初一数学有理数的加减法ppt课件
合集下载
《有理数的加减法》课件
详细描述
有理数的减法在现实生活中有着广泛的应用,如温度的测量 和表示、海拔和潜水深度、速度和加速度等。通过这些实例 ,我们可以更好地理解有理数减法的意义和作用,并学会在 实际问题中运用所学知识。
04
有理数的加减混合运算
顺序关系
遵循从左到右的顺序
在有理数的加减混合运算中,应先进 行加法运算,再进行减法运算,且在 处理括号内的表达式时,应先进行括 号内的运算。
01
线性方程
在解决线性方程问题时,我们需要进行有理数的加减运算。例如,在解
一元一次方程时,我们需要对方程两边的项进行加减运算。
02 03
概率统计
在概率统计中,我们经常需要计算概率和统计量,这涉及到有理数的加 减法。例如,在计算期望值和方差时,我们需要进行大量的有理数加减 运算。
几何学
在几何学中,我们经常需要计算长度、面积和体积等,这涉及到有理数 的加减法。例如,在计算矩形的周长时,我们需要将矩形的长和宽相加 。
03
有理数的减法
减法转换为加法
总结词
有理数的减法可以通过加法来计算,这是有理数加减法的一个重要原则。
详细描述
在进行有理数的减法运算时,可以将减法转换为加法,即用被减数加上减数的 相反数来代替原来的减法运算。例如,计算“5 - 3”时,可以将其转换为“5 + (-3)”,这样就可以利用加法的规则来得出结果。
生物统计
在进行生物统计时,我们经常需要计算各种生物学指标并进行比较,这涉及到有理数的加 减法。例如,在比较不同种群的数量时,我们需要将各个种群的数量进行加减运算。
THANKS
感谢观看
VS
异类项的加法需要注意分母不能为零 ,即不能出现 $frac{a}{0}$ 的形式。
有理数的减法在现实生活中有着广泛的应用,如温度的测量 和表示、海拔和潜水深度、速度和加速度等。通过这些实例 ,我们可以更好地理解有理数减法的意义和作用,并学会在 实际问题中运用所学知识。
04
有理数的加减混合运算
顺序关系
遵循从左到右的顺序
在有理数的加减混合运算中,应先进 行加法运算,再进行减法运算,且在 处理括号内的表达式时,应先进行括 号内的运算。
01
线性方程
在解决线性方程问题时,我们需要进行有理数的加减运算。例如,在解
一元一次方程时,我们需要对方程两边的项进行加减运算。
02 03
概率统计
在概率统计中,我们经常需要计算概率和统计量,这涉及到有理数的加 减法。例如,在计算期望值和方差时,我们需要进行大量的有理数加减 运算。
几何学
在几何学中,我们经常需要计算长度、面积和体积等,这涉及到有理数 的加减法。例如,在计算矩形的周长时,我们需要将矩形的长和宽相加 。
03
有理数的减法
减法转换为加法
总结词
有理数的减法可以通过加法来计算,这是有理数加减法的一个重要原则。
详细描述
在进行有理数的减法运算时,可以将减法转换为加法,即用被减数加上减数的 相反数来代替原来的减法运算。例如,计算“5 - 3”时,可以将其转换为“5 + (-3)”,这样就可以利用加法的规则来得出结果。
生物统计
在进行生物统计时,我们经常需要计算各种生物学指标并进行比较,这涉及到有理数的加 减法。例如,在比较不同种群的数量时,我们需要将各个种群的数量进行加减运算。
THANKS
感谢观看
VS
异类项的加法需要注意分母不能为零 ,即不能出现 $frac{a}{0}$ 的形式。
数学人教版(2024)版七年级初一上册 2.1.1 有理数的加法 教学课件03
RJ(2024)·七年级数学上册
第二章 有理数的运算
2.1.1 有理数的加法
第二课时 加法运算律
课前回心
1、有理数的加法法那么分哪几 种情况?分别如何运算?
有理数的加法法那么:
1、 同号两数相加,取相同的符号,并把 绝对值相加。
2、 绝对值不相等的异号两数相加,取 绝对值较大的加数的符号,并用较大的 绝对值减去较小的绝对值。
解:原式=[(-1.8)+(-0.7)]+[(+0.4)+(+3.5)]
=(-2.5)+(+3.9)
=1.4
技巧: 4、符号相同的数先加。
例3、10袋小麦称重后的记录如下〔单位:千克〕 。 10袋小麦一共多少千克?如果每袋小麦以90千 克 为标准,10袋小麦总计是超过多少千克还是 缺乏 多少千克? 解法1:
有理数加法中,三个数相加,先把 前两个数相加,或者先把后两个数
相加,和不变。
加法结合律(a+b)+c=a+(b+c)
例2、用两种方法计算: 16+(-25)+24+(-35).
解:
=〔-9〕+24+(-35) =15+(-35)
=-20
学以致用
用简便方法计算
(1)(-12)+(+11)+(-8)+(-7)+(+39)+7
90×10+5.4=905.4〔千克〕
答:10袋小麦一共905.4kg, 总计超过5.4kg。
RJ(2024)·七年级数学上册
感谢聆听
91
91
91.5
89
91.2
第二章 有理数的运算
2.1.1 有理数的加法
第二课时 加法运算律
课前回心
1、有理数的加法法那么分哪几 种情况?分别如何运算?
