正弦定理优秀课件

合集下载

6.4.3第二课时 正弦定理PPT课件(人教版)

6.4.3第二课时 正弦定理PPT课件(人教版)

则△ABC的形状是
()
A.直角三角形
B.等腰三角形
C.等腰直角三角形
D.等边三角形
解析:由3b=2 3asin B,得sinb B=2 33a,根据正弦定理,
得sinb B=sina A,所以sina A=2 33a,即sin A= 23.又角A是锐
角,所以A=60°. 又cos B=cos C,且B,C都为三角形的内
由已知得,C=180°-45°-75°=60°,
c=b·ssiinn CB=2×ssiinn 4650°°= 6.
“夯基提能·落实素养”见“课时跟踪检测(十一)” (单击进入电子文档)
Thank You!
第二课时 正弦定理
[思考发现]
1.有关正弦定理的叙述:
①正弦定理只适用于锐角三角形;
②正弦定理不适用于钝角三角形;
③在某一确定的三角形中,各边与它的对角的正弦的比是定值;
④在△ABC中,sin A∶sin B∶sin C=a∶b∶c.
其中正确的个数是
()
A.1
B.2
C.3
D.4
解析:正弦定理适用于任意三角形,故①②均不正确;由 正弦定理可知,三角形一旦确定,则各边与其所对角的正 弦的比就确定了,故③正确;由比例性质和正弦定理可推 知④正确.故选B. 答案:B
由sina A=sinc C得,c=assiinnAC=8×sinsin457°5°
8× =
2+ 4 2
6 =4(
3+1).所以A=45°,c=4(
3+1).
2
已知任意两角和一边,解三角形的步骤 (1)求角:根据三角形内角和定理求出第三个角; (2)求边:根据正弦定理,求另外的两边. 已知内角不是特殊角时,往往先求出其正弦值,再根据以 上步骤求解.

正弦定理 优秀课件

正弦定理 优秀课件

7
例1:(林场失火问题)在△ABC中,已知 A=130°,B=30°,AB=10千米,求AC与BC的 长.
解:根据三角形内角和定理,
C 180 ( A B) 180 (130 30 ) 20 AC AB 由正弦定理: 得 sin B sin C C AB AC sin B 14.42千米 sin C BC AB 130° 30° 又由 得 A 10km B sin A sin C
AB BC sin A 22.39千米 sin C
8
例2:在 ABC中,已知a 3 , 2, 45 B b
求角 A .
解:依题意得,由正弦定理
C
a b sin A sin B
3
452o2 Nhomakorabea60
o
120
B
A
o
A
sin B sin 45 3 得 sin A a 3 2 b 2
§1.1.1正弦定理
(第一课时)
教材:人教A版
1
北 东
C
·
· A
130°
30°
10km
2
· B
问题情境
在 △ ABC 中 , 已 知 A=130°,B=30° , AB=10千米,求AC与BC的长.
C
130° 30° A 10km
B
3
三角形的边角之间的关系
三角形的内角和是180

两边之和大于第三边,两 边之差小于第三边
A 60 或A=120
o
o
9
归纳提升
a b c ★正弦定理: sin A sin B sin C
★主要应用: 1. 已知两角及一边,可以求出另外两边 和另一角 2. 已知两边一对角 ,可以求出另外两角 和另一边

正弦定理课件

正弦定理课件
6、归纳小结
问题4:本节课你学到了哪些知识?有什么收获?
1、找到了解决任意三角形边角关系的重要工具—正弦定理。
2、正弦定理的证明方法。
3、了解了实际生活中简单的三角度量方法。
作业:1、请至少有三种方法证明正弦定理。 2、课本P4第1题 ,P10第1题
作高法作高法.mp4
3、逻辑推理 证明猜想
问题2:你能严格地推理证明猜想吗?
等面积法等面积法.mp4
4、定理形成 概念深化
在一个三角形中,各边的长和它所对角的正弦的比相等,
(1)正弦定理展现了三角形边角关系的和谐美和对称美; 一般地,我们把三角形的三个角和它的对边分别叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.问题3:利用正弦定理解三角形,至少已知几个元素?问题4:正弦定理可以解决那类解三角问题?
第1部分
正弦定理
1、创设情境 提出问题
引入
小王去察尔汗盐湖,他发现在他所在位置北偏东60°方向有一艘采盐船,当他开车向正东方向走了5千米后,发现采盐船在他的北偏西45°的位置。此时,采盐船离小王多远?
A
B
C
实际问题
数学问题
已知 中
BC=5,求AC的长。
2、探寻特例 提出猜想
正弦定理:
(2)解三角形:
例1、已知
中,a=20,A=30°,C=45°解三角形。
∴B=180°﹣(A+C)=105°
由正弦定理b=
=
=40sin(45° +60°)
=
=

