 3.通过把减法运算转化为加法运算,体会转化思想.
学习重、难点: 重点:加减法统一成加法. 难点:有理数加法的省略写法和读法.
(2)
.
总结归纳
有理数加减混合运算的步骤:
加法
交换律和加法 结合 律; 加法
有理数加减法混合运算常用方法: (1)正负数结合法; (2)相反数结合法; (3)凑整数结合法; (4)同分母分数结合法等.
典例精析
例 计算:
解:原式=
拆分带分数法
拆分带分数时,拆开的整数与分数必须与原 注意: 分数同号,用字母表示为:
= –40–27+19–24+32
观察以上两个式子,
(2) 原式=(–9)+(+2)+(–3)+(–4)你能发现简化符号的
= –9+2–3-4
规律吗?
规律:数字前“-”号是奇数个取“-”; 数字前“-”号是偶数个取“+”.
练一练
把下列算式改写为省略括号和加号的形式:
(1) (-40)-(+27)+19-24-(-32)
跟踪训练
计算: (1)7.8+(-1.2)-(-0.2)
(2)-5.3-(-6.1)-(-3.4)+7
问题探究
在数轴上,点A,B分别表示数a,b.对于下列各组数a,b:
(1)a=2,b=6;
(2)a=0,b=6;
(3)a=2,b=-6; (4)a=-2,b=-6.
(1)观察点 A,B 在数轴上的位置,你能得出它们之间的
-40-27+19-24+32

人教版七年级数学上册1.3有理数的加法 (共20张PPT)

人教版七年级数学上册1.3有理数的加法 (共20张PPT)

有理数加法法则: 1.同号两数相加,取相同符号,并 把绝对值相加. 2.绝对值不相等的异号两数相加取 绝对值较大的加数的符号,并用较大的绝 对值减去较小的绝对值,互为相反数的两 个数相加得0. 3.一个数同0相加,仍得这个数.
例1 计算:
(1)(3) (9) (2)(4.7) 3.9 解: (1) (3) (9) (3 9) 12 (2)(4.7) 3.9 (4.7 3.9) 0.8
例2 足球循环赛中,红队胜黄队4:1, 黄队胜蓝队1:0,蓝队胜红队1:0,计算各 队的净胜球数. 解:每个队的进球总数记为正数,失球 总数记为负数,这两数的和为这队的净胜球 数. 红队共进4球,失2球,所以红队的净 胜球数为:(4) (2) (4 2) 2 黄队共进 2 球,失 4 球,净胜球数为 (2) (4) = 2. 蓝队共进 1 球,失 1 球,净胜球数为 (1) (1) = 0 .
再计算总计超过多少千克:
905.4 90 10 5.4
例4 10袋小麦称后记录如图所示(单位:kg).10袋小 麦一共多少千克?如果每袋小麦以90 kg为标准,10袋小麦总 计超过多少千克或不足多少千克?
91
91
91.5
89
91.2
解法2:每袋小麦超过90 kg 的千克数记作正数,不足的千克 数记作负数.10袋小麦对应的数分别为 1,1, , , 1.5 1,1.2 1.3, 1.3, 1.2, 1.8,1.1. 1 1 1.5 (1) 1.2 1.3 (1.3) (1.2) 1.8 1.1
5 (5) 0

从算式①②可以看出:符号相同的两个数相加, 结果的符号不变,绝对值 相加. 从算式③④可以看出:符号相反的两个数相加, 结果的符号与绝对值 较大的加数的符号相同,并用 较大的绝对值 减去较小的绝对值. 从算式⑤可以看出:互为相反数的两个数相加, 结果为 0 . 从算式⑥可以看出:一个数同0相加,仍 得 这个数. 如果物体第1s向右(向左)运动5m,第2s 原地不动,2s后物体从起点向右(或向左)运动 了5m. 写成算式就是: 50 5 (或 (5) 0 5) ⑥
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-1 0 1

即:(-2)+(-3)= -5
同号两数相加
(-3)+2 , 3+(-2)的运算过程 ) 利用数轴表示(-
2
-1
-3

0 1
-5
-4
-3
-2
-1
即:(-3)+2 = -1
1
3
-3 -2 -1 0 1 2 3
-2

即:3 + (-2)= 1
利用数轴表示(-4)+4 的运算过程
4 -4
-4 -3 -2 -1 0 1 2 3 4
- - -

同号两数相加: 和的符号怎么确定? 和的绝对值怎么确定?
计算(-3)+2 = -1
- - - + + -+ - -+

异号两数相加: 和的符号怎么确定? 和的绝对值怎么确定 ?
计算 3+(-2) = 1
+ +


+- + +-


异号两数相加: 和的符号怎么确定? 和的绝对值怎么确定?
练习与小结
P47-随堂练习1 P48-习题2.4-3
有理数的加法
2003中国足协杯赛中,云南红塔足球队9 月10日4-0战胜八一湘潭,9月16日2-1战胜 上海申花从而挤进甲A八强,问:该队这两场 比赛的净胜球数是多少?
净胜球数为 +5 如果球队羸一个 如果该队第一场比赛赢了 1 个球 , 第二场比 球记作+1,输一个 赛输了1个球,那么、该队这两场比赛的净胜 球记作-1,赢的球 数和输的球数相加的 球为多少? 结果即为净胜球 净胜球数为 0
我们用1个 + 表示+1,用1个 - 表示-1,那么
+ - 就表示0,同样 - + 也表示0。
利用这种方法计算:
(1)(-2)+(-3)= -5 (2)(-3)+2 = -1 (3) 3+(-2) = 1 (4)(-4)+4 = 0
两个有理数相加有规律可行吗
?
计算(-2)+(-3)= -5
- - - - - -
计算(-4)+4 = 0
- - - - + + + + -+ -+ -+ -+
互为相反数的两个数相加 结果为多少?
以原点为起点,规定向东的方向为正方向,向西的方 向为负方向。 -2表示向西走了2米, -3表示向西走3米。 利用数轴表示(-2)+(-3)的运算过程
-5
-3
-5-4)+4 = 0
互为相反数的两个数和为0
议一议: 两个有理数相加,和的符号
怎样确定?和的绝对值怎么确定? 一个有理数同0相加,和是多少? 同号两数相加,取相同的符号,并把绝 (1)(-2)+(-3) = -5 对值相加。
= -1 ( 2 )(- 3 )+ 2 异号两数相加,绝对值相等时和为0,绝 对值不等时,取绝对值较大的数的符号,并用 (3) 3+(-2) = 1 较大的绝对值减去较小的绝对值。 = 0 ( 4 )(- 4 )+ 4 一个数同0相加,仍得这个数。
互为相反数的两个数 (步骤:先确定结果的符号,再加减绝对值) 相加得0
例题选讲
计算下列各题: (1)180+(-10); (3)5+(-5); (2)(-10)+(-1) (4)0+(-2)
解:(1) (+180 )+(-10) (异号两数相加) (利用绝对值大小确定出结果符号, =+(180-10) =170 再用较大绝对值减较对绝对值) -10)+(- -1) (同号两数相加) (2)(- =- (10+1) (取相同的符号作为结果符号, =-11 并把绝对值相加) (3)5+(-5) =0 (互为相反数的两个数相加得0) (4)0+(-2) =-2 (一个数同0相加仍得这个数)
相关文档
最新文档