最新离散数学期末试卷A卷汇总
离散数学期末试题
离散数学考试试题(A 卷及答案)一、(10分)求(P ↓Q )→(P ∧⌝(Q ∨⌝R ))的主析取范式解:(P ↓Q )→(P ∧⌝(Q ∨⌝R ))⇔⌝(⌝( P ∨Q ))∨(P ∧⌝Q ∧R ))⇔(P ∨Q )∨(P ∧⌝Q ∧R ))⇔(P ∨Q ∨P )∧(P ∨Q ∨⌝Q )∧(P ∨Q ∨R )⇔(P ∨Q )∧(P ∨Q ∨R )⇔(P ∨Q ∨(R ∧⌝R ))∧(P ∨Q ∨R )⇔(P ∨Q ∨R )∧(P ∨Q ∨⌝R )∧(P ∨Q ∨R )⇔0M ∧1M⇔2m ∨3m ∨4m ∨5m ∨6m ∨7m二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。
乙说:王教授不是上海人,是苏州人。
丙说:王教授既不是上海人,也不是杭州人。
王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。
试判断王教授是哪里人?解 设设P :王教授是苏州人;Q :王教授是上海人;R :王教授是杭州人。
则根据题意应有: 甲:⌝P ∧Q乙:⌝Q ∧P丙:⌝Q ∧⌝R王教授只可能是其中一个城市的人或者3个城市都不是。
所以,丙至少说对了一半。
因此,可得甲或乙必有一人全错了。
又因为,若甲全错了,则有⌝Q ∧P ,因此,乙全对。
同理,乙全错则甲全对。
所以丙必是一对一错。
故王教授的话符号化为:((⌝P ∧Q )∧((Q ∧⌝R )∨(⌝Q ∧R )))∨((⌝Q ∧P )∧(⌝Q ∧R ))⇔(⌝P ∧Q ∧Q ∧⌝R )∨(⌝P ∧Q ∧⌝Q ∧R )∨(⌝Q ∧P ∧⌝Q ∧R )⇔(⌝P ∧Q ∧⌝R )∨(P ∧⌝Q ∧R )⇔⌝P ∧Q ∧⌝R⇔T因此,王教授是上海人。
三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。
证明 设R 是非空集合A 上的二元关系,则tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。
离散数学期末考试试题及答案
离散数学期末考试试题及答案一、选择题(每题3分,共30分)1. 设集合A={1, 2, 3, 4, 5},B={2, 4, 6, 8},则A∩B是()A. {1, 2, 3, 4, 5}B. {2, 4}C. {1, 3, 5}D. {2, 4, 6, 8}2. 下列关系中,哪个是等价关系?()A. 小于关系B. 大于等于关系C. 模2同余关系D. 整除关系3. 设P(x)是谓词逻辑公式,下列哪个命题与∀xP(x)等价?()A. ∃x¬P(x)B. ¬∀xP(x)C. ¬∃xP(x)D. ∃x¬P(x)4. 一个图的欧拉回路是指()A. 经过每一条边的路径B. 经过每一个顶点的路径C. 经过每一条边的环D. 经过每一个顶点的环5. 设G是一个无向图,下列哪个说法是正确的?()A. G的每个顶点的度数都相等B. G的每个顶点的度数都不相等C. G的任意两个顶点之间都有一条边D. G的任意两个顶点之间都不一定有边6. 下列哪个图是哈密顿图?()A. K3,3B. K5C. K4,4D. K67. 设G是一个具有n个顶点的连通图,则G的最小生成树至少包含()A. n个顶点B. n-1条边C. n+1条边D. 2n条边8. 下列哪个算法可以用来求解最短路径问题?()A. Dijkstra算法B. Kruskal算法C. Prim算法D. Floyd算法9. 设P和Q是两个命题,下列哪个命题与(P→Q)∧(Q→P)等价?()A. P∧QB. P∨QC. P↔QD. ¬P∨¬Q10. 设A是一个有限集合,A的幂集是指()A. A的所有子集B. A的所有真子集C. A的所有非空子集D. A的所有非空真子集二、填空题(每题3分,共30分)11. 设集合A={1, 2, 3, 4, 5},B={2, 4, 6, 8},则A-B=______。
12. 设P(x)是谓词逻辑公式,∃xP(x)表示“存在一个x使得P(x)成立”,那么∀x¬P(x)表示“______”。
离散数学期末复习题(6套)
《离散数学》期末考试题(A)一、填空题(每小题3分,共15分)1.设}}{},,{{c b a A =,}}{},,{},{{c c b a B =,则)(=⋃B A ,)(=⋂B A ,)()(=A P .2.集合},,{c b a A =,其上可定义( )个封闭的1元运算,( )个封闭的2元运算,( )个封闭的3元运算.3.命题公式1)(↑∧q p 的对偶式为( ).4.所有6的因数组成的集合为( ).5.不同构的5阶根树有( )棵.二、单选题(每小题3分,共15分)1.设A , B 是集合,若A B A =-,则(A)B = ∅ (B) A = ∅ (C)=⋂B A ∅ (D)A B A =⋂2.谓词公式)())()((x R y yQ x P x ∧∃→∀中量词x ∀的辖域为(A))())()((x R y yQ x P x ∧∃→∀ (B))()(y yQ x P ∃→(C))())()((x R y yQ x P ∧∃→ (D))()(y yQ x P ∃→和)(x R3.任意6阶群的子群的阶一定不为(A)4 (B)6 (C)2 (D)34.设n 是正整数,则有限布尔代数的元素个数为(A)2n (B)4n (C)n 2 (D)2n5.对于下列序列,可构成简单无向图的度数序列为(A)3, 3, 4, 4, 5 (B)0, 1, 3, 3, 3 (C)1, 1, 2, 2, 3 (D)1, 1, 2, 2, 2三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设N N N :⨯→f ,)1,()(+=x x x f ,则f 是满射. () 2. 5男5女圆桌交替就座的方式有2880种. () 3. 设),(≤L 是格,对于L z y x ∈,,,若z x y x ⋅=⋅且z x y x +=+,则z y =. () 4. 任何树都至少2片树叶. ()5. 无向图G 有生成树的充要条件是G 为连通图. ( )四、(10分)设C B A ,,和D 是集合,证明)()()()(D B C A D C B A ⨯-⨯⊆-⨯-,并举例说明上式中不能将⊆改为 = .五、(15分)设N 是自然数集合,定义N 上的关系R 如下:y x R y x +⇔∈),(是偶数,1.证明R 是N 上的等价关系.2.求出N 关于等价关系R 的所有等价类.3.试求出一个N 到N 的函数f ,使得)}()(,N ,|),{(y f x f y x y x R =∈=.六、(10分)在实数集合R 中证明下列推理的有效性:因为R 中存在自然数,而所有自然数是整数,所以R 中存在整数.七、(10分)设R 是实数集合,令}0,R ,|),{(≠∈=a b a b a G ,定义G 上的运算如下: 对于任意G d c b a ∈),(),,(,),(),(),(b ad ac d c b a +=⋅,证明),(⋅G 是非Abel 群.八、(10分)若简单平面图G 的节点数7=n 且边数15=m ,则G 是连通图,试证明之.《离散数学》期末考试题(B)一、填空题(每小题3分,共15分)1.设,,},,{{b a b a A =∅},则-A ∅ = ( ),-A {∅} = ( ),)(A P 中的元素个数=|)(|A P ( ).2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数.3.谓词公式))()(())()((y P y Q y x Q x P x ⌝∧∃∧→∀中量词x ∀的辖域为( ), 量词y ∃的辖域为( ).4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元.5.当n ( )时,n 阶完全无向图n K 是平面图,当n 为( )时,n K 是欧拉图.二、单选题(每小题3分,共15分)1.设R 是集合A 上的偏序关系,1-R 是R 的逆关系,则1-⋃R R 是A 上的(A)偏序关系 (B)等价关系 (C)相容关系 (D)以上结论都不成立2.由2个命题变元p 和q 组成的不等值的命题公式的个数有(A)2 (B)4 (C)8 (D)163.设p 是素数且n 是正整数,则任意有限域的元素个数为(A)n p + (B)pn (C)n p (D)pn4.设R 是实数集合,≤是其上的小于等于关系,则(R, ≤)是(A)有界格 (B)分配格 (C)有补格 (D)布尔格5.3阶完全无向图3K 的不同构的生成子图有(A)2 (B)3 (C)4 (D)5 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.若一个元素a 既存在左逆元l a ,又存在右逆元r a ,则r l a a =. ( )2.命题联结词→不满足结合律. ( )3.在Z 8 = {0,1,2,3,4,5,6,7}中,2关于“⋅8”的逆元为4. ( )4.整环不一定是域. ( )5.任何),(m n 平面图的面数2+-=n m r . ( )四、(10分)设B A f →:且C B g →:,若g f 是单射,证明f 是单射,并举例说明g 不一定是单射.五、(15分)设},,,{d c b a A =,A 上的关系)},(),,(),,(),,(),,(),,(),,(),,(),,{(c d b d a d c c b c a c c a b a a a R =,1.画出R 的关系图R G .2.判断R 所具有的性质.3.求出R 的关系矩阵R M .六、(10分)利用真值表求命题公式))(())((p q r r q p A →→↔→→=的主析取范式和主合取范式.七、(10分) 边数30<m 的简单平面图G ,必存在节点v 使得4)deg(≤v .