有理数的加法法那么:
1、 同号两数相加,取相同的符号,并把 绝对值相加。
2、 绝对值不相等的异号两数相加,取 绝对值较大的加数的符号,并用较大的 绝对值减去较小的绝对值。
解:原式=[(-1.8)+(-0.7)]+[(+0.4)+(+3.5)]
=(-2.5)+(+3.9)
=1.4
技巧: 4、符号相同的数先加。
例3、10袋小麦称重后的记录如下〔单位:千克〕 。 10袋小麦一共多少千克?如果每袋小麦以90千 克 为标准,10袋小麦总计是超过多少千克还是 缺乏 多少千克? 解法1:
有理数加法中,三个数相加,先把 前两个数相加,或者先把后两个数
相加,和不变。
加法结合律(a+b)+c=a+(b+c)
例2、用两种方法计算: 16+(-25)+24+(-35).
解:
=〔-9〕+24+(-35) =15+(-35)
=-20
学以致用
用简便方法计算
(1)(-12)+(+11)+(-8)+(-7)+(+39)+7
90×10+5.4=905.4〔千克〕
答:10袋小麦一共905.4kg, 总计超过5.4kg。
RJ(2024)·七年级数学上册
感谢聆听
91
91
91.5
89
91.2
有理数的加减法(共44张PPT)
总结词
整数和小数相加或相减时,先将整数和 小数都转换为小数,再进行加减运算。
VS
详细描述
在进行整数和小数的混合加减法时,先将 整数转换为小数,再进行小数的加减法运 算。例如,将整数1和0.5相加得到1.5,将 整数2和-0.8相加得到1.2。同样地,在进 行混合减法时,先将整数转换为小数,再 进行小数的减法运算。例如,将整数2和 0.6相减得到1.4,将整数1和-0.4相减得到 0.6。
异号数的加减法规则
总结词
异号数相加或相减,取绝对值较大数的符号,并用较大的绝对值减去较小的绝 对值。
详细描述
当两个有理数符号不同时,结果的符号取绝对值较大的数的符号。同时,结果 的绝对值是较大的绝对值减去较小的绝对值。例如,+3和-5相加得到-2,-7和 +4相加得到-3。
整数和小数的混合加减法规则
06
习题和练习
基础习题
总结词
针对有理数加减法的基本概念和规则进行练习。
详细描述
包括正数、负数和零的加法运算,减法运算转化为加法运算,以及整数、分数和 小数的混合运算。
进阶习题
总结词
在掌握基础习题的基础上,进一步提高解题技巧和思维能力 。
详细描述
涉及更复杂的运算,如多步运算、分数的约分、有理数的乘 除法等,以及解决实际问题中的数学模型。
计算 (-5) + (-3):首先确定符号为 负,然后计算绝对值5和3,最后相 加得到结果-8。
示例2
计算 (-7) - (-4):首先确定符号为 负,然后计算绝对值7和4,最后相 减得到结果-3。
运算技巧和策略
利用分配律简化运算
例如,a + (b + c) = (a + b) + c 和 a - (b - c) = (a - b) + c。
初中数学七年级优质课课件PPT有理数的加减混合运算
去括号法则
括号前是“+”号,去掉括号和它前 面的“+”号,括号里面各项都不变;
括号前面是“-”号,去掉括号和它 前面的“-”号,括号里的各项都变成它 的相反数.
1.有理数加减法统一成加法的意义
(1)有理数加减混合运算,可以通过有理数减法法则将减法
转化为加法,统一成只有加法运算的和式,
如(12)(8)(6)(5)
3、加减混合运算的技巧总结
(1)运用运算律将正负数分别相加。 (2)分母相同或有倍数关系的分数结合相加。 (3)在式子中若既有分数又有小数,把小数统 一成分数或把分数统一成小数。 (4)互为相反数的两数可先相加。 (5)带分数整数部分,小数部分可拆开相加。
有理数的减法法则: 减去一个数,等于加上这个数的相反数. 即 a -b = a +(-b)
加减法统一成加法
在代数里,一切加法与减法运算,都可以统 一成加法运算。在一个和式里,通常有的加号可 以省略,每个数的括号也可以省略。
如4.5+(-3.2)+1.1+(-1.4)可以写成省略括号的 形式:
4.5 - 3.2 + 1.1 - 1.4(仍可看作和式) 读作 “正4.5、负3.2、正1.1、负1.4的和” 也可读作 “4.5减3.2加1.1减1.4”
⑴把混合运算中的减法转变为加法,写成前 面是加号的形式; ⑵省略加号和括号; ⑶恰当运用加法交换律和结合律简化计算; ⑷在每一步的运算中都须先定符号,后计算 数值。
2、加减混合运算的常统一成加法,写成和式的形 式后,再运用运算律进行计算。
有理数加减混合运算
•(1)有理数的加法法则
有理数的加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)绝对值不等的异号两数相加,取绝对值较大的加数
初一数学有理数的加减法课件
哈尔滨
大连
[例4] 下表列出国外几个城市与北京的时差(带正号的数
表示同一时刻比北京时间早的时数) (1) 如果现在的北京时间是中午
12:00, 那么东京时间是多少? 12113
城市 纽约 巴黎 东京
时差 13 7 1
(2) 如果小芳给远在纽约的舅舅打电话,她在北京时
间下午14:00打电话,你认为合适吗?
(1) 第一名超过第二名多少分? 350200150 (2) 第一名超过第六名多少分?
350(200)350200550
[例3] 某日长春等5个城市的最高气温与最低气温记录 如下:
城市 哈尔滨 长春 沈阳 北京 大连
最高气温 2
3
3
12
6
最低气温 12 10 8
2
2
问: 哪个城市的温差最大? 哪个城市的温差最小?
