正弦定理课件

合集下载

正弦定理优秀课件

正弦定理优秀课件
A 300 , B 1350 , a 2
,
小结:知道三角形的两个内角和任何一边,利 用正弦定理可以求出三角形中的其它元素。
例 2、 已知a=16, b= 16 3, A=30° . 已知两边和其中一边 解三角形 的对角,求其他边和角 a b 解:由正弦定理 C
sin A sin B
a b c sin A sin B sin C
定理结构特征: 含三角形的三边及三内角,由己知二角一边 或二边一角可表示其它的边和角
剖析定理、加深理解
a b c 正弦定理: sin A sin B sin C
1、A+B+C=π 2、大角对大边,大边对大角
剖析定理、加深理解
a b c 正弦定理: sin A sin B sin C
a b c sin A sin B
sin C 1
a b c sin A sin B sin C
思考: 对一般的三角形,这个结论还能成立吗?
1.1.1 正弦定理
(1)当 ABC 是锐角三角形时,结论是否还成立呢? C 如图:作AB上的高是CD,根椐 E 三角形的定义,得到 b a CD a sin B, CD b sin A A 所以 a sin B b sin A B D a b c
abcsinsinsin正弦定理在一个三角形中各边和它所对角的正弦的比相等即含三角形的三边及三内角由己知二角一边或二边一角可表示其它的边和角定理结构特征
第一章:解三角形
1.问题的引入:
(1)在我国古代就有嫦娥奔月的神话故事.明月 . 高悬 ,我们仰望夜空,会有无限遐想,不禁会问, 月亮离我们地球有多远呢?科学家们是怎样 测出来的呢?
a sin C c 49.57 sin A

正弦定理 完整版课件

正弦定理  完整版课件

75°,∴c=bssiinnBC=
s2isnin457°5°=
6+ 2
2;
当A=120°时,C=180°-A-B=15°,∴c=
bsin C sin B

s2isnin451°5°=
6- 2
2.故当A=60°时,C=75°,c=
6+ 2
2;
当A=120°时,C=15°,c=
6- 2
2 .
[母题探究]
(2)由sina A=sinb B,得sin B=bsian A=6
3sin 6
30°=
23,
∵b>a,∴B>30°,∴30°<B<150°,∴B=60°或120°.
当B=60°时,C=180°-(A+B)=180°-(30°+60°)=90°,
又sinc C=sina A,∴c=assiinnAC=6ssiinn3900°°=6×1 1=12; 2
[跟踪训练]
在△ABC中,已知3b=2 3asin B,且cos B=cos C,角A是锐
角,则△ABC的形状是
()
A.直角三角形
B.等腰三角形
C.等腰直角三角形
D.等边三角形
解析:由3b=2
3 asin
B,得
b sin
B

2
3a 3
,根据正弦定理,得
b sin
B=sina
A,所以sina
A=2
33a,即sin
在初中我们学习了三角形全等的判定,你还记得三角形全 等的判定方法吗?两边和其中一边的对角分别相等的两个三角 形不一定全等,即两边和其中一边的对角分别相等不能作为判 定两个三角形全等的依据.如图,在△ABC 和△ADC中,AC=AC,CB=CD,∠CAD =∠CAB,其中A是CB,CD的对角,△ABC 与△ADC不全等.

正弦定理(53张PPT)

正弦定理(53张PPT)

系列丛书
课 堂 互 动 探 究
例 练 结 合 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·素 能 提 升
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.1
系列丛书
典例导悟
系列丛书
变式训练1
(1)一个三角形的两内角分别为45° 与60° ,
如果45° 角所对的边长是6,那么60° 角所对的边的边长为 ( ) A.3 6 C.3 3 B.3 2 D.2 6
1 (2)在△ABC中,若tanA= 3 ,C=150° ,BC=1,则AB =________.
人教A版· 数学· 必修5
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.1
系列丛书
(3)a=2 3,b=6,a<b,A=30° <90° 又∵bsinA=6sin30° =3,a>bsinA ∴本题有两解. 由正弦定理得: bsinA 6sin30° 3 sinB= a = = 2 ,B=60° 或120° , 2 3 asinC 2 3sin90° 当B=60° 时,C=90° ,c= sinA = sin30° =4 3; 当B=120° 时,C=30° ,
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.1
系列丛书
[点评]
依据条件中的边角关系判断三角形的形状
时,主要有以下两种途径: (1)利用正弦定理把已知条件转化为边边关系,通过因 式分解、配方等得出边的相应关系,从而判断三角形的形 状;
人教A版· 数学· 必修5