八、(10分) 有六个数字,其中三个1,两个2,一个3,求能组成四位数的个数.《离散数学》期末考试题(C)一、填空题(每小题3分,共15分)1. 若n B m A ==||,||,则=⨯||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个.2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3,1)},则( )是单射,( )是满射,( )是双射.3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号).(1)q q p p →→∧)(;(2))(q p p ∨→;(3))(q p p ∧→;(4)q q p p →∨∧⌝)(;(5)q q p →→)(.4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).5. 设G 是(7, 15)简单平面图,则G 一定是( )图,且其每个面恰由( )条边围成,G 的面数为( ).二、单选题(每小题3分,共15分)1. 设A , B , C 是集合,则下述论断正确的是( ).(A)若A ⊆ B , B ∈ C ,则A ∈ C . (B)若A ⊆ B , B ∈ C ,则A ⊆ C .(C)若A ∈ B , B ⊆ C ,则A ∈ C . (D)若A ∈ B , B ⊆ C ,则A ⊆ C .2. 设R ⊆ A ⨯ A ,S ⊆ A ⨯ A ,则下述结论正确的是( ).(A)若R 和S 是自反的,则R ⋂ S 是自反的.(B)若R 和S 是对称的,则S R 是对称的.(C)若R 和S 是反对称的,则S R 是反对称的.(D)若R 和S 是传递的,则R ⋃ S 是传递的.3.在谓词逻辑中,下列各式中不正确的是( ).(A))()())()((x xB x xA x B x A x ∀∨∀=∨∀(B))()())()((x xB x xA x B x A x ∀∧∀=∧∀(C))()())()((x xB x xA x B x A x ∃∨∃=∨∃(D)),(),(y x xA y y x yA x ∀∃=∃∀4. 域与整环的关系为( ).(A)整环是域 (B)域是整环 (C)整环不是域 (D) 域不是整环5.设G 是(n , m )图,且G 中每个节点的度数不是k 就是k + 1,则G 中度数为k 的节点个数为( ). (A)2n . (B)n (n + 1). (C)nk . (D)m k n 2)1(-+. 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.设f : Z → Z ,x x x f 2||)(-=,则f 是单射. ( )2.设ϕ是群G 1到群G 2的同态映射,若G 1是Abel 群,则G 2是Abel 群. ( )3.设),(≤L 是格,对于L z y x ∈,,,若z x y x ⋅=⋅且z x y x +=+,则z y =. ( )4.元素个数相同的有限布尔代数都是同构的. ( )5.设G 是n (n ≥ 11)阶简单图,则G 或G 是非平面图. ( )四、(15分)设A 和B 是集合,使下列各式(1)A B A =⋂; (2)A B B A -=-;(3)A A B B A =-⋃-)()(成立的充要条件是什么,并给出理由.五、(10分) 设S 是实数集合R 上的关系,其定义如下∈=y x y x S ,|),{(R 且是3y x -是整数}, 证明: S 是R 上的等价关系. 六、(10分) 求谓词公式)))()(()(()(x xD y yC y B x xA ∀→∃⌝→→∃的前束范式.七、(10分) 若n 个人,每个人恰有3个朋友,则n 必为偶数,试证明之.八、(10分) 利用生成函数求解递归关系⎩⎨⎧=-+=-2)1(211a n a a n n .《离散数学》期末考试题(D)一、填空题(每小题3分,共15分)1. 设|A | = 5, |B | = 2, 则可定义A 到B 的函数( )个,其中有( )单射,( )个满射.2. 令G (x ): x 是金子,F (x ): x 是闪光的,则命题“金子都是闪光的,但闪光的未必是金子”符号化为( ).3. 设X 是非空集合,则X 的幂集P (X )关于集合的⋃运算的单位元是( ),零元是( ),P (X )关于集合的⋂运算的单位元是( ).4. 不同构的5阶无向树有( )棵.5. 对于n 阶完全无向图K n , 当n 为( )时是Euler 图,当n ≥ ( )时是Hamilton 图,当n ( )时是平面图.二、单选题(每小题3分,共15分)1. 幂集P (P (P (∅))) 为( )(A){{∅}, {∅, {∅}}}. (B){∅, {∅, {∅}}, {∅}}.(C){ ∅, {∅, {∅}}, {{∅}}, {∅}} (D){ ∅, {∅, {∅}}}.2. 设R 是集合A 上的偏序关系,则1-⋃R R 是( ).(A)偏序关系 (B)等价关系 (C)相容关系 (D)以上答案都不对3. 下列( )组命题公式是不等值的.(A))(B A →⌝与B A ⌝∧. (B) )(B A ↔⌝与)()(B A B A ∧⌝∨⌝∧.(C))(C B A ∨→与C B A →⌝∧)(. (D))(C B A ∨→与)(C B A ∨∧⌝.4.下列代数结构(G , *)中,( )是群.(A)G = {0, 1, 3, 5}, “*”是模7加法. (B) G = Q , “*”是数的乘法.(C)G = Z , “*”是数的减法. (D) G = {1, 3, 4, 5, 9}, “*”是模11乘法.5.4阶完全无向图4K 中含3条边的不同构的生成子图有(A)3 (B)4 (C)5 (D)2三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.函数的复合运算“ ”满足结合律. ( )2. {→⌝,}是最小功能完备联结词集合. ( )3. 实数集R 关于数的乘法运算“⋅”阿贝尔群. ( )4. 任意有限域的元素个数为2n . ( )5. 设G 是n (n 为奇数)简单图,则G 与G 中度数为奇数的节点个数相同. ( )四、(10分)设A 和B 是集合,使B B A =-成立的充要条件是什么,并给出理由.五、(10分) 设R 和S 是集合A 上的对称关系,证明S R 对称的充要条件是R S S R =.六、(15分)分别利用(1)等值演算法和(2)真值表求命题公式))(())((r q p p q r A ∨→→→∨⌝=的主析取范式和主合取范式.七、(10分) 设G 是(n , m )无向图,若n m ≥,证明G 中必存在圈.八、(10分) 在初始条件f (1) = c 下,求解递归关系bn n f n f +⎪⎭⎫ ⎝⎛=22)(,其中b ,c 为常数且kn 2=,k 为正整数.《离散数学》期末考试题(E)一、填空题(每小题3分,共15分)1.设A = {2, {3}, 4, a }, B = {1, 3, 4, {a }}, 则{3}( )A ,{a }( )B ,{{a }}( )B .2. 设A = {1, 2, 3, 4, 5}上的关系R = {(1, 2), (3, 4), (2, 2)}, S = {(4, 2), (2, 5), (3, 1), (1, 3)}, 则=S R { }, =R S { }, =R R { }.3. gcd(36, 48) = ( ),lcm(36, 48) = ( ).4.任意有限布尔代数)1,0,,,,(⋅+B 均与集合代数( )同构,其元素个数为( ).5. 不同构的5阶无向树有( )棵,不同构的5阶根树有( )棵.二、单选题(每小题3分,共15分)1. 在有理数集合Q 上定义运算“*”如下:对于任意x , y ∈ Q ,y x * = x + y – xy ,则Q 关于*的单位元是( ).(A)x . (B)y . (C)1. (D)0.2. 设A = {1, 2, 3}, 下图分别给出了A 上的两个关系R 和S ,则S R 是( )关系.(A)自反. (B)对称. (C)传递. (D)等价.3.令T (x ): x 是火车,B (x ): x 是汽车,F (x , y ): x 比y 快,则“某些汽车比所有的火车慢”符号化为( ).(A)()()),()()(y x H x T x y B y →∀∧∃.(B)()()),()()(y x H x T x y B y ∧∀→∃.(C)()()),()()(y x H x T y B y x ∧→∃∀.(D)()()),()()(y x H x T x y B y →∀→∃.4. 整数集合Z 关于数的加法“+”和数的乘法“⋅”构成的代数结构(Z, +, ⋅)是( ). 1 1 22 3 3G S G R(A)域(B)域和整环(C)整环(D) 有零因子环G≅,则称G为自补图. 5阶不同构的自补图5.设G是简单图,G是G的补图,若G个数为( ).(A)0. (B)1. (C)2. (D)3.三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. { ∅, {∅}} ∉P(P({∅})). ( )2. 非空1元及2元联结词集合的个数为29-1. ( )3. 群可分为Abel群和非Abel群. ( )4. 元素个数相同的有限域都是同构的. ( )5. 设G是简单图,则G或G是连通图. ( )四、(15分)设C,:, 若gf 是单射,证明f是单射,并举例说明g→:f→gBBA不一定是单射.五、(10分)设A = {a, b, c, d}上的关系R = {(a, b), (b, d), (c, c), (a, c)}, 画出R的关系图,并求出R的自反闭包r(R)、对称闭包s(R)和传递闭包t(R).六、(10分)用CP规则证明下列推理.⌝∨→∨(.