人教版九年级数学下册教案28.1 锐角三角函数 第2课时 锐角三角函数

合集下载

九年级数学下册 28 锐角三角函数教案 (新版)新人教版

九年级数学下册 28 锐角三角函数教案 (新版)新人教版

第二十八章锐角三角函数直角三角形是一种特殊的三角形,在应用中有较一般三角形优良的特点,例如面积比较好计算等,且其他三角形通过增补、分割等可以转化为直角三角形,从而简化计算,所以对直角三角形进行专门的研究很有必要.本章将学习直角三角形中边与角之间的关系,并运用这些关系解决一些测量等方面的问题.本章第一节学习锐角的三角函数,教材中首先从学生熟悉的问题情境——“汽车爬坡”引出如何描述坡面的倾斜程度,引出了直角三角形中两直角边的比即坡比,还引出了正切、坡角等概念.教材中通过学生熟悉的一副三角板引出.对于这一部分,由于学生已经学习了在直角三角形中30°的角所对的直角边等于斜边的一半,因此可让学生计算得到这些特殊角的三角函数值,教材最后介绍了用计算器求三角函数值.第二节主要是应用直角三角形知识解决一些简单的实际问题.带领学生探索直角三角形中锐角三角函数值与三边的关系,同时经历观察、操作、归纳等学习数学的过程,感受数学说理的必要性、说理过程的严谨性,养成科学认真的学习态度.让学生了解锐角三角函数的概念,能够正确应用三角函数.让学生掌握30°,45°,60°等特殊角的三角函数值,并学会用计算器求锐角的三角函数值,经历操作、归纳等学习数学的过程,感受数学思考过程的合理性,养成科学、严谨的学习态度.本章教学约需5课时,具体分配如下:28.1 锐角三角函数3课时28.2 解直角三角形及其应用2课时28.1锐角三角函数第1课时锐角三角函数知识与技能了解锐角三角函数的概念,能够正确应用sin A,cos A,tan A表示直角三角形中两边的比.过程与方法通过锐角三角函数的学习进一步认识函数,体会函数的变化与对应的思想,体会数学在解决实际问题中的应用.情感、态度与价值观1.通过学习培养学生的合作意识.2.通过探究提高学生学习数学的兴趣.重点锐角三角函数的概念.难点锐角三角函数概念的理解.一、问题引入问题:操场上有一个旗杆,老师让小明去测量旗杆高度.(演示学校操场上的国旗图片)小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34°,并已知目高为1米,然后他很快就算出旗杆的高度了.你想知道小明是怎样算出的吗?师:通过前面的学习,我们知道利用相似三角形的方法可以测算出旗杆的大致高度,实际上我们还可以像小明那样通过测量一些角的度数和一些线段的长度,来测算出旗杆的高度.这就是我们本章即将探讨和学习的利用锐角三角函数来测算物体长度或高度的方法.下面我们一起来学习锐角三角函数.二、新课教授问题:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35 m ,那么需要准备多长的水管?分析:问题转化为在Rt △ABC 中,∠C =90°,∠A =30°,BC =35 m ,求AB.根据“在直角三角形中,30°角所对的直角边等于斜边的一半”,即 ∠A 的对边斜边=BC AB =12,可得AB =2BC =70 m ,即需要准备70 m 长的水管.思考1:在上面的问题中,如果使出水口的高度为50 m ,那么需要准备多长的水管? 学生按与上面相似的过程,自主解决.结论:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于12.思考2:如图,任意画一个Rt △ABC ,使∠C =90°,∠A =45°,计算∠A 的对边与斜边的比BCAB,能得到什么结论?分析:在Rt △ABC 中,∠C =90°,由于∠A =45°,所以Rt △ABC 是等腰直角三角形,由勾股定理得AB 2=AC 2+BC 2=2BC 2,AB =2BC ,BC AB =BC 2BC =12=22.结论:在一个直角三角形中,如果一个锐角等于45°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于22. 从上面这两个问题的结论中可知,在一个Rt △ABC 中,∠C =90°,当∠A =30°时,∠A 的对边与斜边的比都等于12,是一个固定值.当∠A =45°时,∠A 的对边与斜边的比都等于22,也是一个固定值.这就引发我们产生这样一个疑问:当∠A 取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?探究:任意画Rt △ABC 和Rt △A ′B ′C ′,使得∠C =∠C ′=90°,∠A =∠A ′=α,那么BC AB 与B ′C ′A ′B ′有什么关系?你能解释一下吗?分析:由于∠C =∠C =90°,∠A =∠A ′=α, 所以Rt △ABC ∽Rt △A ′B ′C ′,则 BC AB =B ′C ′A ′B ′. 结论:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何改变,∠A 的对边与斜边的比都是一个固定值.正弦的概念: 在Rt △ABC 中,∠C =90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sin A ,即sin A =∠A 的对边斜边=ac.例如,当∠A =30°时,sin A =sin 30°=12;当∠A =45°时,sin A =sin 45°=22.注意:1.sin A 不是sin 与A 的乘积,而是一个整体.2.正弦的三种表示方式:sin A ,sin 56°,sin ∠DEF. 3.sin A 是线段之间的一个比值,sin A 没有单位.提问:∠B 的正弦怎么表示?要求一个锐角的正弦值,我们需要知道直角三角形中的哪些边?sin B =∠B 的对边斜边=bc.思考3:一般地,当∠A 取一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值?探究:如图,在Rt △ABC 与Rt △A ′B ′C ′中,∠C =∠C ′=90°,∠A =∠A ′=α,那么AC AB 与A ′C ′A ′B ′有什么关系?教师用类比的方法引导学生思考、讨论.结论:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何改变,∠A 的邻边与斜边的比是一个固定值.余弦的概念:在Rt △ABC 中,∠C =90°,把锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cos A ,即cos A =∠A 的邻边斜边=bc.思考4:当∠A 取一定度数的锐角时,它的对边与邻边的比是否也是一个固定值?学生自立探究,得出结论,教师给出新的概念. 正切的概念:如图,在Rt △ABC 中,∠C =90°,a ,b 分别是∠A 的对边和邻边.我们把∠A 的对边与邻边的比叫做∠A 的正切,记作tan A ,即tan A =∠A 的对边∠A 的邻边=ab.锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数. 三、举例应用,巩固新知例1 如图,在Rt △ABC 中,∠C =90°,求sin A 和sin B 的值.解:如图(1),在Rt △ABC 中,由勾股定理得AB =AC 2+BC 2=42+32=5.因此sin A =BC AB =35,sin B =AC AB =45.如图(2),在Rt △ABC 中,由勾股定理得 AC =AB 2-BC 2=132-52=12.因此sin A =BC AB =513,sin B =AC AB =1213.例2 如图,在Rt △ABC 中,∠C =90°,AB =10,BC =6,求sin A ,cos A ,tan A 的值.解:由勾股定理得A C =AB 2-BC 2=102-62=8,因此 sin A =BC AB =610=35,cos A =AC AB =810=45, tan A =BC AC =68=34.四、练习新知为测量如图所示的上山坡道的倾斜度,小明测得数据如图所示,则该坡道倾斜角α的正切值是( )A .117B .4C .14D .417答案 C五、课堂小结锐角三角函数概念及表示方法:sin A =∠A 的对边斜边,cos A =∠A 的邻边斜边,tan A =∠A 的对边∠A 的邻边.本节课采用问题引入法,从探究性问题入手,让学生主动参与学习活动,用特殊值探究锐角的三角函数时,学生们表现得非常积极,从作图、找边角、计算各个方面进行探究,学生发现:特殊角的三角函数值可以用勾股定理求出,然后探究:三角函数与直角三角形的边、角有什么关系?三角函数与三角形的形状有关系吗?整节课都在紧张而愉快的气氛中进行.学生非常活跃,大部分人都能积极动脑、积极参与.第2课时 30°,45°,60°角的三角函数值知识与技能熟记30°,45°,60°角的三角函数值,并能根据这些值说出对应的锐角度数. 过程与方法1.培养学生把实际问题转化为数学问题的能力. 2.培养学生观察、比较、分析、概括的能力.情感、态度与价值观经历观察、操作、归纳等学习数学的过程,感受数学思考过程的合理性,感受数学说理的必要性、说理过程的严谨性,养成科学、严谨的学习态度.重点30°,45°,60°角的三角函数值. 难点与特殊角的三角函数值有关的计算.一、复习巩固如图,在Rt △ABC 中,∠C =90°.(1)a ,b ,c 三者之间的关系是________;(2)sin A =________,cos A =________,tan A =________; sin B =________,cos B =________,tan B =________. (3)若∠A =30°,则ac=________.二、共同探究,获取新知(1)探索30°,45°,60°角的三角函数值.师:观察一副三角尺,其中有几个锐角?它们分别等于多少度?生:一副三角尺中有四个锐角,它们分别是30°,60°,45°,45°. 师:sin 30°等于多少呢?你是怎样得到的?与同伴交流.生:sin 30°=12.sin 30°表示在直角三角形中,30°角的对边与斜边的比值,与直角三角形的大小无关.我们不妨设30°角所对的边长为a(如图所示),根据“直角三角形中30°角所对的边等于斜边的一半”的性质,则斜边长等于2a.根据勾股定理,可知30°角的邻边长为3a ,所以sin 30°=a 2a =12.师:cos 30°等于多少?tan 30°呢? 生:cos 30°=3a 2a =32.tan 30°=a 3a =13=33. 师:我们求出了30°角的三个三角函数值,还有两个特殊角——45°,60°,它们的三角函数值分别是多少?你是如何得到的?生:求60°角的三角函数值可以利用求30°角的三角函数值的三角形.因为30°角的对边和邻边分别是60°角的邻边和对边,利用上图,很容易求得sin 60°=3a 2a =32,cos 60°=a 2a =12,tan 60°=3aa= 3. 师生共同分析:我们一起来求45°角的三角函数值.含45°角的直角三角形是等腰直角三角形.如图,设其中一条直角边为a ,则另一条直角边也为a ,斜边为2a.由此可求得sin 45°=a 2a=12=22,cos 45°=a 2a =12=22, tan 45°=a a=1.教师多媒体课件出示:师:这个表格中的30°,45°,60°角的三角函数值需要熟记.另一方面,要能够根据30°,45°,60°角的三角函数值说出相应的锐角的大小.第一列,随着角度的增大,正弦值在逐渐增大. 第二列,余弦值随角度的增大而减小. 师:第三列呢?生:第三列是30°,45°,60°角的正切值,首先45°角是等腰直角三角形中的一个锐角,所以tan 45°=1比较特殊.随着角度的增大,正切值也在增大.(2)进一步探究锐角的三角函数值. 如图,在Rt △ABC 中,∠C =90°.∵sin A =a c ,cos A =bc,sin B =b c ,cos B =a c,∴sin A =cos B ,cos A =sin B. ∵∠A +∠B =90°, ∴∠B =90°-∠A ,即sin A =cos B =cos (90°-∠A), cos A =sin B =sin (90°-∠A).任意一个锐角的正(余)弦值,等于它的余角的余(正)弦值. 三、例题讲解,巩固新知 例1 计算:(1)sin 30°+cos 45°;(2)sin 260°+cos 260°-tan 45°. 解:(1)sin 30°+cos 45°=12+22=1+22;(2)sin 260°+cos 260°-tan 45° =(32)2+(12)2-1 =34+14-1 =0.例2 (1)如图(1),在Rt △ABC 中,∠C =90°,AB =6,BC =3,求∠A 的度数; (2)如图(2),AO 是圆锥的高,OB 是底面半径,AO =3OB ,求α的度数.解:(1)在图(1)中, ∵sin A =BC AB =36=22,∴∠A =45°.(2)在图(2)中,∵tan α=AO OB =3OBOB=3,∴α=60°.