正弦定理 优秀课件

正弦定理 优秀课件

7
例1:(林场失火问题)在△ABC中,已知 A=130°,B=30°,AB=10千米,求AC与BC的 长.
解:根据三角形内角和定理,
C 180 ( A B) 180 (130 30 ) 20 AC AB 由正弦定理: 得 sin B sin C C AB AC sin B 14.42千米 sin C BC AB 130° 30° 又由 得 A 10km B sin A sin C
AB BC sin A 22.39千米 sin C
8
例2:在 ABC中,已知a 3 , 2, 45 B b
求角 A .
解:依题意得,由正弦定理
C
a b sin A sin B
3
452o2 Nhomakorabea60
o
120
B
A
o
A
sin B sin 45 3 得 sin A a 3 2 b 2
§1.1.1正弦定理
(第一课时)
教材:人教A版
1
北 东
C
·
· A
130°
30°
10km
2
· B
问题情境
在 △ ABC 中 , 已 知 A=130°,B=30° , AB=10千米,求AC与BC的长.
C
130° 30° A 10km
B
3
三角形的边角之间的关系
三角形的内角和是180

两边之和大于第三边,两 边之差小于第三边
A 60 或A=120
o
o
9
归纳提升
a b c ★正弦定理: sin A sin B sin C
★主要应用: 1. 已知两角及一边,可以求出另外两边 和另一角 2. 已知两边一对角 ,可以求出另外两角 和另一边

正弦定理课件

正弦定理课件

正弦定理
1.1.1 正弦定理
(1)当ABC是锐角三角形时,结论是否还成立呢?
如图:作AB上的高是CD,根椐
C
三角形的定义,得到
aE
b
C D asin B ,C D bsin A
所 以asinBbsinA B
得到 a b
D
c
A
sinA sinB
同 理 , 作 A EB C .有b c sinBsinC
那么这个k值是什么呢?你能用一个和三角形有
关的量来表示吗?
作业: P10
2 正弦定理
在例 2 中,将已知条件改为以下几种情况,不计算判
断有几组解?
(1) b=20,A=60°,a=20 3 ;
C
(2°) b=20,A=60°,a=10 3 ;
b
(3·)···b·=·20,A=60°,a=15.
60°
A
B
正弦定理
(1) b=20,A=60°,a=20 3 ;
一解
(2) b=20,A=60°,a=10 3 ;
一解
(3) b=20,A=60°,a=15.
无解
sin C sin B
ACCBAB
也有 a b c
正弦定理
s iA n s iB n s iC n
在钝角三角形中
B
j
设A 900 过点A作与AC垂直的单位向量 j, 则j与AB的夹角为 A90
j与CB的夹角为 90 C
A
C
正弦定理
剖析定理、加深理解
正弦定理:sinaAsinbBsincC
1、A+B+C=π 2、大角对大边,大边对大角
B
A
我们这一节所学习的内容就是解决这些问题

9.1.1正弦定理 课件(共36张PPT)

9.1.1正弦定理 课件(共36张PPT)

基础预习初探
1.回顾直角三角形中的边与角的关系: a , b , c 是否为定值?
sin A sin B sin C
提示:如图,直角三角形ABC中,C=90°,c=2R,R为△ABC外接圆的半径,显然有 a b c =2R(定值).
sin A sin B sin C
2.在锐角或钝角三角形中边与角的关系: a , b , c 是否为定值?
sin A sin C
得sin C= csin A 3,
a2
又0°<C<180°,得C=60°或C=120°.
当C=60°时,B=75°,sin75°= b= csin B 2 6;
sin C
6 2, 4
当C=120°时,B=15°,sin15°= b=csin B 6- 2.
sin C
sin A sin B sin C
sin A sin B sin C
提示:如图,锐角三角形的外接圆的半径为R,直径为CD=2R,连接
BD,∠A=∠D,∠CBD=90°,
所以 a =aCD=2R,
sin A sin D
同理 b=2R, =c2R.
sin B
sin C
得 a b =2Rc(定值).
sin A sin B sin C
同理,在钝角三角形中,上述等式仍然成立.
2
可得B<60°,即可求得B.
2.由A+B+C=180°求角B,再由正弦定理求边长.
【解析】1.选C.因为A=60°,a=4 3,b=4,
由正弦定理 a ,得b sin B=
sin A sin B
bsin A 4 sin60 1 .
a
43 2
因为a>b,所以B<60°,所以B=30°.