⇒),(⌝),→pqssrqrqp→七、(10分)求谓词公式))xyByAxA∀→∨∀∧⌝∃的前束范式.zC((x()))(z(()八、(10分)任意6个人中,一定有3个人彼此认识或有3个人彼此不认识.《离散数学》期末考试题(F)一、填空题(每小题3分,共15分)1. 设A = {1, 2, 3, {1, 2}, {3}}, B = {2, {2,3}, {1}} , 则A–B = { }, B–A = { }, A⊕B = { }.2. 实数集合R关于加法运算“+”的单位元为( ), 关于乘法运算“⋅”的单位元为( ), 关于乘法运算“⋅”的零元为( ).3. 令Z(x): x是整数,O(x): x是奇数,则“不是所有整数都是奇数”符号化为( ).4. 有限域的元素个数为( ), 其中( )且( ).5. 设G 是(7, 15)简单平面图,则G 一定 ( )连通图,其每个面恰由( )条边围成,G 的面数为( ).二、单选题(每小题3分,共15分)1. 函数的复合运算“ ”满足( )(A)交换律. (B)结合律. (C)幂等律. (D)消去律.2. 设集合A 中有4个元素,则A 上的等价关系共有( )个.(A)13 (B)14 (C)15 (D)163.下列代数结构(G , *)中,( )是群.(A)G = {0, 1, 3, 5}, “*”是模7加法. (B) G = Q , “*”是数的乘法.(C)G = Z , “*”是数的减法. (D) G = {1, 3, 4, 5, 9}, “*”是模11乘法.4. 下列偏序集,( )是格.5. 不同构的(5, 3)简单无向图有( )个.(A)4 (B)5 (C)3 (D)2三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设A ,B ,C 是集合,若C A B A ⊕=⊕, 则B = C . ( )2. 逻辑联结词“→”满足结合律. ( )3. 设 (L , ≤)是偏序集,若L 的任意非空子集均存在上确界和下确界,则(L , ≤)是格.( )4. 在同构意义下,有限布尔代数只有,,,),((⋂⋃X P ∅, X ). ( )5. 设G 是简单图,则G 与G 中度数为奇数的节点个数相同. ( )四、(15分) 设C B g B A f →→:,:, 若g f 是满射,证明g 是满射,并举例说明f 不一定是满射.五、(10分) 在整数集合Z 上定义关系R 如下:对于任意∈y x , Z ,y y x x R y x +=+⇔∈22),(.判断R 是否具有自反性、反自反性、对称性、反对称性及传递性.六、(10分)利用真值表求命题公式)())(q p q p A ⌝→↔→⌝=的主析取范式和主合取范式.七、(10分)证明:在至少两个人的人群中,必有两个人有相同个数的朋友.八、(10分)将6阶完全无向图K 6的边随意地涂上红色或蓝色,证明:无论如何涂法,总存在红色的K 3或蓝色的K 3.(ps :答案见离散数学期末复习题(6套)答案文档)。
离散数学期末试题A答案及评分标准
--北京工商大学离散数学试卷(A)答案及评分标准题号 一 二三 四 五 六 七总分得分一、(30分)设A ={1,2,3,4},给定A 上二元关系R 如下:R ={<1,1>, <1,2>, <2,3>, <3,3>, <4,4>}请回答以下各问题:1.写出R 的关系矩阵. (3分)2.画出R 的关系图. (3分)3.求包含R 的最小的等价关系,并写出由其确定的划分. (6分)4.分别用关系矩阵表示出R 的自反闭包r (R )、对称闭包s (R ). (6分)5.求传递闭包t (R ).(写出计算步骤)(6分)6.求R 2的关系矩阵. (3分)7.集合A 上最多可以确定多少个不同的二元关系?说明理由。
(3分)[解] (1)⎪⎪⎪⎪⎪⎭⎫⎝⎛=1000010001000011R M 。
……(3分)(2) ……(3分)(3)法一:直接由等价关系与划分之间的一一对应可知,包含R 的最小等价关系为: {<1, 2>, <1, 3>, <2, 1>,<2, 3>, <3, 1> <3, 2>}∪I A , ……(3分) 对应的划分为{{1, 2, 3},{4}}. ……(6分) 法二:包含R 的最小的等价关系就是tsr (R ), 计算过程如下:⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫⎝⎛=+=100001000110001110000100001000011000010001000011)(E M M R R r,100001100111001110000110001100011000010001100011][)()()(⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+=T R r R r R sr M M M ,3,10001110111011110000110011100111000011001110011)]([)()()]([2≥=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛⨯⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⨯=k M M M M k R sr R sr R sr R sr 从而,10000111011101111000011101110111100001110111011110000111011101111000011001110011432)]([)]([)]([)()(⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+++=R sr R sr R sr R sr R tsr M M M M M即}2,3,1,3,3,2,1,2,3,1,2,1{)(><><><><><><⋃=A I R tsr =包含R 的最小的等价关系, ……(3分) 故其对应的划分为{{1, 2, 3},{4}}. ……(6分) 法三:由于4=A ,包含R 的最小的等价关系就是4131211)()()()()()(----⋃⋃⋃⋃⋃⋃⋃⋃==R R R R R R R R I R rts R tsr A ,计算过程如下:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫⎝⎛=+=-⋃100001100101001110000110000100011000010001000011][1TR R R R M M M ⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=+=-⋃10000111011101111000011001010011)][(22)(21T R R R R M M M412131)()(33)(10000111011101111000011001010011)][(---⋃⋃⋃==⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=+=R R R R T R R R R M M M M M 考试纪律承诺本人自愿遵守学校考试纪律,保证以诚信认真的态度作答试卷。
离散数学期末考试试卷a答案及评分细则
………密………封………线………以………内………答………题………无………效……电子科技大学英才学院2022 -2022学年第 1学期期 末 考试 A 卷离散数学 课程考试题 A 卷 〔 120分钟〕 考试形式:闭卷 考试日期 2022 年 月 日课程成绩构成:平时 分, 期中 分, 实验 分, 期末 100 分I.Multiple Choice (15%, 1.5 points each)〔A 〕 1. (p ∧q)→(p ∨q) is logically equivalent toa) T b) p ∨q c) F d) p ∧q〔A 〕 2. If P(A) is the power set of A, and A = ∅, what is |P(P(P(A)))|?a) 4 b) 24 c) 28 d) 216〔C 〕 3. Which of these statements is NOT a proposition?a) Today is Monday. ` b) 1+1=2.c) Am I right? d) Go and play with me.〔C 〕 4. Which of these propositions is not logically equivalent to the other three?a) (p → q) ∧ (r → q) b) (p ∨ r) → qc) (p ∧r) → q d) The contrapositive of ¬q → (¬p ^ ¬r)〔B 〕 5. Suppose | A | = 3 and | B | = 8. The number of 1-1 functions f : A → B isa) 24 b) P (8,3). c) 38 d) 83〔B 〕 6. Let R be a relation on the positive integers where xRy if x is a factor of y . Whichof the following lists of properties best describes the relation R ? a) symmetric, transitiveb) antisymmetric, transitive, reflexive c) antisymmetric, symmetric, reflexive d) symmetric, transitive, reflexive〔C 〕 7. Which of the following are partitions of },,,,,,,{h g f e d c b a U =?a)},,,,,{},,,{},{h g f e d c c b a a . b) },,,,,{},,{},{h g f e d c c b a c) }{},,{},,{},,,{h f e c b g d a . d) },,,,{},,{},,{h g f e d c b b a〔C 〕 8. The function f(x)=x 2log(x 3+78) is big-O of which of the following functions?a) x 2 b) x(logx)3 c) x 2logx d) xlogx〔A 〕 9.If 1010110111101101R ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦M , then R is: a) reflexive b) symmetric c) antisymmetric d) transitive.