四、随堂练习1.计算4sin 60°-3tan 30°的值为( )A . 3B .2 3C .3 3D .0 答案 A2.计算sin 245°+cos 245°的值为( ) A .2 B .1 C .0 D .3 答案 B五、课堂小结1.探索30°,45°,60°角的三角函数值.sin 30°=12 ,sin 45°=22,sin 60°=32; cos 30°=32 ,cos 45°=22,cos 60°=12; tan 30°=33,tan 45°=1,tan 60°= 3. 2.能进行含30°,45°,60°角的三角函数值的计算.3.能根据30°,45°,60°角的三角函数值说出相应锐角的大小.本节课的教学中,课堂环节设置齐全,能很好地贯彻执行教育理念,对理解教育的教育模式把控较好;课堂中学生分组很好,能给学生构建一个宽松、和谐的学习环境和氛围;课件制作很好,能很好地配合指导自学书的使用,提高了课堂的效率;学生积极参与,学习积极性较高;课堂习题的设置有梯度,题目能面向全体学生.第3课时 一般锐角的三角函数值知识与技能1.会使用计算器求锐角的三角函数值.2.会使用计算器根据锐角三角函数的值求对应的锐角. 过程与方法在做题、计算的过程中,逐步熟悉计算器的使用方法. 情感、态度与价值观经历计算器的使用过程,熟悉其按键顺序.重点利用计算器求锐角三角函数的值. 难点计算器的按键顺序.一、复习回顾教师多媒体课件出示: 1.2.已知2sin 二、讲解新知师:上节课我们学习了几个特殊角的三角函数值,但如果是任意的一个锐角,如何求它的三角函数值呢?比如让你求sin 18°的值.生:作一个有一个锐角为18°的直角三角形,量出它的对边和斜边长,求它的比值. 学生作图、测量、计算.生:约等于0.309 016 994.师:对!用这种方法确实可以求出任意一个锐角三角函数的近似值,古代的数学家、天文学家也采用过这样的方法,只是误差较大.经过许多数学家不断的改进,不同角的三角函数值被制成了常用表,三角函数表大大改进了三角函数值的应用.今天,三角函数表又被带有sin、cos和tan功能键的计算器所取代.教师拿出计算器.师:我们学习这种计算器的使用方法.请同学们拿出自己的计算器.学生拿出自己的计算器.师:先按ON键,再按有关三角函数的键.教师板书:1.求已知锐角的三角函数值.例1 求sin40°的值.(精确到0.000 1)师:比如我们求sin40°的值,依次按sin、4、0、°′″、=这几个键.师:因为要求精确到万分位,我们将得到的数字四舍五入到万分位即可,你得到四舍五入后的值是多少?生:0.642 8.例2 求cos54°38′的值.(精确到0.000 1)师:我们依次按cos、5、4、°′″、3、8、°′″、=这几个键.学生操作后回答.2.由锐角三角函数值求锐角.例3 已知sin A=0.508 6,求锐角A.师:你有没有注意到计算器上有个2ndf键?生:注意到了.师:这个键叫做第二功能键,我们用这个可以转换键盘上的功能键的作用.我们依次按2ndf、sin-1、0、·、5、0、8、=.师:这样我们得到的是多少度,要化成度分秒的形式,我们按那个第二功能键2ndf和度分秒键°′″.学生操作后回答结果.三、巩固提高1.sinα=0.231 6,cosβ=0.231 6,则锐角α与锐角β之间的关系是( )A.α=βB.α+β=180°C.α+β=90°D.α-β=90°答案C2.使用计算器计算:sin52°18′≈________.(精确到0.001)答案0.7913.已知cosβ=0.741 6,利用计算器求出β的值约为________.(精确到1°)答案 42° 四、课堂小结1.用计算器求一个锐角的三角函数值.2.学习了已知一个函数值,求它对应的锐角的大小.如何让学生体会用计算器的好处,我设计一个正弦值难于直接得到的sin 18°的值让学生计算.在没有提示的情况下,学生有的用笔算,通过作图测量用正弦的定义计算,我肯定了学生的这种探索式作法,同时提出了使用计算器的简便性,在较短的时间内能正确计算,也显示了其较强的计算能力.28.2 解直角三角形及其应用 28.2.1 解直角三角形知识与技能在理解解直角三角形的含义、直角三角形五个元素之间关系的基础上,会运用勾股定理、直角三角形的两锐角互余及锐角三角函数解直角三角形.过程与方法通过综合运用勾股定理、直角三角形的两锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.情感、态度与价值观在探究学习的过程中,培养学生合作交流的意识,使学生认识到数与形相结合的意义与作用,体会到学好数学知识的作用,并提高学生将数学知识应用于实际的意识,从而体验“从实践中来,到实践中去”的辩证唯物主义思想,激发学生学习数学的兴趣.让学生在学习过程中感受到成功的喜悦,产生后继学习的激情,增强学好数学的信心.重点直角三角形的解法. 难点灵活运用勾股定理、直角三角形的两锐角互余及锐角三角函数解直角三角形.一、复习回顾师:你还记得勾股定理的内容吗? 学生叙述勾股定理的内容.师:直角三角形的两个锐角之间有什么关系呢? 生:两锐角互余.师:直角三角形中,30°的角所对的直角边与斜边有什么关系? 生:30°的角所对的直角边等于斜边的一半. 二、共同探究,获取新知 1.概念.师:由sin A =ac ,你能得到哪些公式?生甲:a =c ·sin A. 生乙:c =asin A.师:我们还学习了余弦函数和正切函数,也能得到这些式子的变形.我们知道,在直角三角形中有三个角、三条边共六个元素,能否从已知的元素求出未知的元素呢?教师板书:在直角三角形中,由已知的边角关系,求出未知的边与角,叫做解直角三角形. 2.练习.教师多媒体课件出示:(1)如图(1)和(2),根据图中的数据解直角三角形.(1) (2)师:图(1)中是已知一角和一条直角边解直角三角形的类型,你怎样解决这个问题呢? 生1:根据cos 60°=AC AB ,得到AB =ACcos 60°,然后把AC 边的长和60°角的余弦值代入,求出AB 边的长,再用勾股定理求出BC 边的长,∠B 的度数根据直角三角形两锐角互余即可得到.生2:先用直角三角形两锐角互余得到∠B 为30°,然后根据30°的角所对的直角边等于斜边的一半,求出AB 的值,再由sin 60°=BCAB 得到BC =AB ·sin 60°,从而得到BC 边的长.师:同学们说出的这几种做法都是对的.下面请同学们看图(2),并解这个直角三角形. 学生思考,计算. 三、例题讲解例1 如图,在Rt △ABC 中,∠C =90°,AC =2,BC =6,解这个直角三角形.解:∵tan A =BC AC =62=3,∴∠A =60°,∠B =90°-∠A =90°-60°=30°,AB =2AC =2 2.例2 如图,在Rt △ABC 中,∠C =90°,∠B =35°,b =20,解这个直角三角形.(结果保留小数点后一位)解:∠A =90°-∠B =90°-35°=55°. ∵tan B =ba,∴a =btan B =20tan 35°≈28.6. ∵sin B =bc ,∴c =bsin B =20sin 35°≈34.9. 四、巩固练习1.在△ABC 中,∠C =90°,下列各式中不正确的是( ) A .b =a ·tan B B .a =b ·cos AC .c =bsin B D .c =acos B答案 B2.在Rt △ABC 中,∠C =90°,c =10,b =53,则∠A =________,S △ABC =________.答案 30° 252 3五、课堂小结师:本节课,我们学习了什么内容? 学生回答.师:你还有什么不懂的地方吗? 学生提问,老师解答.本节课在教学过程中,能灵活处理教材,敢于放手让学生通过自主学习、合作探究达到理解并掌握知识的目的,并能运用知识解决问题.在本章开头,我带领学生复习了与解直角三角形有关的知识点,使学生在解决问题时能想到并能熟练运用.在解有特殊角的三角形时有不止一种解法,我鼓励学生勇于发言,给了他们展示自我的机会,锻炼他们表达自己想法的能力,并且增强了他们的自信心.28.2.2 应用举例知识与技能使学生掌握仰角、俯角的概念,并会正确运用这些概念和解直角三角形的知识解决一些实际问题.过程与方法让学生体验方程思想和数形结合思想在解直角三角形中的用途. 情感、态度与价值观使学生感知本节课与现实生活的密切联系,进一步认识到将数学知识运用于实践的意义.重点将实际问题转化为解直角三角形问题. 难点将实际问题中的数量关系如何转化为直角三角形中元素间的关系求解.一、新知讲授1.讲解. 师:在实际生活中,解直角三角形有着广泛的应用,例如我们通常遇到的视线、水平线、铅垂线就构成了直角三角形.教师在黑板上作图.师:当我们测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角;在水平线下方的角叫做俯角.注意:(1)仰角和俯角必须是视线与水平线所夹的角,而不是与铅垂线所夹的角; (2)仰角和俯角都是锐角.师:测量仰角、俯角有专门的工具,是测角仪. 2.练习新知.教师多媒体课件出示:如图,∠C =∠DEB =90°,FB ∥AC ,从A 看D 的仰角是________;从B 看D 的俯角是________;从A 看B 的________角是________;从D 看B 的________角是________;从B 看A 的________角是________.答案:从A 看D 的仰角是∠2,从B 看D 的俯角是∠FBD ,从A 看B 的仰角是∠BAC ,从D 看B 的仰角是∠3,从B 看A 的俯角是∠1.二、例题讲解例1 2012年6月18日,“神舟”九号载人航天飞船与“天宫”一号目标飞行器成功实现交会对接.“神舟”九号与“天宫”一号的组合体在离地球表面343 km 的圆形轨道上运行,如图,当组合体运行到地球表面P 点的正上方时,从中能直接看到的地球表面最远的点在什么位置?最远点与P 点的距离是多少?(地球半径约为6 400 km ,π取3.142,结果取整数)分析:从组合体中能直接看到的地球表面最远点,是视线与地球相切时的切点.如图,本例可以抽象为以地球中心为圆心、地球半径为半径的⊙O 的有关问题:其中点F 是组合体的位置,FQ 是⊙O 的切线,切点Q 是从组合体中观测地球时的最远点,PQ ︵的长就是地球表面上P ,Q 两点间的距离.为计算PQ ︵的长需先求出∠POQ(即α)的度数.解:设∠POQ =α,在图中,FQ 是⊙O 的切线,△FOQ 是直角三角形. ∵cos α=OQ OF = 6 4006 400+343≈0.9491.∴α≈18.36°,∴PQ ︵的长为18.36π180×6 400≈18.36×3.142180×6 400≈2 051(km ).由此可知,当组合体在P 点正上方时,从中观测地球表面时的最远点距离P 点约2051 km .例2 热气球的探测器显示,从热气球看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球与楼的水平距离为120 m ,这栋楼有多高?(结果取整数)解:如图,α=30°,β=60°,AD =120.∵tan α=BD AD ,tan β=CDAD,∴BD =AD ·tan α=120×tan 30°=120×33=403, CD =AD ·tan β=120×tan 60°=120×3=120 3. ∴BC =BD +CD =403+1203=1603≈277(m ). 因此,这栋楼高约为277 m .例3 如图,一艘海轮位于灯塔P 的北偏东65°方向,距离灯塔80 n mile 的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东34°方向上的B 处.这时,B 处距离灯塔P 有多远?(结果取整数)解:如图,在Rt △APC 中, PC =PA ·cos (90°-65°) =80×cos 25° ≈72.505.在Rt △BPC 中,∠B =34°,∵sin B =PCPB ,∴PB =PCsin B =72.505sin 34°≈130(n mile ). 因此,当海轮到达位于灯塔P 的南偏东34°方向时,它距离灯塔P 大约130 n mile . 三、巩固提高1.如图,小雅家(图中点O 处)门前有一条东西走向的公路,现测得有一水塔(图中点A 处)在她家北偏东60°方向500 m 处,那么水塔所在的位置到公路的距离AB 长是( )A .250 mB .250 3 mC .500 33m D .250 2 m 答案 A2.王师傅在楼顶上的点A 处测得楼前一棵树CD 的顶端C 的俯角为60°,已知水平距离BD =10 m ,楼高AB =24 m ,则树CD 的高度为( )A .(24-1033)m B .(24-103) m C .(24-53) m D .9 m 答案 B四、课堂小结师:本节课,我们学习了什么内容? 学生回答.师:你还有什么不懂的地方吗? 学生提问,教师解答.解直角三角形的内容是初中阶段数学教学中的重点之一,使学生对所学知识有了更好的巩固,同时让学生体会到数学与实际生活的联系,例题设置具有一定坡度,由浅入深,步步深入.。