正弦定理和余弦定理-PPT课件

正弦定理和余弦定理-PPT课件

22
类型一
正弦定理和余弦定理的应用
解题准备:
1.正弦定理和余弦定理揭示的都是三角形的边角关系,根据题 目的实际情况,我们可以选择其中一种使用,也可以综合起 来运用.
2.在求角时,能用余弦定理的尽量用余弦定理,因为用正弦定 理虽然运算量较小,但容易产生增解或漏解.
23
3.综合运用正、余弦定理解三角形问题时,要注意以下关系式
32
∵0<A<π,0<B<π,∴sin2A=sin2B
∴2A=2B或2A=π-2B,即A=B或A+B= .
2
∴△ABC是等腰三角形或直角三角形.
33
解法二:同解法一可得2a2cosAsinB=2b2cosBsinA,
由正、余弦定理得
a2b•
b2
c2
a
2
=b2a•
a2 c2 b2
2bc
2ac
1 2 3 2 1 3.
2
2
(2)当|BC|=4时,S△=
1 2
|AB|·|BC|·sinB
1 2 3 4 1 2 3.
2
2
∴△ABC的面积为 2 3 或 3.
27
[反思感悟]本题主要考查正弦定理、三角形面积公式及分类 讨论的数学思想,同时也考查了三角函数的运算能力及推 理能力.
28
40
设云高CM x m,则CE x h,
DE x h, AE x h .
tan
又AE x h , x h x h
tan tan tan
解得x tan tan gh hgsin( ) m.
tan tan
sin( )
41
[反思感悟]在测量高度时,要理解仰角、俯角的概念.仰角和俯 角都是在同一铅垂面内,视线与水平线的夹角,当视线在水 平线之上时,称为仰角;当视线在水平线之下时,称为俯角.

第4章第6节正弦定理余弦定理课件共47张PPT

第4章第6节正弦定理余弦定理课件共47张PPT


6+ 4
2 .
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
点评:在△ABC中,若A=m,则B+C=π-m.从而B=π-m-C 或C=π-m-B,由此可消去B或C.
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
[跟进训练]
=4或b=5.]
1234
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
02
细研考点·突破题型
考点一 考点二 考点三
利用正、余弦定理解三角形 利用正、余弦定理解决三角形面积问题 判断三角形的形状
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
2.三角形常用面积公式
(1)S=12a·ha(ha 表示边 a 上的高);
(2)S=12absin
1
1
C=___2_a_c_s_in__B___=____2_b_c_s_in__A__;
(3)S=12r(a+b+c)(r 为内切圆半径).
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
因此,选条件②时问题中的三角形存在,此时c=2 3.
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
方案三:选条件③.
由C=π6和余弦定理得a2+2ba2b-c2=
3 2.

正弦定理 课件

正弦定理 课件

6 4 2
2 =
3 +1.
2
已知△ABC中,a=20,A=30°,C=45°,求B,b,c.
解:因为 A=30°,C=45°, 所以 B=180°-(A+C)=105°,
由正弦定理得 b= a sin B = 20sin105 sin A sin 30
=40sin(45°+60°)
=10( 6 + 2 );
6 =4(
3 +1).
2
所以 A=45°,c=4( 3 +1).
题后反思 已知三角形的两角和任一边解三角形,基本思路是: (1)若所给边是已知角的对边时,可由正弦定理求另一角所对边,再由三角形 内角和定理求出第三个角. (2)若所给边不是已知角的对边时,先由三角形内角和定理求出第三个角,再 由正弦定理求另外两边.
所以 cos A = cos B = cosC . sin A sin B sin C
即 sin A = sin B = sin C .所以 tan A=tan B=tan C. cos A cos B cosC
又因为 A、B、C∈(0,π),所以 A=B=C.所以△ABC 为等边三角形.
在△ABC中,已知(a2+b2)sin(A-B)=(a2-b2)sin(A+B),试判断△ABC的形状.
解:由已知有 a2sin(A-B)+b2sin(A-B)=a2sin(A+B)-b2sin (A+B), 即 2a2cos Asin B-2b2cos Bsin A=0, 所以 a2cos Asin B-b2sin Acos B=0. 由正弦定理, 上式可化为 sin2Acos Asin B-sin2Bsin Acos B=0, 即 sin Asin B(sin Acos A-sin Bcos B)=0, 因为 sin A≠0,sin B≠0, 所以 sin Acos A-sin Bcos B=0,即 sin 2A=sin 2B,