c=
∴B=105°,
b=
c=
解:∵A=30°,C=45°,
5、范例教学 举一反三
变式1若 中,AC= ,A=45°,C=75°,则:BC=

高中数学人教A版_正弦定理(15张PPT)

高中数学人教A版_正弦定理(15张PPT)
结论
LsinA=s nB= sin C
文字叙述
在一个三角形中,各边和它所对角的_正弦的比相 等
正弦定理
以上我们利用向量方法获得了正弦定理。事 实上,探索和证明这个定理的方法很多,有些方 法甚至比上述方法更加简洁。你还能想到其他方 法吗?
利用三角形的高证明正弦定理(1)当△ABC 是锐角三角形时,设边AB 上的高是CD, 根据锐角三角 函数的定义,有CD=asin B,CD=bsin A。
6.4平面向量的应用 6.4.3第二讲正弦定理
(1)在△ABC 中,若A=30°,B=45° ,AC=4, 你还能直接运用余弦定理求出边BC吗?[提示] 不能。(2)在直角三角形中,边与角之间的关系是什么?
因此我们由那视频可以得出:
B
C
定理推导
又因为sin C=sin 90°=1
同理,过点C 作与CB垂直的单位向量m, 可
【提示】 成立,如图,当△ABC为钝角三角形时,不妨设A为钝 角。过点A作与AC 垂直的单位向量j,则j与AB 的夹角为A; 与CB 的 夹角为 C.仿照上述方法,同样可得:
在钝角三角形中的这个边角关系成立吗?
条件
在△ABC中,角A,B,C所对的边分别为a,b,c
如图,△ABC 为锐角三角形,过点A 作与AC 垂直的单位向量j, 则j 与AB 的夹角 ,j 与CB的 夹 角
也即asin C=csin A,即因
因为AC+CB=AB, 所以 j·(AC+CB)=j·AB. 由分配律,得j·AC+j·CB=j·AB,
利用向量法证明正弦定理
4, 请你用正弦定理来求出
练一练
B
在一个三角形中,各边和它 所对角的正弦的比相等。

正弦定理应用ppt课件

正弦定理应用ppt课件

小结
(1)已知两角与一边,用正弦定理,有解时,只有一解. (2)已知两边及其中一边的对角,用正弦定理,可能有 两解、一解或无解.
(3)利用正弦定理判断三角形的形状 利用正弦定理,结合三角形的内角和定理及三角函数中 的一些公式,可以对某些三角关系式或恒等式进行恒等变 形,要充分挖掘题目中的隐含条件,通过正弦定理转化为边 的关系或角的关系,看是否满足勾股定理、两边相等或两角 相等、三边相等或三角相等,从而确定三角形的形状.
①a:b:c=sinA:_s_i_n_B_:sinC . ②sianA=sibnB=sincC=sinA+a+sinbB++c sinC . ③a=2RsinA,b=2RsinB,c=2_R__si_n_C___. ④sinA=2aR,sinB=2bR,sinC=2cR ⑤A<B⇔a<b⇔2RsinA<2RsinB⇔sinA<sinB .
2× 3
2 2 =2
3.故选B.
2
答案:B
3.在△ABC中,sinA=sinC,则△ABC是( ) A.直角三角形 B.等腰三角形 C.锐角三角形 D.钝角三角形 解析:由sinA=sinC知,在△ABC中有A=C. 答案:B
4.在△ABC中,三个内角A,B,C的对边分别为a, b,c,已知A:B:C=1:2:3,则a:b:c=________.
变式训练 已知方程 x2-(bcosA)x+acosB=0 的两根之 积等于两根之和,且 a,b 为△ABC 的两边,A,B 分别为 a, b 的对角,试判断△ABC 的形状.
解:设方程的两根为x1,x2,由韦达定理得x1+x2= bcosA,x1x2=acosB.
由题意得bcosA=acosB, 由正弦定理得sinBcosA=sinAcosB, 即sinAcosB-cosAsinB=0. ∴sin(A-B)=0.在△ABC中,A,B为其内角,-π<A- B<π,所以A=B. 即△ABC为等腰三角形.