28.1 锐角三角函数 课件 2024-2025学年数学九年级下册人教版

28.1 锐角三角函数  课件  2024-2025学年数学九年级下册人教版

2 A=___4___.
感悟新知
知1-练
例 3 如图28.1-3,在等腰三角形ABC 中,AB=AC,如果 2AB=3BC,求∠B 的三个三角函数值.
解题秘方:紧扣“锐角三角函数的定 义的前提是在直角三角形中”这一特 征,用“构造直角三角形法”求解.
感悟新知
解:过点A作AD⊥BC于点D,如图28.1-3,
学习目标
第二十八章 锐角三角函数
28.1 锐角三角函数
感悟新知
知识点 1 锐角三角函数
1. 正弦、余弦、正切
名称
定义
符号语言
在Rt△ABC中,∠C=
90°,∠A的对边与斜 在Rt△ABC
正弦
边的比叫做∠A 的正 中,∠C=
弦 ,记 作 sin A,即 sin A=∠A斜的边对边
90°,sin =ac
A.
4 3
B.
3 4
C.
3 5
D.
4 5
解题秘方:引入参数,用这个参数表示出三角形的
三边长,再用定义求解.
感悟新知
知1-练
解:由sin A=BACB=45,可设BC=4k(k>0),则AB=5k. 根据勾股定理,得AC=3k, ∴ tan B=ABCC=34kk=34. 答案:B
感悟新知
知1-练
技巧点拨:在直角三角形中,给出某一个锐角的三角 函数值,求另一个锐角的三角函数值时,可以用设辅助 元,即引入“参数”的方法来解决,注意在最后计算时要 约去辅助元.
感悟新知
知1-练
2-1. [期中·盐城射阳县]如图,在Rt△ABC中,∠C=90 °,
sin
A=13,则cos
22 A=___3___,tan

28.1锐角三角函数特殊角的锐角三角函数值(教案)2023-2024学年人教版数学九年级下册

28.1锐角三角函数特殊角的锐角三角函数值(教案)2023-2024学年人教版数学九年级下册
2.学习特殊(30°、45°、60°)的正弦、余弦、正切值,并能熟练运用这些值进行相关计算。
3.通过实际例题,培养学生运用锐角三角函数解决实际问题的能力。
本节课将结合教材内容,通过讲解、示范、练习等环节,帮助学生掌握特殊角的锐角三角函数值,并为后续学习三角函数的性质和应用打下坚实基础。
二、核心素养目标
3.增强学生的数学运算与数据分析能力:通过解决实际例题,让学生运用锐角三角函数进行计算和分析,提高数学运算与数据分析能力,为解决复杂问题奠定基础。
本节课将紧密围绕新教材的要求,关注学生核心素养的培养,帮助学生将所学知识内化为自身的数学素养,为未来的学习和生活打下坚实基础。
后的内容###”二、核心素养目标”作为标题标识,再开篇直接输出。
2.逻辑推理:通过特殊角的锐角三角函数值的推导,提高学生的逻辑推理能力。
3.数学运算与数据分析:培养学生运用特殊角的锐角三角函数值进行精确计算和解决实际问题的能力。
三、教学过程
1.导入新课
通过回顾上一节课的内容,引导学生进入锐角三角函数的学习。
2.基本概念与性质
复习锐角三角函数的定义,强调正弦、余弦、正切的概念。
四、教学评价
1.课堂问答:检查学生对特殊角的锐角三角函数值的掌握程度。
2.练习题完成情况:评估学生对知识点的理解和运用能力。
3.课后作业:布置相关作业,巩固所学知识。
五、教学资源
1.教材:人教版数学九年级下册。
2.课件:包含本节课教学内容的PPT。
3.练习题:针对本节课知识点的练习题。
五、教学反思
在上完这节关于特殊角的锐角三角函数值的内容后,我进行了深入的思考。首先,我发现学生们对于锐角三角函数的定义有了较好的理解,但记忆特殊角的函数值还存在一定难度。在教学中,我尝试通过一些记忆方法,如编口诀、画图等,帮助学生记忆。从学生的反馈来看,这些方法还是有一定效果的,但还需在后续教学中继续巩固。

人教版九年级下册28.1特殊角的锐角三角函数值教学设计

人教版九年级下册28.1特殊角的锐角三角函数值教学设计
(4)小组合作题:以小组为单位,探讨特殊角的三角函数值在生活中的应用,并撰写一篇小论文。
作业要求:
1.学生需独立完成作业,诚实守信,不得抄袭。
2.解题过程要求步骤清晰,书写规范。
3.小组合作题需充分发挥团队合作精神,共同完成。
4.作业完成后,及时上交,教师将进行批改和反馈。
4.通过对特殊角的锐角三角函数值的学习,培养学生对数的敏感性和逻辑思维能力。
(二)过程与方法
1.通过观察、猜想、验证等教学活动,引导学生自主发现特殊角的锐角三角函数值规律,培养学生自主学习的能力。
2.运用问题驱动的教学方法,激发学生的学习兴趣,引导学生通过合作、探究、讨论等方式,深入理解特殊角锐角三角函数的概念和计算方法。
针对学生的困惑,我会进行有针对性的解答,巩固学生对知识的理解。最后,强调特殊角的锐角三角函数值在实际生活中的应用,提高学生的应用意识,为后续学习打下坚实基础。
五、作业布置
为了巩固学生对特殊角的锐角三角函数值的学习,确保学生能够熟练掌握并运用到实际中,我设计了以下几类作业:
1.基础巩固题:布置一些基本的计算题,要求学生熟练掌握特殊角的正弦、余弦、正切值,并能快速准确地计算出结果。
学生在讨论过程中,可以相互提问、解答,共同探讨特殊角锐角三角函数值的规律。我会巡回指导,解答学生的疑问,引导学生深入思考。讨论结束后,每个小组汇报讨论成果,共同分享学习心得。
(四)课堂练习,500字
在课堂练习环节,我会设计不同难度的题目,让学生独立完成。题目包括基础题、提高题和应用题,旨在检验学生对特殊角的锐角三角函数值的掌握程度。
四、教学内容与过程
(一)导入新课,500字
在导入新课环节,我将结合学生的生活经验,提出一个与学生实际相关的问题:“同学们,在我们的日常生活中,如建筑设计、制作家具等,经常会遇到各种角度的测量问题。那么,如何才能快速、准确地计算出这些角度的三角函数值呢?”通过这个问题,激发学生的好奇心,引导学生思考。

人教版九年级数学下册28.1锐角三角函数特殊角的三角函数值优秀教学案例

人教版九年级数学下册28.1锐角三角函数特殊角的三角函数值优秀教学案例
二、教学目标
(一)知识与技能
1.让学生掌握特殊角的三角函数值,包括30°、45°、60°等角的正弦、余弦和正切值。
2.使学生能够运用特殊角的三角函数值进行简化解题,提高问题解决能力。
3.培养学生运用数学知识描述现实生活中的现象,提高数学应用能力。
在教学过程中,我将以生活实例为导入,引导学生主动探究特殊角的三角函数值。通过多媒体课件的展示,让学生直观地理解特殊角的三角函数值,并在实际问题中运用。此外,我将设计具有挑战性的问题,激发学生的思考,培养学生的创新思维和问题解决能力。
3.培养学生勇于挑战、克服困难的勇气,培养他们的自信心和自尊心。
在教学过程中,我将关注学生的情感需求,以鼓励、表扬等方式激励学生,让他们在学习中感受到成功的喜悦。同时,我将引导学生认识到数学在现实生活中的重要性,培养他们的责任感和使命感。
三、教学策略
(一)情景创设
1.生活实例导入:以实际生活中的问题为导入,引发学生对特殊角的三角函数值的兴趣,激发学生的学习动机。
人教版九年级数学下册28.1锐角三角函数特殊角的三角函数值优秀教学案例
一、案例背景
本节课是人教版九年级数学下册28.1锐角三角函数特殊角的三角函数值。在学习了锐角三角函数的基础上,本节课主要让学生掌握特殊角的三角函数值,进一步深化对锐角三角函数的理解和运用。
在案例背景中,学生已经掌握了锐角三角函数的定义和基本性质,具备了一定的数学思维能力和问题解决能力。然而,对于特殊角的三角函数值,学生可能存在一定的困难,需要通过本节课的学习,进一步巩固和提高。
(四)反思与评价
1.自我反思:让学生在学习过程中进行自我反思,发现自己的不足之处,明确改进方向。
2.同伴评价:学生相互评价,给予意见和建议,共同促进彼此的进步。

九年级数学下册(人教版)28.1锐角三角函数教学设计

九年级数学下册(人教版)28.1锐角三角函数教学设计
(2)组织学生进行小组讨论,推导出锐角三角函数的基本关系式,并进行验证;
(3)结合实际例题,让学生运用锐角三角函数知识进行分析和求解。
3.巩固练习
设计不同难度的练习题,让学生在课堂上独立完成,巩固所学知识。同时,针对学生的错误,进行及时指导和纠正。
4.课堂小结
通过师生互动,总结本节课所学的主要内容,强化学生对锐角三角函数的认识。
2.提出问题:引导学生回顾直角三角形的性质和勾股定理,为新课的学习做好知识储备。
3.引入新课:在此基础上,引出本节课的主题——锐角三角函数,激发学生的好奇心和学习兴趣。
(二)讲授新知
1.锐角三角函数的定义:
(1)通过观察直角三角形,引导学生发现锐角三角函数的定义;
(2)结合图形,解释正弦、余弦、正切函数的概念;
三、教学重难点和教学设想
(一)教学重难点
1.重点:锐角三角函数的定义、基本关系式以及在实际问题中的应用。
2.难点:
(1)锐角三角函数的定义及其在直角三角形中的图形表示;
(2)锐角三角函数的基本关系式的推导和应用;
(3)将实际问题转化为锐角三角函数问题,并运用相关知识进行求解。
(二)教学设想
1.采用情境教学法,引入生活中的实际问题,让学生感受到数学知识的实用价值,激发他们的学习兴趣。
2.通过直观的图形演示,引导学生发现锐角三角函数的定义,培养他们的观察能力和抽象思维能力。
3.运用启发式教学法,引导学生通过自主探究、小组讨论等方式,推导出锐角三角函数的基本关系式,提高他们的逻辑思维能力和团队协作能力。
4.设计具有梯度的问题和练习,针对不同层次的学生进行差异化教学,使每个学生都能在原有基础上得到提高。
(3)利用计算器或计算工具,验证锐角三角函数的值。