正弦定理 课件(人教版)

正弦定理  课件(人教版)

题型一 理解正弦定理
例 1 (1)在 Rt△ABC 中,C=90°,试根据直角三角形中正弦 函数的定义,证明:sianA=sibnB=sincC.
【证明】 在 Rt△ABC 中,C=90°, 由正弦函数的定义知: sinA=ac,sinB=bc,sinC=1. ∴sianA=c,sibnB=c,sincC=c. ∴sianA=sibnB=sincC.
(2)在锐角△ABC 中,根据下图,证明:sianA=sibnB=sincC.
【证明】 根据三角函数的定义: sinA=CbD,sinB=CaD. ∴CD=bsinA=asinB. ∴sianA=sibnB. 同理,在△ABC 中,sibnB=sincC. ∴sianA=sibnB=sincC成立.
【解析】
(1) 由




sianA =
b sinB


sinA

asinB b

6× 2
2 2=
3 2.
又 0°<A<180°,∴A=60°或 120°.
∴C=75°或 C=15°.
(2)由正弦定理,得
2 sinB=bsianA=
3 3× 2
3 2=
2 2.
∴B=45°或 135°,但 B=135°时,135°+60°>180°,这与 A
正弦定理
要点 1 正弦定理 (1)在一个三角形中,各边和所对角的 正弦 的比相等,即:
sianA=sibnB=sincC
=2R(其中 R 是△ABC 外接圆的半径).
(2)正弦定理的三种变形
①a=2RsinA,b= 2RsinB ,c= 2RsinC ;
②sinA=2aR,sinB=

《正弦定理余弦定理》课件

《正弦定理余弦定理》课件

THANKS
感谢观看
REPORTING
基础习题2
基础习题3
已知三角形ABC中,角A、B、C所对 的边分别为a、b、c,若$a = 8, b = 10, C = 45^{circ}$,求边c。
在三角形ABC中,已知A=60°,a=3, b=4, 求角B的大小。
进阶习题
进阶习题1
在三角形ABC中,已知A=45°, a=5, b=5sqrt{2}, 求边c。
详细描述
正弦定理是指在一个三角形中,任意一边与其对应角的正弦值的比等于其他两边的平方和与该边的平方的差的平 方根。余弦定理则是指在一个三角形中,任意一边的平方等于其他两边的平方和减去两倍的另一边与其对应角的 余弦值的乘积。
定理的推导过程
总结词
正弦定理和余弦定理的推导过程涉及到三角函数的定义、性质以及一些基本的 代数运算。
进阶习题2
已知三角形ABC中,角A、B、C所 对的边分别为a、b、c,若$a = 10, b = 8, C = 120^{circ}$,求 边c。
进阶习题3
已知三角形ABC中,角A、B、C所 对的边分别为a、b、c,若$a = 6, b = 8, C = 60^{circ}$,求边c。
综合习题
综合习题1
面积求解
总结词
余弦定理还可以用于计算三角形的面积,通过已知的两边及其夹角,使用面积公式进行计算。
详细描述
已知边a、边b和夹角C,可以使用余弦定理结合面积公式计算三角形ABC的面积,公式为:S = 1/2 ab sin(C)。
PART 04
正弦定理与余弦定理的对 比与联系
REPORTING
定理的异同点
详细描述
首先,利用三角函数的定义和性质,我们可以得到一些基本的等式。然后,通 过一系列的代数运算,将这些等式转化为正弦定理和余弦定理的形式。

1.1.1正弦定理课件(PPT)