解:1(1)16(4)35
2 3 412 12 1212
(2)
a(-b )(-c)11(1)1 23 4 1 2
[例8] 分别列出一个含有三个加数的满足下列条件的算式: (1) 所有的加数都是负数,和为13; 1(2)(10) (2) 一个加数为0,和为13; (9)(4)0 (3) 至少有一个加数是正整数,和为13; (1)(4)(10)
[例2] 计算: (1) 3.2(4.8) 3.2(4.8)8
(2)
(3) 0 5.6 0(5.6)5.6
(4)
[例2] 全班学生分成6个组进行游戏,每组的基分为100 分答对一题加50分,错一题扣50分.游戏结束时,各组的 分数如下:
第一组 第二组 第三组 第四组 第五组 第六组 200 50 350 200 100 150
法转化为加法,统一成只有加法运算的和式, 如 (12)(8)(6)(5)(12)(8)(6)(5) (2)在和式里,通常把各个加数的括号和它前面的加号省l 略不写,写成省略加号的和的形式: 如 (12)(8)(6)(5)12865 (3)和式的读法,一是按这个式子表示的意义,读作" 12,8,6,5的和〃; 二是按运算的意义,读作"负12,减8,减6,加5〃.
初一数学《有理数的加减法》ppt课件【精编】
[例2] 计算:
(1) 3.2(4.8) 3.2(4.8)8 (2) (1)(1)1(1)5
3 23 26 (3) 0 5.60(5.6)5.6
(4) (13)511(1)13(5)(11)(1) 466 4 4 6 6 4
[(131)][(5)(11)]2(2)0 44 6 6
[例2] 全班学生分成6个组进行游戏,每组的基分为100 分答对一题加50分,错一题扣50分.游戏结束时,各组的 分数如下:
(20)(30)10米即小明位于原来位置的西方10米处
4. 若第一次向西走20米,第二次向东走30米, (20)(30)10米即小明位于原来位置的 东方10米处
5. 若第一次向西走30米,第二次向东走30米, (30)(30)0
6. 若第一次向西走30米,第二次没走 , (30)030
有理数的加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)绝对值不等的异号两数相加,取绝对值较大的加
(每个交点只填写一个数),将每一行上的四个数相加,
共得到五个数,设a1, a2, a3, a4, a5.
则(1)a1a2a3a4a550
(2)交换其中任何两数的位置后, a1a2a3a4a5
的值是否改变?
1
2 7 2
3
6
1
0 5
4
• 无论怎样交换各数的位置,按规则相加后,每个数都 用了两次, a1a2a3a4a5=2(1201234567)=50
[例2] 一口水井,水面比水井口低3米,一只蜗牛从 水面沿着井壁往井口爬,第一次往上爬了0.5米又往 下滑了0.1米;第二次往上爬了0.42米又往下滑了 0.15米;第三次往上爬了0.7米又往下滑了0.15米; 第四次往上爬了0.75米又往下滑了0.1米; 第五次往上 爬了0.55米,没有下滑; 第六次往上爬了0.48米.问蜗 牛有没有爬出井口? • 解:0.5(0.1)0.42(0.15)0.7(0.15)0.75(0.1) 0.5500.482.93 • 答:蜗牛没有爬出井口.
人教版(2024)七年级数学上册 2.1.1 第1课时 有理数加法法则 课件(共25张PPT)
−5 3
−5 −4 −3 −2 −1 0 1 2 3 4
−2 用算式表示:3+(−5) = −2
讲授新课
(+5)+(−3)= + 2 (+5)+( − 3)= + (5 − 3)
绝对值不相等的 异号两数相加
取绝对 值较大 的加数 的符号
用较大 的绝对 值减去 较小的ห้องสมุดไป่ตู้绝对值
结论:绝对值不相等的异
号两数相加
知识回顾
1.小学学过的加法类型是正数与正数相加、正数与0相加以及0与0相加.
例如:(+5)+(+3)= 8 . 5+0= 5 . 0+0= 0 .
2.引入负数后,加法的类型还有哪几种呢?
引入负数后, 如何进行加法
运算呢?
负数与负数相加、负数与正数相加、正数与负数相加、 负数与0相加、0与负数相加.
讲授新课
1
1
(5) (− 2) + (+ 2)
=0.
绝对值不相等的异号两数相加
和取绝对值较大的加数的符号, 且和的绝对值等于加数的绝对值中较 大者与较小者的差
互为相反数的两数相加,和为0
讲授新课
归纳总结
有理数加法运算的基本步骤: 1.先判断类型(同号、异号等); 2.再确定和的符号; 3.最后进行绝对值的加减运算.
讲授新课
随堂小练习
加数
18 −9 −9 −12 −12
加数
8 −5 16 3 12
和的组成
和
符号
绝对值
+
18 + 8
26
−
9+5
−14
人教版初中七年级上册数学课件 《有理数的加减法》课件(第一课时有理数加法)
2、若|a|+|b|=0,则a=(),b=()
分析:因为|a|=3,|b|=2,所以a=3或-3,b=2或-2,而且a、b异号,因此当a=3时b-2,当a=-3时b=2,则a+b=1或-1。
分析:因为|a|+|b|=0,所以|a|=|b|=0,所以a=b=0
知识点拓展
3、若a>0,b<0, |a|<|b|,则a+b()0
0.
则a+b=
有理数加法法则
计算下列各题:
(1)(-10)+(-1); (2)125+(-15); (3)29+(-29); (4)0+(-8); (5)(-25)+(-7); (6)(-5)+13; (7)(-23)+0; (8) (-45)+15.