28,1 锐角三角函数 第二课时-九年级数学下册课件(人教版)

28,1 锐角三角函数 第二课时-九年级数学下册课件(人教版)

A. 3
12
B. 3
6
C. 3
3
D.
3 2
4 如图,在▱ABCD 中,对角线AC 与BD 相交于点O,∠CAB=∠ACB, 过点B 作BE⊥AB 交AC 于点E. (1)求证:AC⊥BD; (2)若AB=14,cos∠CAB= 7 ,
8
求线段OE 的长.
(1)证明:∵∠CAB=∠ACB,∴), ∴cos α= 1 .
2
常见错解:∵方程2x
2-5x+2=0的解是x1=2,x2=
1 2

∴cos α=2或cos α= 1 .忽略了cos α (α 为锐角)
2
的取值范围是0<cos α<1.
易错点:忽视锐角三角函数值的范围而致错.
1 如图,已知AB 是半圆O 的直径,弦AD,BC 相交于点P, 如果∠DPB=α,那么 CD 等于( B )
∴ ▱ABCD是菱形.∴AC⊥BD.
(2)解:在Rt△AOB 中,cos ∠OAB= AO 7 ,AB=14,
AB 8
∴AO=
7 8
AB=
49 4
.
在Rt△ABE 中,cos ∠EAB= AB 7 ,
AE 8
AB=14,∴AE=
8 7
AB=16,
∴OE=AE-AO=16-
BC 5
C
(1)
解: AB AC2 BC2 22 32 13,

所以
sin A BC
3
3
13 ,
sin B AC
2
2 13 ,
AB 13 13
AB 13 13
cos A AC 2 2 13 , AB 13 13
tan A BC 3 .

人教版九年级数学下第28章28.1《锐角三角函数》优秀教学案例

人教版九年级数学下第28章28.1《锐角三角函数》优秀教学案例
4.定期对学生的学习成果进行评价和总结,激发学生的学习动力,提高学生的数学素养。
四、教学评价
1.评价学生的知识掌握程度:通过课堂提问、作业批改等方式,了解学生对锐角三角函数知识的掌握情况;
2.评价学生的实践操作能力:通过实际问题解决,评价学生运用锐角三角函数解决实际问题的能力;
3.评价学生的合作交流能力:通过小组讨论、互动交流等方式,评价学生在团队合作中的表现;
3.讲练结合:在课堂中及时进行练习,巩固所学知识,提高学生的实际操作能力;
4.反馈调整:根据学生的学习情况,及时调整教学方法,以提高教学效果。
五、教学过程
1.创设情境,引入新课:通过生活实例,引导学生思考并引入锐角三角函数的概念;
2.自主探究,小组合作:让学生在小组内讨论交流,共同探究锐角三角函数的定义及应用;
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热爱,激发学生学习数学的内在动力;
2.培养学生合作交流的意识,提高学生团队协作的能力;
3.让学生感受数学与生活的紧密联系,培养学生的应用意识;
4.通过对本节课的学习,使学生树立正确的数学学习观念,相信自己通过努力可以掌握并运用好数学知识。
三、教学重难点
4.评价学生的情感态度与价值观:通过观察学生的学习态度、课堂表现等,评价学生对数学学科的兴趣和热爱。
五、教学拓展
1.利用多媒体技术,展示锐角三角函数在实际生活中的应用,激发学生的学习兴趣;
2.推荐相关的数学读物和网站,让学生课后进行拓展学习,提高学生的数学素养;
3.结合学校或社区的活动,让学生运用所学知识解决实际问题,提高学生的实践能力。
六、教学反思
在教学过程中,教师应不断反思自己的教学方法、教学内容等方面,以确保教学的质量和效果。同时,关注学生的学习反馈,根据学生的需求调整教学策略,以提高教学效果。通过不断的反思和调整,使教学更加符合学生的实际情况,提高学生的数学素养。

人教版九年级下册28.1锐角三角函数课程设计

人教版九年级下册28.1锐角三角函数课程设计

人教版九年级下册28.1锐角三角函数课程设计本门课程旨在让学生掌握锐角三角函数的基本概念及应用。

通过对本门课程的学习,学生将能够深入了解三角函数的性质和图像,并且了解三角函数在实际生活中的应用。

一、基本概念和性质1.1 锐角三角函数的概念锐角三角函数是指三角函数中正弦函数、余弦函数和正切函数,它们都只在锐角范围内有定义。

1.2 正弦函数、余弦函数和正切函数的图像学生可以通过画出不同角度下正弦函数、余弦函数和正切函数的图像进行观察和对比,并从中了解它们之间的关系和特点。

1.3 三角函数的周期性和奇偶性三角函数是周期函数。

对于正弦函数和余弦函数,其图像关于y轴对称;对于正切函数,它的图像关于原点对称。

二、三角函数的应用2.1 三角函数在几何中的应用三角函数在几何中有着广泛的应用,比如可以用正弦函数计算直角三角形中的角度,用余弦函数计算平行四边形对角线长度等等。

2.2 三角函数在物理中的应用三角函数在物理中也有着广泛的应用,比如可以用正弦函数计算某一物体的压强,用余弦函数计算物体的质量等等。

三、课程设计3.1 教学目标1.掌握锐角三角函数的基本概念;2.了解正弦函数、余弦函数和正切函数图像,并能进行比较和分析;3.熟练掌握三角函数在几何中和物理中的应用。

3.2 教学重难点1.三角函数在几何中的应用;2.三角函数在物理中的应用。

3.3 教学过程与方法1.教师讲解锐角三角函数的基本概念和性质;2.教师示范正弦函数、余弦函数和正切函数的图像,并让学生进行观察和探究;3.学生进行小组讨论,分析三角函数在几何和物理中的应用;4.教师辅导学生进行三角函数在实际问题中的应用题目练习。

3.4 课堂作业1.练习册P314,第1-3题。

四、课后反思通过本堂课的学习,学生对锐角三角函数的基本概念和应用有了更加深入的了解。

但是在课堂教学中,有些学生因为对数学知识掌握不熟练,导致在课堂练习与实际问题解决中表现不佳,需要在后续的教学中加以重点关注和辅导。

数学人教版九年级下册28.1特殊角的三角函数值教案

数学人教版九年级下册28.1特殊角的三角函数值教案
-理解特殊角的三角函数值在直角三角形中的应用,如计算未知角度的三角函数值。
-能够通过特殊角的三角函数值推导出其他相关角度的三角函数值。
举例:讲解30°角的正弦值为1/2时,可以引导学生观察等边三角形中30°-60°-90°的直角三角形特点,理解正弦值的含义,并强调在后续问题解决中的应用。
2.教学难点
2.提升学生的逻辑推理素养:引导学生运用已知的特殊角的三角函数值,通过逻辑推理解决问题,培养严谨的逻辑思维。
3.增强学生的数学建模能力:将特殊角的三角函数值应用于解决实际问题时,鼓励学生构建数学模型,培养数学建模和解决实际问题的能力。
三、教学难点与重点
1.教学重点
-掌握特殊角(30°、45°、60°)的正弦、余弦和正切值,并能熟练运用这些值解决相关问题。
其次,我在授课过程中注意到,当涉及到将特殊角的三角函数值应用到实际问题时,同学们往往不知道如何下手。这说明我们在数学建模和问题解决能力的培养上还需要加强。我计划在接下来的课程中,多设计一些实际应用的题目,让同学们在小组讨论和实验操作中,学会如何构建数学模型,提高他们解决实际问题的能力。
另外,我也观察到在小组讨论环节,有些同学参与度不高,可能是他们对主题不够感兴趣,或者是对自己的数学能力不够自信。针对这个问题,我打算在以后的课堂中,更多地鼓励和引导这些同学,设置一些简单的问题让他们先尝试解决,逐渐增强他们的自信心。
-余弦值:cos30°=√3/2,cos45°=√2/2,cos60°=1/2;
-正切值:tan30°=1/√3,tan45°=1,tan60°=√3。
2.学会运用特殊角的三角函数值解决实际问题,如计算直角三角形中未知角度的三角函数值等。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:

28.1 第2课时 特殊角的三角函数值

28.1 第2课时 特殊角的三角函数值
P
B C
A
O
E
D
6.如图,PB与⊙0相切于点B,过点B作OP的垂BA,垂足为 C,交⊙0于点A,连结PA、AO,AO的延长线交⊙O于点E, 与PB的延长线交于D. (1)求证:PA是⊙O的切线; (2)若tan∠BAD=23,且OC=4,求BD的长.
P
B C
A
O
E
D
F
D C
D C
E
AO
B
E
AO
B
九年级数学下(RJ) 教学课件
第二十八章 锐角三角函数
第2课时 三角函数性质及 特殊角的三角函数值
复习
sin
A
=
∠A的对边
斜边
BC . AB
cos
A
=
∠A的邻边
斜边

AC . AB
tan A =
∠A的对边
∠A的邻边

AC . Hale Waihona Puke BB∠A斜边



A ∠A 的邻边 C
一 30°、45°、60°角的三角函数值
0
2.
2
3. 如图,在△ABC中,∠A=30°,tanB
3 ,AC 2 2
3,
求 AB的长度.
C
A
B
3. 如图,在△ABC中,∠A=30°,tanB
3 ,AC 2 2
3,
求 AB的长度.
解:过点 C 作 CD⊥AB 于点 D. ∵∠A=30°, AC 2 3 ,
∴ sin A CD 1 ,CD 1 2 3 3 ,
例2 (1) 如图,在Rt△ABC中,∠C = 90°,AB = 6 , BC = 3 ,求 ∠A 的度数;

福建省2024九年级数学下册第28章锐角三角函数28.1锐角三角函数2余弦正切课件新版新人教版

福建省2024九年级数学下册第28章锐角三角函数28.1锐角三角函数2余弦正切课件新版新人教版

∴cos α=AABC,∴AC=coxs α米.故选 B.
返回 目录
4.如图,在Rt△ABC中,∠C=90°,M是直角边AC上一点,
MN⊥AB于点N,AN=3,AM=4,求cos B的值.
解:∵MN⊥AB,∴∠ANM=90°=∠C.
又∵∠A=∠A,∴∠B=∠AMN.
在Rt△AMN中,AN=3,MN=4,
3
4
3
4
A.5 B.5 C.4 D.3
返回 目录
7.如图,点A(t,3)在第一象限,OA与x轴正半轴所夹的角 为α,tan α= 3 ,则t的值是( C ) 2 A.1 B.1.5 C.2 D.3
返回 目录
8.【2023·深圳福田区期末】如图,某地修建高速公路,要
从A地向B地修一条隧道(点A,B在同一水平面上).为了
解:如图,过点 P 作 PF⊥x 轴于点 F.∵∠CBF=∠DBP=45°,
∴∠PBF=∠DBC.∴tan∠PBF=tan ∠DBC=35.在 Rt△PBF 中,
tan ∠PBF=BPFF.设点 P(x,-x2+3x+4),则-x24+-3xx+4=35,
解得 x1=-25,x2=4(舍去).当 x=-25时,y=--252+3×-25+4=6265,
由勾股定理得AM=5, ∴cos B=cos ∠AMN= MAMN=45 .
返回 目录
5.如图,在Rt△ABC中,∠C=90°,我们把锐角A的对 边与_邻__边_____的比叫做∠A的正切,记作tan A,即tan A=___ab_____.
返回 目录
6.【2023·佛山】在Rt△ABC中,∠C=90°,AB=5, BC=4,则tan A的值为( D )
返回 目录
(2)若BE=6,试求cos∠CDA的值. 解:设⊙O的半径为r.∵OC=3,