1.1.1正弦定理课件(PPT)
第18页,共49页。
例⒉在△ABC中,已知a=2,b= 2 2,A=45°,
求B和c。 变式1:在△ABC中,已知a=4,b= 2 2,A=45°,
求B和c。
变式2:在△ABC中,已知a= 4 3 ,b=2 2 ,A=45°,
求B和c。
3
第19页,共49页。
例⒉在△ABC中,已知a=2,b= 2 2,A=45°,
A
A
B A B2 B1
a<bsinA a=bsinA
无解
一解
一解
一解
bsinA<a<b 两解
无解
两解
一解
ba
bsinA
第35页,共49页。
A B
a≥b
一解
作三角形
案例小结!
C
(1)A为锐角 C
b
a
ba a
A
B
a = bsinA (一解) C
b
A B2
B1
bsinA<a<b
a (两解)
A
B
a≥b (一解)
点拨:已知两边和其中一边的对角解三角形时,通 常要用到三角形内角定理和定理或大边对大角定 理等三角形有关性质.
第30页,共49页。
2.在ABC中 (1)已知b 3, c 1, B 60 ,求a, 和A,C;
解: b c ,
No sin B sinC
sinC c sin B 1 sin60 1
判断满足下列的三角形的个数: (1)b=11, a=20, B=30o (2)c=54, b=39, C=120o (3)b=26, c=15, C=30o (4)a=2,b=6,A=30o
第39页,共49页。

正弦定理课件:(比赛用)PPT)

正弦定理课件:(比赛用)PPT)

正切定理与正弦定理的关系
正切定理描述了三角形中两边的比值与它们所对的角的正 切值之间的关系。具体来说,正切定理指出在任何三角形 ABC中,边BC与角A的正切值的乘积等于边AC与角B的正 切值的乘积,以此类推。
正切定理与正弦定理之间存在密切的联系。正弦定理可以 通过三角恒等式转化为正切定理的形式,反之亦然。这种 关系表明,正弦定理和正切定理在解决三角形问题时可以 相互补充。
角度与边长关系
在任意三角形ABC中,角度A、B、C的正弦值与对应的边长a、 b、c之比都相等,即$sin A = frac{a}{c}$,$sin B = frac{b}{c}$,$sin C = frac{c}{a}$。
三角形的角度与边长的关系
角度与边长关系
在任意三角形ABC中,角度A、B、C的正弦值与对应的边长a、b、c之比都相等,即 $sin A = frac{a}{c}$,$sin B = frac{b}{c}$,$sin C = frac{c}{a}$。
正弦定理在几何学中的应用
正弦定理是解决三角形问题的基本工具之一,它在几何学中有着广泛的应用。例 如,利用正弦定理可以计算三角形的面积、解决三角形中的角度问题、判断三角 形的形状等。
正弦定理在几何学中的应用不仅限于三角形本身。例如,它可以用来解决与圆、 椭圆、抛物线等其他几何图形相关的问题。通过结合其他几何定理和性质,正弦 定理可以用于解决各种复杂的几何问题。
三角形的解法
三角形的解法概述
解决三角形问题需要利用三角形的边 角关系,通过代数运算和三角函数计 算来求解。
常见的三角形解法
常见的三角形解法包括余弦定理、正 弦定理、勾股定理等,这些解法在解 决三角形问题时具有广泛的应用。
Hale Waihona Puke 三角形的面积计算三角形面积的计算公式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在钝角三角形中
设A 900
过点A作与AC垂直的单位向量 j,
则j与AB的夹角为 A90
B
j与CB的夹角为 90 C
j
具体证明过程
A
C
马上完成!
You try
例 1.在 AB 中 , C 已c知 1,0 A45 ,C30 .
求B 和 角b.边
You try
例 1.在 AB 中 , C 已c知 1,0 A45 ,C30 .
定义:
解三角形就是:
A
c
b
B
a
C
定义:把三角形的三个角A,B,C和 三条边a,b,c叫做三角形的元素,已知 三角形的几个元素求其它元素的过程叫做 解三角形。
解三角形就是:由已 知的边和角,求未知 B 的边和角。
A
c
b
a
C
知识回顾:
请你回顾一下:同一三角形中的边角关系 (1)三边: a+b>c, a+c>b, b+c>a
a
sin A
c a
c
sin A
sin sin
B C
b
c
1
c
b sin
B
c c c
c
sin C
A c
b
Ca
B
a b c sinA sinB sinC
2.若三角形是锐角三角形, 如图1, 过点A作AD⊥BC于D,
A
c
b
此时有 siB nA cD ,siC nA bDB
图1 D
C
所以AD=csinB=bsinC, 即
sinA sinB sinC
B 由(1)(2)(3)知,结论成立.
A c
b
图2 C D
正弦定理:
abc sinA sinB sinC
(1)文字叙述 正弦定理:在一个三角形中,各边和它所对角 的正弦的比相等. (2)结构特点 和谐美、对称美. (3)方程的观点
正弦定理实际上是已知其中三个,求另一个.
O
C
b
c
2R
sin C
同理 a 2R, b 2R
C/
sin A sinB
能否运用向量的方法
a b c 2R 来证明正弦定理呢? sin A sinB sinC
向量法
利用向量的数量积,产生边的长与内角 的三角函数的关系来证明.
在直角三角形中
A
c
b
B
a DC
在锐角三角形中
B
jc
a
两边同取与 j的数量积 , 得
求B和c。 变式1:在△ABC中,已知a=4,b= 2 2,A=45°,
求B和c。
变式2:在△ABC中,已知a= 4
求B和c。
3
解 : a b
sin A sin B
3 ,b=2 2 ,A=45°,
sin B b sin A 2
2
2 2
3
a
43 2
3
B 600 或1200
bc, sinB sinC
同理可得 a c ,
sinA sinC
即: a b c sinA sin B siC n
3.若三角形是钝角三角形,且角C是钝角如图2, 过点A作AD⊥BC,交BC延长线于D,
此时也有
sinB
AD c
且 s( in C) A bD siC n
仿(2)可得 a b c
(2)三角: A B C 18 0c
A b
B
(3)边角: 大边对大角
a
C
课前检测
在 Rt ABC 中, A300, C900,a10
求b , c ?
A
c b
Ca
B
问题1:在 ABC 中,设 B Ca,A Cb,A Bc,
证明:
a
b
c
sinA sinB sinC
1. 在一个直角三角 A形BC中
能否运用向量的方法来证明正弦定理呢?
4.有没有其他的方法证明以上的等式成立?
求证:
a
b