-32
-11
-8
0
+110
+8
-23
-30
概念理解
探究
例:计算27+(-15)+24+(+12
解:27+(-15)+24+(-6)+12 =27+24+12+(-15)+(-6) =[27+24+12]+[(-15)+(-6)] =63+(-21) =42
加法交换律
加法结合律
概念理解
问题1:5箱苹果称后重量如下图,问5箱苹果一共多少千克?
4、若|a-2|+|b+3|=0,则a=(),b=()
分析:由题目内容可知,有理数异号相加,结果的符号与绝对值较大的符号相同,所以a+b<0
分析:与问题2类似。
知识点拓展
分析:因为|a|=3,|b|=2,所以a=3或-3,b=2或-2,而且a、b异号,因此当a=3时b-2,当a=-3时b=2,则a+b=1或-1。
分析:因为|a|+|b|=0,所以|a|=|b|=0,所以a=b=0
知识点拓展
3、若a>0,b<0, |a|<|b|,则a+b()0
0.
则a+b=
有理数加法法则
计算下列各题:
(1)(-10)+(-1); (2)125+(-15); (3)29+(-29); (4)0+(-8); (5)(-25)+(-7); (6)(-5)+13; (7)(-23)+0; (8) (-45)+15.
-32
-11
-8
0
+110
+8
-23
-30
概念理解
探究
例:计算27+(-15)+24+(+12
解:27+(-15)+24+(-6)+12 =27+24+12+(-15)+(-6) =[27+24+12]+[(-15)+(-6)] =63+(-21) =42
加法交换律
加法结合律
概念理解
问题1:5箱苹果称后重量如下图,问5箱苹果一共多少千克?
4、若|a-2|+|b+3|=0,则a=(),b=()
分析:由题目内容可知,有理数异号相加,结果的符号与绝对值较大的符号相同,所以a+b<0
分析:与问题2类似。
知识点拓展
有理数的加减混合运算课件PPT
北师大版 数学 七年级 上册
2.6 有理数的加减混合运算
2.6 有理数的加减混合运算
(第2课时)
导入新知
2.6 有理数的加减混合运算
某校举办秋季运动会,初一(一)班和初一(二)班进
行拔河比赛,比赛规定标志物红绸向某班方向移动2 m或2 m
以上,该班就获胜.红绸先向二班移动0.2 m,后又向一班移动
3
7
5
(2)(- 12)- - +(- 8)- .
10
6
探究新知
2.6 有理数的加减混合运算
1
2
(1)解法1: − -15+ −
3
3
= −
1
2
+(-15)+ −
3
3
(统一为加法)
= −
1
2
+ − +(-15)
3
3
(加法交换律)
=(-1)+(-15)
=-16.
(加法结合律)
6 3 32
4
=1+(- )
3
1
=- .
3
课堂小结
算有
中理
的数
简加
便减
运混
算合
运
2.6 有理数的加减混合运算
运用加法法则、加法交换律、加法结合律进行简便运算
运算的步骤
在有理数的加减混合运算中通常将
和为0的两个数、分母相同的两个
数,和为整数的两个数运用加法交
换律、加法结合律进行组合,简便
运算.
课后作业
0.5 m,相持几秒后,红绸向二班移动0.8 m,随后又向一班移动
1.4 m,在一片欢呼声中,红绸再向一班移动1.3 m,裁判员一声
2.6 有理数的加减混合运算
2.6 有理数的加减混合运算
(第2课时)
导入新知
2.6 有理数的加减混合运算
某校举办秋季运动会,初一(一)班和初一(二)班进
行拔河比赛,比赛规定标志物红绸向某班方向移动2 m或2 m
以上,该班就获胜.红绸先向二班移动0.2 m,后又向一班移动
3
7
5
(2)(- 12)- - +(- 8)- .
10
6
探究新知
2.6 有理数的加减混合运算
1
2
(1)解法1: − -15+ −
3
3
= −
1
2
+(-15)+ −
3
3
(统一为加法)
= −
1
2
+ − +(-15)
3
3
(加法交换律)
=(-1)+(-15)
=-16.
(加法结合律)
6 3 32
4
=1+(- )
3
1
=- .
3
课堂小结
算有
中理
的数
简加
便减
运混
算合
运
2.6 有理数的加减混合运算
运用加法法则、加法交换律、加法结合律进行简便运算
运算的步骤
在有理数的加减混合运算中通常将
和为0的两个数、分母相同的两个
数,和为整数的两个数运用加法交
换律、加法结合律进行组合,简便
运算.
课后作业
0.5 m,相持几秒后,红绸向二班移动0.8 m,随后又向一班移动
1.4 m,在一片欢呼声中,红绸再向一班移动1.3 m,裁判员一声
(2024秋新版本)北师大版七年级数学上册 《 有理数的加减运算》PPT课件
5
4
5
4
2
3
思考:有没有简便的方法?
探究新知
(1)解:原式=(31+69)+[(-28)+28](加法交换律和结合律)
=100+0 (一个数同0相加,仍得这个数)
=100;
(2) 解:原式=[(-64)+(-23)]+(17+68)
(加法交换律和结合律)
=(-87)+85 (异号相加法则)
=-2.
加法的结合律: (a+b)+c=a+(b+c).
探究新知
知识点
有理数加法的运算律
计算并比较每组的两个算式的结果:
(1)(-8)+(-9)= -17
(-9)+(-8)= -17
(2) 4 +(-7)= -3
(-7) + 4 = -3
(3) [2+(-3)]+(-8)= -9
2+[(-3)+(-8)]= -9
同号两数相加,取相同的符号,并把绝对值相加.