〔B 〕 10. Which of the followings is a function from Z to R ?………密………封………线………以………内………答………题………无………效……a) )1()(-±=n n f . ` b) 1)(2+=x x f . c) x x f =)( d) 21)(2-=n n fII. True or False (10%, 1 point each) 〔T 〕 1. If 1 < 0, then 5 = 6. 〔F 〕 2. (p ∧ q) ∨ r ≡ p ∧ (q ∨ r)〔F 〕 3. If A , B , and C are sets, then (A -C )-(B -C )=A -B . 〔T 〕 4. Suppose A = {a ,b ,c }, then {{a }} ⊆ P (A ).〔F 〕 5.()h x =is defined as a function with domain R and codomain R.〔T 〕 6. Suppose g : A → B and f : B → C , where f g is 1-1 and f is 1-1. g must be 1-1? 〔T 〕 7. If p and q are primes (> 2), then p + q is composite .〔F 〕 8.If the relation R is defined on the set Z where aRb means that ab > 0, then R is an equivalence relation on Z .〔T 〕 9. (A - B ) ⋃ (A - C ) = A - (B ⋂ C ).〔T 〕 10. The set{∅,{a },{∅},{a ,∅}} is the power set of some set III. Fill in the Blanks (20%, 2 points each)1. Let p and q be the propositions “I am a criminal 〞 and “I rob banks 〞. Express in simpleEnglish the proposition “if p then q 〞: If I am a criminal them I rob banks. 2. P (x ,y ) means “x + 2y = xy 〞, where x and y are integers. The truth value of ∃x ∀yP (x ,y )is False .3. T he negation of the statement “No tests are easy.〞 is some tests are easy.4. If 11{|}i A x x R x i i =∈∧-≤≤ then 1i i A +∞=is ∅.5. Suppose A = {x , y }. Then ()P A is {∅, {x}, {y},{x,y}}.6. Suppose g : A →A and f :A →A where A ={1,2,3,4},g = {(1, 4), (2,1), (3,1), (4,2)} andf ={(1,3),(2,2),(3,4),(4,2)}.Then fg ={(1,2),(2,3),(3,3),(4,2)}.7. The sum of 2 + 4 + 8 + 16 + 32 + ... + 210 is 211 - 2 .8. The expression of gcd(45, 12) as a linear combination of 12 and 45 is 12 ⋅ 4 + 45 ⋅ (1). 9.There are 5! permutations of the seven letters A,B ,C ,D ,E ,F have A immediately to the left of E .10. The two's complement of -13 is 1 0011 . IV. Answer the Questions (32%, 4points each):1. Determine whether the following argument is valid:………密………封………线………以………内………答………题………无………效……p→rq→rq∨⌝r________∴⌝pAns: Not valid: p true, q true, r true2.Suppose you wish to prove a theor em of the form “if p then q〞.(a) If you give a direct proof, what do you assume and what do you prove?(b) If you give an indirect proof, what do you assume and what do you prove?(c) If you give a proof by contradiction, what do you assume and what do you prove? Ans: (a) Assume p, prove q.(b) Assume ⌝q, prove ⌝p.(c) Assume p∧⌝q, show that this leads to a contradiction.3.Prove that A B A B⋂=⋃by giving a proof using logical equivalence.Ans:()()()() A B x x A Bx x A Bx x A Bx x A x Bx x A x Bx x A x Bx x A x Bx x A B A B ⋂={|∈⋂}={|∉⋂}={|⌝∈⋂}={|⌝∈∧∈}={|⌝∈∨⌝∈}={|∉∨∉}={|∈∨∈}={|∈⋃}=⋃4.Suppose f:R→R where f(x) =⎣x/2⎦.(a) If S={x| 1 ≤x≤ 6}, find f(S).(b) If T={3,4,5}, find f-1(T). Ans: (a) {0,1,2,3}(b) [6,12).e the definition of big-oh to prove that5264473n nn+--is O(n3).………密………封………线………以………内………答………题………无………效……Ans: 5555322226446410573763n n n n n n n n n n +-+≤==--, if n ≥ 2. 6. Solve the linear congruence 5x ≡ 3 (mod 11).Ans: 5 + 11k .7. Use the Principle of Mathematical Induction to prove that 1311392732n n+-++++...+= for alln ≥ 0.Ans: P (0):13112-= , which is true since 1 = 1. P (k ) → P (k + 1):111211313123311333222k k k k k k ++++++--+⋅-++...+=+==.8.Encrypt the message NEED HELP by translating the letters into numbers, applying the encryption function f(p ) = (3p + 7) mod 26, and then translating the numbers back into letters.Ans: Encrypted form: UTTQ CTOA.V. (6%) Without using the truth table, show that the following are tautologiesa) [⌝p ∧(p ∨q)]→q b) [p ∧(p →q)]→qAns:a) ⌝p ∧(p ∨q)≡(⌝p ∧p)∨(⌝p ∧ q)≡flase[⌝p ∧(p ∨q)]→q ≡ false →q ≡⌝false ∨q ≡true ∨q ≡true (3points)b)[p ∧(p →q)]→q ≡(⌝[p ∧(⌝p ∨q)])∨q ≡(⌝p ∨(p ∧⌝q))∨q ≡((⌝p ∨p)∧(⌝p ∨⌝q))∨q ≡⌝p ∨⌝q ∨q ≡true (3points)VI. (6%) Devise an algorithm which will find the minimum of n integers. What is the worst case time………密………封………线………以………内………答………题………无………效……complexity of this algorithm?a) procedure min(a1, a2, …, an: integers)(4points)v := a1 {largest element so far}for i := 2 to n {go thru rest of elems}if ai < v then v := ai {found smaller?