c
= 2R
sin A sin B sin C
(2R为△ABC外接圆直径)
证明: 作外接圆O,
B
过B作直径BC/,连AC/,
BA C 90, C C ' c
a
sin C sin C ' c 2R A
C
750 或150 c
a sin C
4 3 3
6 4
sin A
2
2 88 3 3
2
例⒉在△ABC中,已知a=2,b= 2 2 ,A=45°,
求B和c。 变式1:在△ABC中,已知a=4,b= 2 2,A=45°,
求B和c。
变式2:在△ABC中,已知a= 4 3 ,b=2 2 ,A=45°,
求B 和 角b.边
解: B 1 8 (A 0 C ) 1 05

bc sinB sinC
bcsinB sinC
5 10sin105 sin30
65
219
正弦定理应用一: 已知两角和任意一边,求其余两边和一角
例⒉在△ABC中,已知a=2,b= 2 2 ,A=45°,
求B和c。 变式1:在△ABC中,已知a=4,b= 2 2,A=45°,
求B和c。
3
解: a b
sinA sinB
sinB bsinA 2
2
2 2 1
a
2
B 900 c 2
例⒉在△ABC中,已知a=2,b= 2 2 ,A=45°,
求B和c。 变式1:在△ABC中,已知a=4,b= 2 2,A=45°,
求B和c。
变式2:在△ABC中,已知a= 4 3 ,b=2 2 ,A=45°,
求B和c。
3
解 : a b
sin A sin B
sin B b sin A 2
2
2 2 1
a
4
2
B 300 或1500 (舍去 )
C 1050 c
a sin C 4
6 4
sin A
△ABC中,已知a=2,b= 2 2 ,A=45°,
求B和c。
变式2:在△ABC中,已知a= 4 3 ,b=2 2 ,A=45°,
求B和c。
3
例⒉在△ABC中,已知a=2,b= 2 2 ,A=45°,
求B和c。 变式1:在△ABC中,已知a=4,b= 2 2,A=45°,
求B和c。
变式2:在△ABC中,已知a= 4 3 ,b=2 2 ,A=45°,
j AC CB j AB
j AC j CB j AB ( 根 据 向 量 的 数 量 定 积 义 的 )
A
b
C
证 明 :A过 作点 单 位 向 j垂量 直
于AC,
j与AC的


为 90

j与CB的


为 90
C

j与AB的 夹 角 为90A .
由向量加法的三角形法则
ACCBAB
j ACcos90 j CBcos9( 0 C)
j ABcos9( 0 A) 即asinC csinA a c sinA sinC
同理 , 过 C 点作 j垂直于 CB,可得 c b , 在锐角三角形中
sin C sin B 也有 a b c s iA n s iB n s iC n
相关文档
最新文档