人教版九年级下册28.1特殊角的锐角三角函数值优秀教学案例

人教版九年级下册28.1特殊角的锐角三角函数值优秀教学案例
这些亮点体现了本教学案例在教学设计、教学方法和教学评价等方面的优势,有助于提高学生的学习兴趣、参与度和效果,培养学生的综合素质和能力。
4.利用多媒体手段,如动画、视频等,形象地展示特殊角的三角函数值的变化规律,增强学生的直观感受。
(二)问题导向
1.设计一系列具有启发性的问题,引导学生思考特殊角三角函数值的意义和作用。
2.引导学生通过实验、观察、讨论等方式,自主探究特殊角三角函数值的规律。
3.提出挑战性的问题,激发学生深入思考,提高学生解决问题的能力。
在实际教学中,我发现许多学生在学习这一部分内容时存在一定的困难,主要是由于对三角函数概念的理解不够深刻,以及对特殊角三角函数值的记忆不牢固。因此,在教学过程中,我需要针对学生的实际情况进行有针对性的教学设计,通过合理的教学方法和手段,帮助学生理解和掌握特殊角的三角函数值,提高他们的学习效果。
二、教学目标
4.采用小组合作学习的方式,培养学生团队合作的精神,提高学生的沟通表达能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习三角函数的内在动机。
2.使学生认识到特殊角三角函数值在实际生活中的应用,提高学生对数学价值的认识。
3.培养学生勇于挑战自我,克服困难的意志,增强学生的自信心。
4.引导学生树立正确的价值观,明白努力学习三角函数的重要性,为今后的学习和生活打下坚实的基础。
4.鼓励学生提出自己的疑问,培养学生敢于质疑、善于思考的良好习惯。
(三)小组合作
1.组织学生进行小组讨论,鼓励学生分享自己的观点和思考,培养学生的团队合作精神。
2.设计小组合作任务,让学生在实践中运用特殊角的三角函数值,提高学生的动手操作能力。
3.采用小组竞赛的方式,激发学生的竞争意识,提高学生的学习积极性。

人教版九年级数学下册第28章 锐角三角函数:余弦函数和正切函数

人教版九年级数学下册第28章 锐角三角函数:余弦函数和正切函数
3 4. tan30°= 3 ,tan60°= 3.
5. sin70°,cos70°,tan70°的大小关系是 A. tan70°<cos70°<sin70° B. cos70°<tan70°<sin70° C. sin70°<cos70°<tan70° D. cos70°<sin70°<tan70°
∴ cos A AC = 4,tan B AC = 4 .
AB 5
BC 3
随堂即练
如图,在 Rt△ABC 中,∠C = 90°,AC = 8,
tanA= 3 , 求sinA,cosB 的值.
4
B
解:∵ tan A BC 3,
AC 4
∴ BC 3 AC 3 8 6, C
8
A
4
4
∴ AB AC 2BC2 82 62 10,
RJ九(下) 教学课件
第二十八章 锐角三角函数
28.1 锐角三角函数
第2课时 余弦函数和正切函数
学习目标
1. 认识并理解余弦、正切的概念进而得到锐角三角函 数的概念. (重点)
2. 能灵活运用锐角三角函数进行相关运算.(重点、难 点)
新课引入
如图,在 Rt△ABC 中,∠C=90°,当锐角 A 确定 时,∠A的对边与斜边的比就随之确定.
随堂即练
( )D
解析:根据锐角三角函数的概念,知 sin70°< 1,cos70°<1,tan70°>1. 又∵cos70°=sin20°, 正弦值随着角的增大而增大,∴sin70°>cos70°= sin20°.
随堂即练
6. 如图,在 Rt△ABC 中,∠C = 90°,cosA = , 15 17
A
C
cos A AC = 8 = 4,tan A BC = 6 = 3 .

人教版数学九年级下册第28章(教案):28.1锐角三角函数-余弦、正切

人教版数学九年级下册第28章(教案):28.1锐角三角函数-余弦、正切
2.教学难点
-函数定义的抽象理解:锐角三角函数的定义涉及到从具体的直角三角形中抽象出函数概念的过程,这对于学生来说是一个难点。需要通过直观的图形和具体的例子帮助学生理解。
-函数性质的掌握:理解并记忆余弦和正切函数随角度变化的规律是学生的另一个难点。需要通过图表、动画等多种方式,让学生直观感受函数值的变化。
3.重点难点解析:在讲授过程中,我会特别强调余弦和正切函数的定义及其性质。对于难点部分,我会通过具体的直角三角形图形和计算例子来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与余弦和正切函数相关的实际问题,如测量建筑物的高度。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用尺子和量角器来实际测量并计算一个物体的余弦和正切值。
3.提高学生的表达能力和逻辑思维,通过组织各类活动,锻炼他们的口才和思维。
4.及时关注学生的学习反馈,调整教学策略,确保每位学生都能跟上教学进度。
2.正切函数的定义:介绍正切函数的定义,分析锐角α的正切值等于直角三角形中,角α的对边与邻边的比值。
3.余弦、正切函数的性质:分析余弦、正切函数随角度变化的规律,探讨它们在0°~90°范围内的变化趋势。
4.应用举例:结合实际问题,运用余弦和正切函数解决一些简单的直角三角形问题。
5.练习与巩固:通过典型例题和练习题,使学生熟练掌握余弦和正切函数的计算及应用。
人教版数学九年级下册第28章(教案):28.1锐角三角函数-余弦、正切
一、教学内容
人教版数学九年级下册第28章《锐角三角函数》中的28.1节,本节课主要围绕余弦和正切两个锐角三角函数展开。内容包括:
1.余弦函数的定义:通过直角三角形中的边长关邻边和斜边的比值关系。

人教版九年级下册数学教案:28.1锐角三角函数

人教版九年级下册数学教案:28.1锐角三角函数
忆并熟练运用30°、45°、60°等特殊角的三角函数值,为解决复杂问题打下基础。
-锐角三角函数的关系:掌握正弦与余弦、正切与余切的互补关系,能灵活运用关系简化计算。
-锐角三角函数的应用:解决实际问题时,能正确运用三角函数进行边角计算。
2.教学难点
-正弦、余弦、正切函数的区分:学生容易混淆三个函数的定义,需要通过直观的图形和实例进行讲解,加强记忆。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了锐角三角函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对锐角三角函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
人教版九年级下册数学教案:28.1锐角三角函数
一、教学内容
人教版九年级下册数学教案:28.1锐角三角函数
本节课将围绕以下内容展开:
1.锐角三角函数的定义:正弦函数、余弦函数、正切函数;
2.锐角三角函数的值:特殊角的正弦、余弦、正切值;
3.锐角三角函数的关系:正弦与余弦的互补关系、正切与余切的互补关系;
3.重点难点解析:在讲授过程中,我会特别强调正弦、余弦、正切函数的定义和特殊角的三角函数值。对于难点部分,我会通过直观图形和实际测量来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与锐角三角函数相关的实际问题,如测量教学楼的高度。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用计算器测量角度并计算对应的三角函数值。
-特殊角的三角函数值记忆:学生可能难以记忆特殊角的函数值,应采用图表、口诀等方法帮助学生记忆。

人教版初中数学九年级下册第二十八章:锐角三角函数(全章教案)

人教版初中数学九年级下册第二十八章:锐角三角函数(全章教案)