}{at this poi nt v’s value is the same as the smallest integer in the list}return vb) the worst case time complexity of this algorithm is O(n). (2points)VII.(5%) Give the definition of a transitive relation, and Prove or disprove that the union of two transitive relations is transitive.Ans: A relation R on a set A is called transitive if only if (a,b)∈R and (b,c)∈R ,then (a,c) ∈R ,for a,b,c ∈A. (2points)The union of two transitive relations may be not transitive. A counter-example:A={1,2,3}, R1= {<1,1>, <2,3>}, R2={<1,2><3,3> }R1∪R2={<1.1>, <2,3><1,2><3,3>}, which is not transitive. (3points)VIII.(6%) Give an argument using rules of inference to show that the conclusion follows from the hypotheses. List all the steps in your argument.Hypotheses: All computer scientists like Star Trek. Sarah does not like Star Trek. Therefore, Sarah is not a computer scientist.Solution:Hypotheses: ∀x(ComputerScientist(x) →Likes(x, StarTrek))¬Likes(Sarah, StarTrek)Conclusion: ¬ComputerScientist(Sarah)Step 1: ∀x(ComputerScientist(x) →Likes(x, StarTrek)) (Hypothesis)Step 2: ComputerScientist(Sarah) →Likes(Sarah, StarTrek) (Univ. Inst. Step 1)Step 3: ¬Likes(Sarah, StarTrek) (Hypothesis)Step 4: ¬ComputerScientist(Sarah) (Modus Toll. St. 2+3)The argument is sound.Grading rubric: -3 points for making wrong assumptions.-2 points for not being able to complete the proof.-1 to -3 points for illegal usage of inference rules.。
离散试卷A
《离散数学》期末试卷A学号 姓名 成绩一、 判断题(每题1分,共10分)1.“如果321=+,那么雪是黑的。
”这是一个真命题。
( )2.下面的推理过程是正确的: ( )(1)P x Q x P x ))()((∨∀(2))1()()(US b Q a P ∨3. 图G 没有环当且仅当G 的邻接矩阵主对角元都是0。
( )4。
若有关系f 和g ,则f g g f = ( )5.{}c b a A ,,=到{}x B =的关系共有8个。
( )6.右图是强连通的。
( )7. 若关系R 是对称的,则它一定不是反对称的 ( )8. 集合A 上的不等关系≠可确定A 的一个划分。
( )9. 序列(1,2,3,4,5)不能构成某无向图的度序列。
( )10. 3度正则图必有偶数个结点。
( )二、 填空题(共24分)1.集合}}{,{ΦΦ=A ,求A 的幂集)(A P = 。
2.设公式))()((x Q x P x →∃,其中3:)(,2:)(≤>x x Q x x P ,个体域为}6,3,2{-,则该式的真值为:3.在任何图E V G ,=中,顶点度数之和等于 ,度数为奇数的顶点必有 个。
4.设 }2,1{},1,0{==B A ,则=⨯B A5.图G 如下图,求G 的补图G :G :G :6.设{}3,2,1=A 上的关系{}3,3,3,1,2,1,1,1=R ,则关系R 具有 , 性。
三、将下列命题符号化(第4、5题谓词符号化)(每题3分,共15分)1. 如果他学习努力且学习方法得当,那么他的学习成绩一定很好。
2. 李强不是不聪明,而是不用功。
3. 如果你在,他是否演唱就取决于你是否伴奏了。
4. 有些人喜欢花。
5. 鸟都会飞翔。
四、 求公式)()(P Q Q P ∨⌝→→⌝的主析取范式,主合取范式(15分)五、 证明下面论证的有效性(10分):S P S R R Q Q P →⇒→∨⌝∨⌝,,六、集 合{}3,2,1=A 上给定关系{}2,1,1,1=R ,求它的关系矩阵和自反闭包,对称闭包,传递闭包。
离散数学期末试卷A卷及答案
《离散数学》试卷(A 卷)一、 选择题(共5 小题,每题 3 分,共15 分)1、设A={1,2,3},B={2,3,4,5},C={2,3},则C B A ⊕⋃)(为(C )。
A 、{1,2}B 、{2,3}C 、{1,4,5}D 、{1,2,3}2、下列语句中哪个是真命题 ( A )A 、如果1+2=3,则4+5=9;B 、1+2=3当且仅当4+5≠9。
C 、如果1+2=3,则4+5≠9;D 、1+2=3仅当4+5≠9。
3、个体域为整数集合时,下列公式( C )不是命题。
A 、)*(y y x y x =∀∀B 、)4*(=∃∀y x y xC 、)*(x y x x =∃D 、)2*(=∃∃y x y x4、全域关系A E 不具有下列哪个性质( B )。
A 、自反性B 、反自反性C 、对称性D 、传递性5、函数612)(,:+-=→x x f R R f 是( D )。
A 、单射函数B 、满射函数C 、既不单射也不满射D 、双射函数二、填充题(共 5 小题,每题 3 分,共15 分)1、设|A|=4,|P(B)|=32,|P(A ⋃B)|=128,则|A ⋂B|=ˍˍ2ˍˍˍ.2、公式)(Q P Q ⌝∨∧的主合取式为 。
3、对于公式))()((x Q x P x ∨∃,其中)(x P :x=1, )(x Q :x=2,当论域为{0,1,2}时,其真值为ˍˍˍ1ˍˍˍ。
4、设A ={1,2,3,4},则A 上共有ˍˍˍ15ˍˍˍˍ个等价关系。
5、设A ={a ,b ,c },B={1,2},则|B A |= 8 。
三、判断题(对的填T ,错的填F ,共 10 小题,每题 1 分,共计10 分)1、“这个语句是真的”是真命题。
( F )2、“刚和小强是同桌。
”是复合命题。
( F )3、))(()(r q q p p ∧⌝∧→⌝∨是矛盾式。
( T )4、)(T S R T R S R ⋂⋅⊆⋅⋃⋅。
离散数学期末试卷(3套附答案)
2 离散数学(A 卷) 王军东(答案写在答题纸上,写在试题纸上无效)一、单项选择题(每小题3分,共30分)1.设A , B 是集合,若A B A =-,则(A) B = ∅ (B) A = ∅ (C) =⋂B A ∅ (D) A B A =⋂2.在有理数集合Q 上定义运算“*”如下:对于任意x , y ∈ Q ,y x * = x + y – xy ,则Q 关于*的单位元是( ).(A)x . (B)y . (C)1. (D)0.3.谓词公式)())()((x R y yQ x P x ∧∃→∀中量词x ∀的辖域为(A))())()((x R y yQ x P x ∧∃→∀ (B))()(y yQ x P ∃→(C))())()((x R y yQ x P ∧∃→ (D))()(y yQ x P ∃→和)(x R4.设p :我们划船,q :我们跑步, 则有命题“我们不能既划船又跑步”符号化为( )(A) ⌝ p ∧⌝ q (B) ⌝ p ∨⌝ q (C) ⌝ (p ↔ q ) (D) ⌝ (⌝ p ∨⌝ q ).5.设Z +是正整数集,R 是实数集,f :Z +→R , f (n )=log 2n ,则f ( )A .仅是单射B .仅是满射C .是双射D .不是函数6. 设集合A = {1, 2, 3, 4, 5}上的关系R = {(x , y )|x , y ∈ A 且x + y = 6},则R 的性质是( ).(A) 自反的. (B) 对称的. (C) 对称的、传递的. (D) 反自反的、传递的.7. 下列联结词中,不满足交换律的是( ).(A)∧. (B)∨. (C)⊕. (D) →.8..设G 是n 阶简单无向图,则其最大度)(G ∆( ).(A) > n (B) ≤ n . (C) < n . (D) ≥ n .9. 下列所示的哈斯图所对应的偏序集中能构成格的是( )A .B .C .D .课程考试试题学期 学年 拟题人:校对人:拟题学院(系): 适 用 专 业:10. 设G 是(n , m )图,且G 中每个节点的度数不是k 就是k + 1,则G 中度数为k 的节点个数为( ). (A)2n . (B)n (n + 1). (C)nk . (D)m k n 2)1(-+. 二、填空题(每空3分,共30分)1.设A={1,2},B={2,3},则A-B=_______, A ⊕B=________,2.设A={2,3 },R ⊆A ×A ,R={(2,3), (2,2)},则R 的自反闭包r(R)=__________,对称闭包s(R)=__________。