异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对
值较大的数的符号,并用较大的绝对值减去较小的绝对值.
一个数同0相加,仍得这个数.
探究新知
( - 4 ) + ( - 8 ) = - ( 4 + 8 )= - 12
↓
↓
同号两数相加
取相同符号
通过绝对值化归
不合格
径18mm,该零件____________
(填“合格”或“不合格”)。
课堂检测
基 础 巩 固 题
5.小虫从某点O出发在一条直线上来回爬行,假定向右为正方
4
5
4
2
3
思考:有没有简便的方法?
探究新知
(1)解:原式=(31+69)+[(-28)+28](加法交换律和结合律)
=100+0 (一个数同0相加,仍得这个数)
=100;
(2) 解:原式=[(-64)+(-23)]+(17+68)
(加法交换律和结合律)
=(-87)+85 (异号相加法则)
=-2.
加法的结合律: (a+b)+c=a+(b+c).
探究新知
知识点
有理数加法的运算律
计算并比较每组的两个算式的结果:
(1)(-8)+(-9)= -17
(-9)+(-8)= -17
(2) 4 +(-7)= -3
(-7) + 4 = -3
(3) [2+(-3)]+(-8)= -9
2+[(-3)+(-8)]= -9
同号两数相加,取相同的符号,并把绝对值相加.
异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对
值较大的数的符号,并用较大的绝对值减去较小的绝对值.
一个数同0相加,仍得这个数.
探究新知
( - 4 ) + ( - 8 ) = - ( 4 + 8 )= - 12
↓
↓
同号两数相加
取相同符号
通过绝对值化归
不合格
径18mm,该零件____________
(填“合格”或“不合格”)。
课堂检测
基 础 巩 固 题
5.小虫从某点O出发在一条直线上来回爬行,假定向右为正方
人教版七年级数学上册 《有理数的加减法》PPT教育课件(第二课时有理数减法)
人教版七年级数学上册 《有理数的加减法》PPT教育课件(第二课时有理 数减法)
科 目:数学
适用版本:人教版
适用范围:【教师教学】
人教版 数学(初中)(七年级 上)
第一章 有理数
1.3 有理数的加减法
1.3.2 有理数减法
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear, Concise And Concise Do Not Need Too Much Text
第十三页,共十九页。
课堂测试 例4、若│a│=8,│b│=3,且a<b,求a-b.
解:因为│a│=8,│b│=3
所以a=+8和-8,b=+3或-3 而a<b,所以a=-8,b=3或-3 a-b=-11或-5
第十四页,共十九页。
课堂测试 例5:、计算:(-10)+(+2)-(-4)-(+6)
(-10)+(+2)-(-4)-(+6) =(-10)+(+2)+(+4)+(-6) =(-10)+(-6)+(+2)+(+4) =[(-10)+(-6)]+[(+2)+(+4)]
0-7=
-7
7-0=
7
7和-7是什么关系呢?
结论:小数减去大数,等于大数减去小数的相反数.
即:小数-大数=-(大数-小数)
第十二页,共十九页。
课堂测试 例3、填空: (1)温度3℃比-8 ℃高 11 ;℃ (2)温度-9 ℃比-1 ℃低 8 ℃; (3)海拔-20m比-30m高 10;m (4)从海拔22m到-10m,下降了 3;2m
科 目:数学
适用版本:人教版
适用范围:【教师教学】
人教版 数学(初中)(七年级 上)
第一章 有理数
1.3 有理数的加减法
1.3.2 有理数减法
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear, Concise And Concise Do Not Need Too Much Text
第十三页,共十九页。
课堂测试 例4、若│a│=8,│b│=3,且a<b,求a-b.
解:因为│a│=8,│b│=3
所以a=+8和-8,b=+3或-3 而a<b,所以a=-8,b=3或-3 a-b=-11或-5
第十四页,共十九页。
课堂测试 例5:、计算:(-10)+(+2)-(-4)-(+6)
(-10)+(+2)-(-4)-(+6) =(-10)+(+2)+(+4)+(-6) =(-10)+(-6)+(+2)+(+4) =[(-10)+(-6)]+[(+2)+(+4)]
0-7=
-7
7-0=
7
7和-7是什么关系呢?
结论:小数减去大数,等于大数减去小数的相反数.
即:小数-大数=-(大数-小数)
第十二页,共十九页。
课堂测试 例3、填空: (1)温度3℃比-8 ℃高 11 ;℃ (2)温度-9 ℃比-1 ℃低 8 ℃; (3)海拔-20m比-30m高 10;m (4)从海拔22m到-10m,下降了 3;2m
《有理数加减法》ppt课件(1)
有理数加法
看一看
5+(-5)=0 -5+5=0
异号两数5+(-3)=2 3+(-5)=-2
异号两数相加,绝对值不相等时,取绝对值较大的 加数的符号,并用较大的绝对值减去较小的绝对值;
有理数加法
想一想
5+0= 5 -5+0= -5
一个数与0相加,仍得这个数
一只企鹅先向左运动5m,再向左运 动3m,那么两次后总的结果是什么?
-8 -7 -6 -5 -4 -3 -2 -1 0
-5+(-3)=-8
有理数加法
一只企鹅先向右运动5m,再向左运 动3m,那么两次后总的结果是什么?
-3 -2 -1 0 1 2 3 4 5
5+(-3)=2
想一想?
(1)先向右运动3m,再向左运动5m, 物体 从起点向 左 运动了 2 m.