9.1.1正弦定理 课件(共36张PPT)

9.1.1正弦定理 课件(共36张PPT)

基础预习初探
1.回顾直角三角形中的边与角的关系: a , b , c 是否为定值?
sin A sin B sin C
提示:如图,直角三角形ABC中,C=90°,c=2R,R为△ABC外接圆的半径,显然有 a b c =2R(定值).
sin A sin B sin C
2.在锐角或钝角三角形中边与角的关系: a , b , c 是否为定值?
sin A sin C
得sin C= csin A 3,
a2
又0°<C<180°,得C=60°或C=120°.
当C=60°时,B=75°,sin75°= b= csin B 2 6;
sin C
6 2, 4
当C=120°时,B=15°,sin15°= b=csin B 6- 2.
sin C
sin A sin B sin C
sin A sin B sin C
提示:如图,锐角三角形的外接圆的半径为R,直径为CD=2R,连接
BD,∠A=∠D,∠CBD=90°,
所以 a =aCD=2R,
sin A sin D
同理 b=2R, =c2R.
sin B
sin C
得 a b =2Rc(定值).
sin A sin B sin C
同理,在钝角三角形中,上述等式仍然成立.
2
可得B<60°,即可求得B.
2.由A+B+C=180°求角B,再由正弦定理求边长.
【解析】1.选C.因为A=60°,a=4 3,b=4,
由正弦定理 a ,得b sin B=
sin A sin B
bsin A 4 sin60 1 .
a
43 2
因为a>b,所以B<60°,所以B=30°.

正弦定理PPT课件

正弦定理PPT课件

定理应用,解决引例
在ABC中,BC 54,B 45,C 60.求边长AB.
A
定义:
B
C
一般地,把三角形的三个角A、B、C和它们的对边a、b、c
叫做三角形的元素,已知三角形的几个元素求其他的元素的过程叫
做解三角形。
学以致用
1:在ΔABC中,已知A 30 , B 45 , a 2,求C、b、c.
解:由正弦定理 a b 得: sin A sin B
sin B bsin A 2 3 sin 45 3
a
22
2
B 0,180
B 60或120
当B 60时,C 75
c
Hale Waihona Puke a sin C sin A
2
2 sin 75 sin 45
2
2 sin 30 45 sin 45
6
2
当B 120时,C 15
2R sin CDB a sin A
2R
a b 2R sin A sin B
同理: a b c 2R sin A sin B sin C
C
O
A
B
D
定理应用总结
正弦定理(law of sines)
任意ΔABC中,设BC a, AC b, AB c abc
sin A sin B sin C
a b sin A sin B
已知三角形的任意两个角与一边,求其它两边和一角.
定理应用总结
正弦定理(law of sines)
任意ΔABC中,设BC a, AC b, AB c abc
sin A sin B sin C
sin A a sin B b
已知三角形的任意两边与其中一边的对角,求其他两和一边.

第4章第6节正弦定理余弦定理课件共47张PPT

第4章第6节正弦定理余弦定理课件共47张PPT


6+ 4
2 .
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
点评:在△ABC中,若A=m,则B+C=π-m.从而B=π-m-C 或C=π-m-B,由此可消去B或C.
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
[跟进训练]
=4或b=5.]
1234
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
02
细研考点·突破题型
考点一 考点二 考点三
利用正、余弦定理解三角形 利用正、余弦定理解决三角形面积问题 判断三角形的形状
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
2.三角形常用面积公式
(1)S=12a·ha(ha 表示边 a 上的高);
(2)S=12absin
1
1
C=___2_a_c_s_in__B___=____2_b_c_s_in__A__;
(3)S=12r(a+b+c)(r 为内切圆半径).
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
因此,选条件②时问题中的三角形存在,此时c=2 3.
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
方案三:选条件③.
由C=π6和余弦定理得a2+2ba2b-c2=
3 2.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章:解三角形
1.问题的引入:
(1)在我国古代就有嫦娥奔月的神话故事.明月 . 高悬 ,我们仰望夜空,会有无限遐想,不禁会问, 月亮离我们地球有多远呢?科学家们是怎样 测出来的呢?
(2)设A,B两点在河的两岸, 只给你米尺和量角 设备,不过河你可以测出它们之间的距离吗?
B
A
我们这一节所学习的内容就是解决这些问题 的有力工具.
C
26
300
30
B
所以B=25.70, 或B=1800-25.70=154.30
由于154.30 +300>1800 故B只有一解 (如图) C=124.30,
a sin C c 49.57 sin A
13 sin 25.7 30