离散数学期末试题及答案A
学年第二学期期末考试《离散数学》试卷( A )使用班级:命题教师:主任签字:一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。
1.一个连通的无向图G,如果它的所有结点的度数都是偶数,那么它具有一条( )A.汉密尔顿回路B.欧拉回路C.汉密尔顿通路D.初级回路2.设G是连通简单平面图,G中有11个顶点5个面,则G中的边是( )A.10B.12C.16D.143.在布尔代数L中,表达式(a∧b)∨(a∧b∧c)∨(b∧c)的等价式是( )A.b∧(a∨c)B.(a∧b)∨(a’∧b)C.(a∨b)∧(a∨b∨c)∧(b∨c)D.(b∨c)∧(a∨c)4.设i是虚数,·是复数乘法运算,则G=<{1,-1,i,-i},·>是群,下列是G的子群是( )A.<{1},·>B.〈{-1},·〉C.〈{i},·〉D.〈{-i},·〉5.设Z为整数集,A为集合,A的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交运算,下列系统中是代数系统的有( )A.〈Z,+,/〉B.〈Z,/〉C.〈Z,-,/〉D.〈P(A),∩〉6.下列各代数系统中不含有零元素的是( )A.〈Q,*〉Q是全体有理数集,*是数的乘法运算B.〈Mn(R),*〉,Mn(R)是全体n阶实矩阵集合,*是矩阵乘法运算C.〈Z,ο〉,Z是整数集,ο定义为xοxy=xy,∀x,y∈ZD.〈Z,+〉,Z是整数集,+是数的加法运算7.设A={1,2,3},A上二元关系R的关系图如下:R具有的性质是A.自反性B.对称性C.传递性D.反自反性8.设A={a,b,c},A上二元关系R={〈a,a〉,〈b,b〉,〈a,c〉},则关系R的对称闭包S(R)是( )A.R∪I AB.RC.R∪{〈c,a〉}D.R∩I A9.设X={a,b,c},Ix是X上恒等关系,要使Ix∪{〈a,b〉,〈b,c〉,〈c,a〉,〈b,a〉}∪R为X上的等价关系,R应取( )A.{〈c,a〉,〈a,c〉}B.{〈c,b〉,〈b,a〉}C.{〈c,a〉,〈b,a〉}D.{〈a,c〉,〈c,b〉}10.下列式子正确的是( )A. ∅∈∅B.∅⊆∅C.{∅}⊆∅D.{∅}∈∅11.设解释R如下:论域D为实数集,a=0,f(x,y)=x-y,A(x,y):x<y.下列公式在R下为真的是( )A.( ∀x)( ∀y)( ∀z)(A(x,y))→A(f(x,z),f(y,z))B.( ∀x)A(f(a,x),a)C.(∀x)(∀y)(A(f(x,y),x))D.(∀x)(∀y)(A(x,y)→A(f(x,a),a))12.设B是不含变元x的公式,谓词公式(∀x)(A(x)→B)等价于( )A.(∃x)A(x)→BB.(∀x)A(x)→BC.A(x)→BD.(∀x)A(x)→(∀x)B13.谓词公式(∀x)(P(x,y))→(∃z)Q(x,z)∧(∀y)R(x,y)中变元x( )A.是自由变元但不是约束变元B.既不是自由变元又不是约束变元C.既是自由变元又是约束变元D.是约束变元但不是自由变元14.若P:他聪明;Q:他用功;则“他虽聪明,但不用功”,可符号化为( )A.P∨QB.P∧┐QC.P→┐QD.P∨┐Q15.以下命题公式中,为永假式的是( )A.p→(p∨q∨r)B.(p→┐p)→┐pC.┐(q→q)∧pD.┐(q∨┐p)→(p∧┐p)二、填空题(每空1分,共20分)16.在一棵根树中,仅有一个结点的入度为______,称为树根,其余结点的入度均为______。
离散数学考试试题(A、B卷及答案)
离散数学考试试题(A 卷及答案)一、证明题(10分) 1) (P ∧Q ∧AC )∧(A P ∨Q ∨C ) (A ∧(P Q ))C 。
P<->Q=(p->Q)合取(Q->p )证明: (P ∧Q ∧A C )∧(A P ∨Q ∨C ) (P ∨Q ∨A ∨C )∧(A ∨P ∨Q ∨C )((P ∨Q ∨A )∧(A ∨P ∨Q ))∨C 反用分配律 ((P ∧Q ∧A )∨(A ∧P ∧Q ))∨C( A ∧((P ∧Q )∨(P ∧Q )))∨C 再反用分配律( A ∧(PQ ))∨C(A ∧(P Q ))C 2) (PQ)PQ 。
证明:(P Q)((P ∧Q))(P ∨Q))PQ 。
二、分别用真值表法和公式法求(P (Q ∨R ))∧(P ∨(Q R ))的主析取范式与主合取范式,并写出其相应的成真赋值和成假赋值(15分)。
主析取范式与析取范式的区别:主析取范式里每个括号里都必须有全部的变元。
主析取范式可由 析取范式经等值演算法算得。
证明:公式法:因为(P (Q ∨R ))∧(P ∨(Q R ))(P ∨Q ∨R )∧(P ∨(Q ∧R )∨(Q ∧R ))(P ∨Q ∨R )∧(((P ∨Q )∧(P ∨R ))∨(Q ∧R ))分配律 (P ∨Q ∨R )∧(P ∨Q ∨Q )∧(P ∨Q ∨R )∧(P ∨R ∨Q )∧(P ∨R ∨R )(P ∨Q ∨R )∧(P ∨Q ∨R )∧(P ∨Q ∨R )4M ∧5M ∧6M 使(非P 析取Q 析取R )为0所赋真值,即100,二进制为4 0m ∨1m ∨2m ∨3m ∨7m所以,公式(P (Q ∨R ))∧(P ∨(Q R ))为可满足式,其相应的成真赋值为000、001、010、011、111:成假赋值为:100、101、110。
真值表法:P Q RQRP(Q∨R)P∨(Q R)(P(Q∨R))∧(P∨(Q R ))0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1 1111111111111111111111为000、001、010、011、111:成假赋值为:100、101、110。
离散数学考试试题(A卷及答案)
离散数学考试试题(A 卷及答案)一、 (10 分)判断下列公式的类型(永真式、永假式、可满足式)?1)((P Q)∧Q)一 ((Q∨R)∧Q) 2)((Q P)∨P)∧ (P∨R)3)((P∨Q)R)((P∧Q)∨R)解: 1)永真式; 2) 永假式; 3)可满足式。
二、 (8 分) 个体域为{1, 2},求x3y (x+y=4)的真值。
解:x3y (x+y=4) 一 x ((x+1=4)∨(x+2=4))一((1+1=4)∨(1+2=4))∧((2+1=4)∨(2+1=4))一(0∨0)∧(0∨1)一1∧1一0三、 (8 分) 已知集合 A 和 B 且|A|=n, |B|=m,求 A 到 B 的二元关系数是多少? A 到 B 的函数数是多少?解:因为|P(A×B) |=2|A×B|=2|A| |B|=2mn,所以 A 到 B 的二元关系有 2mn 个。
因为|BA|= |B| |A|=mn,所以 A 到 B 的函数 mn 个。
四、 (10 分) 已知 A={1,2,3,4,5}和 R={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>},求 r(R) 、s(R)和 t(R)。
解: r(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<3,2>,<4,3>,<4,5>}t(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<1,3>,<2,2>,<2,4>,<1,4>}五、 (10 分) 75 个儿童到公园游乐场,他们在那里可以骑旋转木马,坐滑行铁道,乘宇宙飞船,已知其中20 人这三种东西都乘过,其中 55 人至少乘坐过其中的两种。
离散数学期末考试试题
离散数学试题(A卷及答案)一、证明题(10分)1) ( -P A ( —Q A R)) V (Q A R)V (P A R)= R证明:左端 =(-P A-QAR) V ((Q V P)A R£((—P A-Q)AR)) V((Q V P)A R):=(^P V Q) A R)V(( Q V P ) A R匕(一(P V Q )V(Q V P)) A R:=(「P V Q )V( P V Q )) A fcT A R置换):=R2) x(A(x) —.B(x)) := - x A(x) _._x B(x)证明:x ( A(x) > B(x)〉= x ( f(x) V B(x))= x—A(x) V x B(x)=—- x A(x)V x B(x)=- x A(x) -l xB(x)、求命题公式(P V (Q A R)) >(P A QA R)的主析取范式和主合取范式(10分)证明:(P V (Q A R))「(P A Q A R>=— (P V (Q A R)) V (P A QA R))二(—P A ( 一QV -R) )V (P A Q A R)二(一P A — Q)V ( -P A -R)) V (P A Q A R)二(_PA _Q R) V (_P A _QA 一R) V ( _P A QA _R)) V ( _PA _QA _R)) V (P A Q R)二m0V m1V m2V m7u M3V M4V M5V M6三、推理证明题(10分)1)C V D,(C V D)》-E, -E >(A A -B), (A A证明(1) xP(x)—B)r(R V S)「:R V S(2)P(a)(1) (C V D)—;「E(3) -x(P(x) >Q(y) A R(x))证明:(2) -E >(A A -B)(4)P(a) >Q(y) A R(a)(3) (C V D)—.(A A -B)(5)Q(y) A R(a)⑷(A A -B)_. (R V S)(6)Q(y)V D)_ (R V S)(7)R(a)(5) (C⑹C V D(8)P(a)⑺R V S(9)P(a) A R(a)2)-x(P(x) —;Q(y) A R(x)) , xP(x)二Q(y) A(10) x(P(x) A R(x))x(P(x) A R(x))(11)Q(y) A x(P(x) A R(x))四、设m是一个取定的正整数,证明:在任取耐1个整数中,至少有两个整数,它们的差是m的整数倍证明设印,a2,…,a m1为任取的1个整数,用m去除它们所得余数只能是0, 1,…,m- 1,由抽屉原理可知,耳,a2,…,a m d这m+ 1个整数中至少存在两个数a s和a t,它们被m除所得余数相同,因此a s和a的差是m的整数倍。