有理数加法
有理数的加法法则:
1、 同号两数相加,取与加数相同的符号, 并把绝对值相加; 2、 异号两数相加,绝对值相等时和为0; 绝对值不相等时,取绝对值较大的加数的 符号,并用较大的绝对值减去较小的绝对 值; 3、一个数与0相加,仍得这个数 。
例1 计算:
(1) (-7)+(-8) ;
(2) 15+(-9);
(3) 3 2 3 2 ; 33
(4) 7 5 0 . 13
• 解: (1) 7 8 (7 8)=15
(2) 15 ( 9)=+(15-9)=6
(3) 3 2 3 2 0
33
(4) 7 5 0 7 5
13
13
例2 计算
(1) ( 2) ( 3); (2) (6 1) (5 1)
《有理数的加法与减法》PPT课件
PPT素材:/sucai/ PPT图表:/tubiao/ PPT教程: /powerpoint/ 范文下载:/fanwen/ 教案下载:/jiaoan/ PPT课件:/kejian/ 数学课件:/kejian/shu xue/ 美术课件:/kejian/me ishu/ 物理课件:/kejian/wul i/ 生物课件:/kejian/she ngwu/ 历史课件:/kejian/lish i/
活动二:(3)海水上升2厘米,又下降了3厘米,共上升了几厘米?
(4)海水下降2厘米,又上升了3厘米,共上升了几厘米? (5)海水下降3厘米,又上升了3厘米,共上升了几厘米?
PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/
•
4、坚持者能在命运风暴中奋斗。
•
5、锲而不舍,金石可镂。
•
6、有志者事竟成。
•
7、耐心之树,结黄金之果。
ቤተ መጻሕፍቲ ባይዱ
•
8、百败而其志不折。
•
9、失败是块磨刀石。
•
10、忍耐和坚持是痛苦的,但它会逐给你好处。
•
11、骆驼走得慢,但终能走到目的地。
•
12、耐心是一切聪明才智的基础。
•
13、伟大的作品,不是靠力量而是靠坚持才完成的。
达标检测
•
青少年励志名言
•
毕业班励志格言
•
初一数学《有理数的加减法》ppt课件精编版
6. 若第一次向西走30米,第二次没走 , (30)030
有理数的加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)绝对值不等的异号两数相加,取绝对值较大的加
数的符号,并用较大的绝对值减去较小的绝对值; (3)互为相反数的两个数相加得零; (4)一个数同零相加,仍得这个数.
[例1] 计算:
350(200)350200550
[例3] 某日长春等5个城市的最高气温与最低气温记录 如下:
城市 哈尔滨 长春
最高气温 2
3
最低气温 12 10
沈阳 3 8
北京 大连
12
6
2
2
问: 哪个城市的温差最大? 哈尔滨 哪个城市的温差最小? 大连
[例4] 下表列出国外几个城市与北京的时差(带正号的数
表示同一时刻比北京时间早的时数) (1) 如果现在的北京时间是中午
这是个数字分别填写在五角星中每两个线的交点处
(每个交点只填写一个数),将每一行上的四个数相加,
共得到五个数,设a1, a2, a3, a4, a5.
则(1)a1a2a3a4a550
(2)交换其中任何两数的位置后, a1a2a3a4a5
的值是否改变?
1
2 7 2
3
6
1
0 5
4
• 无论怎样交换各数的位置,按规则相加后,每个数都 用了两次, a1a2a3a4a5=2(1201234567)=50
5
4
[(8.25 8.25)] [17 4 7.8] 100 90 5
(6) (12.78) (6.73) (8.62) (4.73) (12.78 8.62) (6.73 4.73) 6.16
[例5] 两个加数的和一定大于其中一个加数吗? 答案为:不一定。
有理数的加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)绝对值不等的异号两数相加,取绝对值较大的加
数的符号,并用较大的绝对值减去较小的绝对值; (3)互为相反数的两个数相加得零; (4)一个数同零相加,仍得这个数.
[例1] 计算:
350(200)350200550
[例3] 某日长春等5个城市的最高气温与最低气温记录 如下:
城市 哈尔滨 长春
最高气温 2
3
最低气温 12 10
沈阳 3 8
北京 大连
12
6
2
2
问: 哪个城市的温差最大? 哈尔滨 哪个城市的温差最小? 大连
[例4] 下表列出国外几个城市与北京的时差(带正号的数
表示同一时刻比北京时间早的时数) (1) 如果现在的北京时间是中午
这是个数字分别填写在五角星中每两个线的交点处
(每个交点只填写一个数),将每一行上的四个数相加,
共得到五个数,设a1, a2, a3, a4, a5.
则(1)a1a2a3a4a550
(2)交换其中任何两数的位置后, a1a2a3a4a5
的值是否改变?
1
2 7 2
3
6
1
0 5
4
• 无论怎样交换各数的位置,按规则相加后,每个数都 用了两次, a1a2a3a4a5=2(1201234567)=50
5
4
[(8.25 8.25)] [17 4 7.8] 100 90 5
(6) (12.78) (6.73) (8.62) (4.73) (12.78 8.62) (6.73 4.73) 6.16
[例5] 两个加数的和一定大于其中一个加数吗? 答案为:不一定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小明在一条东西向的跑道上,先走了20米,又走 了30米,能否确定他现在位于原来位置的哪个方向, 与原来位置相距多少米? 1. 若两次都向东,一共向东走了:(20)(30)50米
即小明位于原来位置的东方50米处 2. 若两次都向西,一共向西走了:(20)(30)50米
即小明位于原来位置的西方50米处 3. 若第一次向东走20米,第二次向西走30米,
[例5] 两个加数的和一定大于其中一个加数吗? 答案为:不一定。
[例6] 若a 15, b 8,且ab, 求ab
解:a15, b=8, ab 则 a15, b8, 当 a15, b8时, ab23 当 a15, b8时, ab7
[例7]已知
a
1 2
b1 3
求:(1)(a)b(c)
c1 4
(2.53)2, (1.3)2,根据此规定,试做下列运算:
(1) (5.3)(3) 538
(2) (4.3)( 2 ) 3
505
(3) ( 3 )(1 1 ) 0(2)2
5
2
(4) (0)(2.7) 0(3)3
有理数的 加减混合运算
[例9] 如图,将数字2,1,0,1,2,3,4,5,6,7
这是个数字分别填写在五角星中每两个线的交点处
(每个交点只填写一个数),将每一行上的四个数相加,
共得到五个数,设a1, a2, a3, a4, a5.