第二十八章锐角三角函数教材简析本章的内容主要包括:锐角三角函数的概念;30°,45°,60°角的三角函数值;利用计算器求任意锐角的三角函数值及根据三角函数值求出相应的锐角;利用锐角三角函数解直角三角形及三角函数的应用.在学生掌握了直角三角形边、角之间的关系的基础上,引入了锐角三角函数的概念,进而学习解直角三角形,是中学几何的重点与难点.本章是中考的必考内容,主要考查特殊锐角三角函数值的计算和解直角三角形及其应用.教学指导【本章重点】锐角三角函数的概念和直角三角形的解法.【本章难点】综合运用直角三角形的边边关系、边角关系来解决实际问题.【本章思想方法】1.体会数形结合思想.如:在理解和应用锐角三角函数解决实际问题时,注意数形结合思想的应用,即需根据实际问题画出几何图形,并根据图形寻找直角三角形中边、角之间的关系.2.体会转化思想.如:(1)把实际问题转化成数学问题:把实际问题的情境转化为几何图形;把题中的已知条件转化为示意图中的边、角或它们之间的关系.(2)把数学问题转化为解直角三角形问题,如果示意图不是直角三角形,需要添加适当的辅助线构造出直角三角形.3.体会方程思想.如:在解决直角三角形的实际问题中,经常设出未知数来表示某一个量,并利用直角三角形的边、角关系建立方程,将几何问题转化为求方程的解.课时计划28.1锐角三角函数4课时28.2解直角三角形及其应用3课时28.1 锐角三角函数第1课时 正弦教学目标一、基本目标 【知识与技能】1.利用相似的直角三角形,探索直角三角形的锐角确定时,它的对边与斜边的比是固定值,从而引出正弦的概念.2.理解锐角的正弦的概念,并能根据正弦的概念进行计算. 【过程与方法】通过探究锐角的正弦的概念的形成,体会由特殊到一般的数学思想方法,培养学生的归纳、推理能力.【情感态度与价值观】让学生在通过探索、分析、论证、总结获取新知识的过程中体验成功的快乐,感悟数学的实用性,培养学生学习数学的兴趣.二、重难点目标 【教学重点】理解正弦的意义,会求锐角的正弦值. 【教学难点】理解直角三角形的锐角确定时,它的对边与斜边的比是固定值.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P61~P63的内容,完成下面练习. 【3 min 反馈】1.在直角三角形中,30°角所对的边等于斜边的一半.2.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,∠A 的对边与斜边的比叫做∠A 的正弦 ,即sin A =a c.3.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若a =3,b =4,则sin B =45.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,在Rt △ABC 中,∠C =90°,求sin A 和sin B 的值.【互动探索】(引发学生思考)要求sin A 和sin B 的值,需要分别找出∠A 、∠B 的对边和斜边的比.【解答】详细解答过程见教材P63例1.【例2】已知等腰三角形的一腰长为25 cm ,底边长为30 cm ,求底角的正弦值. 【互动探索】(引发学生思考)转化法:将已知条件转化为几何示意图,再作出辅助线构造出直角三角形求解.【解答】如图,过点A 作AD ⊥BC ,垂足为D. ∵AB =AC =25 cm ,BC =30 cm ,AD 为底边上的高, ∴BD =12BC =15 cm ,∴在Rt △ABD 中,由勾股定理,得AD =AB 2-BD 2=20 cm , ∴sin ∠ABC =AD AB =2025=45.即底角的正弦值为45.【互动总结】(学生总结,老师点评)求三角函数值一定要在直角三角形中求,当图形中没有直角三角形时,要通过作高构造直角三角形解答.活动2 巩固练习(学生独学) 1.如图,sin A 等于( C )A .2B .55C.12D . 52.在Rt △ABC 中,∠C =90°,BC =4,sin A =23,则AB 的长为( B )A.83 B .6 C .12D .83.如图,△ABC 的顶点是正方形网格的格点,则sin B 24.如图,在△ABC 中,AD ⊥BC 于点D ,若AD =9,DC =5,E 为AC 的中点,求sin ∠EDC 的值.解:∵AD ⊥BC , ∴∠ADC =90°. ∵AD =9,DC =5,∴AC =AD 2+DC 2=92+52=106. ∵E 为AC 的中点, ∴DE =AE =EC =12AC ,∴∠EDC =∠C ,∴sin ∠EDC =sin C =AD AC =9106=9106106.活动3 拓展延伸(学生对学)【例3】如图,已知AB 是⊙O 的直径,CD 是弦,且CD ⊥AB ,BC =6,AC =8,求sin ∠ABD 的值.【互动探索】首先根据垂径定理得出∠ABD =∠ABC ,然后由直径所对的圆周角是直角,得出∠ACB =90°,从而由勾股定理算出斜边AB 的长,再根据正弦的定义求出sin ∠ABC 的值,进而得出sin ∠ABD 的值.【解答】∵AB 是⊙O 的直径,CD 是弦,且CD ⊥AB , ∴AC ︵ =AD ︵, ∴∠ABD =∠AB C. ∵AB 为直径, ∴∠ACB =90°.在Rt △ABC 中,∵BC =6,AC =8, ∴AB =BC 2+AC 2=10, ∴sin ∠ABD =sin ∠ABC =AC AB =45.【互动总结】(学生总结,老师点评)求三角函数值时必须在直角三角形中.在圆中,由直径所对的圆周角是直角可构造出直角三角形.环节3 课堂小结,当堂达标 (学生总结,老师点评) 1.如图,sin A =∠A 的对边斜边.2.求一个锐角的正弦值一定要放到直角三角形中,若没有直角三角形,可通过作垂线构造直角三角形.练习设计请完成本课时对应练习!第2课时锐角三角函数教学目标一、基本目标【知识与技能】1.掌握余弦、正切的定义.2.了解锐角∠A的三角函数的定义.3.能运用锐角三角函数的定义求三角函数值.【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生观察、比较、分析、概括等逻辑思维能力.【情感态度与价值观】通过观察、思考、交流、总结等数学活动,体验数学学习充满着探索与发现,培养学生积极思考,勇于探索的精神.二、重难点目标【教学重点】余弦、正切的概念,并会求指定锐角的余弦值、正切值.【教学难点】利用锐角三角函数的定义解决有关问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P64~P65的内容,完成下面练习.【3 min反馈】1.如图,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)∠A 的邻边与斜边的比叫做∠A 的余弦,即cos A =bc ;(2)∠A 的对边与邻边的比叫做∠A 的正切,即tan A =ab .2.锐角A 的正弦、余弦、正切叫做∠A 的锐角三角函数.3.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若a =3,b =4,则cos B =35,tan B =43.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,在Rt △ABC 中,∠C =90°,AB =10,BC =6,求sin A 、cos A 、tan A.【温馨提示】详细解答过程见教材P65例2.【例2】如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC =14,AD =12,tan ∠BAD =34,求cos C 的值.【互动探索】(引发学生思考)观察图形,cos C =DC AC ,所以需要通过tan ∠BAD =34和已知条件求出DC 、AC 的长度,再代入求值.【解答】∵在Rt △ABD 中,tan ∠BAD =BD AD =34,∴BD =AD ·tan ∠BAD =12×34=9,∴CD =BC -BD =14-9=5, ∴AC =AD 2+CD 2=122+52=13, ∴cos C =DC AC =513.【互动总结】(学生总结,老师点评)在不同的直角三角形中,要根据三角函数的定义分清它们的边角关系,再根据勾股定理解答.活动2 巩固练习(学生独学)1.在Rt △ABC 中,∠C =90°,AB =13,AC =12,则cos A =( C ) A.513 B .512C.1213D .1252.已知Rt △ABC 中,∠C =90°,tan A =43,BC =8,则AC 等于( A )A .6B .323C .10D .123.如图所示,将∠AOB 放在边长为1的小正方形组成的网格中,则tan ∠AOB =12.4.如图,在Rt △ABC 中,∠C =90°,D 是BC 边上一点,AC =2,CD =1,设∠CAD =α.(1)求sin α、cos α、tan α的值; (2)若∠B =∠CAD ,求BD 的长.解:在Rt △ACD 中,∵AC =2,DC =1, ∴AD =AC 2+CD 2= 5.(1)sin α=CD AD =15=55,cos α=AC AD =25=255,tan α=CD AC =12.(2)在Rt △ABC 中,∵tan B =AC BC, 而∠B =∠CAD , ∴tan α=2BC =12,∴BC =4,∴BD =BC -CD =4-1=3. 活动3 拓展延伸(学生对学)【例3】如图,在Rt △ABC 中,∠C =90°,根据三角函数定义尝试说明: (1)sin 2A +cos 2A =1; (2)sin A =cos B ; (3)tan A =sin A cos A.【互动探索】用定义表示出sin A 、cos A 、cos B 、tan A →计算等式的左边与右边→得出结论.【证明】(1)由勾股定理,得a 2+b 2=c 2,而sin A =a c ,cos A =bc ,∴sin 2A +cos 2A =a 2c 2+b 2c 2=c 2c 2=1. (2)∵sin A =a c ,cos B =ac ,∴sin A =cos B.(3)∵tan A =a b ,sin A cos A =a c b c =ab,∴tan A =sin Acos A.【互动总结】(学生总结,老师点评)本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.题目中的三个结论应熟记.环节3 课堂小结,当堂达标 (学生总结,老师点评) 锐角三角函数⎩⎪⎨⎪⎧正弦→对比斜余弦→邻比斜正切→对比邻练习设计请完成本课时对应练习!第3课时 特殊角的三角函数值教学目标一、基本目标 【知识与技能】1.掌握30°,45°,60°角的三角函数值,能够用它们进行计算. 2.能够根据30°,45°,60°角的三角函数值说出相应锐角的大小. 【过程与方法】1.通过探索特殊角的三角函数值的过程,培养学生观察、分析、发现的能力. 2.通过推导特殊角的三角函数值,了解知识间的联系,提升综合运用数学知识解决问题的能力.【情感态度与价值观】在探索特殊角的三角函数值中,学生积极参与数学活动,培养学生独立思考问题的能力. 二、重难点目标 【教学重点】根据30°,45°,60°角的三角函数值进行有关计算. 【教学难点】正确理解与记忆30°,45°,60°角的三角函数值.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P65~P67的内容,完成下面练习. 【3 min 反馈】1.sin 30°=12,cos 30°2tan 30°32.sin 60°2cos 60°=12,tan 60°3.sin 45°2cos 45°2tan 45°=1. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】求下列各式的值: (1)cos 260°+sin 260°; (2)cos 45°sin 45°-tan 45°. 【互动探索】(引发学生思考)熟记特殊角的三角函数值→代入算式求值.【解答】(1)cos 260°+sin 260°=⎝⎛⎭⎫122+⎝⎛⎭⎫322=1. (2)cos 45°sin 45°-tan 45°=22÷22-1=0. 【互动总结】(学生总结,老师点评)特殊角的三角函数值必须熟练记忆,既能由角得值,又能由值得角,记忆这个结果,可以结合直角三角形三边的大小关系,也可以结合数值的特征,30°,45°,60°的正弦值分母都是2,分子分别为1,2,3,而它们的余弦值分母都是2,分子正好相反,分别为3,2,1;其正切值分别为1÷3,1,1× 3.【例2】数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°的三角板的斜边与含30°的三角板的长直角边相等,于是,小陆同学提出一个问题:如图,将一副三角板直角顶点重合拼放在一起,点B 、C 、E 在同一直线上,若BC =2,求AF 的长.请你运用所学的数学知识解决这个问题.【互动探索】(引发学生思考)根据正切的定义求出AC →根据正弦的定义求出CF →AF =AC -F C.【解答】在Rt △ABC 中,∵BC =2,∠A =30°, ∴AC =BC tan A =23,∴EF =AC =2 3. ∵∠E =45°,∴FC =EF ·sin E =6, ∴AF =AC -FC =23- 6.【互动总结】(学生总结,老师点评)本题考查的是特殊角的三角函数值的应用,掌握锐角三角函数的概念、熟记特殊角的三角函数值是解题的关键.活动2 巩固练习(学生独学)1.若3tan (α+10°)=1,则锐角α的度数是( A ) A .20° B .30° C .40°D .50°2.若∠A 为锐角,且tan 2A +2tan A -3=0,则∠A =45度. 3.计算.(1)2sin 30°-2cos 45°; (2)tan 30°-sin 60°·sin 30°; (3)(1-3tan 30°)2. 解:(1)0. (2)312. (3)3-1. 4.如图,在△ABC 中,∠ABC =90°,∠A =30°,D 是边AB 上一点,∠BDC =45°,AD =4,求BC 的长.解:∵∠B =90°,∠BDC =45°, ∴△BCD 为等腰直角三角形, ∴BD =B C.在Rt △ABC 中,∵tan A =tan 30°=BC AB ,∴BC BC +4=33,解得BC =2(3+1). 活动3 拓展延伸(学生对学)【例3】已知△ABC 中的∠A 与∠B 满足(1-tan A )2+⎪⎪⎪⎪sin B -32=0,试判断△ABC 的形状.【互动探索】根据非负性的性质求出tan A 及sin B 的值→根据特殊角的三角函数值求出∠A 及∠B 的度数→判断△ABC 的形状.【解答】∵(1-tan A )2+⎪⎪⎪⎪sin B -32=0, ∴1-tan A =0,sin B -32=0, ∴tan A =1,sin B =32, ∴∠A =45°,∠B =60°, ∴∠C =180°-45°-60°=75°, ∴△ABC 是锐角三角形.【互动总结】(学生总结,老师点评)一个数的绝对值和偶次方都是非负数,当几个数或式的绝对值或偶次方相加和为0时,则其中的每一项都必须等于0.环节3 课堂小结,当堂达标 (学生总结,老师点评) 特殊角的三角函数值:练习设计请完成本课时对应练习!第4课时用计算器求锐角三角函数值及锐角教学目标一、基本目标【知识与技能】1.能利用计算器求锐角三角函数值.2.已知锐角三角函数值,能用计算器求相应的锐角.3.能用计算器辅助解决含三角函数的实际问题.【过程与方法】使用计算器可以解决部分复杂问题,通过求值探讨三角函数问题的某些规律,提高学生分析问题的能力.【情感态度与价值观】通过计算器的使用,了解科学在人们日常生活中的重要作用,激励学生热爱科学、学好文化知识.二、重难点目标【教学重点】运用计算器处理三角函数中的值或角的问题.【教学难点】用计算器求锐角三角函数值时的按键顺序.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P67~P68的内容,完成下面练习.【3 min反馈】1.用计算器求sin 24°37′18″的值,以下按键顺序正确的是(A)A.sin24°′″37°′″18°′″=B.24°′″37°′″18°′″sin=C.2ndF sin24°′″37°′″18°′″=D.sin24°′″37°′″18°′″2ndF=2.使用计算器求下列三角函数值.