国家开放大学电大本科《离散数学》2024-2025期末试题及答案(试卷号:1009)
国家开放大学电大本科《离散数学》2024-2025期末试题及答案(试卷号:1009)一、单项选择题(每小题3分,本题共16分)若集合A = {1,2,3,4},则下列表述不正确的是( ).A.{2,3)€AB.AU{1,2,3,4}C. <1,2,3,4)QAD. 16A2.若无向图G的结点度数之和为20,则G的边数为( ).A.10B. 20C. 30D. 53.无向图G是棵树,结点数为10,则G的边数为( ).A. 5B. 10C.9D. 114.设A(x):x是人,B(x):x是学生,则命题“有的人是学生”可符号化为( )•A.Vx)(A(x)-*B(x»B.(3x)(A(x)AB(x))C.(Vx)(A(x)AB(x»D.-«(3x)(A(x)A -B(x»5.下面的推理正确的是( ).A.(l)(Vx)F(x)->G(x) 前提引入(2)F(>-)-*G(y) US(1).B.(1)( 3 x)F(x)-*G(x) 前提引入(2)F(y)-*G(y) US(1),C.(l)(3x)(F(x)->G(x»前提引入(2)F(y)-*G(x) ES(1).D.(l)(3x)(F(x)-*G(x)) 前提引入(2)F(y)-*G(y) ESQ).二、填空题(每小题3分,本题共15分)6.设A = {1,2),H = {1,2,3},则A到B上不同的函数个数为________________ .7.有&个结点的无向完全图的边数为 ____________ .8.若无向图G中存在欧拉路但不存在欧拉回路,则G的奇数度数的结点有________ 个.9.设G是有10个结点的无向连通图,结点的度数之和为30,则从G中删去条边后使之变成树.10.设个体域£> = {1,2,3,4},则谓词公式(*)人(了)消去量词后的等值式为三、逻辑公式翻译(每小题6分,本息共12分)11.将语句“昨天下甬“翻译成命题公式.12.将语句“小王今天上午或者去看电彩或者去打球”翻译成命JS公式.四、判断说明题(判断各题正误,并说明理由.每小题7分,本黑共14分)13.存在集合A与B,使得A6B与AUB同时成立.14.完全图K<是平面图.五、计算题(每小题12分,本题共36分)15.设偏序集VA,R>的哈斯图如下,B为A的子集,其中B = 试(1)写出R的关系表达式;(2)画出关系R的关系图;(3)求出B的最大元、极大元、上界.16.设图G — <V,E>,V={vj f v it v t,Vi»v s)»(v2, v3)»(v3»vs)}»试(1)画出G的图形表示;(2)写出其邻接矩阵;(3)求出每个结点的度数;(4)画出图G的补图的图形,17.求P TQ代R)的合取范式与主合取范式.六、证明题(本题共8分)18.设A.B是任意集合,试证明:若AXA=BXB,^ A = B.M答杖松标准(仅辩者)一、单项选择题(每小题3分,本题共15分)1. A2. A3. C4.B5. D二、填空题(每小题3分,本题共]5分)6.97.”3 — 1)/2(或庆)8.210. A(l) VA(2) V A(3) V A(4)三、 逻辑公式翻译(每小题6分,本题共】2分)H,设P :昨天下雨. 则命题公式为:P ,12. 设P :小王今天上午去看电影 Q :小王今天上午去打球 则命题公式为:r (PiQ ). 或者(rPAQ )V 〈PA rQ )四、 判断说明题(每小题7分,本题共14分)13. 正确.例:设 A = {a} t H — {a,{a}) 则有且ACI3.说明:举出符合条件的例均给分. 14. 正确.完全图K 〈是平面图, 如K,可以如下图示嵌入平面.(7分)五、计算题(每小题12分,本题共36分)15. (l )R = {Va ,a>,Vb,Q>,Vc,c>,Vd,d>・Va0>・Va ・c>,V&,d>,VQ,d >}. (4 分)(2)关系图(8分)(3)集合B 无最大元,极大元为6与c.无上界. 16, 解: (1)关系图(2分) (6分)(2分)(6分)(3分) (517. P TQAR) 5PV(QAR) 0(rPVQ 〉A(rPVR)合取范式<=>(-PVQ)V(K A rR)A(rPVR) 0("VQ)V(& A rR)A(" VR)V(QA -Q)D(rPVQVR)A(rPVQVA("VR VQ) A(-、PVR V -Q) c=>(-PVQV7?)A(-'PVQV-R)A(-PV-QVR) 主合取范式 六、证明题(本意共8分)18. 证明:V2(2)邻接矩阵bioir 101001001 1 00 0(6分)(3) deg(vi)=,3deg(v t )—2 <ieg(v 3)~2 deg顷)=1 deg(v s )=2 (4) 补图(9分)(】2分)(2分) (5分)(7分〉设x€A,则Vx,x>€AXA,(1 分)因AXA = BXB,故V X,X>€BXB,则有xGB, (3 分)因此AGB. (5分)设xQB,则Vx,x>€BXB,(6 分)因AXA-BXB,故Vx,x>eAXA,则有因此BWA. (7 分)故得A=B. (8分)。
最新大学《离散数学》期末考试试卷及答案-(1)
安徽大学2006-2007学年第1学期《离散数学》期末考试试卷(A 卷)(时间120分钟)开课院(系、部) 姓名 学号 .一、选择题(每小题2分,共20分)1.下列语句中,哪个是真命题( )A 、42=+x ;B 、我们要努力学习;C 、如果ab 为奇数,那么a 是奇数,或b 是偶数;D 、如果时间流逝不止,你就可以长生不老。
2.下列命题公式中,永真式的是( )A 、P Q P →→)(;B 、P P Q ∧→⌝)(;C 、Q P P ↔⌝∧)(;D 、)(Q P P ∨→。
3.在谓词逻辑中,令)(x F 表示x 是火车;)(y G 表示y 是汽车;),(y x L 表示x 比y 快。
命题“并不是所有的火车比所有的汽车快”的符号表示中哪些是正确的?( ) I.)),()()((y x L y G x F y x →∧∀⌝∀ II.)),()()((y x L y G x F y x ⌝∧∧∃∃III. )),()()((y x L y G x F y x ⌝→∧∃∃A 、仅I ;B 、仅III ;C 、I 和II ;D 、都不对。
4.下列结论正确的是:( )A 、若C AB A =,则C B =; B 、若B A B A ⊆,则B A =;C 、若C A B A =,则C B =;D 、若B A ⊂且D C ⊂,则D B C A ⊂。
5.设φ=1A ,}{2φ=A ,})({3φρ=A ,)(4φρ=A ,以下命题为假的是( ) A 、42A A ∈; B 、31A A ⊆; C 、24A A ⊆; D 、34A A ∈。
6.设R 是集合},,,{d c b a A =上的二元关系,},,,,,,,,,,,{><><><><><><=b d d b a c c a a d d a R 。
下列哪些命题为真?( ) I.R R ⋅是对称的 II. R R ⋅是自反的 III. R R ⋅不是传递的A 、仅I ;B 、仅II ;C 、I 和II ;D 、全真。
离散数学试题A卷及答案
离散数学试题A卷及答案一、单项选择题(每题2分,共10分)1. 在集合{1,2,3}中,子集的个数是多少?A. 3B. 7C. 8D. 9答案:C2. 以下哪个命题是真命题?A. ∃x∈R, x^2 = -1B. ∀x∈R, x^2 ≥ 0C. ∀x∈R, x^2 = 1D. ∃x∈R, x^2 = 2答案:B3. 函数f: N → N定义为f(x) = 2x,该函数是:A. 单射B. 满射C. 双射D. 非函数答案:A4. 以下哪个逻辑表达式等价于p∧(q∨¬p)?A. p∧qB. p∨qC. ¬p∨qD. p∧¬p答案:A5. 以下哪个图是二分图?A. 完全图K5B. 完全二分图K3,3C. 环图C5D. 星形图K1,4答案:B二、填空题(每题3分,共15分)1. 若A={1,2,3},B={2,3,4},则A∩B=______。
答案:{2,3}2. 命题“若x>0,则x^2>0”的逆否命题是:若x^2≤0,则______。
答案:x≤03. 在一个有向图中,若存在从顶点u到顶点v的有向路径,则称v可到达u,若图中每个顶点都可到达其他所有顶点,则称该有向图是______。
答案:强连通的4. 一个集合的幂集包含该集合的所有______。
答案:子集5. 在逻辑中,合取(AND)操作符用符号______表示。
答案:∧三、解答题(每题10分,共20分)1. 证明:若A⊆B且B⊆C,则A⊆C。
证明:设x∈A,则由A⊆B,可得x∈B。
又由B⊆C,可得x∈C。
因此,A⊆C。