则(1)a1a2a3a4a550
(2)交换其中任何两数的位置后, a1a2a3a4a5
的值是否改变?
(20)(30)10米即小明位于原来位置的西方10米处
4. 若第一次向西走20米,第二次向东走30米, (20)(30)10米即小明位于原来位置的 东方10米处
5. 若第一次向西走30米,第二次向东走30米, (30)(30)0
6. 若第一次向西走30米,第二次没走 , (30)030
绝对值的定义
1
2 7 2
3
6
1
0 5
4
• 无论怎样交换各数的位置,按规则相加后,每个数都 用了两次, a1a2a3a4a5=2(1201234567)=50
• 所有值不变。 答: 不变.
有理数的减法
有理数的减法法则: 减去一个数,等于加上这个数的相反数.
[例1] 计算: (1)852758 (2)278527(85)(8527)58 (3)(13)(21)13(21)21138 (4)(13)(21)13 (21) 34 (5)(21)(13)21(13)(2113)8 (6)(21)(13)21(13)34
• 无论是正数还是负数绝对值都是正数 • 正数的绝对值是他的本身,负数的绝对值是
他的相反数
有理数的加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)绝对值不等的异号两数相加,取绝对值较大的加
数的符号,并用较大的绝对值减去较小的绝对值; (3)互为相反数的两个数相加得零; (4)一个数同零相加,仍得这个数.
解:1(1)16(4)35
2 3 412 12 1212
(2)
a(-b)(-c)11(1)1 23 4 1 2
[例8] 分别列出一个含有三个加数的满足下列条件的算式: (1) 所有的加数都是负数,和为13; 1(2)(10) (2) 一个加数为0,和为13; (9)(4)0 (3) 至少有一个加数是正整数,和为13; (1)(4)(10)
[例8]
(1) 两个负数的和为a,他们的差为b, 则a与b的大小关
系是(D )
A. ab B. ab C. ab D. ab
(2) 已知b0,a0,则a,ab,a+b的大小关系是 (D ) A. aabab B. abaab
C. ababa
D. abaab
[例10] 设(x) 表示不超过数x的整数中最大的整数,例如
[例1] 计算: (1) (2) (3) (4) (5) (6)
[例2] 一口水井,水面比水井口低3米,一只蜗牛从 水面沿着井壁往井口爬,第一次往上爬了0.5米又往 下滑了0.1米;第二次往上爬了0.42米又往下滑了 0.15米;第三次往上爬了0.7米又往下滑了0.15米; 第四次往上爬了0.75米又往下滑了0.1米; 第五次往上 爬了0.55米,没有下滑; 第六次往上爬了0.48米.问蜗 牛有没有爬出井口?
解: 0.5(0.1)0.42(0.15)0.7(0.15)0.75(0.1)0.5500.482.93
答:蜗牛没有爬出井口.
[例3] 若x3 与 y 2 互为相反数,求xy的值
解: x3 y 2 0, x 3, y2 xy(3)(2)5
[例4] 计算: (1) (2) (3)
(4) (5) (6)
哈尔滨
大连
[例4] 下表列出国外几个城市与北京的时差(带正号的数
表示同一时刻比北京时间早的时数) (1) 如果现在的北京时间是中午
12:00, 那么东京时间是多少? 12113
城市 纽约 巴黎 东京
时差 13 7 1(Fra bibliotek) 如果小芳给远在纽约的舅舅打电话,她在北京时
间下午14:00打电话,你认为合适吗?
[例2] 计算: (1) 3.2(4.8) 3.2(4.8)8
(2)
(3) 0 5.6 0(5.6)5.6
(4)
[例2] 全班学生分成6个组进行游戏,每组的基分为100 分答对一题加50分,错一题扣50分.游戏结束时,各组的 分数如下:
第一组 第二组 第三组 第四组 第五组 第六组 200 50 350 200 100 150
(1) 第一名超过第二名多少分? 350200150 (2) 第一名超过第六名多少分?
350(200)350200550
[例3] 某日长春等5个城市的最高气温与最低气温记录 如下:
城市 哈尔滨 长春 沈阳 北京 大连
最高气温 2
3
3
12
6
最低气温 12 10 8
2
2
问: 哪个城市的温差最大? 哪个城市的温差最小?
答案:14(13)1 不合适
[例5] 计算 11796
解原式11(7)(9)6 276 21
[例6] 已知 a4, b5, c7,求代数式 abc的值.