(精确到0.0001)(1) sin 24°≈0.4067;(2)cos 35°≈0.8192;(3)tan 46°≈1.0355.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】按要求解决问题:(1)求sin 63°52′41″的值;(精确到0.0001)(2)求tan 19°15′的值;(精确到0.0001)(3)已知tan x=0.7410,求锐角的值.(精确到1′)【互动探索】(引发学生思考)熟悉用科学计算器求锐角三角函数值的操作流程.【解答】(1)在角度单位状态设定为“度”,再按下列顺序依次按键:sin 63°′′′52°′′′41°′′′=显示结果为0.897 859 012.所以sin 63°52′41″≈0.8979.(2)在角度单位状态设定为“度”,再按下列顺序依次按键:tan 19°′′′15°′′′=显示结果为0.349 215 633 4.所以tan 19°15′≈0.3492.(3)在角度单位状态设定为“度”,再按下列顺序依次按键:SHIFT tan 0.7410=显示结果为36.538 445 77.再按°′′′,显示结果为36°32′18.4″.所以x≈36°32′.【互动总结】(学生总结,老师点评)不同计算器的按键顺序是不同的,大体分两种情况:先按三角函数键,再按数字键;或先输入数字后,再按三角函数键,因此使用计算器时一定先要弄清输入顺序.【例2】如图,在△ABC中,AB=8,AC=9,∠A=48°.求:(1)AB边上的高(精确到0.01);(2)∠B的度数(精确到1′).【互动探索】(引发学生思考)观察图形→作辅助线→利用相似锐角三角函数解直角三角形.【解答】(1)作AB 边上的高CH ,垂足为H . ∵在Rt △ACH 中,sin A =CHAC ,∴CH =AC ·sin A =9sin 48°≈6.69. (2)∵在Rt △ACH 中,cos A =AH AC ,∴AH =AC ·cos A =9cos 48°,∴在Rt △BCH 中,tan B =CH BH =CH AB -AH =9sin 48°8-9cos 48°,∴∠B ≈73°32′.【互动总结】(学生总结,老师点评)利用三角函数求非直角三角形的边或角,一般情况下要构造直角三角形.活动2 巩固练习(学生独学)1.如图,在△ABC 中,∠ACB =90°,BC =2,AC =3,若用科学计算器求∠A 的度数,并用“度、分、秒”为单位表示出这个度数,则下列按键顺序正确的是( )A.tan 2÷3=B.tan 2÷3DMS =C.2ndF tan (2÷3)=D.2ndF tan (2÷3)DMS =2.用计算器求下列锐角的三角函数值.(精确到0.0001) (1)tan 63°27′; (2)cos 18°59′27″; (3)sin 67°38′24″; (4)tan 24°19′48″. 解:(1)2.0013. (2)0.9456. (3)0.9248. (4)0.4521. 3.根据下列条件求锐角A 的度数.(精确到1″) (1)cos A =0.6753; (2)tan A =87.54; (3)sin A =0.4553; (4)sin A =0.6725.解:(1)47°31′21″. (2)89°20′44″. (3)27°5′3″. (4)42°15′37″. 环节3 课堂小结,当堂达标 (学生总结,老师点评)用计算器求锐角三角函数值⎩⎪⎨⎪⎧求已知角的三角函数值由锐角三角函数值求锐角练习设计请完成本课时对应练习!28.2 解直角三角形及其应用 28.2.1 解直角三角形(第1课时)教学目标一、基本目标 【知识与技能】1.了解什么叫解直角三角形. 2.掌握解直角三角形的根据. 3.能由已知条件解直角三角形. 【过程与方法】在探索解直角三角形的过程中,渗透数形结合思想. 【情感态度与价值观】在探究活动中,培养学生的合作交流意识,让学生在学习中感受成功的喜悦,增强学习数学的信心.二、重难点目标 【教学重点】 解直角三角形的方法. 【教学难点】会将求非直角三角形中的边角问题转化为解直角三角形问题.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P72~P73的内容,完成下面练习. 【3 min 反馈】1.任何一个三角形都有六个元素,三条边、三个角,在直角三角形中,已知有一个角是直角,我们把利用已知的元素求出未知元素的过程,叫做解直角三角形.2.在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c . (1)两锐角互余,即∠A +∠B =90°; (2)三边满足勾股定理,即a 2+b 2=c 2;(3)边与角关系sin A =cos B =a c ,cos A =sin B =b c ,tan A =a b ,tan B =b a .3.Rt △ABC 中,若∠C =90°,sin A =45,AB =10,那么BC =8,tan B =34.环节2 合作探究,解决问题活动1小组讨论(师生互学)【例1】见教材P73例1.【例2】见教材P73例2.活动2巩固练习(学生独学)1.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是(A)A.c sin A=a B.b cos B=cC.a tan A=b D.c tan B=b2.在Rt△ABC中,∠C=90°,∠B=30°,BC=6,则AB的长为3.根据下列条件解直角三角形.(1)在Rt△ABC中,∠C=90°,b=4,c=8;(2)在Rt△ABC中,∠C=90°,∠A=60°,a=12.解:(1)a=43,∠B=30°,∠A=60°.(2)∠B=30°,b=43,c=8 3.活动3拓展延伸(学生对学)【例3】一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,试求CD的长.【互动探索】过点B作BM⊥FD于点M,求出BM与CM的长度,在△EFD中求出∠EDF=60°,再解直角三角形即可.【解答】如题图,过点B作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=45°,AC=122,∴BC=AC=12 2.∵AB∥CF,∴∠BCM=∠CBA=45°,∴BM=BC sin 45°=122×22=12,CM=BM=12.在△EFD中,∵∠F=90°,∠E=30°,∴∠EDF=60°,∴MD=BMtan 60°=43,∴CD=CM-MD=12-4 3.【互动总结】(学生总结,老师点评)解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.环节3课堂小结,当堂达标(学生总结,老师点评)练习设计请完成本课时对应练习!28.2.2应用举例第2课时利用仰角、俯角解直角三角形教学目标一、基本目标【知识与技能】1.能将直角三角形的知识与圆的知识结合起来解决问题.2.了解仰角、俯角等有关概念,会利用解直角三角形的知识解决有关仰角和俯角的实际问题.【过程与方法】通过探索用解直角三角形知识解决仰角、俯角等有关问题,经历将实际问题转化为数学问题的探究过程,提高应用数学知识解决实际问题的能力.【情感态度与价值观】通过探索三角函数在实际问题中的应用,感受数学来源于生活又应用于生活以及勇于探索的创新精神.二、重难点目标【教学重点】利用解直角三角形解决有关仰角、俯角的实际问题.【教学难点】建立合适的三角形模型,解决实际问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P74~P75的内容,完成下面练习.【3 min反馈】1.在进行测量时,从下往上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.2.如图所示,在建筑物AB的底部a米远的C处,测得建筑物的顶端点A的仰角为α,则建筑物AB的高可表示为a tan α米.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】2012年6月18日,“神舟”九号载人航天飞船与“天宫”一号目标飞行器成功实现交会对接.“神舟”九号与“天宫”一号的组合体在离地球表面343 km的圆形轨道上运行,如图所示,当组合体运行到地球表面点P的正上方时,从中能直接看到的地球表面最远的点在什么位置?最远点与点P的距离是多少?(地球半径约为6400 km,π取3.142,结果取整数)【温馨提示】详细分析与解答见教材P74例3.【例2】如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球与楼的水平距离为120 m,这栋楼有多高(结果取整数)?【温馨提示】详细分析与解答见教材P75例4.活动2巩固练习(学生独学)如图,为了测量河的宽度AB,测量人员在高21 m的建筑物CD的顶端D处测得河岸B 处的俯角为45°,测得河对岸A处的俯角为30°(A、B、C在同一条直线上),则河的宽度AB 约是多少?(精确到0.1 m,参考数据:2≈1.41,3≈1.73)解:由题易知,∠DAC=∠EDA=30°. ∵在Rt△ACD中,CD=21 m,∴AC=CDtan 30°=2133=213(m).∵在Rt△BCD中,∠DBC=45°,∴BC=CD=21 m,∴AB=AC-BC=213-21≈15.3(m).即河的宽度AB约是15.3 m.活动3拓展延伸(学生对学)【例3】如图,某大楼顶部有一旗杆AB,甲、乙两人分别在相距6米的C、D两处测得点B和点A的仰角分别是42°和65°,且C、D、E在一条直线上.如果DE=15米,求旗杆AB的长大约是多少米?(结果保留整数,参考数据:sin 42°≈0.67,tan 42°≈0.9,sin 65°≈0.91,tan 65°≈2.1)【互动探索】要求AB ,先求出AE 与BE →解直角三角形:Rt △ADE 、Rt △BCE . 【解答】在Rt △ADE 中,∵∠ADE =65°,DE =15米, ∴tan ∠ADE =AE DE,即tan 65°=AE15≈2.1,解得 AE ≈31.5米.在Rt △BCE 中,∵∠BCE =42°,CE =CD +DE =6+15=21(米), ∴tan ∠BCE =BE CE,即tan 42°=BE21≈0.9,解得 BE ≈18.9米.∴AB =AE -BE =31.5-18.9≈13(米). 即旗杆AB 的长大约是13米.【互动总结】(学生总结,老师点评)先分析图形,根据题意构造直角三角形,再解Rt △ADE 、Rt △BCE ,利用AB =AE -BE 即可求出答案.环节3 课堂小结,当堂达标 (学生总结,老师点评)练习设计请完成本课时对应练习!第3课时 利用坡度、方向角解直角三角形教学目标一、基本目标【知识与技能】1.能运用解直角三角形解决航行问题.2.能运用解直角三角形解决斜坡问题.3.理解坡度i =坡面的铅直高度坡面的水平宽度=坡角的正切值. 【过程与方法】1.通过探究从实际问题中建立数学模型的过程,发展学生的抽象概括能力,提高应用数学知识解决实际问题的能力.2.通过将实际问题中的数量关系转化为直角三角形中元素之间的关系,增强应用意识,体会数形结合思想的应用.【情感态度与价值观】在运用三角函数知识解决问题的过程中,认识数学具有抽象、严谨和应用广泛的特点,体会数学的应用价值.二、重难点目标【教学重点】用三角函数有关知识解决方向角、坡度、坡角等有关问题.【教学难点】准确分析问题并将实际问题转化成数学模型.教学过程环节1 自学提纲,生成问题【5 min 阅读】阅读教材P76~P77的内容,完成下面练习.【3 min 反馈】(一)方向角1.方向角是以观察点为中心(方向角的顶点),以正北或正南为始边,旋转到观察目标的方向线所成的锐角,方向角也称象限角.2.如图,我们说点A 在O 的北偏东30°方向上,点B 在点O 的南偏西45°方向上,或者点B 在点O 的西南方向.(二)坡度、坡角1.坡度通常写成1∶m的形式.坡面与水平面的夹角叫做坡角,记作α,有i=hl=tan α.2.一斜坡的坡角为30°,则它的坡度为(三)利用解直角三角形的知识解决实际问题的一般过程1.将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题,也就是建立适当的函数模型);2.根据条件的特点,适当选用锐角三角函数,运用解直角三角形的有关性质解直角三角形;3.得到数学问题的答案;4.得到实际问题的答案.环节2合作探究,解决问题活动1小组讨论(师生互学)(一)解直角三角形,解决航海问题【例1】如图,海中一小岛A,该岛四周10海里内有暗礁,今有货轮由西向东航行,开始在A岛南偏西55°的B处,往东行驶20海里后到达该岛的南偏西25°的C处,之后,货轮继续向东航行,你认为货轮向东航行的途中会有触礁的危险吗?【互动探索】(引发学生思考)构造直角三角形→解直角三角形求出AD 的长并与10海里比较→得出结论.【解答】如题图,过点A 作AD ⊥BC 交BC 的延长线于点D.在Rt △ABD 中,∵tan ∠BAD =BD AD, ∴BD =AD ·tan 55°.在Rt △ACD 中,∵tan ∠CAD =CD AD, ∴CD =AD ·tan 25°.∵BD =BC +CD ,∴AD ·tan 55°=20+AD ·tan 25°,∴AD =20tan 55°-tan 25°≈20.79(海里). 而20.79海里>10海里,∴轮船继续向东行驶,不会遇到触礁危险.【互动总结】(学生总结,老师点评)解决本题的关键是将实际问题转化为直角三角形的问题,通过作辅助线构造直角三角形,再把条件和问题转化到这个直角三角形中解决.应先求出点A 距BC 的最近距离,若大于10海里则无危险,若小于或等于10海里则有危险.(二)解直角三角形,解决坡度、坡角问题【例2】如图,铁路路基的横断面是四边形ABCD ,AD ∥BC ,路基顶宽BC =9.8 m ,路基高BE =5.8 m ,斜坡AB 的坡度i =1∶1.6,斜坡CD 的坡度i ′=1∶2.5,求铁路路基下底宽AD 的值(精确到0.1 m)与斜坡的坡角α和β的值(精确到1°).【互动探索】(引发学生思考)将坡度i=1∶1.6和i′=1∶2.5分别转化为正切三角函数→求出AE、DF的长→由AD=AE+EF+DF求出AD的长→利用计算器求得坡角α和β的值.【解答】如题图,过点C作CF⊥AD于点F,则CF=BE,EF=BC,∠A=α,∠D=β.∵BE=5.8 m, i=1∶1.6, i′=1∶2.5,∴AE=1.6×5.8=9.28(m),DF=2.5×5.8=14.5(m),∴AD=AE+EF+DF=9.28+9.8+14.5≈33.6(m).由tan α=i=1∶1.6,tan β=i′=1∶2.5,得α≈32°,β≈22°.即铁路路基下底宽AB为33.6 m,斜坡的坡角α和β分别为32°和22°.【互动总结】(学生总结,老师点评)利用坡度与坡角解决实际问题的关键是将坡度与坡角放入可解的直角三角形中,没有直角三角形一般要添加辅助线(垂线)构造直角三角形.活动2巩固练习(学生独学)1.如图,防洪大坝的横断面是梯形,坝高AC为6米,背水坡AB的坡度i=1∶2,则斜坡AB的长为2.“村村通”公路工程拉近了城乡距离,加速了我区农村经济建设步伐.如图所示,C 村村民欲修建一条水泥公路,将C 村与区级公路相连.在公路A 处测得C 村在北偏东60°方向,沿区级公路前进500 m ,在B 处测得C 村在北偏东30°方向.为节约资源,要求所修公路长度最短,画出符合条件的公路示意图,并求出公路长度.(结果保留整数)解:如图,过点C 作CD ⊥AB ,垂足落在AB 的延长线上,CD 即为所修公路,CD 的长度即为公路长度.在Rt △ACD 中,根据题意,有∠CAD =30°.∵tan ∠CAD =CD AD, ∴AD =CD tan 30°=3C D. 在Rt △CBD 中,根据题意,有∠CBD =60°.∵tan ∠CBD =CD BD,∴BD=CDtan 60°=33C D.又∵AD-BD=500 m,∴3CD-33CD=500,解得CD≈433 m.活动3拓展延伸(学生对学)【例3】如图,小明于堤边A处垂钓,河堤AB的坡比为1∶ 3 ,坡长为3米,钓竿AC的倾斜角是60°,其长为6米,若钓竿AC与钓鱼线CD的夹角为60°,求浮漂D与河堤下端B之间的距离.【互动探索】将实际问题转化为几何问题→作辅助线,构造直角三角形→延长CA交DB延长线于点E,过点A作AF⊥EB→解直角三角形得AE长→得△CDE是等边三角形,DE=CE=AC+AE→求得BD长.【解答】如图,延长CA交DB延长线于点E,过点A作AF⊥EB,交EB于点F,则∠。