2. 给定一个图G,包含顶点集V={v1, v2, v3, v4}和边集E={(v1,v2), (v2, v3), (v3, v4), (v4, v1), (v1, v3), (v2, v4)},请判断该图是否是欧拉图,并说明理由。
答案:该图是欧拉图。
因为该图是连通的,且每个顶点的度都是偶数。
结束语:本试题涵盖了离散数学中的基本概念和原理,通过这些题目的练习,可以加深对离散数学知识的理解。
离散数学期末考试试题及答案
离散数学期末考试试题及答案一、选择题(每题5分,共25分)1. 设A={1,2,3,4,5},B={2,3,5,7,11},则A∩B等于()A. {1,2,3,4,5}B. {2,3,5}C. {1,4}D. {2,3,5,7,11}2. 下面哪一个图是连通图?()A. 无向图B. 有向图C. 平面图D. 连通图3. 若一个图G有n个顶点,e条边,则以下哪个条件是图G 为连通图的必要条件?()A. n ≥ eB. n ≤ eC. n = eD. n + e = 24. 在一个简单图中,若每个顶点的度数都等于n-1,则该图是()A. 无向图B. 有向图C. 完全图D. 平面图5. 以下哪一个命题是正确的?()A. 每个图都有欧拉回路B. 每个连通图都有哈密顿回路C. 每个图都有哈密顿路径D. 每个连通图都有欧拉路径二、填空题(每题5分,共25分)6. 设A={a,b,c},B={1,2,3},则A×B的结果是______。
7. 一个连通图的生成树包含______条边。
8. 在一个n阶完全图中,任意两个不同顶点之间的距离是______。
9. 一个图G的顶点集为V,边集为E,则图G的邻接矩阵表示为______。
10. 在一个简单图中,若每个顶点的度数都等于n-1,则该图的边数是______。
三、判断题(每题5分,共25分)11. 一个图的子图包含原图的所有顶点和边。
()12. 一个连通图的所有顶点都连通。
()13. 在一个简单图中,每个顶点的度数都小于等于n-1。
()14. 每个图都有哈密顿路径。
()15. 一个图G的生成树是原图G的子图。
()四、解答题(共50分)16. (10分)设A={1,2,3,4,5},B={2,3,5,7,11},求A∪B 和A-B。
17. (10分)证明:一个连通图的每个顶点的度数都大于等于2。
18. (10分)给定一个图G,顶点集V={a,b,c,d,e},边集E={ab,bc,cd,de,ac,ad},求图G的所有连通分支。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川大学期末考试试题(闭卷)
(2014-2015学年第1学期)
课程号:304039040 课程名称:离散数学(A卷)任课教师:冯伟森石兵周莉陈瑜林兰
适用专业年级: 2013级计算机科学与技术学号:姓名:
一、单项选择题(本大题共16小题,每小题1分,共16分)提示:在每小题列出的四个备选项中只有一个是符
合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分
1.令R: 小王吃饭;S:小王看电视。
则语句“小王一边吃饭一边看电视”可以符号化为()。
(A)R∨S;(B)R∧S;(C)R→S;(D)~R∨~S
2.令P(x):x是实数,Q(x):x是有理数。
则语句“并非每个实数都是有理数”可以符号化为()。
(A)~∀x(R(x)→Q(x));(B)~(R(x)→Q(x));
(C)~∀x(R(x)∧Q(x));(D)~∀x(R(x)∨Q(x))
3.下列公式中,()是永真公式。
(A)R→S;(B)R∧~R;(C)R∨~R;(D)(R→S) ∧(R∧~S)
4.下列公式中()是等价公式。
(A)G∧(H∨S) ⇔ (G∨H) ∧(G∨S);(B)G∧(H∨S) ⇔ (G∧H) ∧(G∧S);
(C)G∧(H∨S) ⇔ (G∧H)∨(G∧S);(D)G∧(H∨S) ⇔ (G∨H) ∨(G∨S);
5.公式∀x((P(x)→Q(y,x))∧∃z R(y,z))→S(x)中,自由变元是( )。
(A)x和y ;(B)y和z;(C)x和z;(D)z或者y
6.设集合A={1,2,3},则A上所有非等价关系数目为()。
(A) 512 (B) 507 (C) 508 (D) 506
7.下列关于有限集偏序集〈A,≤〉的描述,()是正确的
(A) 一定存在最大元(B) 一定存在最小元
(C) 任意两元素都存在最大下界 (D) 一定存在极大元
8.下列说法不正确的是()
(A)任意两个非空集合之间都可构造函数(B) 任意两个非空集合之间都可构造单射函数
(C) 任意两个非空集合之间都可构造满射函数
(D) 任意两个非空集合之间如可构造单射函数,也可构造满射函数,那么一定可构造双射函数
9.下列各组数中,不能构成无向图的点度数序列的是()。
(A) {1,1,2,2,3} (B) {1,3,5,7,8} (C) {2,2,2,2} (D) {2,2,3,8,1}
10.下列说法正确的是()。
(A) 树至少有两个叶结点 (B) 存在既是二部图又是哈密顿图的简单无向图
(C) 平面图满足欧拉公式 n – m + f = 2
(D) 连通无向图都有非平凡生成树
11.已知图G中存在一条欧拉道路,以下说法正确的是():
(A)图中没有奇度数结点;(B)图中只有2个奇度数结点;
(C)图中有0个或2个奇度数结点;(D)无法确定图中奇度数结点的个数
12.在实数集R上,定义代数系统<R,*>,则关于“*”运算的下列的运算规则定义中,()是可结合的?
(A) a*b=a-b;(B) a*b=max{a,b};(C) a*b=a+2b;(D) a*b=|a-b|
13.3次对称群S3的集合中含有()个元素:
(A)2;(B)3;(C)4;(D)6
14.整数加群<Z,+>是一个无限循环群,其生成元是():
(A)-1;(B)0;(C)1;(D)-1和1两个生成元
15.在代数系统模7剩余类环
7,,
Z
<⊕⊗>中,零因子的个数是():(A)0个;(B)1个;(C)2个;(D)7个
16.下列哪些代数系统不是域():
(A)实数环<R,+,×> ;(B)有理数环<Q,+,×> ;
(C)整数环<Z,+,×>;(D)模7剩余类环
7,,
Z
<⊕⊗>
二、多项选择题(本大题共7小题,每小题2分,共14分)提示:在每小题列出的备选项中有不确定个数个选
项是符合题目要求的,请将其代码填写在下表中。
错选、多选、少选或未选均无分。
1.下列语句中,()是命题。
(A)上海不是一个大城市;(B)你去哪里?(C)4+3=7;(D)不存在最大的质数;(E)请认真答题!
2.下列命题中,()是真命题。
⊆{Ф,{{Ф}}}; (C) Ф∈{{Ф}}; (D) Ф⊆{Ф}
(A) {Ф}∈{Ф,{{Ф}}}; (B) {Ф}
3.右图所示的关系具有()
(A) 自反性 (B) 反自反性 (C) 对称性
(D) 反对称性 (E)传递性
4.下列描述那些是不正确的()。
(A) 〈 N,< 〉是自然数域上的偏序关系(B) 〈2A,⊆〉一定不是全序集
(C) 〈 N,≤〉是自然数域上的全序集 (D) 〈2Φ,⊆〉是良序集
5.以下关于代数系统描述正确的是():
(A)<2A,∩>和<2A,∪>都是含幺半群;(B)<R,+>是含幺半群,也是群;
(C)只要是半群,就必含有幂等元;(D)任何群中只含有一个幂等元。
6.非平凡无向树是()。
(A) 二部图(B) 哈密顿图 (C) 平面图 (D) 连通图(E) 欧拉图
7.下列关于格的说法正确的是()。
(A) 偏序格〈 L, ≤〉的Hasse图是连通图
(B) 代数格〈 L,∨,∧〉中,如果 a∨b = a,那么 a∧b = b
(C) 偏序格〈 L, ≤〉中必有最大元,最小元
(D) 偏序格〈 L, ≤〉中必有极大元,极小元
三、填空题(本大题共5小题,每题2分,共10分)。
1.若集合A={1,{2,3}}),则2A= 。
2.设集合A和B,则从A到B的不同的二元关系有个。
3.设A={1, 2, 3, 4, 5, 6},B={1, 2, 3}。
从A到B的关系R={(x , y)|x=2y},则:R= ;
R-1= 。
4.设R是定义在集合A={1,2,3,4,5,6}上的等价关系,并且R=I A∪{(1,5),(5,1),(2,4),(4,2),(3,6),
(6,3)}。
那么,可以由此等价关系R对集合A产生的分划是:。
5.素数阶群<G,*>, 其子群为。
四、计算题(本大题共6小题,每题5分,共30分)。
1.请用公式的等价变换法求公式(P→Q)∧(P→R)的主合取范式。
解:
2.设有谓词公式 (x)(P(x, f(x)) →Q(x)),在如下给定解释下,判断该公式的真值
解释I指定为:
(1)个体域 D = {a,b} (2) f(a) = b, f(b) = a
(3)P(a,a) = 0, P(a,b) = 1, P(b,a) = 1, P(b,b) = 0
(4)Q(a) = 0, Q(b) = 1
解:
3.设<A,R>是一个偏序集,集合A={1,2,3,4,6,9,24,54},关系R是A上的整除关系。
(1)请画出该偏序关系的哈斯图;
(2)求集合A中的极大元;
(3)设集合A的子集合B={4,6,9},求集合B的最小上界和最大下界。
解:
4.
5.请利用可达矩阵求出下图中的所有强分图:
v3
v5
解:
6.请将下面的有序树转化为一棵二叉树。
v7
v8v9v10v11v12
解:
7.求A={1,2,3}上所有既是对称的,又是反对称的关系。
解:
五、证明题(本大题共3小题,每题10分,共30分)。
1.请用命题逻辑的推理法则推导:{P→~Q,~P→R,R→~S} S→~Q
证明:
2.证明下面A上的关系是偏序关系,并画出Hasse图
A = {a,b,c,d,e} ,R = {(a,b),(a,c),(a,d),(a,e),(b,e),(c,e),(d,e)} ∪ I A 证明:
3.证明:在有限群中周期为2的元素的个数必定为偶数
证明:。