小结:已知两边和其中一边的对角,可以求出 三角形的其他的边和角。
5、正弦定理的变形形式
6、正弦定理,可以用来判断三角形的 形状,其主要功能是实现三角形边角关 系的转化
1.1.1 正弦定理
3.定理的应用举例 例1 在ABC 已知 解三角形. 变式:若将a=2 改为c=2,结果如何? 通过例题你发现了什么一般性结论吗?
A 300 , B 1350 , a 2
1.1.1 正弦定理 2.定理的推导
回忆一下直角三角形的边角关系?
a c sin A b c sin B 两等式间有联系吗?
B c a
A
b C
a b c sin A sin B
sin C 1
a b c sin A sin B sin C
思考: 对一般的三角形,这个结论还能成立吗?
16 3
300
16
16
所以B=60°,或B=120° 当 B=60°时
C=90°
A
B
8 3
B
c 32 .
a sin C c 16 . sin A
当B=120°时 C=30°
变式: a=30, b=26, A=30°,解三角形
a b 解:由正弦定理 sin A sin B b sin A 26 sin 30 13 得 sin B a 30 30 A
剖析定理、加深理解
a b c 正弦定理: sin A sin B sin C
1、A+B+C=π 2、大角对大边,大边对大角
剖析定理、加深理解
a b c 正弦定理: sin A sin B sin C
3、正弦定理可以解决三角形中的问题: ① 已知两边和其中一边的对角,求另一边 的对角,进而可求其他的边和角 ② 已知两角和一边,求其他角和边
1.1.1 正弦定理
小结: • 正弦定理 • 主要应用
a b c sin A sin B sin C
(1) 已知两角及任意一边,可以求出其他两边 和另一角; (2)已知两边和其中一边的对角,可以求出三 角形的其他的边和角。(此时可能有一解、二解、 无解)
课后探究 ( : 1)你还可以用其它方法证明 正弦定理吗?
1.1.1 正弦定理
4.基础练习题
(1)在ABC中,已知 A 450 , a 2, b 2, 求B
B=300
10 3 (2)在ABC中,已知A 60 , a 4, b , 求B 3
0
无解
1.1.1 正弦定理
5.探究课题引入时问题(2)的解决方法
B
c
A

b

C
bsinβ AB = sin(α + β)
1.1.1 正弦定理
(1)当 ABC 是锐角三角形时,结论是否还成立呢? C 如图:作AB上的高是CD,根椐 E 三角形的定义,得到 b a CD a sin B, CD b sin A A 所以 a sin B b sin A B D a b c
得到
b c 同理, 作AE BC .有 sin B sin C a b c sin A sin B sin C
,
小结:知道三角形的两个内角和任何一边,利 用正弦定理可以求出三角形中的其它元素。
例 2、 已知a=16, b= 16 3, A=30° . 已知两边和其中一边 解三角形 的对角,求其他边和角 a b 解:由正弦定理 C
sin A sin B
b sin A 16 3 sin 30 3 得 sin B a 16 2
a b c (2) sin A sin B sin C k 那么这个k值是什么呢?你能用一个和三角形有 关的量来表示吗?
作业:
P10
2
剖析定理、加深理解
a b c 正弦定理: sin A sin B sin C
4、一般地,把三角形的三个角A,B,C 和它们的对边a,b,c叫做三角形的元 素。已知三角形的几个元素求其他元素 的过程叫解三角形
剖析定理、加深理解
a b c 正弦定理: sin A sin B sin C
sin A

Hale Waihona Puke sin B1.1.1 正弦定理
(2)当 ABC 是钝角三角形时,以上等式是否仍然成立?
C
b
a
D
B
c
A
1.1.1 正弦定理
正弦定理 在一个三角形中,各边和它所 对角的正弦的比相等,即
a b c sin A sin B sin C
定理结构特征: 含三角形的三边及三内角,由己知二角一边 或二边一角可表示其它的边和角
相关文档
最新文档