人教版九年级数学下册:28锐角三角函数《锐角三角函数优秀教学案例》教案

人教版九年级数学下册:28锐角三角函数《锐角三角函数优秀教学案例》教案
1.了解锐角三角函数的概念、定义及性质,掌握锐角三角函数的计算方法。
2.能够运用锐角三角函数解决实际问题,提高学生的应用能力。
3.学会使用三角板和直尺等工具进行角度测量,培养学生的动手操作能力。
4.能够运用信息技术辅助学习,提高学生的信息素养。
(二)过程与方法
1.通过观察、实验、探究等方法,引导学生主动发现锐角三角函数的规律。
四、教学内容与过程
(一)导入新课
1.生活实例引入:教师通过展示一些实际生活中的图片,如建筑物的设计图、物理实验场景等,让学生观察并思考其中涉及到的角度问题。
2.提问引导:教师向学生提出问题,如“这些图片中的角度是如何计算的?”“你能想到一些与角度相关的实际问题吗?”等,激发学生的思考兴趣。
3.学生回答:鼓励学生积极回答问题,分享自己的观点和思考。
三、教学策略
(一)情景创设
1.生活情境:通过设置一些与生活密切相关的实例,如建筑设计、物理实验等,让学生了解锐角三角函数在实际生活中的应用,激发学生的学习兴趣。
2.问题情境:设计一些具有挑战性的问题,让学生在解决问题的过程中自然地引入锐角三角函数的知识,引导学生主动探究。
3.互动情境:创设轻松、愉快的课堂氛围,鼓励学生积极参与课堂讨论,培养学生主动表达自己观点的能力。
2.作业反馈:教师及时批改学生的作业,给予反馈和评价,指出学生的错误和不足,帮助学生提高。
3.学生自我检查:学生对自己的作业进行自我检查,总结自己在作业中的优点和不足,不断提高自己的学习效果。
五、案例亮点
1.生活情境的引入:通过展示与学生生活密切相关的实例,如建筑设计、物理实验等,让学生了解锐角三角函数在实际生活中的应用,使学生感受到数学的实用性,激发学生的学习兴趣。这种生活情境的引入,不仅能够引起学生的兴趣,还能够增强学生对知识的理解和记忆。

人教版九年级下册数学《锐角三角函数》教案(附解答)

人教版九年级下册数学《锐角三角函数》教案(附解答)

南京市中考化学二模试题及答案一、选择题1.已知某固体粉末是由 NaCl、CaCl2、NaOH、K2CO3、Na2CO3中的一种或几种组成,取这种粉末24g 加足量的水,振荡后呈浑浊,过滤、洗涤、烘干后得到10g沉淀和滤液。

向滤液中滴加酚酞,变红;取少量滤液于试管中滴加硝酸银溶液有白色沉淀生成,再加入稀硝酸沉淀不消失且试管中有气泡产生。

下列说法正确的是A.原固体中一定含CaCl2、NaOH和Na2CO3B.原固体中一定含Na2CO3,可能含K2CO3和NaClC.滤液中一定含NaCl和K2CO3,可能含NaOHD.上述实验无法证明原固体中是否含NaCl、CaCl2、NaOH2.在AlCl3溶液中逐滴加入NaOH溶液至过量,发生如下反应:3NaOH+AlCl3=Al(OH)3↓+3NaCl, Al(OH)3+NaOH=NaAlO2+2H2O。

已知NaAlO2易溶于水,则下列图像不正确的是( )A.B.C.D.3.用数形结合的方法表示某些化学知识直观、简明、易记.下列用数轴表示正确的是()A .不同物质的着火点:B .硫及其化合物与化合价的关系:C .50g19.6%的稀硫酸与足量的金属反应产生氢气的质量:D .物质形成溶液的pH :4.甲、乙、丙、丁均为初中化学常见的物质,它们之间的部分转化关系如图所示(部分反应物、生成物和反应条件已略去。

“——”表示物质之间能发生化学反应。

“―→”表示物质之间的转化关系)。

下列推论不正确...的是( )A .若甲是碳酸钙,则乙转化成丙的反应可以是放热反应B .若乙是最常用的溶剂,则丁可以是单质碳C .若甲是碳酸钠,乙是硫酸钠,则丁可以是氯化钡D .若丙是二氧化碳,丁是熟石灰,则丁可以通过复分解反应转化为乙5.金属钠非常活泼,常温下在空气中易被氧化,也易与水反应。

现将5.4g 部分氧化的金属钠样品放入150g 16%的硫酸铜溶液中,充分反应后过滤,得到9.8g 蓝色滤渣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时 锐角三角函数
1.掌握余弦、正切的定义.
2.了解锐角∠A 的三角函数的定义.
3.能运用锐角三角函数的定义求三角函数值.
阅读教材P64-65,自学“探究”与“例2”.
自学反馈 学生独立完成后集体订正
①在Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c;∠A 的邻边与斜边的比叫做∠A 的 ,即cosA= ;∠A 的对边与邻边的比叫做∠A 的 ,即tanA= .
②锐角A 的正弦、余弦、正切叫做∠A 的 .
③在Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若a=3、b=4,则cosB= ,tanB= .
④在Rt △ABC 中,∠C=90°,∠A=30°,则sinA=
()()= ,cosA= ()()= ,tanA=
()()= . ⑤在Rt △ABC 中,∠C=90°,∠A=60°,则sinA=
()()= ,cosA= ()()= ,tanA=
()()= . ⑥在Rt △ABC 中,∠C=90°,∠A=45°,则sinA=
()()= ,cosA= ()()= ,tanA=
()()= . 锐角三角函数是在直角三角形的前提下.
活动1 小组讨论
例1 分别求出下列直角三角形中两个锐角的正弦值、余弦值和正切值.
解:在Rt△ABC中,根据勾股定理得
∴sinA=cosB=BC
AB
=
5
13
,cosA=sinB=
AC
AB
=
12
13
,tanA=
BC
AC
=
5
12
,tanB=
AC
BC
=
12
5
.利用勾股定理求出第三边,再直接运用三角函数定义即可.
活动2 跟踪训练(独立完成后小组内展示学习成果)
1.在Rt△ABC中,∠C=90°,D是AB的中点,若CD=BC,则tanA= .
2.在Rt△ABC中,∠C=90°,c=13,a=12,那么sinA= ,cosA= ,tanA= .
3.在Rt△ABC中,∠C=90°,c=2,sinB=1
2
,则a= ,b= ,S△ABC= .
均可先求出直角三角形的边长,再用锐角三角函数的关系来做.
活动1 小组讨论
例2 如图,在Rt△ABC中,∠C=90°,AC=8,tanA=3
4
,求sinA和cosB的值.
解:∵tanA=BC AC
,
∴BC=AC×tanA=8×3
4
=6.

∴sinA=BC
AB
=
6
10
=
3
5
,cosB=
BC
AB
=
6
10
=
3
5
.
先求Rt△ABC的边长,再求sinA、cosB的值.
例3 如图,在△ABC中,AB=15,AC=13,S△ABC=84,求sinA的值.
解:过点C 作CD ⊥AB 于点D.
∵S △ABC =
12
AB ·CD, ∴CD=2ABC S AB =28415 =565
. 在Rt △ACD 中,sinA=CD AC =56513=5665. 求sinA 的值,由正弦定义可知,必须在直角三角形中,图中没有直角三角形,应想办法构造,题中又提供了三角形的面积及边AB 的长,故可通过C 作高CD.
活动2 跟踪训练(独立完成后展示学习成果)
1.在△ABC 中,∠C=90°,且tanA=13
,则cosB 的值是 . 2.如图,在△ABC 中,∠ABC=60°,AB ∶BC=2∶5,S △ABC
,求tanC 的值.
活动3 课堂小结
1.本节学习的数学知识,锐角的余弦、正切及锐角三角函数的定义.
2.本节还学到了类比的思想.
教学至此,敬请使用学案当堂训练部分.
【预习导学】
自学反馈
①余弦b
c
正切
a
b
②锐角三角函数
③3
5
4
3
④⑤⑥略
【合作探究1】活动2 跟踪训练
1.
3
2.12
13
5
13
12
5
1
2
【合作探究2】活动2 跟踪训练。

相关文档
最新文档