解: 原式 abc(4)(5)(7)8
[例7]若a0, b0, 试求ab1 ba1 的值
解: ab1 ba1 ab1[(ba1)] ab1ba1 0
即小明位于原来位置的东方50米处 2. 若两次都向西,一共向西走了:(20)(30)50米
即小明位于原来位置的西方50米处 3. 若第一次向东走20米,第二次向西走30米,
[例5] 两个加数的和一定大于其中一个加数吗? 答案为:不一定。
[例6] 若a 15, b 8,且ab, 求ab
解:a15, b=8, ab 则 a15, b8, 当 a15, b8时, ab23 当 a15, b8时, ab7
[例7]已知
a
1 2
b1 3
求:(1)(a)b(c)
c1 4
(2.53)2, (1.3)2,根据此规定,试做下列运算:
(1) (5.3)(3) 538
(2) (4.3)( 2 ) 3
505
(3) ( 3 )(1 1 ) 0(2)2
5
2
(4) (0)(2.7) 0(3)3
有理数的 加减混合运算
[例9] 如图,将数字2,1,0,1,2,3,4,5,6,7
这是个数字分别填写在五角星中每两个线的交点处
(每个交点只填写一个数),将每一行上的四个数相加,
共得到五个数,设a1, a2, a3, a4, a5.
则(1)a1a2a3a4a550
(2)交换其中任何两数的位置后, a1a2a3a4a5
的值是否改变?
(20)(30)10米即小明位于原来位置的西方10米处
4. 若第一次向西走20米,第二次向东走30米, (20)(30)10米即小明位于原来位置的 东方10米处
5. 若第一次向西走30米,第二次向东走30米, (30)(30)0
6. 若第一次向西走30米,第二次没走 , (30)030
绝对值的定义
1
2 7 2
3
6
1
0 5
4
• 无论怎样交换各数的位置,按规则相加后,每个数都 用了两次, a1a2a3a4a5=2(1201234567)=50
• 所有值不变。 答: 不变.
有理数的减法
有理数的减法法则: 减去一个数,等于加上这个数的相反数.
[例1] 计算: (1)852758 (2)278527(85)(8527)58 (3)(13)(21)13(21)21138 (4)(13)(21)13 (21) 34 (5)(21)(13)21(13)(2113)8 (6)(21)(13)21(13)34
• 无论是正数还是负数绝对值都是正数 • 正数的绝对值是他的本身,负数的绝对值是
他的相反数
有理数的加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)绝对值不等的异号两数相加,取绝对值较大的加
数的符号,并用较大的绝对值减去较小的绝对值; (3)互为相反数的两个数相加得零; (4)一个数同零相加,仍得这个数.
解:1(1)16(4)35
2 3 412 12 1212
(2)
a(-b)(-c)11(1)1 23 4 1 2
[例8] 分别列出一个含有三个加数的满足下列条件的算式: (1) 所有的加数都是负数,和为13; 1(2)(10) (2) 一个加数为0,和为13; (9)(4)0 (3) 至少有一个加数是正整数,和为13; (1)(4)(10)
[例8]
(1) 两个负数的和为a,他们的差为b, 则a与b的大小关
系是(D )
A. ab B. ab C. ab D. ab
(2) 已知b0,a0,则a,ab,a+b的大小关系是 (D ) A. aabab B. abaab
C. ababa
D. abaab
[例10] 设(x) 表示不超过数x的整数中最大的整数,例如
[例1] 计算: (1) (2) (3) (4) (5) (6)
[例2] 一口水井,水面比水井口低3米,一只蜗牛从 水面沿着井壁往井口爬,第一次往上爬了0.5米又往 下滑了0.1米;第二次往上爬了0.42米又往下滑了 0.15米;第三次往上爬了0.7米又往下滑了0.15米; 第四次往上爬了0.75米又往下滑了0.1米; 第五次往上 爬了0.55米,没有下滑; 第六次往上爬了0.48米.问蜗 牛有没有爬出井口?
解: 0.5(0.1)0.42(0.15)0.7(0.15)0.75(0.1)0.5500.482.93
答:蜗牛没有爬出井口.
[例3] 若x3 与 y 2 互为相反数,求xy的值
解: x3 y 2 0, x 3, y2 xy(3)(2)5
[例4] 计算: (1) (2) (3)
(4) (5) (6)
哈尔滨
大连
[例4] 下表列出国外几个城市与北京的时差(带正号的数
表示同一时刻比北京时间早的时数) (1) 如果现在的北京时间是中午
12:00, 那么东京时间是多少? 12113
城市 纽约 巴黎 东京
时差 13 7 1(Fra bibliotek) 如果小芳给远在纽约的舅舅打电话,她在北京时
间下午14:00打电话,你认为合适吗?
[例2] 计算: (1) 3.2(4.8) 3.2(4.8)8
(2)
(3) 0 5.6 0(5.6)5.6
(4)
[例2] 全班学生分成6个组进行游戏,每组的基分为100 分答对一题加50分,错一题扣50分.游戏结束时,各组的 分数如下:
第一组 第二组 第三组 第四组 第五组 第六组 200 50 350 200 100 150
(1) 第一名超过第二名多少分? 350200150 (2) 第一名超过第六名多少分?
350(200)350200550
[例3] 某日长春等5个城市的最高气温与最低气温记录 如下:
城市 哈尔滨 长春 沈阳 北京 大连
最高气温 2
3
3
12
6
最低气温 12 10 8
2
2
问: 哪个城市的温差最大? 哪个城市的温差最小?
答案:14(13)1 不合适
[例5] 计算 11796
解原式11(7)(9)6 276 21
[例6] 已知 a4, b5, c7,求代数式 abc的值.
解: 原式 abc(4)(5)(7)8
[例7]若a0, b0, 试求ab1 ba1 的值
解: ab1 ba1 ab1[(ba1)] ab1ba1 0